
VisIt User Manual Documentation
Release 3.1

LLNL

Sep 10, 2020

Contents

1 VisIt GUI User Manual 1

2 VisIt Python (CLI) Interface Manual 459

3 VisIt Tutorials 705

4 VisIt Developer Manual 871

Index 895

i

ii

CHAPTER 1

VisIt GUI User Manual

Contents:

1.1 Introduction to VisIt

VisIt is a free, open source, platform independent, distributed, parallel, visualization tool for visualizing data de-
fined on two- and three-dimensional structured and unstructured meshes. VisIt’s distributed architecture allows it
to leverage both the compute power of a large parallel computer and the graphics acceleration hardware of a local
workstation. VisIt’s user interface is often run locally on a Windows, Linux, or OSX desktop computer while its
compute engine component runs in parallel on a remote computer. VisIt’s distributed architecture allows VisIt to
visualize simulation data where it was generated, eliminating the need to move the data to a visualization server.
VisIt can be controlled by its Graphical User Interface (GUI), through the Python and Java programming languages,
or from a custom user interface that you develop yourself. More information about VisIt can be found online at
https://wci.llnl.gov/simulation/computer-codes/visit.

This manual explains how to use the VisIt GUI. You will be given a brief overview on how VisIt works and then you
will be shown how to start and use VisIt.

1.1.1 Understanding how VisIt works

VisIt’s Core Abstractions

VisIt’s interface is built around five core abstractions. These include:

• Databases

• Plots

• Operators

• Expressions

• Queries

1

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://wci.llnl.gov/simulation/computer-codes/visit
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Databases

Databases read data from files and presents the data in the user interface as variables. VisIt supports many different
types of variables including:

• Meshes

• Scalars

• Vectors

• Tensors

• Materials

• Species

Meshes are the foundation of all the other types of variables. They consist of a discretization of space into cells. All
the other variables are defined on the cells of the mesh.

Scalars are single valued fields and examples include density, pressure and temperature. Vectors are multi valued
fields that have a direction and magnitude. Examples include velocity and magnetic fields. Tensors are multi valued
fields that are typically thought of as 2 x 2 matrices in the case of 2D data and 3 x 3 matrices in the case of 3D data.
The typical tensor variable is the stress tensor. Materials are a special type of variable that associates one or more
materials with a cell. The location of the material is not specified within the cell and in the case of multi material cells,
algorithms must be used to determine where the material is located in the cell, typically by looking at the materials
in neighboring cells. Species are variables that are associated with each material. For a given material, species are
a further breakdown of a material. The distinctive property of a species is that it is uniformly distributed throughout
the material. For example, air consists of many different gases such as oxygen, nitrogen, carbon monoxide, carbon
dioxide, etc.

Plots

Plots take variables and generate a visual representation of the variable. Some examples include the Mesh plot, which
displays the mesh lines of the mesh, the Pseudocolor plot, which maps scalar variables to color, and the Vector plot,
which displays vector glyphs indicating the direction and magnitude of a vector field. Plots work on specific types
of variables and the graphical user interface limits the display of variables that can be used with a given plot to the
appropriate variables.

Operators

Operators take variables and modify them in some way. Operators perform their operations before they are plotted.
Multiple operators may be applied to a variable forming a pipeline. For example, a mesh may be subsetted so that all
the values fall within a given range, furthermore, the mesh may be subsetted to a portion of the mesh within a user
specified box.

Expressions

Expressions perform calculations on variables to generate new variables. Some common expressions consist of the
standard mathematical operations such as addition, subtraction, multiplication and division. It also includes more
complex operations such as gradient and divergence.

2 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Queries

Queries summarize data and typically take variables as input and generate either a single value or some small number
of values. Queries can also create curves, the most common of which is the result of a query over time that creates a
curve of a scalar value over time. Some examples of queries include minimum, maximum, spatial extents and volume.

VisIt’s Architecture

VisIt has a client-server architecture that consists of one or more clients that connect to a viewer, which connects to
one or more parallel servers. The clients and viewer typically run locally on the users desktop system while the parallel
servers run on some remote high performance compute platform. This is shown in Figure 1.1. This is the most general
case, but the components can also all run on a single system, either on the desktop or on a remote high performance
compute platform. The server can also run in serial and for small data sets is completely sufficient.

Fig. 1.1: VisIt’s architecture

VisIt supports a number of different clients including a Graphical User Interface (GUI), a Python based Command Line
Interface (CLI), and a Java programming interface. More than one client can be active at a time and VisIt coordinates
the state between them so that they are consistent.

The viewer is responsible for displaying the visual results of the plots and coordinating the state information between
the various clients.

The server is responsible for reading the data from disk and performing all the manipulations on the data. The server
reads and does all of its processing in parallel when running in parallel. The server can either render the data to be
displayed in parallel or send the data to be rendered by the viewer. For small data sets, rendering in the viewer is faster
and has less latency. For large data sets it is better to render the data in parallel (using scalable rendering) and then
send the rendered image to the viewer for display. The implementation of scalable rendering is shown in Figure 1.2.
VisIt is by default configured to automatically switch between shipping data to the viewer and performing scalable
rendering based on the amount of geometry to be rendered.

1.1. Introduction to VisIt 3

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.2: VisIt’s scalable rendering

VisIt’s Graphical User Interface

When you run the VisIt graphical user interface, you are seeing windows from the Qt based GUI and the viewer. The
GUI is a VisIt client that provides the user interface and menus that let you choose what to visualize. The viewer
displays all of the visualizations and is responsible for keeping track of VisIt’s state and coordinating this state with
the other components. Both the GUI and the viewer are meant to run locally to take advantage of the local computer’s
graphics hardware. The next two components can also be run on a client computer but they are more often run on a
remote, parallel computer or cluster where the data files are generated.

The viewer supports up to 16 visualization windows. Each window is independent of the others. VisIt uses an
active window concept; all changes made in Main window or one of its popup windows apply to the currently active
visualization window. The Main window and visualization window are shown in Figure 1.3.

Servers are launched on each machine where data to be visualized is located. Servers are launched on demand,
typically when a database is opened. If there is more than one host profile on a system, VisIt will pop up a window
asking which profile to use and additional properties such as the number of processors and nodes to use. The Host
Profiles window is used to specify properties about the servers for different machines, such as the number of processors
to use by default when running the server. The status of a compute engine is displayed in the Compute Engines
window.

1.1.2 Installing and Starting VisIt

VisIt runs on the following platforms:

• Linux (including Ubuntu, RedHat, SUSE, TOSS)

• Mac OSX

• Microsoft Windows

A new version of VisIt is usually released every 2-3 months, you can find VisIt release executables at: https://wci.llnl.
gov/simulation/computer-codes/visit/executables.

Download a binary release compatible with the machine you want to install VisIt on. If you are installing VisIt on
Linux, also download the visit-install script.

4 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://wci.llnl.gov/simulation/computer-codes/visit/executables
https://wci.llnl.gov/simulation/computer-codes/visit/executables
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.3: VisIt’s graphical user interface

1.1. Introduction to VisIt 5

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Installing on Mac OSX

VisIt releases include an app-bundle for Mac OSX packaged in a DMG image. Download and open the DMG file
and copy the VisIt app-bundle to your applications directory or any other path. To run VisIt double click on the VisIt
app-bundle. The visit-install script can also be used to install tarball packaged OSX binaries. For this case
follow the Linux installation instructions.

Installing on Linux

Installing VisIt on Linux (and optionally on Mac OSX) is done using the visit-install script. Make sure that
the visit-install script is executable by entering the following command at the command line prompt:

chmod +x visit-install

The visit-install script has the following usage:

visit-install version platform directory

The version argument is the version of VisIt being installed. The platform argument depends on the type platform
VisIt is being installed for. The platform argument can be one of the following: linux, linux-x86_64, darwin. The
directory argument specifies the directory to install VisIt into. If the specified directory does not exist then VisIt will
create it.

For example, to install an x86_64 version of VisIt 3.0.0, use:

visit-install 3.0.0 linux-x86_64 /usr/local/visit

This command will install the 3.0.0 version of VisIt into the /usr/local/visit directory. Note that when you
enter the above command, the file visit3_0_0.linux-x86_64.tar.gz must be present in the current working
directory.

The visit-install script will prompt you to choose a network configuration. A network configuration is a set of
VisIt preferences that provide information to enable VisIt to identify and connect to remote computers and run VisIt
in client/server mode. VisIt includes network configuration files for several computing centers with VisIt users.

After running visit-install, you can launch VisIt using bin/visit . For example, if you installed to /usr/
local/visit, you can run using:

/usr/local/visit/bin/visit

We also recommend adding visit to your shell’s path. For bash users this can usually be accomplished by modifying
the PATH environment variable in ~/.bash_profile, and for c-shell users accomplished by modifying the path
environment variable in ~/.cshrc.

The exact procedure for this varies with each shell and may be customized at each computing center, so please refer
to your shell and computing center documentation.

Installing on Windows

VisIt release binaries for Windows are packaged in an executable installer. To install on Windows run the installer and
follow its prompts.

The VisIt installation program adds a VisIt program group to the Windows Start menu and it adds a VisIt shortcut
to the desktop. You can double-click on the desktop shortcut or use the Start menu’s VisIt program group to launch
VisIt. In addition to creating shortcuts, the VisIt installation program creates file associations for .silo, .visit,
and .session/.vses files so double-clicking on files with those extensions opens them with VisIt.

6 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Startup Options

VisIt has many startup options that affect its behavior (see the Startup Options for complete documentation).

1.1.3 The Main Window

VisIt’s Main window, shown in Figure 1.4, contains three main areas: the file area, the plot area and the notepad area.
The file area contains controls for working with sources and selecting the current time state. The plot area contains
controls for creating and modifying plots and operators. The notepad area is a region where frequently used windows
may be posted for quick and convenient access.

Fig. 1.4: VisIt’s Main window

1.1. Introduction to VisIt 7

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Posting a window

Each time a window posts to the notepad area, a new tab is created in the notepad and the posted window’s contents
are added to the new tab. Clicking on a tab in the notebook displays a posted window so that it can be used.

Fig. 1.5: An unposted and posted window

Postable windows have a Post button to post the window. Clicking on the Post button hides the window and adds its
controls to a new tab in the notepad area. Posting windows allows you to have several windows active at the same time
without cluttering the screen. When a window is posted, its Post button turns to an UnPost button that, when clicked,
removes the posted window from the Notepad area and displays the window in its own window. Figure 1.5 shows an
example of a window with a Post button and also shows the same window when it is posted to the notepad area.

Using the main menu

VisIt’s Main menu contains seven menu options that allow you to access many of VisIt’s most useful features. Each
menu option displays a submenu when you click it. The options in the submenus perform an action such as saving
an image. Menu options that contain a name followed by ellipsis open another VisIt window. Some menu options
have keyboard shortcuts that activate windows. The File menu contains options that deal with files and simulations.
The Controls menu contains options that open VisIt windows that, for the most part, set the look and feel of VisIt’s
visualization windows. The Options menu contains options that allow you to set the appearance of the GUI, manage
host profiles, manage VisIt plugins, set various preferences and save VisIt’s settings to a configuration file. The
Windows menu contains controls that manage visualization windows. The PlotAtts and OpAtts menus allow access
for setting the attributes of all the plots and operators. The Help menu provides options for viewing online help,
VisIt’s copyright agreement, and release notes which describe the major enhancements and fixes in each new version
of VisIt. The options for each menu except for the plot and operator attribute menus are shown in Figure 1.6 and will
be described in detail later in this manual.

The Main menu and the Plots and Operators menus are merged in the OSX version of VisIt because OSX applications
always have all menus in the system menu along the top of the display.

8 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.6: VisIt’s main menus

1.1. Introduction to VisIt 9

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Viewing status messages

VisIt informs the user of its progress as it creates a visualization. As work is completed, status messages are displayed
in the bottom of the Main window in the status bar. In addition to status messages, VisIt sometimes displays error or
warning messages. These messages are displayed in the Output window, shown in Figure 1.7. To open the Output
window, click the Output indicator in the lower, right hand corner of the Main window. When the Output window
contains an unread message, the Output indicator changes colors from blue to red.

Fig. 1.7: The output window and output indicator

Applying settings

When using one of VisIt’s control windows, you must click the Apply button for the new settings to take effect. All
control windows have an Apply button in the lower left corner of the window. By default, new settings are not applied
until the Apply button is clicked because it is more efficient to make several changes and then apply them at once. VisIt
has a mode called Auto apply that makes all changes in settings take place immediately. Auto apply is not enabled
by default because it can cause plots to be regenerated each time settings change and for the database sizes for which
VisIt is designed, auto apply may not always make sense. If you prefer to have new settings apply immediately, you
can enable auto apply by clicking on the Auto apply check box in the upper, right hand corner of the Main window.
If Auto apply is enabled, you do not have to click the Apply button to apply changes.

1.1.4 Getting Started

The rest of this manual details the ins and outs to using VisIt, but you can also very quickly visualize your data by
opening a database and creating plots. You must first select databases to visualize. Sample data files are usually
installed with VisIt in a data directory in the directory in which VisIt was installed. If you are running VisIt on the

10 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.8: The Apply button and Auto apply check box

Windows platform, you can double-click on one of the sample Silo data files to open it in VisIt or you can run VisIt
and open the File open window from the Main window’s File menu. Using the File open window, navigate to the
appropriate directory, highlight a file, and click the Ok button. If the database was successfully opened, the Add menu
will be enabled.

Once you have opened a database, you can use it to create a plot by selecting a plot type and database variable from
the Add menu. Once a plot is created, the Active plot list will show that the new plot has been added by displaying a
description of the plot drawn in green text. The color green indicates that the plot is in the new state and has not been
drawn yet. To draw the plot, click the Draw button in the middle of the Main window. That’s all there is to creating a
plot using VisIt. For more detailed information on creating plots and performing specific actions in VisIt, refer to the
other chapters in this book.

1.2 Working with Databases

In this chapter, we will discuss how to work with databases in VisIt. A database can be either a set of files on disk or
a running simulation. You can manage both types of databases using the same VisIt windows. First we’ll learn about
Supported File Types, then the File Open Window which allows you to browse the local system or a remote host to
find your files. Next, we’ll learn how to open databases for visualization using the Sources Pane. After that we’ll learn
how to control animation in the Time Pane before learning how to examine information about a database using the File
Information Window.

1.2.1 Supported File Types

VisIt can create visualizations from databases that are stored in many types of underlying file formats. VisIt has a
database reader for each supported file format and the database reader is a plugin that reads the data from the input file
and imports it into VisIt. If your data format is not listed in File formats supported by VisIt then you can first translate
your data into a format that VisIt can read (e.g. Silo, VTK, etc.) or you can create a new database reader plugin for
VisIt. For more information on developing a database reader plugin, refer to the Getting Data Into VisIt manual or
send an e-mail inquiry to visit-users@elist.ornl.gov.

File extensions

VisIt uses file extensions to decide which database reader plugin should be used to open a particular file format. Each
database reader plugin has a set of file extensions that are used to match a filename to it. When a file’s extension
matches (case sensitive except on MS Windows) that of a certain plugin, VisIt attempts to load the file with that
plugin. If the plugin cannot load the file then VisIt attempts to open the file with the next suitable plugin, before trying
to open the file with the default database reader plugin. If your files do not have file extensions then VisIt will attempt
to use the default database reader plugin. You can provide the -default_format command line option with the
name of the database reader plugin to use if you want to specify which reader VisIt should use when first trying to
open a file. For example, if you want to load a PDB/Flash file, which usually has no file extension, you could provide:
-default_format PDB on the command line.

1.2. Working with Databases 11

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
http://visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports
https://visit.llnl.gov
https://visit.llnl.gov
https://wci.llnl.gov/content/assets/docs/simulation/computer-codes/visit/GettingDataIntoVisIt2.0.0.pdf
mailto:visit-users@elist.ornl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Example Data Files

As part of VisIt’s regular testing, a number of example data files VisIt reads can be found in VisIt’s data subdirectory
of the main code repository. In particular, if you are looking for examples of various of the human readable ASCII
formats VisIt reads so that you can produce a compatible file, you may find examples there that help.

More Details of ASCII Formats

Here we describe more details specific to some of the ASCII formats VisIt reads.

Creating .visit Files

To create a .visit file, simply make a new text file that contains the names of the files that you want to visualize
and save the file with a .visit extension.

• Visit will take the first entry in the .visit file and attempt to determine the appropriate plugin to read the file.

• Not all plugins can be used with .visit files. In general, MD or MT formats sometimes do not work.

– An MT file is a file format that provides multiple time steps in a single file. Thus, grouping multiple MT
files to produce a time series may not be supported.

– An MD file is one that provides multiple domains in a single file. Thus, grouping multiple MD files to
produce a view of the whole may not be supported.

Here is an example .visit file that groups time steps together. These files should contain 1 time step per file.

timestep0.silo
timestep1.silo
timestep2.silo
timestep3.silo
...

Here is an example .visit file that groups various smaller domain files into a whole dataset that VisIt can visualize.
Note the use of the !NBLOCKS directive and how it designates the number of files in a time step that constitute the
whole domain. The !NBLOCKS directive must be on the first line of the file. In this example, we have 2 time steps
each composed of 4 domain files.

!NBLOCKS 4
timestep0_domain0.silo
timestep0_domain1.silo
timestep0_domain2.silo
timestep0_domain3.silo
timestep1_domain0.silo
timestep1_domain1.silo
timestep1_domain2.silo
timestep1_domain3.silo
...

You may also explicitly indicate the time associated with a file (or group of block files) using the !TIME directive like
so. . .

!NBLOCKS 4
!TIME 1.01
timestep0_domain0.silo
timestep0_domain1.silo

(continues on next page)

12 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://github.com/visit-dav/visit/tree/develop/data
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

timestep0_domain2.silo
timestep0_domain3.silo
!TIME 2.02
timestep1_domain0.silo
timestep1_domain1.silo
timestep1_domain2.silo
timestep1_domain3.silo
...

Point3D Files

Point3D files are four or fewer columns of ASCII values with some header text to indicate the variable names asso-
ciated with each column and a coordflag entry to indicate how to interpret the columns of data as coordinates.
Point3D files can be used to define discrete points in 1, 2 and 3 dimensions having a single scalar value associated
with each point. Some examples are below. The Point3D file. . .

x y z value
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Defines a collection of 8 points in 3 dimensions have a scalar variable named value. Below, the #coordflag
directive is used to define the same collection of 8 points in 3 dimensions as the previous example except where the
columns holding the z-coordinate and the scalar variable are interleaved.

x y value z
#coordflag xyvz
0 0 0 0
0 0 1 1
0 1 2 0
0 1 3 1
1 0 4 0
1 0 5 1
1 1 6 0
1 1 7 1

In the example below, the #coordflag directive is used to define a collection of points in two dimensions where
each point has a velocity magnitude value associated with it.

x y velocity
#coordflag xyv
0 0 1
0 1 1.01
1 0 2.02

Likewise, for a collection of points in just one dimension, we would have

x y velocity
#coordflag xv

(continues on next page)

1.2. Working with Databases 13

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

0 1
1 1.01
2 2.02

There are some additional examples of Point3D files on the VisIt wiki pages.

1.2.2 File Open Window

The File Open Window allows you to select files and simulations by browsing file system either on your local com-
puter or the remote computer of your choice. You can open the File Open Window by choosing the Open option from
the Sources section of the main GUI panel (shown in Figure 1.9), or by Choosing the Open File option from the File
dropdown menu. When the window opens, its current directory is set to the current working directory or a directory
from VisIt’s preferences. See Figure 1.10.

Fig. 1.9: Main gui panel showing Sources section

14 Chapter 1. VisIt GUI User Manual

https://www.visitusers.org/index.php?title=Reading_point_data#Using_Point3D_files
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.10: File Open Window

1.2. Working with Databases 15

VisIt User Manual Documentation, Release 3.1

Changing hosts

One of VisIt’s strengths is its ability to operate on files that exist on remote computers. The default host is: “localhost”,
which is a name understood by the system to be the name of your local computer. To access the files on a remote
computer, you must provide the name of the remote computer in the Host text field by either typing the name of a
remote computer and pressing the Enter key or by selecting a remote computer from the list of recently visited hosts.
To access the list of recently visited hosts, click on the down-arrow at the far right of the Host text field.

Changing the host will cause VisIt to launch a database server on the specified computer so you can access files there.
Note that if you do not have an account on the remote computer, or if VisIt is not installed there, you will not be able to
access files. Also note that VisIt may prompt you for a password to authenticate your access to the remote computer.
To set up password-less access to remote computers, refer to Setting Up Password-less SSH.

Once a database server is running on the remote computer, its file system appears in the directory and file lists. The
host name for each computer you access is added to the list of recently visited computers so that you may switch easily
to computers you have recently accessed. If you installed VisIt with the provided network configurations then the list
of recently visited computers also contains the hosts from the host profiles, which are covered later in this document.

Changing directories

To select data files, you must often change the active directory. This can be done in two ways. The first way is to enter
the entire directory path into the Path text field and press Enter. You can use UNIX shell symbols, like the “~” for
your home directory, or the “../” to go up one directory from your current directory. The directory conventions used
depend on the type of computer being accessed. A MS Windows computer expects directories to be specified with
a disk drive and a path with back slashes (e.g. C:\temp\data) while a UNIX computer expects directories with
forward slashes (e.g. /usr/local/data). Keep the type of computer in mind when entering a path. After a path
has been typed into the Path text field, VisIt will attempt to change directories using the specified path. If VisIt cannot
change to the specified directory, the Output Window will appear with an error message and the Path text field will
revert to the last accepted value. Another way to change directories is to double click the mouse on any of the entries
in the directory list. Note that as you change directories, the contents of the File list change to reflect the files in the
current directory. You can immediately return to any recently visited directory by selecting a directory from the Path
text field’s pull-down menu.

Default directory

By default, VisIt looks for files in the current directory. This is often useful in a UNIX environment where VisIt is
launched from a command line shell in a directory where database files are likely to be located. When VisIt is set
to look for files in the current directory, the Use “current working directory” by default check box is set. If all
of your databases are located in a central directory that rarely changes, it is worthwhile to uncheck the check box,
change directories to your data directory, and save settings so the next time VisIt runs, it will look for files in your data
directory.

Changing filters

A filter is a pattern that is applied to the files in the File list to determine whether or not they should show up in the
list. This mechanism allows the user to exclude many files from the list based on a naming convention, which is useful
since VisIt’s data files often share some part of their names.

The Filter text field controls the filter used to display files in the file list. Changing the filter will often change the
File list as files are shown or hidden. The Filter text field accepts standard UNIX C-Shell pattern matching, where,
for example, a “*” matches filter (“*”) shows all files in the File list. Note that you can specify more than one filter
provided you separate them with a space.

16 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Virtual databases

A virtual database is a time-varying database that VisIt artificially creates out of smaller, single time step databases
that have related filenames. Virtual databases allow you to access time-varying data without having to first create a .
visit :ref:`Need a reference to .visit files file. The files that are grouped into a virtual database
are determined by the file filter. That is, only files that match the file filter are considered for grouping into virtual
databases. You can change the definition of a virtual database by changing the file filter. A virtual database appears
in the file list as a set of filenames that are grouped under a single filename that contains the “*” wildcard character.
(Figure 1.11) When you click on any of the filenames in the virtual database, the entire database is selected.

You can tell VisIt to not automatically create virtual databases by selecting the Off option in the File grouping pull-
down menu. When automatic file grouping is turned off, no files are grouped into virtual databases and groups of files
that make up a time-varying database will not be recognized as such without a .visit file. See Figure 1.12.

Fig. 1.11: File grouping turned on (Smart setting)

VisIt has two levels of automatic file grouping. The default level is Smart file grouping, which enables automatic file
grouping but has extra rules that prevent certain groups of files from being grouped into virtual databases. If you find
that Smart file grouping does not provide the virtual databases that you expect, you can back the file grouping mode
down to On or turn it off entirely.

1.2. Working with Databases 17

VisIt User Manual Documentation, Release 3.1

Fig. 1.12: File grouping turned off

18 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Refreshing the file list

Scientific simulations often write out new data files as they run. The Refresh button makes VisIt re-read the current
directory to pick up any new files added by a running simulation. If the active source is a virtual database whose
definition was changed by refreshing the file list, then VisIt will close and reopen the active source so information
about new time states is made available.

Clearing out recently visited paths

The File Open Window maintains a list of all of the paths that have ever been visited and adds those paths to the
recently visited paths list, which can be accessed by clicking on the down-arrow at the far right of the Paths text
field. When you click on a path in the recently visited paths list, VisIt sets the database server’s path to the selected
path retrieves the list of files in that directory. If you visit many paths, the list of recently visited paths can become
quite long. Click the File Open Window’s Remove Paths button to activate the Remove Recent Paths window. The
Remove Recent Paths window allows you to select paths from the recently visited paths list and remove them from
the list. The Remove Recent Paths window is shown in Figure 1.13.

Fig. 1.13: Remove recent paths window

Connecting to a running simulation

Computer simulations often take weeks or months to complete and it is often necessary to visualize data from the
simulation before it has completed in order to diagnose potential problems. VisIt comes with a simulation interface
library that can be linked into your serial or parallel simulation application in order to provide hooks so VisIt can plot
data from your running simulation. When instrumented with the VisIt simulation interface library, your simulation can
periodically check for incoming VisIt connections. When VisIt successfully connects to your simulation, all of your
simulation variables are available for plotting without having to write plot files to disk. During the time that VisIt is
connected, your simulation acts as a VisIt compute engine in addition to its regular responsibilities. You can pause the
simulation while using VisIt to interact with the data or you can choose to have the simulation continue and push new

1.2. Working with Databases 19

VisIt User Manual Documentation, Release 3.1

data to VisIt for plotting. For more information about instrumenting your simulation code with the VisIt simulation
library interface, see the Getting Data Into VisIt manual.

VisIt currently treats simulations as though they were ordinary files. When the VisIt simulation interface library is
enabled in your application, it writes a special file with a .sim2 extension to the .visit/simulations directory
in your home directory (%Documents%\VisIt\simulations on Windows). Each .sim2 file encodes the time
and date it was created into the file name so you can distinguish between multiple simulations that VisIt can potentially
open. A .sim2 file contains information that VisIt needs in order to connect via sockets to your simulation. If you
want to connect to a simulation, you must select the .sim2 files corresponding to the simulations to which you want
to connect. (Figure 1.14). Once that is done, connecting to a simulation is the same as opening any other disk file.

Fig. 1.14: Accessing a simulation using the File Open Window

1.2.3 Sources Pane

The Sources pane , near the top of the Main Window, displays the currently active source, and contains controls to
open, close, reopen, and and overlay sources. Sources are most frequently database files.

Opening a file

To open a file, you want to visualize, click on the Open button. This opens the File Open Window. Once a file is open,
the Close and Reopen buttons become enabled.

20 Chapter 1. VisIt GUI User Manual

https://wci.llnl.gov/content/assets/docs/simulation/computer-codes/visit/GettingDataIntoVisIt2.0.0.pdf

VisIt User Manual Documentation, Release 3.1

If you have opened multiple files, the Active source drop-down menu allows you to switch between the files.

Fig. 1.15: Controls for setting the active source

When the ReOpen button is clicked, all cached information about the open database is deleted, the database is queried
again for its information, and any plots that use that database are regenerated using the new information. This allows
VisIt to access data that was added to the database after VisIt first opened it.

Reopening a database

Sometimes it is useful to begin visualizing simulation data before the simulation has finished writing out data files for
all time steps. When you open a database in VisIt and create plots and later want to visualize new time steps that have
been generated since you first opened the database, you can reopen the database to force VisIt to get the data for the
new time steps. To reopen a database, click the ReOpen button in the Sources pane. When VisIt reopens a database,
it clears the geometry for all plots that used that database and cached information about the database is erased so that
when VisIt reopens the database, plots are regenerated using the new data files.

Replacing a database

If you have created a plot with one database and want to see what it looks like using data from another database, you
can replace the database using the File panel’s Replace button. To replace a database, first select a new database by
clicking on a file in the File panel’s Selected files list and then click the Replace button. This will make VisIt try
to replace the databases used in the plots with the new database. If the replace operation is a success, the plots are
regenerated using the new database and they are displayed in the visualization window.

Overlaying a database

Overlaying a database is a way to duplicate every plot in the plot list using a new database. To overlay plots, select a
new database from the Active sources dropdown, then click the Overlay button. This copies each plot in the Active
plot list and replaces the database with the specified database. If the operation succeeds, the plots are generated and
displayed in the visualization window. It is important to remember that each time the Overlay button is clicked, the
number of plots in the plot list doubles.

1.2. Working with Databases 21

VisIt User Manual Documentation, Release 3.1

1.2.4 Time Pane

The Time Pane contains controls for setting the active timestep, and VCR controls for playing animations.

Setting the active time step

When a time-varying database is open, the animation controls are activated so any time step in the database can be
used. Note that the animation controls are only active when visualizing a time-varying database or when VisIt is in
keyframe animation mode.

Time-varying databases are composed of one or more time steps which contain data to be visualized. The active time
step is the time step within a time-varying database that VisIt uses to generate plots. The Time pane is located just
below the Sources pane and contains controls that allow you to set the active time step used for visualization. The
Animation slider and the Animation text field show the active time step. To set the active time step, you can drag
the Animation slider and release it when you get to the desired time step, or you can type in a cycle number into the
Animation text field . If you type in a cycle number that is not in the database, the active time step will be set to the
time step with the closest cycle number to the cycle that was specified.

Fig. 1.16: Controls for setting the active time step

Playing animations

The Time pane also contains a set of VCR buttons that allow you to put VisIt into an animation mode that plays
your visualization using all of the time steps in the database. The VCR buttons are only active when you have a time
varying database. The leftmost VCR button moves the animation back one frame. The VCR button second from the
left plays the animation in reverse. The middle VCR button stops the animation. The VCR button second from the
right plays the animation. The VCR button farthest to the right advances the animation by one frame. As the animation
progresses, the Animation Slider and the Animation Text Field are updated to reflect the active time step.

1.2.5 File Information Window

This File Information Window, shown in Figure 1.17, displays information about the currently open file. The File
Information Window is opened by choosing the Files information option from the Main Window’s File menu. The
window displays the names and properties of the open file’s meshes, scalar variables, vector variables, and materials.
The window updates each time the active file changes such as when switching between plots in the Active plot list or
opening a new file using the controls in the File panel.

22 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.17: File Information Window

1.2. Working with Databases 23

VisIt User Manual Documentation, Release 3.1

1.3 Plots

This chapter explains the concept of a plot and goes into detail about each of VisIt’s different plot types.

1.3.1 Working with Plots

A plot is a viewable object, created from a database, that can be displayed in a visualization window. VisIt provides
several standard plot types that allow you to visualize data in different ways. The standard plots perform basic visu-
alization operations like contouring, pseudocoloring as well as more sophisticated operations like volume rendering.
All of VisIt’s plots are plugins so you can add new plot types by writing your own plot plugins. See the wiki at
visitusers.org for more details on creating new plot plugins or send an e-mail inquiry to visit-users@elist.ornl.gov.

Managing Plots

To visualize your data, you will iteratively create and modify many plots until you achieve the end result. Since plots
may be created and deleted many times, VisIt provides controls in its Main Window to handle these functions. The
Plots area, shown in Figure 1.18, contains the controls for managing plots.

Fig. 1.18: The active plots area

The most prominent feature of the Plots area, the plot list contains a list of the plots that are in the active visualization
window. The entries in the plot list contain the plot name and variable. Plot list entries change colors depending on
the state of the plot. When plots are initially created, their plot list entries are green indicating that they are new and
have not been submitted to the compute engine for processing. When a plot is being created on the compute engine,
its plot list entry is yellow. When a plot has finished generating on the compute engine, its plot list entry turns black
to indicate that the plot is done. If the compute engine cannot generate a plot, the plot’s plot list entry turns red to
indicate an error with the plot.

The plot list displays more then just the names of the visualization window’s plots. The plot list also allows you to set
the active plots, that is, those plots that can be modified. Highlighted plot entries are active.

The Add menu, an important part of the Plots area, contains the options that create new plots.

24 Chapter 1. VisIt GUI User Manual

http://www.visitusers.org/
mailto:visit-users@elist.ornl.gov

VisIt User Manual Documentation, Release 3.1

Creating a plot

To use any of VisIt’s capabilities, you must know how to create a plot. First, make sure you have opened a database.
Once you have an open database, use the Add menu to create a plot.

Fig. 1.19: The Add menu

Selecting the Add menu pops up a list of VisIt plot types. Plots for which the open database has no data are disabled.
If a plot type is enabled, pulling the mouse toward the right while holding down the left button shows which variables
can be plotted. Release the mouse button when the mouse cursor is over the variable that you want to plot, and a new
plot list entry will appear in the plot list. The new plot list entry will be colored green in the plot list until VisIt is told
to draw when you click the Draw button. The Add menu is disabled until a database is open.

Deleting a plot

VisIt deletes all the selected plots when you click the Delete button. If the plot list has keyboard focus, you can also
delete a plot using the Delete key.

Selecting a plot

Since VisIt will only let you modify active plots, you must be able to select plots. To select a plot, click on its entry
in the plot list. Multiple plots can be selected by holding down the Ctrl key and clicking plot entries one at a time.

1.3. Plots 25

VisIt User Manual Documentation, Release 3.1

Alternatively, groups of plot entries can be selected by clicking on a plot entry and then clicking another plot entry
while holding down the Shift key.

Drawing a plot

When you add a plot to the plot list, it won’t be drawn until you click the Draw button. Once you do, the new plot’s
plot list entry switches from green to yellow in the plot list to indicate that its results are pending and the compute
engine starts generating the plot. Clicking the Draw button causes all new plots to be drawn.

Hiding a plot

When you are visualizing your data, you will often have many different plots in the same visualization window.
Sometimes you might want to temporarily hide plots from view to more easily view the other plots in the window. To
hide the selected plots, click the Hide/Show button in the Plots area. When a plot is hidden, its plot list entry is gray
and contains the word hidden to indicate that the plot is hidden. To show a hidden plot, select the hidden plot and
click the Hide/Show button again. Note that plots must exist for the Hide/Show button to be enabled.

Setting plot attributes

Each plot type has its own plot attributes window used to set attributes for that plot type. Plot attributes windows are
activated by double-clicking a plot entry in the plot list. You can also open a plot attribute window by selecting a plot
type from the PlotAtts (Plot Attributes) menu shown in Figure 1.20,

Changing plot variables

When examining a plot, you might want to look at another variable. For example, you might want to switch from
looking at density to pressure. VisIt allows the plot variable to be changed without having to delete and recreate the
plot. To change the plot variable, first make sure the plot is active, then select a new variable from the available variable
names in the Variables menu. The Variables menu contains only the variables from the database that are compatible
with the plot.

1.3.2 Standard Plot Types

VisIt comes with eighteen standard plots: Boundary, Contour, Curve, FilledBoundary, Histogram, Label, Mesh,
Molecule, MultiCurve, ParallelCoordinates, Pseudocolor, Scatter, Spreadsheet, Subset, Tensor, Truecolor, Vec-
tor, and Volume. This section explains each plot in detail.

Common Controls

There are a number of attributes of plots that are common to many, if not all plots. These include such things as Color
table, Foreground and Background colors, Opacity, Line style and Point type, Log or Linear scaling, the Legend
checkbox and others. These common plot attributes are described here first using the Pseudocolor plot as an example.

Then, attributes specific to each plot type are described in the remaining sections.

26 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.20: The PlotAtts menu

Fig. 1.21: The Variables menu

1.3. Plots 27

VisIt User Manual Documentation, Release 3.1

Fig. 1.22: Example of Pseudocolor plot attribute window

28 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Plot buttons

All plot attribute windows have several buttons at the bottom for common operations. Use the Apply after you have
changed one or more attributes of a plot to make the new settings take effect. The Make default button is used to take
the current settings and make those the default for the remainder of the VisIt session. Each time a new plot of that type
is created, it will be created with whatever the current defaults are for that plot. If you want these settings to persist
across VisIt sessions, you can either Save session, and then restart from this saved session later, or Save settings and
then all VisIt sessions will use those defaults. For more about saving sessions and settings, see How to Save Settings.
The Save and Load buttons give you the option of saving and loading plot attributes using their own separate XML.
This allows users to easily share individual plot attributes. The reset button will return the plot’s attributes to whatever
the current defaults are. The Dismiss button will dismiss the window. The Post button will place the window in the
Notepad area (see Posting a window).

Plot colors

By default, VisIt uses the Hot color table which maps values at the minimum of the data range to blues, values at the
maximum of the data range to reds with transitions from blue to violet, to green, to yellow in between. However, many
plots offer the option of selecting a specific color table. In the picture of the Pseudocolor plot attributes window,
above, the color table may be changed by selecting the currently named table. A pull-down list will appear from which
you can select a different table. For more information about Color tables, see Color Tables.

In addition, many plots have options to control colors and transparency (opacity) of individual plot elements such as
lines on the Mesh plot or contours on the Contour plot.

Point type and size

The Pseudocolor, Mesh and Scatter plots can use eight different point types for drawing point meshes (see Figure
1.23). The default option of Point is fastest and forces the plot to draw all of its points as tiny points. The Sphere
option applies textures to the points so it is nearly as fast as Point. Any of the other options place a glyph at each
point, taking longer to render. To set the point type choose an option from the Point type menu. Setting the Point
type to anything other than Point will have no effect if the plotted mesh is not a point mesh.

If you choose any of the point types except Point, then you can also specify a point size by typing a new value into the
Point size text field. The point size is used to determine the size of the glyph. For example, if you choose Box, and
you enter a Point size of 0.1, then the length of all of the edges on the Box glyphs will be 0.1. If you use Point, then
the Point size text field becomes the Point size (pixels) text field and you can set the point size in terms of pixels.

For Mesh and Pseudocolor plots, the point size can also be scaled by a scalar variable if you check the Scale point
size by variable check box and select a new scalar variable from the Variable menu. The value default must be
replaced with the name of another scalar variable if you want VisIt to scale the points with a variable other than the
one being plotted.

Boundary and FilledBoundary Plots

The Boundary plot and FilledBoundary plot are discussed together because of their similarity. Both plots concentrate
on the boundaries between materials but each plot shows the boundary in a different way. The Boundary plot, shown
in Figure 1.25, displays the surface or lines that separate materials.

The FilledBoundary plot (see Figure 1.26) shows the entire set of materials, each using a different color. Both plots
perform material interface reconstruction on materials that have mixed cells, resulting in the material boundaries used
in the plots.

1.3. Plots 29

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.23: Point types: Box, Axis, Icosahedron, Octahedron, Tetrahedron, Sphere Geometry, Point, Sphere

Fig. 1.24: Point type menu, expanded

30 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.25: Boundary plot and its plot attributes window

Fig. 1.26: FilledBoundary plot and its plot attributes window

1.3. Plots 31

VisIt User Manual Documentation, Release 3.1

Fig. 1.27: FilledBoundary plot combined with subsets

32 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Combining the FilledBoundary plot with subsets (see Figure 1.27) can provide a insight into where each material is
inside the mesh by turning off materials in a particular domain. For more information about subsets, see the Subsetting
chapter. .

Changing colors

The main portion of the Boundary plot attributes window and FilledBoundary plot attributes window, also known
as the Boundary colors area, is devoted to setting material boundary colors. The Boundary colors area contains
a list of material names with an associated material color. Boundary plot and FilledBoundary plot colors can be
assigned three different ways, the first of which uses a color table. A color table is a named palette of colors that you
can customize to suite your needs. When the Boundary plot or FilledBoundary plot use a color table to color subsets,
they selects colors that are evenly spaced through the color table based on the number of subsets. For example, if you
have three materials and you are coloring them using the “xray” color table, three colors are picked out of the color
table so your material boundaries are colored black, gray, and white. To color a Boundary plot or FilledBoundary plot
with a color table, click on the Color table radio button and choose a color table from the Color table menu to right
of the Color table radio button.

If you want all subsets to be the same color, click the Single radio button at the top of the Boundary plot attributes
window and select a new color from the Popup color menu that is activated by clicking on the Single color button.
The opacity slider next to the Single color button sets the opacity for the single color.

Clicking the Multiple radio button causes each material boundary to be a different, user-specified color. By default,
multiple colors are set using the colors of the discrete color table that is active when the Boundary or FilledBoundary
plot is created. To change the color for any of the materials, select one or more materials from the list of materials and
click on the Color button to the right of the Multiple radio button and select a new color from the Popup color menu.
To change the opacity for a material, move Multiple opacity slider to the left to make the material more transparent or
move the slider to the right to make the material more opaque.

The Boundary plot attributes window contains a list of material names with an associated color. To change a
material’s color, select one or more materials from the list, click the color button and select a new color from the
popup color menu.

Opacity

The Boundary plot’s opacity can be changed globally as well as on a per material basis. To change material opacity,
first select one or more materials in the list and move the opacity slider next to the color button. Moving the opacity
slider to the left makes the selected materials more transparent and moving the slider to the right makes the selected
materials more opaque. To change the entire plot’s opacity globally, use the Opacity slider near the bottom of the
window.

Wireframe mode

The Boundary plot and the FilledBoundary plot can be modified so that they only display outer edges of material
boundaries. This option usually leaves lines that give only the rough shape of materials and where they join other
materials as seen in. To make the Boundary or FilledBoundary plots display in wireframe mode, check the Wireframe
check box near the bottom of the window.

Geometry smoothing

Sometimes visualization operations such as material interface reconstruction can alter mesh surfaces so they are pointy
or distorted. The Boundary plot and the FilledBoundary plot provide an optional Geometry smoothing option to

1.3. Plots 33

VisIt User Manual Documentation, Release 3.1

Fig. 1.28: Filled mode and wireframe mode

smooth out the mesh surfaces so they look better when the plots are visualized. Geometry smoothing is not done by
default, you must click the Fast or High radio buttons to enable it. The Fast geometry smoothing setting smooths out
the geometry a little while the High setting works produces smoother surfaces.

Drawing only clean zones

The FilledBoundary plot, since it deals almost exclusively with plotting materials, has an option to only draw clean
zones, which are zones that contain a single material. When only clean zones are drawn, all clean cells are drawn
normally but all zones that contained more than one material are drawn with a color that can be set to match the
vis window’s background color (see). Drawing clean zones is primarily used to examine how materials mix in 2D
databases. To make VisIt draw only the clean zones, click the Clean zones only check box. After that, you can set the
mixed color by clicking on the Mixed color color button and selecting a new color from the popup color palette.

Setting point properties

Albeit rare, the Boundary and FilledBoundary plots can be used to plot points that belong to different materials. Both
plots provide controls that allow you to set the representation and size of the points. You can change the points’
representation using the different Point Type radio buttons. The available options are:

• Box

• Axis

• Icosahedron

• Octahedron

• Tetrahedron

• Point

• Sphere

34 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.29: All zones and clean zones

The default point type is Point because that is the fastest to draw, followed by Sphere. The other point types create
additional geometry and can take longer to appear on the screen and subsequently draw. To change the size of the
points when the point type is set to Box, Axis, or Icosahedron, you can enter a new floating point value into the Point
size text field. When the point type is set to Point or Sphere, the Point size text field becomes the Point size (pixels)
text field and you should enter your point size in terms of pixels. Finally, you can opt to scale the points’ glyphs using
a scalar expression by turning on the Scale point size by variable check box and by selecting a scalar variable from
the Variable button to the right of that check box. Note that point scaling does not occur when the point type is set to
Point or Sphere.

Fig. 1.30: Point types (left-to-right): Box, Axis, Icosahedron, Point, Sphere

Contour Plot

This plot, shown in Figure 1.31, displays the location of values for scalar variables like density or pressure using lines
for 2D plots and surfaces for 3D plots. In visualization terms, these plots are isosurfaces. VisIt’s Contour plot allows
you to specify the number of contours to display as well as the colors and opacities of the contours.

1.3. Plots 35

VisIt User Manual Documentation, Release 3.1

Fig. 1.31: Example of Contour plot

36 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.32: Contour plot attributes window

1.3. Plots 37

VisIt User Manual Documentation, Release 3.1

Setting the number of contours

By default, VisIt constructs 10 levels into which the data fall. These levels are linearly interpolated values between the
data minimum and data maximum. However, you can set your own number of levels, specify the levels you want to
see or indicate the percentages for the levels.

To choose how levels are specified, make a selection from the Select by menu. The available options are: N levels,
Levels, and Percent. N levels, the default method, allows you to specify the number of levels which will be generated,
with 10 being the default. Levels requires you to specify floating point numbers for the levels you want to see. Percent
takes a list of percentages like 50.5, 60, and 40.0. Using the numbers just mentioned, the first contour would be placed
at the value which is 50.5% of the way between the minimum and maximum data values. The next contour would
be placed at the value which is 60% of the way between the minimum and maximum data values, and so forth. You
specify all values for setting the number of contours by typing into the text field to the right of the Select by menu.

Setting Limits

The Contour plot attributes window provides controls that allow you to specify artificial minima and maxima for
the data in the plot. This is useful when you have a small range of values that are of interest and you only want the
contours to be generated through that range. To set the minimum value, click the Min check box to enable the Min
text field and then type a new minimum value into the text field. To set the maximum value, click the Max check box
to enable the Max text field and then type a new maximum value into the text field. Note that either the min, max or
both can be specified. If neither minimum nor maximum values are specified, VisIt uses the minimum and maximum
values in the database.

Scaling

The Contour plot typically creates contours through a range of values by linearly interpolating to the next value. You
can also change the scale to a logarithmic function to get the list of contour values through the specified range. To
change the scale, click either the Linear or Log radio buttons in the Contour plot attributes window.

Setting contour colors

The main portion of the Contour plot attributes window, also known as the Contour colors area, is devoted to
setting contour colors. Contour plot colors can be assigned three different ways, the first of which uses a color table.
A color table is a named palette of colors that you can customize to suite your needs. When the Contour plot uses a
color table to color the levels, it selects colors that are evenly spaced through the color table based on the number of
levels. For example, if you have five levels and you are coloring them using the “rainbow” color table, the Contour
plot picks five colors out of the color table so your levels are colored magenta, blue, cyan, green, yellow, and red.
The colors change when increasing or decreasing the number of levels when you use a color table because VisIt uses
the new number of levels to sample different locations in the color table. As a rule, increasing the number of levels
results in coloration that is closer to the color table because more colors from the color table are represented. To color
a Contour plot with a color table, click on the Color table radio button and choose a color table from the Color table
menu to right of the Color table radio button.

If you want all levels to be the same color, click the Single radio button at the top of the Contour plot attributes
window and select a new color from the Popup color menu that is activated by clicking on the Single color button.
The opacity slider next to the Single **color button sets the opacity for the single color.

Clicking the Multiple radio button causes each level to be a different, user-specified color. By default, multiple colors
are set using the colors of the discrete color table that is active when the Contour plot is created. To change the color
for any of the levels, click on the level’s Color button and select a new color from the Popup color menu. To change

38 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

the opacity for a level, move its opacity slider to the left to make the level more transparent or move the slider to the
right to make the level more opaque.

Wireframe view

The Contour plot attributes window provides a Wireframe toggle button used to draw only the lines along the edges
of the contour. This option only has an effect on 3D Contour plots.

Curve Plot

The Curve plot, shown in Figure 1.33, displays a simple group of X-Y pair data such as that output by 1D simulations
or data produced by Lineouts of 2D or 3D datasets. Curve plots are useful for visualizations where it is useful to plot
1D quantities that evolve over time.

Fig. 1.33: Curve plot

Setting curve color

The Curve plot’s color is set up to Cycle by default. In other words, each new curve created will be a different color.
This can be turned off by selecting the Custom radio button, and a new color can be chosen by clicking on the Color
button and making a selection from the Popup color menu.

Showing curve labels

Curve plots have a label that can be displayed to help distinguish one Curve plot from other Curve plots. Curve plot
labels are on by default, but if you want to turn the label off, you can uncheck the Labels check box.

1.3. Plots 39

VisIt User Manual Documentation, Release 3.1

Fig. 1.34: Curve plot attributes, data tab

Space-filled curves

The space below a curve can be filled with color by changing Fill mode to either Solid, Horizontal Gradient or
Vertical Gradient, then choosing one or two colors based upon the mode chosen.

Fig. 1.35: Curve, space-filled with points

Setting line style and line width

Several Curve plots are often drawn in the same visualization window so it is necessary that Curve plots can be
distinguished from each other. Fortunately, VisIt provides controls to change the line style and line width so that
Curve plots can be told apart. Line style is a pattern used to draw the line and it is solid by default but it can also be
dashed, dotted, or dash-dotted. You choose a new line style by making a selection from the Line Style combo box on
the Geometry tab (see Figure 1.36). The line width, which determines the boldness of the curve, is set by making a

40 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

selection from the Line Width combo box.

Fig. 1.36: Curve plot attributes, geometry tab

Drawing points on the Curve plot

The Curve plot is composed of a set of (X,Y) pairs through which line segments are drawn to form a curve. To make
VisIt draw a point glyph at the location of each (X,Y) point, click the Show points check box on the Geometry tab.
You can control the size of the points by typing a new point size into the Point size text field. You can choose the type
of symbol used to represent the points by using the Symbol combo box.

The number of points drawn can be controlled by the Static or Dynamic radio buttons. For Static mode, points are
drawn at regular intervals controlled by the value of the Point stride text box. For Dynamic mode, the number of
points drawn is view-dependent, with density controlled by the Point density text box.

Adding Time Cues

Time cues are most often used in conjunction with movie making. They allow for markers to be placed at certain
positions along a curve, and/or for the curve to be cropped at the specified position. Time cues make it easier to see
the current time position along a curve. Though most often created and controlled via scripting, the Extras tab in the
Curve attributes window can also be used (see Figure 1.37). There are two types of markers: Ball and Line. They
are controlled by the Add Ball and Add Line check boxes. They have separate color and size controls. To crop the
line, select the Crop check box. The Position of cue text box controls the location along the curve where the ball and
line are placed and where the cropped curve ends. Figure 1.38 shows examples of curves created using different time
cue settings.

Polar coordinate system conversion

If the curve data is in Polar instead of Cartesian coordinates, you can tell VisIt to convert by selecting the Polar to
Cartesian option on the Extras tab. You can choose the Order to be R_Theta or Theta_R and choose Radians or
Degrees for the Units. Figure 1.39 shows an example.

1.3. Plots 41

VisIt User Manual Documentation, Release 3.1

Fig. 1.37: Curve plot attributes, extras tab

Fig. 1.38: Curve plot with time cues added at different positions, both uncropped and cropped.

Fig. 1.39: Curve plot before and after Polar coordinate transform (R-theta, radians)

42 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Histogram Plot

The Histogram plot divides the data range of a scalar variable into a number of bins and groups the variable’s values,
weighted by cell area or revolved volume, into different bins. The values in each bin are then used to create a bar graph
or curve that represents the distribution of values throughout the variable’s data range. The Histogram plot can be used
to determine where data values cluster in the range of a scalar variable. The Histogram plot is shown in Figure 1.40.

Fig. 1.40: Histogram plot

Setting the histogram data range

By default, the Histogram plot profiles a variables entire data range. If you want to restrict the Histogram plot so it only
takes a subset of a variable’s data range into consideration when assigning values to bins, you can set the minimum and
maximum values that will be considered by the Histogram plot. To specify a data range, click the Specify Range check
box and then type in floating point numeric values into the Minimum and Maximum text fields in the Histogram
plot attributes window (see Figure 1.41) before clicking its Apply button. Once the data range is set, the Histogram
plot will restrict the values that it considers to the specified data range.

Setting the type of graph

The Histogram plot has two mode in which it can appear: curve and block. When the Histogram plot is drawn as a
curve, it looks like the Curve plot. When the Histogram plot is drawn in block mode, it is drawn as a bar graph where
each bin is plotted along the X-axis and the height of each bar corresponds to the number of values that were assigned
to that bin. You can set change the Histogram plot’s appearance by clicking the Curve or Block radio buttons.

1.3. Plots 43

VisIt User Manual Documentation, Release 3.1

Fig. 1.41: Histogram attributes

44 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Setting the number of bins

The Histogram plot divides a variable’s data range into a number of bins and then counts the weighted values that
fall within each bin. The bins and the counted data are then used to create a graph that represents the distribution of
data within the variable’s data range. As the Histogram plot uses more bins, the graph of data distribution becomes
more accurate. However, the graph can also become rougher because as the number of bins increases, the likelihood
that no data values fall within a particular bin also increases. To set the number of bins for the Histogram plot, type a
new number of bins into the Number of Bins text field and click the Apply button in the Histogram plot attributes
window.

Setting the histogram calculation method

When the Histogram plot groups data values into bins, it weights the data value by the surface area or revolved volume
of the cell so contributions from different sizes of cells are compared fairly. To change the calculation method used to
weight the cells, click on the Area radio button to make VisIt use surface area or click on the Revolved volume radio
button to make VisIt use the revolved volume of a 2D cell as the weighting multiplier used to group cells into the right
bins.

Data scaling

There are three radio buttons that controls how the data values are scaled. The three options are:

• Linear: no scaling is applied. This is the default option.

• Log: the logarithms of all the scalars are binned.

• Square Root: the square roots of all scalars are binned.

Label Plot

The Label plot, shown in Figure 1.42, can display mesh information, scalar fields, vector fields, tensor fields, array
variables, subset names, and material names. The Label plot is often used as a debugging device for simulation codes
since it allows the user to see labels containing the exact values at the computational mesh’s nodes or cell centers.
Since the Label plot’s job is to display labels representing the computational mesh or the fields defined on that mesh,
it does not convey much information about the actual mesh geometry. Since having a Label plot by itself does not
usually give enough information to understand the plotted dataset, the Label plot is almost always used with other
plots.

Choosing the Label plot’s variable

You can choose the Label plot’s variable using the Variable menu under the Plot list the same way as you would with
any other type of plot. One special property that distinguishes the Label plot from some of VisIt’s other plots is that it
can plot multiple types of variables. The Label plot can display information for meshes, scalars, vectors, tensors, array
variables, subsets, and materials so you will typically find more variables available for the Label plot than you would
for other plots. When you choose a mesh variable for the Label plot, you can display both the mesh node numbers
and cell numbers otherwise you are limited to displaying only the variable being plotted.

Showing node and zone numbers

The Label plot can display the node and cell numbers for the computational mesh if you have selected a mesh variable
to plot. By default, the Label plot will display cell numbers only. The cell numbers will be displayed in the format

1.3. Plots 45

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.42: Label plot of the mesh overlayed on Pseudocolor and Mesh plots

46 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.43: Label plot attributes window

1.3. Plots 47

VisIt User Manual Documentation, Release 3.1

most natural to the underlying mesh representation, which means that unstructured meshes will have cell numbers that
are displayed as single integers while structured meshes will be displayed in i,j,k format when possible. If you want
the Label plot to show a mesh’s node numbers in addition to its cell numbers, you can click on the Show nodes check
box. If you no longer want the Label plot to show the mesh’s cell numbers, you can turn off the Show cells check box.

Restricting the number of labels

Most computational meshes contain many thousands, millions, or even billions of nodes and cells. Adding that many
labels would quickly become burdensome on the computer and would result in a Label plot so dense that individual
labels could no longer be read or even associated with their cell or node.

VisIt’s Label plot restricts the number of labels by default to some user-settable number of labels that can comfortably
fit on the screen. The method used to restrict the number of labels differs for 2D and 3D plots. For 2D plots, the
viewable portion of world space is periodically subdivided, based on the zoom level, into some number of bins to
which labels are then assigned. As you zoom in on the Label plot, labels that go beyond the viewport are no longer
drawn and new labels that were previously hidden take their place. This allows the Label plot to efficiently draw
many labels without crowding the labels on top of each other. For 3D plots, the Label plot divides up the screen into
a user-settable number of bins. All label coordinates are transformed so that they can be assigned to a screen bin and
the label wins the screen bin if it is closer than the label that was previously in the bin. This ensures that a small subset
of all possible labels is drawn and that they do not usually overlap on the screen. If you find that the labels appear to
be from the back of the mesh instead of from the front, it’s quite possible that the normals generated for your mesh
were inverted for some reason. To combat this problem, select Back or Front or Back from the Draw labels that
face menu.

If you want to set the number of labels that the Label plot will draw, you can type in a new value into the spin box next
to the Restrict number of labels to check box or use the up and down arrows on the spin box. If you want to force
the Label plot to draw all labels, you can turn off the Restrict number of labels to check box. Sometimes making
the Label plot draw all of the labels can be faster than drawing a subset of labels.

Depth testing for 3D Label plots

When VisIt draw plots in the visualization window, the plots’ geometries often correspond to only the outer surfaces of
the originating datasets when those datasets are 3D. This means that the majority of plots consist of convex geometry
and the normal test for only drawing labels that face front is often adequate to remove any labels that appear on faces
that point away from the current camera. Some plots have geometries that consist of many concave regions, which the
afore-mentioned test does not handle well. Plots with concave geometries will often have various pieces be incorrectly
visible because though the surfaces may face the camera, they may be obscured by other geometry. When VisIt’s
Label plot draws 3D geometry, it tries to enable additional depth testing to prevent front-facing labels in back of other
surfaces from being drawn. Depth testing can degrade performance so, by default, it is allowed only when you are
running VisIt on your local workstation. You can set the Label plot’s depth test mode to tell VisIt when to enable
depth testing. To change the values for the depth test mode, click on one of the Auto, Always, Never radio buttons to
the right of the Depth test mode label. If VisIt wants to use depth testing but is not allowed to then a warning message
will be issued and you can set the depth test mode to Always.

Formatting labels

The Label plot provides several options for setting label format. First and foremost, you can set the label display
format, which is how mesh node and cell numbers are displayed. By default, the Label plot will display labels in their
most appropriate format with cell and node numbers for structured meshes displayed as logical i,j,k indices. Setting
the label format is only possible for Label plots of structured meshes. To change the label format, select a new option
from the Label display format menu.

48 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.44: Removing extra labels (left) with depth test (right)

The Label plot’s default behavior is to use the vis window’s foreground color but if you want labels to be a specific
color, you can turn off the Use foreground color check box and select a new label color by clicking on the Label
color color button.

The Label plot also allows control over the font used for the labels. Font name menu allows you to choose from
among Arial, Courier and Times options. The labels can be bold or italic by checking the appropriate check boxes.
Font scale is used to control the font size.

Note that when you are plotting a mesh variable, VisIt will make more controls in the Label plot attributes window
so you can set color and font options for cells and nodes independently (see Figure ??).

Finally, the Label plot attributes window provides controls to determine the horizontal and vertical text justification
used when drawing each label. To change the horizontal text justification, select a new value from the Horizontal
justification menu. To change the vertical text justification, select a new value from the Vertical justification menu.

Labeling subset names and material names

The Label plot can label subset names and material names in addition to meshes and fields defined on those meshes.
To add subset names or material names to your visualization, be sure to create a Label plot using a variable of either
of those types. An example of a Label plot of material names is presented in Figure 1.46.

Mesh Plot

The Mesh plot, shown in Figure 1.47, displays the computational mesh over which a database’s variables are defined.
The mesh plot is often added to the visualization window when other plots are visualized to allow individual cells to
be clearly seen.

1.3. Plots 49

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

50 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.45: Cell and node labels can be different colors when labeling mesh variables using additional controls in the
Label plot attributes window

1.3. Plots 51

VisIt User Manual Documentation, Release 3.1

Fig. 1.46: Label plot of materials

52 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.47: Mesh plot

1.3. Plots 53

VisIt User Manual Documentation, Release 3.1

Fig. 1.48: Mesh plot window

54 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Mesh plot opaque modes

By default, VisIt’s Mesh plot draws in opaque mode so that hidden surface removal is performed when the plot is
drawn and each face of the externally visible cells are outlined with lines. When the Mesh plot’s opaque mode is set
to automatic, the Mesh plot will be drawn in opaque mode unless it is forced to share the visualization window with
other plots, at which point the Mesh plot is drawn in wireframe mode. When the Mesh plot is drawn in wireframe
mode, only the edges of each externally visible cell face are drawn, which prevents the Mesh plot from interfering
with the appearance of other plots. In addition to having an automatic opaque mode, the Mesh plot can be forced to be
drawn in opaque mode or wireframe mode by clicking the On or Off Radio buttons to the right of the Opaque mode
label in the Mesh plot attributes window.

Showing internal zones

Sometimes it is useful to create mesh plot that shows all internal zones for a 3D database. Rather then plotting just the
externally visible zones, which is the Mesh plot’s default behavior, you can click the Show internal zones check box
to force the Mesh plot to draw the edges of every internal zone.

Changing colors

There are two color controls for a Mesh plot. One, the mesh color, controls the color of mesh edge lines while the
other, the opaque color, controls the color of mesh surface (areal) facets. For each color option, there are three choices

• A custom color chosen by the user.

• A random color chosen by VisIt.

• The Foreground (for mesh lines) or Background (for opaque facets) color.

The default is to use Foreground color for the mesh and Background color for the opaque color. In this mode, when
these colors are changed via the Annotation controls, the Mesh plot obeys the newly selected colors. Otherwise, the
Mesh plot maintains its chosen color (either custom or random).

The random color option is useful when displaying multiple meshes and the user simply needs to be able to easily
distinguish among them.

Changing mesh line attributes

The Mesh plot’s mesh lines have two user-settable attributes that control their width and line style. You can set the
line width and line style are set by selecting new options from the Line style or Line width menus at the top of the
Mesh plot attributes window.

Changing point type and size

Controls for points are described in Point type and size.

Geometry smoothing

Sometimes visualization operations such as material interface reconstruction can alter mesh surfaces so they are pointy
or distorted. The Mesh plot provides an optional Geometry smoothing option to smooth out the mesh surfaces so they
look better when the mesh is visualized. Geometry smoothing is not done by default, you must click the Fast or High

1.3. Plots 55

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

radio buttons to enable it. The Fast geometry smoothing setting smooths out the geometry a little while the High
setting works produces smoother surfaces.

Pseudocolor plot

The Pseudocolor plot, shown in Figure 1.49, maps a scalar variable’s data values to colors and uses the colors to
“paint” values onto the variable’s computational mesh. The result is a clear picture of the database geometry painted
with variable values that have been mapped to colors. You might try this plot first when examining a scientific database
for the first time since it reveals so much information about the plotted variable.

Fig. 1.49: Pseudocolor plot

56 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Data tab options

VisIt’s Pseudocolor plot attributes window Data tab allows you to change the data scaling, limits and centering, as
well as change colors, opacity and control the plot Legend and lighting. (shown in Figure 1.50)

Fig. 1.50: Pseudocolor plot attributes window Data tab

Scaling the data

The scale maps data values to color values. VisIt provides three scaling options: Linear, Log, and Skew. Linear,
which is the default, uses a linear mapping of data values to color values. Log scaling is used to map small ranges of
data to larger ranges of color. Skew scaling goes one step further by using an exponential function based on a skew

1.3. Plots 57

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

factor to adjust the mapping of data to colors. The function used in skew scaling is (s^d-1)/(s-1) where s is a skew
factor greater than zero and d is a data value that has been mapped to a range from zero to one. The mapping of data
to colors is changed by changing the skew factor. A skew factor of one is equivalent to linear scaling but values either
larger or smaller than one produce curves that map either the high or low end of the data to a larger color range. To
change the skew factor, choose Skew scaling and type a new skew factor into the Skew factor text field.

Limits

Setting limits for the plot imposes artificial minima and maxima on the plotted variable. This effectively restricts the
range of data used to color the Pseudocolor plot. You might set limits when you are interested in only a small range of
the data or when data limits need to be maintained for multiple time steps, as when playing an animation. In fact, we
recommend setting the limits when producing an animation so the colors will correspond to the same values instead
of varying over time with the range of the plotted variable. Setting limits often highlights a certain range in the data
by assigning more colors to that data range.

To set the limits for the Pseudocolor plot, you must first select the limit mode. The limit mode determines whether
the original data extents (data extents before any portions of the plot are removed), are used or the current plot data
extents (data extents after any portions of the plot are removed), are used. To select the limit mode, choose either Use
Original Data or Use Current Plot from the Limits menu.

The limits for the Pseudocolor plot consist of a minimum value and a maximum value. You may set these limits, and
turn them on and off, independently of one another. That is, the use of one limit does not require the use of the other.
To set a limit, check the Min or Max check box next to the Min or Max text field and type a new limit value into the
Min or Max text field.

Variable centering

Variables in a database can be associated with a mesh in various ways. Databases supported by VisIt allow variables to
be associated with a mesh’s zones (cells) or its nodes. When a variable is associated with a mesh’s zones, the variable
field consists of one value for each zone and is said to be Zone-centered . When a variable is associated with a mesh’s
nodes, there are values for each vertex making up the zone and the variable is said to be Node-centered.

There are three settings for variable centering: Natural, Nodal, and Zonal. Natural variable centering displays the
data according to the way the variable was centered on the mesh. This means that node-centered data will be displayed
at the nodes with colors being linearly interpolated between the nodes, and zone-centered data will be displayed as
zonal values, giving a slightly “blocky” look to the picture. If Nodal centering is selected, all data is displayed at the
nodes regardless of the variable’s natural centering. This will produce a smoother picture, but for variables which are
actually zone-centered, you will lose some data (local minima and maxima). If you select Zonal centering, all data
is displayed as if they were zone-centered. This produces a blockier picture and, again, it blurs minima/maxima for
node-centered data.

Changing the color table

The Pseudocolor plot can specify which VisIt color table is used for colors. To change the color table, click on the
Color table button, shown in Figure 1.51, and select a new color table name from the list of color tables. The list
of color tables always represents the list of available VisIt color tables. If you do not care which color table is used,
choose the Default option to use VisIt’s active continuous color table. New color tables can be defined using VisIt’s
Color table window which is described later in this manual.

58 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.51: Color table button

1.3. Plots 59

VisIt User Manual Documentation, Release 3.1

Opacity

You can make the Pseudocolor plot transparent by changing its opacity using the Opacity menu. There are four
options:

1. Fully opaque: (the default), no transparency is applied.

2. From color table:, opacity values are obtained from the active color table for the plot. If the color table doesn’t
support opacities, the plot will be fully opaque.

3. Constant: A constant opacity is applied everywhere. A slider is provided to modify the opacity value. Moving
the opacity slider to the left makes the plot more transparent while moving the slider to the right makes the plot
more opaque.

4. Ramp: Opacity is applied on a sliding scale ranging from fully transparent (applied to the lowest values), to the
opacity value chosen on the slider. If the the slider is fully to the right, then the maximum values being plotted
will be fully opaque.

Legend Behavior

The legend for the Pseudocolor plot is a color bar annotated with tick marks and numerical values. Below the color
bar the minimum and maximum data values are also displayed. Setting the limits for the plot changes only the color-
bar portion of the plot’s legend. It does not change the Min and Max values printed just below the color bar. Those
values will always display the original data’s minimum and maximum values, regardless of the limits set for the plot
or the effect of any operators applied to the plot.

Lighting

Lighting adds detail and depth to the Pseudocolor plot, two characteristics that are important for animations. The
Lighting check box in the lower part of the Pseudocolor plot attributes window turns lighting on and off. Since
lighting is on by default, uncheck the Lighting check box to turn lighting off.

Geometry tab options

VisIt’s Pseudocolor plot attributes window Geometry tab allows you to modify the appearance of lines and points,
and change rendering options (shown in Figure 1.52)

Lines

The lines section can be useful when visualizing the results from an Integral Curve System operation.

There are three options for Line type: Lines (default), Tubes, and Ribbons.

The width of Lines can be changed by choosing an option from the Line width menu. The Tubes type has a Resolu-
tion option which represents the roundness of the tube. The higher the resolution, the rounder the tube.

Both the Tubes and Ribbons type have various methods for affecting the radius. The Radius option can be expressed
either as an Absolute quantity or Fraction of the Bounding Box (default) by choosing one of these via the menu. A
Variable can be chosen for the radius by checking the Variable radius checkbox, and choosing a variable from the
menu.

Lines can also have glyphs at their head and tail. Glyph options are None (default), Sphere, and Cone. You can also
specify Resolution and Radius for the glyphs.

60 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.52: Pseudocolor plot attributes window, geometry tab

1.3. Plots 61

VisIt User Manual Documentation, Release 3.1

Point

Controls for points are described in Point type and size.

Representation

By default, the Pseudocolor plot renders as a Surface. It can also render in Wireframe or Points mode. Choose the
representation by checking one or any combination of the three. Wireframe and Points will be rendered in the color
specified by their corresponding Color buttons.

Geometry smoothing

Sometimes visualization operations such as material interface reconstruction can alter mesh surfaces so they are pointy
or distorted. The Pseudocolor plot provides an optional Geometry smoothing option to smooth out the mesh surfaces
so they look better when the plot is visualized. Geometry smoothing is not done by default, you must click the Fast
or High radio buttons to enable it. The Fast geometry smoothing setting smooths out the geometry a little while the
High setting produces smoother surfaces.

Scatter Plot

The Scatter plot (see Figure 1.53) allows you to combine multiple scalar fields into a point mesh so you can investigate
the relationships between multiple input variables. You might, for example, want to see the behavior of pressure vs.
density colored by temperature. The Scatter plot can take up to four scalar fields as input and can use up to three of
them as coordinates for the created point mesh while one input variable can be used to assign colors to the point mesh.
The Scatter plot provides individual controls for setting the limits of each input variable and also allows each input
variable to be scaled so that all of the resulting points from disparate data ranges fit in a unit cube.

The Scatter plot attributes window is divided into two tabs: Inputs and Appearance. The Inputs tab is further
subdivided into tabs for each input variable. Each tab for an input variable contains controls that pertain to selecting
the input variable, settings its limits, or setting the role that the input variable will perform within the Scatter plot.
Each input variable can have one of five roles that will be covered later. The Appearance tab contains controls for
changing the Scatter plot’s appearance. Under the two main tabs, the Scatter plot attributes window features a small
section that lists the roles that are used in the plot and which input variables are assigned to each role.

Scatter plot wizard

Plots are typically created in VisIt when you choose a variable from one of the Plot menus. Since the Scatter plot
takes as input up to four input variables and typical plot creation only initializes one variable, you can imagine that if
a Scatter plot was created the usual way, only one of its many input variables would be initialized. Furthermore, to
initialize the plot, you would have to open the Scatter plot attributes window and select the other variables. Since
that would not be a very straightforward way to create a Scatter plot, VisIt now has support for plot wizards. A plot
wizard is a simple dialog window that pops up when you select a variable to plot. A plot wizard leads you through a
series of questions that allow VisIt to more fully initialize a new plot. The Scatter plot wizard prompts you for the
scalar variable to use for the Y-Axis, the variable to use for the Z-Axis (optional), and the variable to use for the plot’s
colors (optional).

Selecting a variable

Three of the Scatter plot’s four input variables can be set in the Scatter plot attributes window. The first input
variable cannot be changed from within the Scatter plot attributes window because that is the default variable used

62 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.53: Example of Scatter plot

1.3. Plots 63

VisIt User Manual Documentation, Release 3.1

Fig. 1.54: Scatter plot attributes window

64 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.55: Example of the Scatter plot wizard

by the plot. If you want to change the first input variable, you can use the Variables menu under the Plot list . If
you want to select a different variable for any of the other input variables, you would first click on the input variable’s
tab and then you would select a new variable by making a selection from the tab’s Variable button. Note that any
combination of nodal and cell-centered variables can be chosen. The Scatter plot will recenter any input variables
whose centering does not match the first input variable’s centering.

Setting an input variable’s role

Each of the Scatter plot’s input variables has a role that you can set which determines how the input variable is used
by the Scatter plot. An input variable can be used for the X, Y, Z coordinates, for the color, or it can have no role.
The role of the input variable is not fixed because you might want to change roles many times and it is much less work
to change only the roles instead of reselecting variables, limits, and scaling for an input variable. The flexibility of
selecting a role for an input variable makes it convenient to turn off colors or the Z coordinate with little effort. To
change the role for an input variable, select a new role from the input variable’s Role combo box. If you select a role
that is already played by another input variable, VisIt will give the current input variable the selected role and set the
input variable that previously had the selected role so that it has no role.

Each of the Scatter plot roles and their associated input variables are listed in the bottom of the Scatter plot attributes
window . Roles that have an input variable have the name of the input variable printed next to the name of the role
so looking through all of the input variable tabs to determine what the Scatter plot should look like is not required.
Roles that have no assigned input variable are grayed out.

Setting the minimum and maximum values

The Scatter plot allows you to set minimum and maximum limits on the values considered for inclusion into the
created point mesh. If an input variable’s data value does not lie in the specified minimum/maximum value data range
then the point is not included in the created point mesh. Note that setting limits does not cause points to be removed

1.3. Plots 65

VisIt User Manual Documentation, Release 3.1

when data values in the color role fall outside of the specified limits. To set the minimum value to be allowed in the
created point mesh, click on the Min check box and type a new minimum value into the Min text field. To set the
maximum value to be allowed in the created point mesh, click on the Max check box and type a new value into the
Max text field.

Scaling an input variable

Sometimes input variable data values are clustered in a certain range of the data. When this is the case, the points in
the Scatter plot will bunch up in one or more dimensions. For more uniformly spaced points, you might try scaling
one or more input variables. Each input variable can be scaled in the three common ways: Linear, Log, and Skew. To
set the scaling method used for the input variable, click on the Linear, Log, or Skew radio buttons. If you choose the
Skew scaling method then you should also enter a value greater than zero into the Skew factor text field to determine
the function used for skew scaling.

Since the Scatter plot’s input variables are likely to have wildly different data ranges, the Scatter plot provides an
option to independently scale each input variable so it is in the range [0,1] so the resulting plot fits entirely in a cube.
If you prefer to see the Scatter plot without this corrective scaling, you can turn off the Scale to cube check box on
the Scatter plot attribute window’s Appearance tab.

Setting the colors

The Scatter plot can map scalar values to colors like the Pseudocolor plot (Pseudocolor plot) does or it can color all
points using a single color. If you have set one of the input variables to have a color role then the Scatter plot will
map that input variable’s data values to colors using the specified color table. To change the color table used by the
Scatter plot, click on the Color table button and select a new color table from the list of available color tables. If the
Scatter plot has been configured such that none of the input variables is playing the color role then the Scatter plot’s
points will be drawn using one color. When the Scatter plot draws its points using a single color, its default behavior
is to color the points using the vis window’s foreground color. If you want to instead use a different color, turn off the
Use foreground check box and click on the Single color color button to select a new color.

Setting point properties

Controls for points are described in Point type and size.

Subset Plot

The Subset plot (example in Figure 1.57) is used to display subsets. The typical scientific database can be decomposed
into many different subsets. Frequently a database is decomposed into non-material subsets such as domains or groups.
In AMR meshes, subsets can consist of levels or patches. The Subset plot draws the database with its various subsets
color coded so they can be distinguished. For more information about subsets, see the Subsetting chapter.

Changing colors

The main portion of the Subset plot attributes window , also known as the Subset colors area, is devoted to setting
subset colors. The Subset colors area contains a list of subset names with an associated subset color. Subset plot
colors can be assigned three different ways, the first of which uses a color table. A color table is a named palette of
colors that you can customize to suite your needs. When the Subset plot uses a color table to color subsets, it selects
colors that are evenly spaced through the color table based on the number of subsets. For example, if you have three
subsets and you are coloring them using the “xray” color table, the Subset plot picks three colors out of the color table

66 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.56: Scatter plot attributes window’s Appearance tab

1.3. Plots 67

VisIt User Manual Documentation, Release 3.1

Fig. 1.57: Example of Subset plot of an AMR Mesh

68 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.58: Subset plot attributes window

1.3. Plots 69

VisIt User Manual Documentation, Release 3.1

so your levels are colored black, gray, and white. To color a Subset plot with a color table, click on the Color table
radio button and choose a color table from the Color table menu to right of the Color table radio button.

If you want all subsets to be the same color, click the Single radio button at the top of the Subset plot attributes
window and select a new color from the Popup color menu that is activated by clicking on the Single color button.
The opacity slider next to the Single color button sets the opacity for the single color.

Clicking the Multiple radio button causes each subset to be a different, user-specified color. By default, multiple
colors are set using the colors of the discrete color table that is active when the Subset plot is created. To change the
color for any of the subsets, select one or more subsets from the list of subsets and click on the Color button to the
right of the Multiple radio button and select a new color from the Popup color menu. To change the opacity for a
subset, move Multiple opacity slider to the left to make the subset more transparent or move the slider to the right to
make the subset more opaque.

The Subset plot attributes window contains a list of subset names with an associated subset color. To change a
subset’s color, select one or more subsets from the list, click the color button and select a new color from the popup
color menu.

Opacity

The Subset plot’s opacity can be changed globally as well as on a per subset basis. To change subset opacity, first select
one or more subsets in the subset list and move the opacity slider next to the color button. Moving the opacity slider
to the left makes the selected subsets more transparent and moving the slider to the right makes the selected subsets
more opaque. To change the entire plot’s opacity globally, use the Opacity slider near the bottom of the window.

Setting point properties

Albeit rare, the Subset plot can be used to plot points that belong to different subsets so the Subset plot attributes
window provides controls that allow you to set the representation and size of the points. You can change the points’
representation using the Point Type combo box. The available options are: Box, Axis, Icosahedron, Point, and
Sphere. To change the size of the points, you can enter a new floating point value into the Point size text field. Finally,
you can opt to scale the points’ glyphs using a scalar expression by turning on the Scale point size by variable check
box and by selecting a scalar variable from the Variable button to the right of that check box.

Wireframe mode

The Subset plot can be modified so that it only displays outer edges of subsets. This option usually leaves lines that
give only the rough shape of subsets and where they join other subsets. To make the Subset plot display in wireframe
mode, check the Wireframe check box near the bottom of the Subset plot attributes window.

Drawing internal surfaces

When you make one or more subsets transparent, you might want to make the Subset plot draw internal surfaces.
Internal surfaces are normally removed from Subset plots to make them draw faster. To make the Subset plot draw
internal surfaces, check the Draw internal surfaces check box near the bottom of the Subset plot attributes window.

Geometry smoothing

Sometimes visualization operations such as material interface reconstruction can alter mesh surfaces so they are pointy
or distorted. The Subset plot provides an optional Geometry smoothing option to smooth out the mesh surfaces so

70 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

they look better when the plot is visualized. Geometry smoothing is not done by default, you must click the Fast or
High radio buttons to enable it. The Fast geometry smoothing setting smooths out the geometry a little while the High
setting works produces smoother surfaces.

Tensor plot

The Tensor plot, shown in Figure 1.59, displays tensor variables using ellipsoid glyphs to convey information about
a tensor variable’s eigenvalues. Each glyph’s scaling and rotation is controlled by the eigenvalues/eigenvectors of the
tensor as follows: for each tensor, the eigenvalues (and associated eigenvectors) are sorted to determine the major,
medium, and minor eigenvalues/eigenvectors. The major eigenvalue scales the glyph in the x-direction, the medium
in the y-direction, and the minor in the z-direction. Then, the glyph is rotated so that the glyph’s local x-axis lies along
the major eigenvector, y-axis along the medium eigenvector, and z-axis along the minor.

Fig. 1.59: Example of Tensor plot

1.3. Plots 71

VisIt User Manual Documentation, Release 3.1

Fig. 1.60: Tensor plot attributes window

Changing the tensor colors

The Tensor plot can be colored by a solid color or by the corresponding to the largest eigenvalue. To color the Tensor
plot by eigenvalues, click the Eigenvalues radio button and then select a color table name from the color table button
to the right of the Eigenvalues radio button. To make all tensor glyphs be the same color, click the Constant radio
button and choose a color by clicking on the Constant color button and selecting a new color from the Popup color
menu.

72 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Setting the tensor scale

The Tensor plot’s tensor scale affects how large the ellipsoidal glyphs that represent the tensor are drawn. By default,
VisIt computes an automatic scale factor based on the length of the bounding box’s diagonal to multiply by the user-
specified scale factor. This ensures that the tensors are some reasonable size independent of the size of the mesh. To
change the tensor scale, type a new floating point number into the Scale text field and click the Apply button in the
Tensor plot attributes window. If you want to turn off automatic scaling so the size of the tensors is solely determined
by the scale in the Scale text field, turn off the Auto scale check box. Yet another scaling option for tensors is scaling
by magnitude. When the Scale by magnitude check box is checked, the magnitude of the tensor’s longest eigenvector
is used as a scale factor that is multiplied into the scale determined by the user-specified scale and the automatic scale
factor.

Setting the number of tensors

When visualizing a large database, a Tensor plot will often have too many tensors to effectively visualize so the Tensor
plot provides controls to reduce the number of tensors to a number that looks appealing in a visualization. You can
accomplish this reduction by setting a fixed number of tensors or by setting a stride. To set a fixed number of tensors,
select the N tensors radio button and enter a new number of tensors into the N tensors text field. To reduce the number
of tensors by setting the stride, select the Stride radio button and enter a new stride value into the Stride text field.

Truecolor plot

The Truecolor plot, shown in Figure 1.61, is used to plot images of observational or experimental data so they can
be compared to other plots, possibly of related, simulated data, in the same visualization window. The Truecolor plot
takes in a color variable, represented in VisIt as a three or four component vector, and uses the vector components as
the red, green, blue, and alpha values for the plotted image. This allows you access to many more colors than other
plots like the Pseudocolor plot, which can be used only to plot a single color component of an image.

Vector plot

The Vector plot (example shown in Figure ??) displays vector variables using glyphs that indicate the direction and
magnitude of vectors in a vector field.

Setting vector color

The vectors in the Vector plot can be colored by the magnitude of the vector variable or they can be colored using a
constant color. Choose the coloring method by clicking on either the Magnitude radio button or the Constant color
button. When vectors are colored by a constant color, you can change the color by clicking on the color button next
to the Constant radio button and choosing a new color from the Popup color menu. When vectors are colored by
magnitude, the color is determined by one of VisIt’s color tables, which can be chosen from the Color table button
next to the Magnitude radio button.

If you choose to color the vectors by their magnitudes, you have the option of also specifying minimum and maximum
values to aid in the mapping of vector magnitude to color. The options that are used to aid coloring are collectively
known as limits. Limits can apply to all vectors that exist in the dataset or just the vectors that have been drawn by
the Vector plot. To specify which, choose the appropriate option from the Limits combo box. When you specify a
minimum value all vectors with magnitudes less than the minimum value are colored using the color at the bottom of
the color table. When you specify a maximum value all vectors with magnitudes larger than the maximum value are
colored using the color at the top of the color table. To provide a minimum value, check the Min check box and type
a new minimum value into the Min text field. To provide a maximum value, check the Max check box and type a new
maximum value into the Max text field.

1.3. Plots 73

VisIt User Manual Documentation, Release 3.1

Fig. 1.61: Truecolor Plot

74 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.62: Truecolor Plot Attributes

1.3. Plots 75

VisIt User Manual Documentation, Release 3.1

76 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.63: Vector Plot Attributes and Example Rendering

1.3. Plots 77

VisIt User Manual Documentation, Release 3.1

Vector scaling

The size of the vector glyphs has a tremendous effect on the Vector plot’s readability. VisIt uses an automatically
computed scaling factor based on the diagonal of the bounding box as the size for the largest vector. You can augment
this size by entering a new scale factor in to the Scale text field. It is also possible to turn off automatic scaling by
turning off the Auto scale check box. When automatic scaling is turned off, the vectors in the Vector plot are the
length specified in the Scale text field.

If you want each vector to be further scaled by its own magnitude, you can turn on the Scale by magnitude check box.
When the Scale by magnitude check box is off, all vectors are the same length as determined by the automatically
computed scale factor and the user-specified scale.

Heads on the vector glyph

You can control the vector head size by typing a new value into the Head size text field, which is the fraction of the
entire vector’s length that will be devoted to the vector’s head. Vectors in the Vector plot can be drawn without vector
heads so that only the line part of the vector glyph is drawn. This results in cleaner plots, but the vector direction is
lost. To turn off vector heads, uncheck the Draw head check box at the bottom of the Vector Attributes Window.

Tails on the vector glyph

The length of the tails on the vector glyph are determined by the vector scaling factors that have been enabled. You
can also set properties that determine the location and line properties used to draw a vector glyph’s tail. First of all,
you can set the line style used to draw the vector glyph’s tail by choosing a line style from the Line style combo box.
You can choose a new line width for the vector glyph’s tail by choosing a new line width from the Line width combo
box. Finally, you can determine where the origin of the vector is on the vector glyph. The vector origin is a point along
the length of the vector that is aligned with the node or cell center where the vector glyph will be drawn. The available
options are: Head, Middle, and Tail. You can choose a new Vector origin by clicking on one of the Head, Middle, or
Tail radio buttons.

Setting the number of vectors

When visualizing a large database, a Vector plot will often have too many vectors. The Vector plot becomes incompre-
hensible with too many vectors. VisIt provides controls to thin the number of vectors to a number that looks appealing
in a visualization. You can accomplish this reduction by setting a fixed number of vectors or by setting a stride. To
set a fixed number of vectors, select the Fixed vectors radio button and enter a new number of vectors into the cor-
responding text field. To reduce the number of vectors by setting the stride, select the Stride radio button and enter a
new stride value into the Stride text field.

Volume plot

The Volume plot uses a visualization technique known as volume-rendering, which assigns color and opacity values
to a range of data values. The colors and opacities are collectively known as a volume transfer function. The volume
transfer function determines the colors of the plot and which parts are visible. The plot, shown in (Figure 1.64), uses
volume-rendering for the magnitude of vorticity. The magnitude of vorticity is a measure of turbulence that helps
identify a bubble within the supernova.

The Volume Plot Attributes Window, shown in (Figure ??), is divided into two main tabs. The Rendering Options
tab controls the rendering setting. Each volume rendering method has a different set of inputs. Additionally, the
Rendering Options tab contains controls for lighting. Transfer function tab controls how the data is mapped onto
colors and the opacities to use for different scalar values.

78 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.64: Type Ia Supernova (Image Credit: Blue Waters visualization staff, Rob Sisneros and Dave Semeraro)

1.3. Plots 79

VisIt User Manual Documentation, Release 3.1

80 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.65: Volume Plot Attributes Window

1.3. Plots 81

VisIt User Manual Documentation, Release 3.1

Rendering Options

The Volume plot uses hardware-accelerated graphics by default. While users will want to operate in this mode most
of the time, since it’s faster, images drawn by software are more accurate. To get a more accurate image, select a
Ray casting option from the Rendering method combo box. When the Volume plot is set to use ray casting as
its rendering mode, VisIt recalculates what the image should look like in software mode. Note that this can be a
time-consuming process if the database being used is large or if the visualization window is large. We recommend
shrinking the size of the visualization window before changing the rendering method to ray casting to reduce the time
and resources required to draw the plot. It is worth noting that if the user has a large dataset with intricate details,
the software volume rendering method is the best method to use because it scales well in parallel. Using a parallel
compute engine can greatly speed up the rate at which software volume rendering operates as long as the dataset is
domain-decomposed into roughly equal-sized pieces. The third volume-rendering technique, called ray-casting, used
by the Volume plot is not hardware accelerated. In ray-casting, a ray is followed in reverse from the computer screen
into the dataset. As a ray progresses through the dataset, sample points are taken and the sample values are used to
determine a color and opacity value for the sample point. Each sample point along the ray is composited to form a
final color for the screen pixel. Rays are traced from closest to farthest to allow for early ray termination which stops
the sampling process when the pixel opacity gets above a certain threshold. This method of volume-rendering yields
superior pictures at the cost of speed and memory use.

Rendering Method: Default Rendering (Figure 1.66).

Rendering Method: Ray casting: compositing (Figure 1.67)

Rendering Method: Ray casting: integration (grey scale) (Figure 1.68)

Rendering Method: Ray casting: SLIVR (Figure 1.69)

Rendering Method: Ray casting: OSPRay (Figure 1.70). OSPRay is an Open source, Scalable, and Portable Ray
tracing engine for volume-rendering on Intel Architecure CPUs.

AO Samples: determines the number of rays per sample to compute ambient occlusion.

AO Distance: determines the maximum distance to consider for ambient occlusion.

The Volume plot can use lighting to enhance the look of the plot. Lighting is enabled by default but the user can
disable it by unchecking the Lighting check box near the bottom of the window.

Ambient: ambient light weight in [0-1]

Diffuse: diffuse reflection weight in [0-1]

Specular: specular reflection/transmission weight in [0-1]

Shininess: Phong exponent, usually in [2-10^4]

Transfer Function

You can design the color component of the volume transfer function using the controls in Transfer function tab of
the Volume Plot Attributes Window. The controls are similar to the controls for the Color Table Window. There is
a color spectrum that has color control points which determine the final look of the color table. Color control points
are added and removed using the + and - buttons. Dragging control points with the mouse moves them and changes
their order. Right-clicking on a color control point displays a popup color menu from which a new control point color
can be chosen.

The Transfer function tab provides controls for setting the limits of the variable being plotted. Limits are artificial
minima or maxima that are specified by the user. Setting the limits to a smaller range of values than present in the
database cause the plot’s colors to be distributed among a smaller range of values, resulting in a plot with more color
variety.

82 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://www.ospray.org

VisIt User Manual Documentation, Release 3.1

Fig. 1.66: Default Rendering options

1.3. Plots 83

VisIt User Manual Documentation, Release 3.1

Fig. 1.67: Ray casting: compositing options

84 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.68: Ray casting: integration (grey scale) options

1.3. Plots 85

VisIt User Manual Documentation, Release 3.1

Fig. 1.69: Ray casting: SLIVR options

86 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.70: Ray casting: OSPRay options

1.3. Plots 87

VisIt User Manual Documentation, Release 3.1

To set the limits are set by first clicking the Min or Max check box next to the Min or Max text field. Clicking a check
box enables a text field into which the user can type a new minimum or maximum value.

Like VisIt’s other plots that map scalar values to colors, the Volume plot allows for the data values to be scaled using
Linear, Log, and Skew functions. To select a scaling function other than linear where values in the data range are
mapped 1:1 to values in the color range, click on the Log or Skew radio buttons.

Setting opacities

The Transfer function tab provides several controls that allow the user to define the opacity portion of the volume
transfer function. The opacity portion of the volume transfer function determines what can be seen in the volume-
rendered image. Data values with a lower opacity allow more to be seen and give the plot a gel-like appearance, while
data values with higher opacity appear more solid and occlude objects behind them. The controls for setting opacities
are located at the button of the window in the Opacity area.

Fig. 1.71: Volume Plot Opacity Options

You can set opacity three ways. You can hand-draw an opacity map, create it by designing curves that specify the
opacity when they are added together, or use the opacities in the color table, if present. All methods use the controls
shown in Figure ??.

The interaction mode determines how opacity is set. Clicking on the Freeform or Gaussian radio buttons selects
the interaction mode. If the interaction mode switches from Gaussian to Freeform, the shape constructed by the
Gaussian controls is copied to the Freeform control. Both controls pretend that the plot’s data range is positioned
horizontally such that the values on the left of the control correspond to the low data values while the values on the
right of the control correspond to high data values. In addition to the color map, there is a histogram of the current
data to aide in setting opacity of interesting values. The vertical direction corresponds to the opacity for the given data
value. Taller curves are more opaque while shorter curves are more transparent.

Fig. 1.72: Volume Plot Freeform Opacity Options

To design an opacity map using the Freeform control, position the mouse over it and click the left mouse button while

88 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

moving the mouse. The shape traced by the mouse is entered into the Freeform control so that the user can draw the
desired opacity curve. Immediately under the Freeform control, there are four buttons, shown in (Figure 1.72), which
can be used to manipulate the curve. The first three buttons initialize a new curve. The black button makes all data
values completely transparent. The ramp button creates a linear ramp of opacity that emphasizes high data values. The
white button makes all data values completely opaque. The Smooth button smooths out small bumps in the opacity
curve that occur when drawing the curve by hand.

Fig. 1.73: Volume Plot Gaussian Opacity Options

The Gaussian control used during Gaussian interaction mode is complex but it provides precise control over the shape
of a curve. The basic paradigm followed by the Gaussian control is that new curves are added and reshaped to yield
the desired opacity curve. You add new curves by clicking and dragging in the control. Right clicking with the mouse
on an existing curve removes the curve. Each curve has five control points which can change the curve’s position
and shape. The control points are shown in along with the shapes that a curve can assume. A control point changes
color when it becomes active so that the user knows which control point is used. Curves start as a smooth Gaussian
shape but they can change between the shapes shown in by moving the shape control point up and down or left and
right. Opacity maps are typically created by adding several curves to the window and altering their shapes and sizes
until the desired image is obtained in the visualization window. The Attenuation slider, the final control involved in
creating an opacity map, controls the opacity of the entire opacity map defined by the Freeform or Gaussian controls.
It provides a knob to scale all opacities without having to modify the opacity map.

Changing the opacity variable

The variable used to determine opacity does not have to be the plotted variable. Having a different opacity variable
than the plotted variable is useful for instances in which the user wants to determine the opacity using a variable like
density while coloring the plot by another variable such as pressure. To change the opacity variable, select a new
variable from the Opacity variable variable menu. By default, the plotted variable is used as the opacity variable.
This is implied when the Opacity variable variable button contains the word default. Even when “default” is chosen,
it is possible to set artificial data limits on the opacity variable by entering new values into the Min or Max text fields.

Controlling image quality

When the Volume plot is drawn with graphics hardware, the database is resampled onto a rectilinear grid that is used
to place the polygons that are drawn to produce the image. You can control the coarseness of the resampled grid with
the Number of samples text field. To increase the number of sample points, enter a larger number into the Number
of samples text field.

When the Volume plot is drawn in ray casting mode, the number of samples along each ray that is cast through the data
becomes important. Having too few sample points along a ray gives rise to sampling artifacts such as rings or voids.
The user should adjust this number until they are satisfied with the image. More samples generally produce a better
image, though the image will take longer to produce. To change the number of samples per ray, enter a new number
of samples per ray into the Samples per ray text field.

When using lighting, the gradient calculation method that the Volume plot uses influences the quality of the images
that are produced. By default, VisIt uses the Sobel operator, which uses more information from adjacent cells to
calculate a gradient. When the Sobel operator is used to calculate the gradient, lighting usually looks better. The
alternative gradient calculation method is centered-differences and while it is much less compute intensive than the

1.3. Plots 89

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Sobel operator, it also produces lesser quality gradient vectors, which results in images that are not lit as well. To
change the gradient calculation method, click on either the Centered diff or Sobel radio buttons.

1.4 Operators

This chapter explains the concept of an operator and goes into detail about each of VisIt’s operators.

1.4.1 Working with Operators

An operator is a filter applied to a database variable before the compute engine uses that variable to generate a plot.
VisIt provides several standard operator types that allow various operations to be performed on plot data. The standard
operators perform data restriction operations like planar slicing, spherical slicing, and thresholding, as well as more
sophisticated operations like peeling off mesh layers. All of VisIt’s operators are plugins and new operators can be
written to extend VisIt in new ways. See the wiki for more details on creating new operator plugins or send an e-mail
inquiry to visit-users@elist.ornl.gov.

Managing operators

When an operator is applied to a plot, it modifies the data that the plot uses to generate a visualization. Any number
of operators can be applied to a plot. Each operator added to a plot restricts or modifies the data that is supplied to the
plot. Very sophisticated visualizations can be created by using a series of operators.

The controls for the operators are found in the same location as the plot controls. The plot list, which displays the
list of plots found in the current visualization window, also displays the operators applied to each plot. Each entry in
the plot list displays the database name (when there is more than one open source), the plot type, the variable, and
all operators that are applied to the plot. When an operator is applied to a plot, the name of the operator is inserted
in front of the plot variable. If multiple operators are applied to a plot, the most recently added operator appears first
when reading left to right while the operator that was applied first appears just to the left of the variable name. Plot list
entries can also be expanded to allow the user to add, remove, reorder, and change the attributes of operators.

Fig. 1.74: The plots area

90 Chapter 1. VisIt GUI User Manual

http://visitusers.org
mailto:visit-users@elist.ornl.gov

VisIt User Manual Documentation, Release 3.1

Adding an operator

Operators are added by selecting an operator from the Operators menu, shown in Figure 1.75. If an operator listed in
this chapter is not listed in the Operators menu then the operator might not be loaded by default. To enable additional
operators, use the Plugin Manager Window. When an operator is added, it applies the operator to the selected plots
in the plot list unless the Apply operators to all plots check box is checked, in which case, the selected operator is
applied to all plots in the plot list. By default, operators are applied to all plots in the plot list.

Fig. 1.75: The operators menu

When an operator is added to a plot, the name of the operator appears in the plot list entry to the left of the variable or
any previously applied operator. When an operator is added to an already generated plot, the plot is reset back to the
new state to allow the user an opportunity to set the operator’s attributes before the plot is regenerated. To regenerate
the plot with the newly added operator, press the Draw button. It is also possible to apply an operator by clicking an
operator attributes window’s Apply button. When this occurs, a dialog window appears asking the user if the operator
should be applied to the selected plots (see Figure 1.76).

Expanding plots

Plot list entries are normally collapsed by default with the operators applied to the plots shown in the plot list as a
series of nested operators, which finally take a variable as an argument. The plot list allows plot list entries to be
expanded on a per-plot basis so the user can get to each individual operator that is applied to a plot. To expand a plot
list entry, click on its expand button, shown in Figure 1.77. When a plot list entry is expanded, the plot’s database (if
there is more than one open source), the variable, all the operators, and finally the plot get their own line in the plot
list entry. This is significant because it allows operators to have additional controls to let you reposition them in the
pipeline or remove them from the middle of the pipeline without having to first remove other operators.

1.4. Operators 91

VisIt User Manual Documentation, Release 3.1

Fig. 1.76: The add operator dialog

Fig. 1.77: A plot list entry before and after being expanded

92 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Changing the order of operators

Sometimes with several operators applied, it is useful to change the order of the operators. For example, the user
might want to apply a Slice operator before a Reflect operator instead of after it to reduce the amount of data that VisIt
must process in order to draw your plot. The order in which operators are applied often has a significant impact on the
visualization. Using the previous example, suppose a plot is sliced before it is reflected. The resulting visualization
is likely to have a reflected slice of the original data. If the order of the operators was reversed so that the Reflect
operator came first, the Slice operator’s slice plane might not intersect the reflected data in the same way, which could
result in a totally different looking visualization.

The plot list entry must be expanded in order to change the order of its operators. Once the plot list entry is expanded,
each operator is listed in the order in which they were applied and each operator has small buttons to the right of its
name that allow the operator to be moved up or down in the pipeline. To move an operator closer to the database so
it is executed before it would have been executed before, click on the Up button next to an operator’s name. Moving
the operator closer to the database in the pipeline is called demoting the operator. Clicking the Down button next
to an operator’s name moves the operator to a later stage of the pipeline. Moving an operator to a later stage of the
pipeline is known as promoting the operator since the operator appears closer to the plot in the expanded plot entry.
Operators in the plot list entry that can only be moved in one direction have only the Up button or the Down button
while operators in the middle of the pipeline have both the Up button and the Down button.

Fig. 1.78: The controls for changing operator order

Removing operators

There are two ways to delete an operator from a plot. The last two entries in the Operators menu have options that
remove one or more operators. To remove only the last applied operator, select the Remove last option from the
Operators menu. To remove all the operators applied to a plot, select the Remove all option from the Operators
menu. Unless the Apply operator to all plots check box is checked, operators are only removed from selected plots.
When an operator is removed in this manner and the plot has already been generated, it is immediately regenerated.

The Operators menu has controls that allow the last operator applied to a plot to be removed or all of a plot’s operators
to be removed. VisIt also provides controls that let you remove specific operators from the middle of a plot’s operator
list. First expand the plot list entry by clicking its Expand button and then click on the red X button next to the
operator to be deleted. When an operator is deleted using the red X buttons, the plot is reset back to the new state so

1.4. Operators 93

VisIt User Manual Documentation, Release 3.1

the Draw button must be clicked to regenerate the plot. See Figure 1.79 for an example of deleting an operator from
the middle of a plot’s operator list.

Fig. 1.79: After removing an operator from the middle of the pipeline

Setting operator attributes

Each operator type has its own attributes window used to set attributes for that operator type. Operator attribute
windows are brought up by selecting the operator type from the OpAtts (Operator attributes) menu shown in Figure
1.80.

When there is only one operator of a given type in a plot’s operator list, setting the attributes for that operator type
will affect that one operator. When there are multiple instances of the same type of operator in a plot’s operator list,
only the active operator’s attributes are set if the active operator is an operator of the type whose attributes are being
set. The active operator is the operator whose attributes are set when using an operator attributes window and can
be identified in an expanded plot entry by the highlight that is drawn around it (see Figure 1.81). To set the active
operator, expand a plot entry and then click on an operator in the expanded plot entry’s operator list.

94 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.80: The operator attributes menu

Setting the active operator is useful when there are multiple operators of the same type applied to the same plot. For
example, there might be two Transform operators applied to a plot in order to scale a plot with one operator and then
rotate the plot with the second Transform operator. In this case the user could add two Transform operators, make
the first Transform operator active, set the scaling attributes, make the second Transform operator active, and set the
rotation attributes.

1.4.2 Operators that Generate New Variables

Some of VisIt’s operators act more like expressions in that they generate new variables that can be plotted. The variable
type they output does not necessarily match the variable type they accept as input. For example, the IntegralCurve

1.4. Operators 95

VisIt User Manual Documentation, Release 3.1

Fig. 1.81: Setting the active operator

operator accepts a Vector and outputs a Scalar, while the ConnectedComponents operator accepts a Mesh and outputs
a Scalar.

Most of the operators that generate new variables are best applied using the operators submenu of a particular plot’s
variable menu. See Figure 1.82,

It is probably best after applying an operator in this fashion to open the Operator’s attributes window to ensure good
settings for your data before clicking Draw.

Operators that generate Scalars:

1. Connected Components

2. DataBinning

3. Flux

4. Integral Curve operator

5. Lagrangian Coherent Structure (LCS) operator

6. Limit Cycle operator

7. ModelFit

8. Poincaré operator

9. StatisticalTrends

Operators that generate Vectors:

1. Lagrangian Coherent Structure (LCS) operator

2. SurfaceNormal

Operators that generate Curves:

1. DataBinning

2. Lagrangian

3. LimitCycle

96 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.82: The menu for applying an operator that generates a new variable.

1.4. Operators 97

VisIt User Manual Documentation, Release 3.1

4. Lineout

1.4.3 Operator Types

VisIt is installed with operator plugins, which perform a wide variety of functions. Some of the operators are not be
enabled by default so they do not show up in the Operator menu. Use the Plugin Manager Window, which can be
opened by clicking on the Plugin Manager option in the Main Window’s Preferences menu, to enable additional
operators or disable operators that you rarely use.

Box operator

The Box operator, which is mostly intended for use with 3D datasets, removes areas of a plot that are either partially
or completely outside of the volume defined by an axis-aligned box. The Box operator does not clip cells that straddle
the box boundary, it just removes the cells from the visualization leaving jagged edges around the edges of the box
where cells were removed.

Fig. 1.83: Box operator example (original on left, with Box operator applied on right)

Setting how cells are removed

The Box operator can either remove cells that are totally outside of the box or it can remove those cells outside of
the box and cells that are only partially outside of the box. By default, the Box operator only removes cells that are
completely outside of the box. To make the Box operator also remove cells that are partially outside of the box, you
click the All radio button in the Box attributes window (shown in Figure 1.83). Selecting the Inverse option will
return everything in the mesh except those cells bounded by the selected box.

Resizing the box

The Box operator uses an axis aligned box to remove cells from the visualization so the box can be specified as a
set of minimum and maximum values for X, Y, and Z. To set the size of the box using the Box operator attributes

98 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.84: Box attributes window

window, you type new coordinates into the X Minimum, X Maximum, Y Minimum, Y Maximum, Z Minimum,
or Z Maximum text fields.

The Box operator can also be resized interactively with VisIt’s Box tool (for more information, see the Interactive
Tools chapter). If you want to use the Box tool to resize the Box operator’s box, first make sure to select the plot that
uses the Box operator in the Plot list and then enable the Box tool. When the Box tool appears, it uses the same box
as the Box operator. Moving or resizing the Box tool causes the Box operator to also move or be resized and the plots
in the visualization window get regenerated with the new box.

Clip operator

The Clip operator can remove certain shapes from a dataset before it is plotted. More specifically, the Clip operator
can clip away box- or sphere-shaped regions from a database. The database remains in its original dimension after
being clipped by the Clip operator and since the Clip operator manipulates the database before it is plotted, the surfaces
bounding the removed regions are preserved in the final plot. While being geared primarily towards 3D databases, the
Clip operator also clips 2D databases. When applied to 2D databases, the Clip operator can remove rectangular or
circular regions from the database. Figure 1.85 shows a Pseudocolor and Mesh plots with a Clip operator.

Removing half of a plot

The Clip operator uses up to three planes to define the region that is clipped away. Each plane is specified in origin-
normal form where the origin is a point in the plane and the normal is a vector that is perpendicular to the plane. When
a plane intersects a plot, it serves as a clipping boundary for the plot. The plane’s normal determines which side of the
plane is clipped away. The region on the side of the plane pointed to by the normal is the region that the Clip operator
clips away. If more than one plane is active, the region that is left as a result of the first clip operation is clipped by the
next plane, and so on.

Only one plane needs to be used to remove half of a plot. Find the center of the database by inspecting the 3D axis
annotations in the visualization window. Type the center as the new plane origin into the Origin text field for plane

1.4. Operators 99

VisIt User Manual Documentation, Release 3.1

Fig. 1.85: Clip operator example: original plot; clipped with planes; clipped with sphere

1 then click the Plane 1 check box for plane 1 (see Figure 1.86). When the Apply button is clicked, half of the plot
should be removed. You can rotate the clipping plane by entering a new normal vector into the Normal text field. The
normal is specified by three floating point values separated by spaces.

The Accurate option can be used when multiple planes are specified, to ensure accuracy when planes intersect a zone
but do not clip the vertices. It can be up to 6x slower than the Fast option.

Removing one quarter of a plot

To remove a quarter of a plot, you need two clipping planes. To remove one of the plot, first remove one half of the
plot. Now, enable the second clipping plane and make sure that it has the same origin as the first clipping plane but
a different normal. To remove exactly one quarter of the plot, make sure that the normal is perpendicular to plane
1’s normal. Also make sure that plane 2’s new normal points into the region that was clipped away by plane 1. The
two planes, when considered together, remove one quarter of the plot. For an illustration of this, see Figure 1.87. In
general, the Clip operator removes regions defined by the intersection of the regions removed by each clipping plane.
Follow the same procedure with the third clipping plane to remove only one eighth of the plot.

Spherical clipping

The Clip operator not only uses sets of planes to clip databases, it can also use a sphere. To make the Clip operator use
a clipping sphere, click on the Sphere tab. To specify the location and size of the sphere, enter a new center location
into the Center text field on the Sphere tab of the Clip attributes window and then enter a new sphere radius.

Inverting the clipped region

Once the Clip operator has been applied to plots and a region has been clipped away, clicking the Inverse check box
brings back the clipped region and clips away the region that was previously unclipped. Using the Inverse check box
is an easy way to get only the clipped region back so it can be used for other operations.

A common trick when creating animations is to have two identical plots with identical Clip operators applied and then
switch one Clip operator to have an inverted clipping region. This will make the plot appear whole. The plot with the
inverted clipping region can then be transformed independently of the first plot so it appears to slide out of the first
plot. Then it is common to fade out the second plot and zoom in on the first plot’s clipped region.

100 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.86: Clip attributes window

Fig. 1.87: Removing one quarter of a plot using two clip planes: Plane1 clipped region + Plane2 clipped region = One
quarter removed

1.4. Operators 101

VisIt User Manual Documentation, Release 3.1

Cone operator

Like the Slice operator, the Cone operator is also a slice operator. The Cone operator slices a 3D database with a cone,
creating a surface that can be left in 3D or be projected to 2D. Plots to which the Cone operator has been applied
become surfaces that exist on the surface of the specified cone. The resulting plot can be left in 3D space or it can be
projected to 2D space where other operations can be done to it. A Pseudocolor plot to which a Cone operator has been
applied is shown in Figure 1.88.

Fig. 1.88: Cone operator example: original plot; sliced with cone; sliced with cone and projected to 2D

Specifying the slice cone

You can specify the slice cone by setting various fields in the Cone attributes window, shown in Figure 1.89. To
specify how pointy the cone should be, type a new angle (in degrees) into the Angle text field. The cone is defined
relative to its origin, which is the point at the tip of the cone. To move the cone, type in a new origin vector into the
Origin text field. The origin is represented by three floating point numbers separated by spaces. Once the cone is
positioned, you can set its direction (where the cone points) by entering a new direction vector into the Direction text
field.

Fig. 1.89: Cone operator window.

102 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

The cone can extend forever or it can be clipped at some distance along its length. To clip the cone at a certain length,
check the Cut cone off check box and enter a new length value into the Length text field.

Projecting the slice to 2D

The Cone operator usually flattens sliced plots to 2D along the cone’s direction vector. This results in circular 2D plots
in the visualization window. The Cone operator can also unfold sliced plots into a cylinder and then into rectangular
2D plots. Alternatively, the Cone operator can leave the sliced plots in 3D space where their cone shape is obvious.
To set the cone projection mode, click on one of the following radio buttons: In 3D, Project to 2D, or Cylindrical.

Connected Components operator

The Connected Components operator is in a special class of operators, one that creates a new variable. In this case,
the operator accepts as an input variable the name of a mesh, and constructs a scalar variable as output.

The operator creates unique labels for each connected mesh sub-component and tags each zone in the mesh with the
label of the connected component it belongs to. Figure 1.90,

The operator has one option which controls the use of Ghost Zone Neighbors for connectivity between domains. This
option is turned on (set to true) by default. Figure 1.91

Cylinder operator

The Cylinder operator, shown in Figure 1.92, slices a dataset with a cylinder whose size and orientation are specified
by the user. The result is a cylindrical surface.

Setting the cylinder’s endpoints

There are two ways to set the endpoints for the Cylinder operator. First of all, you can open the Cylinder operator
window (see Figure 1.93) and type new 3D points into the Endpoint 1 and Endpoint 2 text fields. The second, and
more interactive way to set the endpoints for the Cylinder operator is to use VisIt’s interactive Line tool, which is
discussed in the Interactive Tools chapter. The Line tool lets you interactively place the Cylinder operator’s endpoints
anywhere in the visualization. The Line tool’s endpoints correspond to the centers of the cylinder’s top and bottom
circular faces.

Setting the radius

To set the radius used for the Cylinder operator’s clipping cylinder, type a new radius into the Radius text field in the
Cylinder attributes window .

Inverting the cylinder region

Once the Cylinder operator has been applied to plots and a cylindrical region has been clipped away, clicking the
Inverse check box brings back the cylindrical region and removes the region that was previously shown.

1.4. Operators 103

VisIt User Manual Documentation, Release 3.1

Fig. 1.90: Connected Components operator shown with Pseudocolor Plot.

Fig. 1.91: Connected Components operator window.

104 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.92: Cylinder operator example: original plot; plot clipped by cylinder

Fig. 1.93: Cylinder operator window.

1.4. Operators 105

VisIt User Manual Documentation, Release 3.1

Fig. 1.94: Cylinder with inverse applied

Decimate operator

The Decimate operator, shown in Figure 1.95, removes nodes and cells from an input mesh, reducing the cell count
while trying to maintain the overall shape of the original mesh. The Decimate operator can currently operate only on
the external surfaces of the input geometry. This means that in order to apply the Decimate operator, you must first
apply the ExternalSurface operator, which will be covered later in this chapter. The Decimate operator is not enabled
by default but it can be turned on in the Plugin Manager Window.

Using the Decimate operator

The Decimate operator simplifies mesh geometry. This can be useful for producing models that have lower polygon
counts than the model before the Decimate operator was applied. Models with lower polygon count can be useful for
speeding up operations such as rendering. The Decimate operator has a single knob that influences how many cells
are removed from the input mesh. The Target Reduction value is a floating point number in the range (0,1) and it
can be set in the Decimate attributes window (see Figure 1.96). The number specified is the proportion of number of
polygonal cells in the output dataset “over” the number of polygonal cells in the original dataset. As shown in Figure
1.95, higher values for Target Reduction value cause VisIt to simplify the mesh even more.

106 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.95: Decimate operator applied to reduce the number of cells in the mesh. (Left-to-right, top-to-bottom): Original
Mesh, Reduction = 0.1, Reduction = 0.5, Reduction = 0.75

Fig. 1.96: Decimate attributes window

DeferExpression operator

The DeferExpression operator is a special-purpose operator that defers expression execution until later in VisIt’s
pipeline execution cycle. This means that instead of expression execution taking place before any operators are applied,
expression execution can instead take place after operators have been applied.

1.4. Operators 107

VisIt User Manual Documentation, Release 3.1

Plotting surface normals

VisIt can use the DeferExpression operator in conjunction with the ExternalSurface operator and the surface_normal
expression to plot surface normals for your plot geometry. To plot surface normals, first create a vector expression
using the surface_normal expression , which takes the name of your plot’s mesh as an input argument. Once you have
done that, you can create a Vector plot of the new expression. Be sure to apply the ExternalSurface operator first to
convert the plot’s 2D cells or 3D cells into polygonal geometry that can be used in the surface_normal expression.
Finally, apply the DeferExpression operator and set its variable to your new vector expression. This will ensure that
the surface_normal expression is not evaluated until after the ExternalSurface operator has been applied.

Fig. 1.97: DeferExpression operator example

Displace operator

The Displace operator deforms a mesh variable using a vector field that is defined on the nodes of that mesh. Many
engineering simulation codes write a mesh for the first time state of the simulation and then write vector displacements
for the mesh for subsequent time states. The Displace operator makes it possible to use the mesh and the time-varying
vector field to observe the behavior of the mesh over time. The Displace operator provides a multiplier that can amplify
the effects of the vector field on the mesh so slight changes in the vector field can be exaggerated. An example showing
a mesh and a vector field, along with the results of the mesh displaced by the vector field is shown in Figure 1.98.

Fig. 1.98: Mesh and Vector plots and a Mesh plot that uses the Displace operator to deform the mesh using a vector
field.

108 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Using the Displace operator

The Displace operator takes as inputs a mesh variable and a vector variable and a displacement multiplier value. For
each node in the mesh, the Displace operator adds the vector field defined at that node to the node’s coordinates. Before
adding the vector to the mesh, VisIt multiplies the vector by the displacement multiplier so the effects of the vector
field can be exaggerated. To set a new value for the displacement multiplier, type a new value into the Displacement
multiplier text field in the Displace attributes window (see Figure 1.99). To set the name of the vector variable that
VisIt uses to displace the mesh, select a new vector variable from the Displacement variable variable button.

Fig. 1.99: Displace attributes window

Elevate operator

The Elevate operator uses a scalar field on a 2D mesh to elevate each node in the input mesh, resulting in a topologically
2D surface in 3D. The Elevate operator allows you to perform much of the same functionality as a Surface plot and
it allows you to do additional things like elevate plots that do not accept scalar variables. The Elevate operator can
also elevate plots whose input data was produced from higher dimensional data that has been sliced. Furthermore, the
Elevate operator allows you to display multiple scalar fields in a single plot such as when a Pseudocolor plot of scalar
variable A is elevated by scalar variable B (see: Figure 1.100).

Fig. 1.100: Elevate operator example: 2D plot of rainfall; 2D plot of elevation; Plot of rainfall elevated by elevation

Using the Elevate operator

The Elevate operator can be used to create plots that look much like a Surface plot if you simply apply the Elevate
operator to a plot that accepts scalar values. The Elevate operator is more flexible than a Surface plot because whereas

1.4. Operators 109

VisIt User Manual Documentation, Release 3.1

the Surface plot limits you to elevating by one variable and coloring by the same variable, the Elevate operator can be
used with any plot and still achieve the Surface plot’s elevated effect. You could use the Elevate operator to elevate
a Pseudocolor plot of rainfall by elevation. You could also take Vector or FilledBoundary plots (among others) and
elevate them by a scalar variable.

Since the Elevate operator uses a scalar variable to elevate all of the points in the mesh, the Elevate operator has
a number of controls related to scaling scalar data. For example, the Elevate operator allows you to artificially set
minimum and maximum values for the scalar variable so you can eliminate data that might otherwise cause your
elevated plot to be stretched undesirably in the Z direction. To set minimum and maximum values for the Elevate
operator, click on the Min or Max check boxes in the Elevate attributes window (see Figure 1.101) and type new
values into the adjacent text fields. The options for scaling the plots created using the Elevate operator are the same as
those for scaling Surface plots. For more information on scaling, see the Surface plot documentation.

Fig. 1.101: Elevate window

The most useful feature of the Elevate operator is its ability to elevate plots using an arbitrary scalar variable. By
default, the Elevate operator uses the plotted variable in order to elevate the plot’s mesh. This only works when the
plotted variable is a scalar variable. When you apply the Elevate operator to plots that do not accept scalar variables,
the Elevate operator will fail unless you choose a specific scalar variable using the Elevate by Variable variable menu
in the Elevate attributes window.

Changing elevation height

The Elevate operator uses a scalar variable’s data values as the Z component when converting a mesh’s 2D coordinates
into 3D coordinates. When the scalar variable’s data extents are small relative to the mesh’s X and Y extents then
you often get what appears to be a flat 2D version of the data floating in 3D space. It is sometimes necessary to scale
the scalar variable’s data extents relative to the spatial extents in order to produce a visualization where the Z value
differs noticeably. If you want to exaggerate the Z values that the scalar variable contributes to make differences more
obvious, you can click on the Elevation height relative to XY limits check box in the Elevate attributes window.

110 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.102: Effect of scaling relative to XY limits

The Elevate operator can be used to simply place a 2D plot in 3D space by use of the Elevate with zero height option.
This will assign a value of zero to all of the z coordinates when converting into 3D.

Fig. 1.103: Effect of elevating with zero height

Explode operator

The Explode operator has three primary targets, which are materials, domains, and cells. There are three different
origins of explosion—point, plane, and cylinder—all of which have unique results and can be applied to any of
the above mentioned targets. While this operator is primarily meant to be used on datasets containing materials or
domains, the capability of exploding all cells remains available for datasets that lack either.

Using the Explode operator

The Explode operator has three areas for user definition. These are the Origin of explosion, Material Explosion
settings, and Cell Explosion settings. You can add as many explosions as you’d like to a single instance of the
operator, and you have the ability to Add, Remove, or Update explosions through the Explode attributes window
shown below.

1.4. Operators 111

VisIt User Manual Documentation, Release 3.1

Fig. 1.104: Explode operator example: original plot; exploding cells of a material; exploding materials.

Fig. 1.105: Explode attributes window

112 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Explode origin

As mentioned earlier, there are three different choices for an explode Origin. To explode from a Point, click the tab
labeled Point in the Origin section of the Explode attributes window. You will then have the opportunity to enter
a 3D coordinate defining your point. Similarly, to explode from a Plane, you must click on the Plane tab. You will
then have the option to define a plane by a point located on that plane and the plane’s normal. Lastly, to explode from
a Cylinder, first click on the Cylinder tab, and then enter two points that lie on a line traveling through the center
(lengthwise) of your cylinder. By default, the cylinder has a radius of zero and is treated as a line to explode from. If
you do define a positive radius, any data that is located within that radius will not be exploded when executing this
explosion.

Exploding materials

Exploding a material results in an individual material within a dataset being displaced by a specified Factor from a
specified origin. Both the factor with which the material is displaced and the actual material to be acted upon are set
within the Material Explosion section of the attributes window. If you refer to the far right image in Figure 1.104,
you will find an example of two material explosions. In this example, we see the materials Cord and Steel, shown in
blue and green, being exploded from the Tire dataset.

Exploding domains

To explode the domains of a dataset, you must first make sure that your dataset has domains that can be plotted using
the Subset plot. If this condition is met, all you need to do is apply the Explode operator to a Subset plot of your
domains. The domains will then be substituted in for materials and treated as such. You can then refer to the section
on exploding materials for usage tips.

Exploding cells

Exploding cells results in the separation and displacement of the cells within your dataset. This can either be applied
to an individual material or the entire dataset. If you refer to the middle image in Figure 1.104, you will see the cells
of the material Rubber, shown in red, being exploded by a plane. As a result, the material is split open and separated
to allow us to see the inner contents. As before, you also have control over the explosion Factor that is applied to the
cells. Additionally, you have two options for the Explosion Pattern. The first option is to explode through Impact,
which results in cells that are closest to the origin being displaced furthest from the origin. The second option is to
explode through Scatter, which results in cells furthest from the origin being displaced furthest from the origin.

ExternalSurface operator

The ExternalSurface operator takes the input mesh and calculates its external faces and outputs polygonal data. The
ExternalSurface operator is not enabled by default but it can be turned on in the Plugin Manager Window. The
ExternalSurface operator can be useful when creating plots that only involve the external geometry of a plot - such as
when you create a Vector plot of surface normals.

Integral Curve System

Within the VisIt infrastructure is the ability to generate integral curves. An integral curve is a curve that begins at
a seed location and is tangent at every point in a vector field. It is computed by numerical integration of the seed
location through the vector field. For example, the image below shows integral curves through the magnetic field of a
core-collapse supernova simulation from the GenASiS code.

1.4. Operators 113

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.106: ExternalSurface operator example

The generation of integral curves forms the basis of VisIt’s Integral Curve System (ICS), made up of the Integral Curve
operator, the Lagrangian Coherent Structure (LCS) operator, the Limit Cycle operator, and the Poincaré operator.
Much of the underlying infrastructure and interface is the same for each operator: the user selects a series of seed
locations where curves are generated, which are then visualized and analyzed.

The ICS allows for the computation of Lagrangian Coherent Structures (LCS) using a variety of techniques
developed by George Haller and his group at ETH Zürich. For more information on LCS, see K. Onu, F.
Huhn, & G. Haller, LCS Tool: A Computational platform for Lagrangian coherent
structures, J. of Computational Science, 7 (2015) 26-36.

Many of the terms used in the ICS are familiar to experts in dynamical systems but may be new to many users. Users
can refer to a glossary sepcific to dynamical systems and can reference VisIt’s Glossary for some terms that are
specific to VisIt’s ICS. Any additional terms can be defined through a simple online search.

Integral Curve operator

The Integral Curve Operator allows the user to compute an integral curve from a seed point through a vector field
without any analysis of its structure.

Source

The set of points that seed the integral curves. In addition to the Source attributes common to all ICS operators, the
Integral Curve operator supports the following attributes:

Source type

The source type controls how the seeds for the curves are created. There are various options, the names of which
are self-descriptive such as creating them along a line or around a sphere. Only those options that require further
clarification are described further here.

Point List Seed from a list of points. In addition to Add Point, Delete Point, and Delete All Points, the user can Read
Text File that is formatted with one point per each line either as “X Y Z” or “X, Y, Z”.

Selection Seed with a named selection.

Field Data The seed points are defined by another operator and passed to the Integral Curve operator. The name of
the array containing the seed points must begin with the string “Seed Points”.

Up Axis The “up axis” serves as the “Y” axis embedded in the plane or circle.

114 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
http://georgehaller.com/
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

1.4. Operators 115

VisIt User Manual Documentation, Release 3.1

Sampling type

For samples taken from a geometric object, there is an option to generate uniform or random samples from the specified
region. Random samples can be reproduced by supplying a random number seed.

Boundary vs Interior Samples

Samples from a geometric object can be taken either from the boundary or the interior. For example, when sampling a
plane, the samples can either lie along the edges of the planar region or within the bounded rectangle, as shown below.

Integration

Specify settings for numerical integrators. In addition to the Integration attributes common to all ICS operators, the
Integral Curve operator supports the following attributes.

Integration Direction

Sets the integration direction through time. The user can choose from a combination of forward, backward, and
directionless. Eigen vectors are an example of a directionless vector field. In order to integrate using a directionless
field, any orientation discontinuity must be corrected prior to linear interpolation. That is, all vectors must be rotated
to match the orientation of the trajectory. The ICS code will do this processing for standard fields (e.g non-higher
order elements).

Termination

Integral curve termination can be controlled in several different ways. The termination is based on the most conserva-
tive criteria, so only one criteria must be met for termination. The options are:

Maximum number of steps The maximum number of integration steps that will be allowed.

116 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Appearance

The appearance tab specifies how the integral curve will be rendered. In addition to the Appearance attributes common
to all ICS operators, the Integral Curve operator supports the following attributes:

Coloring

There are various coloring options, the names of which are self-descriptive such as coloring the curves with a solid
color or according to a seed. Only those options that require further clarification are described further here.

Average Distance from seed Each curve is colored according to the average distance of all the points in the curve
from the seed.

Variable Each curve’s color varies by the value of a scalar variable.

Cleanup

Allows the user to remove points along the integral curve according to difference schemes. Options are self-descriptive,
with additional information provided here as needed.

Delete points before Delete all points that come before a critical point defined by a velocity threshold. This cleaning
will reveal when an integral curve may stop advecting because of some other reason than the critical point (i.e.
the advection continues temporally but not spatially), so this cleaning will remove all duplicate points leaving
the last temporal value. If the last point’s temporal value is different than the value as dictated by the elapsed
time or max steps, then the advection may have reached a critical point but terminated because of some other
reason.

Delete points after Delete all points that come after a critical point defined by a velocity threshold. This cleaning will
reveal when an integral curve reaches a critical point (i.e. the advection continues temporally but not spatially,
so this cleaning will remove all duplicate points leaving the first temporal value).

Crop the integral Curve (for animations)

Integral curves can be cropped so that they appear to grow over time. This option is useful for creating animations.
Users can crop the curves based on several criteria and within a desired time range.

Advanced

In addition to the Advanced attributes common to all ICS operators, the Integral Curve operator supports the following
attributes:

Warnings

Issue warning if the advection limit is not reached If the maximum time or distance is not reached, issue a warning.

Issue warning if the spatial boundary is reached If the integral curve reaches the spatial domain boundary, issue a
warning.

1.4. Operators 117

VisIt User Manual Documentation, Release 3.1

Lagrangian Coherent Structure (LCS) operator

The LCS operator utilizes Lyapunov Exponents based on the Cauchy-Green Tensor to highlight Lagrangian Coherent
Structures in vector fields. When performing a Finite Time Lyapunov Exponent (FTLE) calculation, the time can be
specified as one would for a traditional FTLE, and the resulting value will be based on the maximal Eigen value.

However, when performing the calculation with Finite Space Lyapunov Exponents (FSLE), instead of assuming a
uniform mesh discretization and specifying the dispersion distance, we specify a dispersion factor. In a traditional
FTLE, this is the dispersion distance divided by the initial distance. In the equivalent definition, the dispersion distance
is the maximal Eigen value. Thus when the maximal Eigen value is greater than the specified dispersion factor, then
the exponent is calculated.

More details can be found in this paper.

Source

The set of points that seed the integral curves that reveal the Lagrangian Coherent Structures. In addition to the Source
attributes common to all ICS operators, the LCS operator supports the following attributes:

Source types

The source type controls how the seeds for curves are created. The user can seed the integral curves using the native
mesh or define a rectilinear grid. The nodes of the mesh are the seed points.

Auxilary Grid

When calculating the Jacobian for the Cauchy-Green tensor, one can use the neighboring points from the native mesh
or one can specify an auxiliary grid that allows for the detection of finer features but at greater computational expense.
Using an auxiliary grid is advantageous because it is independent of the native mesh, so it gives more accurate results
for higher order elements. For simulation flows, using the auxiliary grid for eigenvalue calculations gives better results.

Integration

Specify settings for numerical integrators. In addition to the Integration attributes common to all ICS operators, the
LCS operator supports the following attributes:

Integration Direction

Sets the integration direction through time: either forward or backward.

Appearance

The appearance tab specifies how the LCS’s will be rendered. In addition to the Appearance attributes common to all
ICS operators, the LCS operator supports the following attributes.

118 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Seed Generation

Filter the number of seeds generated from the mesh (either native or rectilinear). There are various self-descriptive
filtering options.

Advanced

In addition to the Advanced attributes common to all ICS operators, the LCS Operator supports the following attributes:

Warnings

Issue warning if the advection limit is not reached If the maximum time or distance is not reached, issue a warning.

Issue warning if the spatial boundary is reached If the integral curve reaches the spatial domain boundary, issue a
warning.

Limit Cycle operator

The Limit Cycle Operator detects limit cycles within a vector field. Integral curves are seeded at a Poincaré section and
integrated through the vector field. Curves that return to the Poincaré section indicate a limit cycle, and the integration
of the curve will stop. Those integral curves that do not return to the Poincaré section are terminated according to
separate termination criteria.

A signed return distance is calculated for the integral curves that return to the Poincaré section. Curves with a return
distance below the cycle tolerance are considered to be limit cycles. If a curve does not satisfy the tolerance, then
its return distance is compared to its neighboring integral curves. If a zero crossing is found, then a binary search is
conducted. The binary search is also limited by a maximum number of iterations.

Source

The set of points that seed the integral curves that reveal the Limit Cycles. In addition to the Source attributes common
to all ICS operators, the Limit Cycle operator supports the following attributes:

Source Type

The source type controls how the seeds for curves are created. The Limit Cycle operator only supports uniform
samples on a line.

Integration

Specify settings for numerical integrators. In addition to the Integration attributes common to all ICS operators, the
Limit Cycle operator supports the following attributes.

Integration Direction

Sets the integration direction through time. The user can choose from a combination of forward, backward, and
directionless. Eigen vectors are an example of a directionless vector field. In order to integrate using a directionless
field, any orientation discontinuity must be corrected prior to linear interpolation. That is, all vectors must be rotated

1.4. Operators 119

VisIt User Manual Documentation, Release 3.1

to match the orientation of the trajectory. The ICS code will do this processing for standard fields (e.g non-higher
order elements).

Termination

Integral curve termination can be controlled in several different ways. The termination is based on the most conserva-
tive criteria, so only one criteria must be met for termination. The options are:

Maximum number of steps The maximum number of integration steps that will be allowed.

Appearance

The appearance tab specifies how the integral curve will be rendered. In addition to the Appearance attributes common
to all ICS operators, the Integral Curve operator supports the following attributes.

Cycle tolerance

The smallest return distance for classifying an integral curve as a limit cycle.

Maximum iterations

The maximum numbers of iterations when performing the bi-section method.

Show partial results

If the maximum number of bi-section iterations has been reached without finding a limit cycle, show the integral
curves still in the queue.

Show the signed return distances for the first iteration

Instead of plotting the limit cycles, plot the return distances along the Poincaré section.

Coloring

There are various coloring options, the names of which are self-descriptive such as coloring the curves with a solid
color or according to a seed. Only those options that require further clarification are described further here.

Average Distance from seed Each curve is colored according to the average distance of all the points in the curve
from the seed.

Variable Each curve’s color varies by the value of a scalar variable.

Advanced

See Advanced tab attributes that are common to all ICS operators.

120 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Poincaré operator

The Poincaré operator constructs a Poincaré section for toroidal geometry. The basis of constructing a connected plot
is to accurately determine the number of toroidal and poloidal windings (i.e. the winding pair). The image below is
helpful for visually understanding what is meant by toroidal and poloidal:

This process is iterative, starting with a minimum number of puncture points through a Poincaré section and continuing
until the toroidal and poloidal windings are known or the maximum number of punctures is reached. If an accurate
winding pair is determined, then the puncture points are connected based on it. For more information, refer to the
following resources:

A.R. Sanderson, G. Chen, X. Tricoche, E. Cohen. “Understanding Quasi-Periodic
Fieldlines and Their Topology in Toroidal Magnetic Fields,” In Topological
Methods in Data Analysis and Visualization II, Edited by R. Peikert and H.
Carr and H. Hauser and R. Fuchs, Springer, pp. 125--140. 2012.

A.R. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger, J. Breslau.
“Analysis of Recurrent Patterns in Toroidal Magnetic Fields,” In Proceedings
Visualization / Information Visualization 2010, IEEE Transactions on
Visualization and Computer Graphics, Vol. 16, No. 4, pp. 1431-1440. 2010.

1.4. Operators 121

VisIt User Manual Documentation, Release 3.1

Source

The set of points that seed the integral curves that reveal the Poincaré section. In addition to the Source attributes
common to all ICS operators, the Poincaré operator supports the following attributes:

Source Type

The source type controls how the seeds for curves are created. There are various options, the names of which are
self-descriptive such as creating them along a line. Only those options that require further clarification are described
further here.

Point List Seed from a list of points. In addition to Add Point, Delete Point, and Delete All Points, the user can Read
Text File that is formatted with one point per each line either as “X Y Z” or “X, Y, Z”.

Integration

Specify settings for numerical integrators. In addition to the Integration attributes common to all ICS operators, the
Poincaré operator supports the following attributes.

Punctures

While integrating the integral curve to be used the for Poincaré plot, the user has the option to require a minimum
number of initial punctures through the Poincaré section for the analysis. The user may limit the integration in case of
run-a-way integral curve that cannot be fully analyzed.

Puncture plot type The type of the puncture plot. Options are:

• Single - the analysis is based on the standard double periodic system (toroidal-poloidal periodicity)

• Double - the analysis is based on the double Poincaré plot. In addition to the toroidal-poloidal periodicity
a third periodicity exists that is based on the integration time.

When selecting double, Poincaré plot puncture points are accepted if and only if the period is within the tolerance
of the period (the period is set as part of the Poincaré Pathline Options).

• Period tolerance - when an integral curve punctures the plane, the period must be within the tolerance
value.

Analysis

The user may adjust settings for how Poincaré analysis is to be done. Some options include:

None - Puncture only This will result in constructing a traditional Poincaré plot using only points.

Full This will analyze each curves’ geometry and attempt to reconstruct the cross sectional profile of the surface
which the curve lies on. Further, the analysis attempts to identify the topology of the surface.

Maximum toroidal winding Limit the search of the toroidal winding to lower order values. Zero indicates no limit.

Override toroidal winding In some cases, such as debugging, it may be informative to force the toroidal winding to
have a set value. Zero indicates no override.

Override poloidal winding In some cases such as debugging, it may be informative to force the poloidal winding to
have set value. Zero indicates no override.

122 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Winding pair confidence (Range 0-1, Default 0.9) Sets the limit for the number of mismatches in the consistency
in the winding pairs.

Detect Rational Surface Allows for the construction of rational surfaces via an iterative process. Typically, they can
be constructed with 5-10 iterations.

Detect O Points Allows for the detection of O points in “island chains” via an iterative process. Typically, they can
be detected with 5 iterations.

Perform O-Line Analysis Calculate the poloidal winding relative the O-Line (central axis) which provides a more
accurate winding value.

• O-Line toroidal windings (Default 1) – sets the toroidal winding value, i.e. the period (for the central axis
the period is 1).

• O-Line Axis Point File - allows the user to select a text file containing the points along the axis from 0 to
360 degrees (note there is no overlap P(0) != P(n)).

Show chaotic fieldlines as points Because chaotic curves cannot be classified, they are not displayed unless this is
checked.

Show islands only Culls the results so that only island chains are displayed.

Show ridgelines Displays the 1D plots of the distance and ridgeline samples.

Verbose

Dumps information regarding the analysis to the terminal. The final summary may be useful. For
example,

Surface id = 0 < 2.35019 0 0.664124 > 121:11 121:11 (11) flux surface with 4 nodes (Complete)

Surface id = 0 seed location < 2.35019 0 0.664124 > the winding pair 121:11 the toroidal:poloidal periods (as a
winding pair) 121:11 the multiplication faction (11) i.e. diving by this number will give the

base winding values, in this case 11:1.

surface type: flux surface number of nodes in each winding group: with 4 nodes analysis state: complete.

Appearance

The appearance tab specifies how the integral curve will be rendered. In addition to the Appearance attributes common
to all ICS operators, the Poincaré operator supports the following attributes.

Coloring

The various coloring options are:

None Solid color from the single color

Safety Factor Q Use the safety factor

Safety Factor P Use the safety factor as defined when there are two possible choices for the magnetic axis

Safety Factor Q == P Render the surfaces on if the safety factor Q is equal to the safety factor P

Safety Factor Q != P Render the surfaces on if the safety factor Q is not equal to the safety factor P

Toroidal Windings Q Use the toroidal winding value used in the calculation of Q

Toroidal Windings P Use the toroidal winding value used in the calculation of P

Poloidal Windings Use the poloidal winding value

1.4. Operators 123

VisIt User Manual Documentation, Release 3.1

Fieldline Order Use input order of the seeds used to generate the integral curves.

Point Order Use the puncture point index

Plane Use the plane value (integer from 0 to N where N is the number of planes)

Winding Group Order Use the winding group order (integer from 0 to T where T is the toroidal winding)

Winding Point Order Use the index of the puncture points within each winding group

Winding Point Order Modulo Order Use the order of the punctures within each winding group modulo the toroidal
windings (useful for islands in islands)

Display

Allows the users to display the results in a single plane or multiple planes. Further, one can reconstruct the 3D surface
that the curves lies on.

Overlapping Curve Sections

When displaying the data in a connected manner the raw data will often overlap itself. As such, for visually pleasing
results it may be preferable to remove the overlaps.

Raw Display all of the punctures points in a connected fashion.

Remove Display all of the punctures points in a connected fashion, removing the overlapping sections.

Merge Display all of the punctures points in a connected fashion, merging the overlapping sections. Experimental.

Smooth Display all of the punctures points in a connected fashion, removing the overlapping sections while smooth-
ing between points.

Advanced

See Advanced attributes that are common to all ICS operators.

Parameters

Common to all ICS operators is a four tab GUI: Source, Integration, Appearance, and Advanced (the Poincaré operator
also has an Analysis tab). These tabs contain many functions that are common across all four operators. The following
is a description of those common features.

Source

The set of points that seed the integral curves. See each operator for varied settings.

Field

Sets the field type so that the native elements are used when interpolating the vector fields. Each operator provides the
following options:

Default Use VisIt’s native VTK mesh structure to perform linear interpolation on the vector field.

124 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Flash Evaluates the velocity field via the Lorentz force. Parameters are:

• Constant - A constant multiple applied to the velocity.

• Velocity - When combined with Leap-Frog integration, this sets the initial velocity used in the integration.

M3D-C1 2D Evaluates the 3D magnetic field via a 2D poloidal 6th order polynomial. Parameters are:

• Constant - A constant multiple applied to the perturbed part of the field.

M3D-C1 3D Evaluates the 3D magnetic field via a 2D poloidal 6th order polynomial and 1D toroidal 4th order Bezier
spline.

Nek5000 Evaluates the 3D vector field using Nek5000 spectral elements.

Nektar++ Evaluates the 3D vector field using Nektar++ spectral elements.

Integration

Specify settings for the numerical integrator. See each operator for varied settings.

Integrator

Sets the integration scheme. There are various options common among numerical integration packages, such as Leap
Frog and Runge-Kutta. More details on the different schemes can be found through a simple online search.

Step Length

Most integrators use a fixed step length. Runge-Kutta-Dormand-Prince (RKDP) uses adaptive step size, which can be
clipped by the step length.

Tolerances

RKDP, Adams-Bashforth, and MD3-C1 make use of the tolerance options.

RKDP The step size adapts to ensure that the maximum error at each step is less than the maximum between the
absolute tolerance and the relative tolerance times the value of the vector field at the current point. The absolute
tolerance can be truly absolute or relative to the bounding box.

Termination

The criteria for terminating the integration. See specific operator for details.

Appearance

Specify appearance settings for the curves. See each operator for varied settings.

1.4. Operators 125

https://nek5000.mcs.anl.gov/
https://www.nektar.info/

VisIt User Manual Documentation, Release 3.1

Streamlines vs Pathlines

The user may select the integral curve to be based on an instantaneous or time-varying vector field producing stream-
lines or pathlines, respectively. A streamline is a path rendered by an integrator that uses the same vector field for
the entire integration. A pathline uses the vector field that is in-step with the integrator, so that as the integrator steps
through time, it uses data from the vector field at each new time step. Pathline options are:

Override starting time Instead of starting with the current time step, utilize another time for the start time.

Interpolation over time Interpolate the integral curve with a static mesh for all time or with a varying mesh at each
time step. The mesh is typically static, but this cannot always be assumed and should be verified for each dataset
before use.

Advanced

Parallel integration

The user may select one of four different parallelization options when integrating curves in parallel:

Parallelize over curves Distribute the curves between the processors. Parameters are:

• Domain cache size - number of blocks to hold in memory for level of details.

Parallelize over domains Distribute the domains between the processors. Parameters are:

• Communication threshold - number of integral curve to process before communication occurs.

Parallelize over curves and domains Distribute both the curves and domains between the processors.

Have VisIt select the best algorithm VisIt automagically selects the best parallelization algorithm.

Warnings

Alerts for various conditions that may occur during the integration or analysis.

Issue warning when the maximum number of steps is reached The maximum number of steps limits run-a-way
integration.

Issue warning when a step size underflow is detected If the step size goes to zero, issue a warning.

Issue warning when stiffness is detected Stiffness refers to one vector component being so much larger than another
that tolerances can’t be met.

Issue warning when a curve doesn’t terminate at a critical point For example, the curve may circle around a crit-
ical point without converging.

Index Select operator

The Index Select operator selects a subset of a 2D or 3D structured mesh based on ranges of cell indices. Structured
meshes have an implied connectivity that allows each cell in the mesh to be specified by an i,j or i,j,k index depending
on the dimension of the mesh. The Index Select operator allows you to specify different ranges for each mesh dimen-
sion. The ranges are used to select a brick of cells from the mesh. In addition to indices, the Index Select operator uses
stride to select cells from the mesh. Stride is a value that allows the operator to count by 2’s, 3’s, etc. when iterating
through the range indices. Stride is set to 1 by default. When higher values are used, the resulting mesh is more coarse
since it contains fewer cells in each dimension. The Index Select operator attempts to preserve the size of the mesh
when non-unity stride values are used. An example of the Index Select operator appears in Figure 1.107.

126 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.107: Index Select operator example: original plot; index selected (stride=1); index selected (stride=2)

Setting a selection range

The Index Select attributes window, shown in Figure 1.108, contains nine spin boxes that allow you to enter mini-
mum and maximum ranges for i,j,k. To select all cells in the X dimension whose index is greater than 10, you would
enter 10 into the spin box in the I row and Min column. Then you would enter max into the spin box in the Max
column in the I row. Finally, you would enter a stride of 1 into the spin box in the Incr column in the I row. If you
wanted to sub-select cell ranges for the Y dimension, you could follow a similar procedure using the spin boxes in the
J row and so forth. To set a range, first select the maximum number of dimensions to which the Index Select operator
will apply. To set the dimension, click on the 1D , 2D , 3D radio buttons. Note that if the chosen number of dimensions
is larger than the number of dimensions in the database, the extra dimension ranges are ignored. It is generally best to
select the same number of dimensions as the database. The three range text fields are listed in i,j,k order from top to
bottom. To restrict the number of cells in the X-dimension, use spin boxes in the I row. To restrict the number of cells
in the Y-dimension, use the spin boxes in the J row. To restrict the number of cells in the Z-dimension, use the spin
boxes in the K row.

Fig. 1.108: Index Select attributes window

1.4. Operators 127

VisIt User Manual Documentation, Release 3.1

Restricting to a subset of the whole database

Some databases are composed of multiple groups of meshes, which are often called groups or blocks. Some databases
are composed of multiple meshes, often called blocks or domains. Some are composed of both groups and domains.
When examining a database, you might want to look at only one block or group at a time. By default, the Index Select
operator is applied to all blocks in the database. This means that each index range is applied to each block in the
database and will probably result in an image featuring several small chunks of cells. When the Index select operator
is set to apply to just one block or group, the index ranges are relative to the specified block or group.

To make the Index Select operator apply to just one block or group, uncheck the Use Whole Collection check box.
The Category and Set combo boxes will be filled according to how the database has named the groups or sub-meshes.
Choose the correct category from the Category combo box, and the desired set from the Set combo box. Figure ??
shows a single mesh selection for a multiple mesh database whose sub-meshes are called domains.

InverseGhostZone operator

The InverseGhostZone operator makes ghost cells visible and removes real cells from the dataset so plots to which the
InverseGhostZone operator have been applied show only the mesh’s ghost cells. Ghost cells are a layer of cells around
the mesh that usually correspond to real cells in an adjacent mesh when the whole mesh has been decomposed into
smaller domains. Ghost cells are frequently used to ensure continuity between domains for operations like contouring.
The InverseGhostZone operator is useful for debugging ghost cell placement in simulation data and for database reader
plugins under development.

The InverseGhostZone operator’s attributes window (Figure 1.110) has various Show options allowing you to select
which types of ghost cells are returned. By default all options are turned on.

Isosurface operator

The Isosurface operator extracts surfaces from 2D or 3D databases and allows them to be plotted. The Isosurface
operator takes as input a database and a list of values and creates a set of isosurfaces through the database. An
isosurface is a surface where every point on the surface has the same data value. You can use an isosurface to see a
surface through cells that contain a certain value. The Isosurface operator performs essentially the same visualization

128 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.109: InversetGhostZone example

Fig. 1.110: InversetGhostZone window

1.4. Operators 129

VisIt User Manual Documentation, Release 3.1

operation as the Contour plot, but it allows the resulting data to be used in VisIt’s other plots. For example, an
Isosurface operator can be applied to a Pseudocolor plot where the Isosurface variable is different from the Pseudocolor
variable. In that case, not only are the isosurfaces shown, but they are colored by another variable. An example of the
Isosurface operator is shown in Figure 1.111.

Fig. 1.111: Isosurface operator example

Setting isosurface levels

By default, VisIt constructs 10 levels into which the data fall. These levels are linearly interpolated values between the
data minimum and data maximum. However, you can set your own number of levels, specify the levels you want to
see or indicate the percentages for the levels.

Fig. 1.112: Isosurface attributes

To choose how levels are specified, make a selection from the Select by menu. The available options are: N levels,
Levels, and Percent. N levels, the default method, allows you to specify the number of levels that will be generated,
with 10 being the default. Levels requires you to specify real numbers for the levels you want to see. Percent takes a
list of percentages like 50.5 60 40. Using the numbers just mentioned, the first isosurface would be placed at the value
which is 50.5% of the way between the minimum and maximum data values. The next isosurface would be placed at
the value that is 60% of the way between the minimum and maximum data values, and so forth. You specify all values
for setting the number of isosurfaces by typing into the text field to the right of the Select by menu.

Setting Limits

The Isosurface attributes window, shown in Figure 1.112, provides controls that allow you to specify artificial
minima and maxima for the data in the plot. You might set limits when you have a small range of values that you are
interested in and you only want the isosurfaces to be generated through that range. To set the minimum value, click the

130 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Minimum check box to enable the Minimum text field and then type a new minimum value into the text field. To set
the maximum value, click the Maximum check box to enable the Maximum text field and then type a new maximum
value into the text field. Note that either the minimum, maximum or both can be specified. If neither minimum nor
maximum values are specified, VisIt uses the minimum and maximum values in the dataset.

Scaling

The Isosurface operator typically creates isosurfaces through a range of values by linearly interpolating to the next
value. You can also change scales so a logarithmic function is used to get the list of isosurface values through the
specified range. To change the scale, click either the Linear or Log radio buttons in the Isosurface attributes window.

Setting the isosurfacing variable

The Isosurface operator database variable can differ from the plotted variable. This enables plots to combine infor-
mation from two variables by having isosurfaces of one variable and then coloring the resulting surfaces by another
variable. You can change the isosurfacing variable, by selecting a new variable name from the Variable variable
button.

Sometimes it is useful to set the isosurfacing variable when the plotted variable is not a scalar. For example, you
might want to apply the Isosurface operator to a Mesh plot but the Mesh plot’s plotted variable is not a scalar so the
Isosurface operator does not know what to do. To avoid this situation, you can set the isosurfacing variable to one you
know to be scalar and the operator will succeed.

Isovolume operator

Fig. 1.113: Isovolume Operator Example

The Isovolume operator creates a new unstructured mesh using only cells and parts of cells from the original mesh
that are within the specified data range for a variable. The resulting mesh can be used in other VisIt plots. You might
use this operator when searching for cells that have certain values. The Isovolume operator can either use the plotted
variable or a variable other than the plotted variable. For instance, you might want to see a Pseudocolor plot of pressure
while using the Isovolume operator to remove all cells and parts of cells below a certain density. An example of a plot
to which an Isovolume operator has been applied is shown in .

1.4. Operators 131

VisIt User Manual Documentation, Release 3.1

Fig. 1.114: Isovolume Attributes Window

Using the Isovolume operator

The Isovolume operator iterates over every cell in a mesh and determines which parts of the cell, if any, contain a
value that falls within a specified data range. If any parts of the cell are within the specified data range, they are kept
as part of the operator’s output. The Isovolume operator uses an isosurfacing algorithm to determine the interfaces
where cells should be split so the interfaces for neighboring cells are all continuous and fairly smooth. To specify a
data range, type new upper and lower bounds into the Lower bound and Upper bound text fields in the Isovolume
Attributes Window, which is shown in Figure 1.114.

The variable that the Isovolume operator uses does not necessarily have to match the plotted variable. If the plotted
variable is to be used, the Variable text field must contain the word: default. If you want to make the Isovolume
operator use a different variable so you can, for example, plot temperature but only look at regions that have a density
greater than 2g/mL, you can set the Isovolume’s variable to temperature. To make the Isovolume operator use a
different variable, select a new variable from the Variable variable button in the Isovolume Attributes Window.

If you apply this operator to a plot that does not operator on scalar variables such as the Mesh or Subset plots, be sure
to set the variable because the default variables for those plots is never a scalar variable. Without a scalar variable, the
Isovolume operator will not work.

Lineout operator

The Lineout operator samples data values along a line, producing a 1D database from databases of greater dimension.
This operator is used implicitly by VisIt’s Lineout capability and cannot be added to plots. For more information on
Lineout, see the Lineout section in the Quantitative Analysis chapter.

Merge operator

VisIt’s Merge operator merges all geometry that may exist on separate processors into a single geometry dataset on a
single processor. The Merge operator can be useful when applying other operators like the Decimate operator or when
creating Streamline plots. The Merge operator is not enabled by default.

OnionPeel operator

The OnionPeel operator creates a new unstructured mesh by taking a seed cell or node from a mesh and progressively
adds more layers made up of the initial cell’s neighboring cells. The resulting mesh is then plotted using any of VisIt’s
standard plots. The OnionPeel operator is often useful for debugging problems with scientific simulation codes, which
often indicate error conditions for certain cells in the simulated model. Armed with the cell number that caused the
simulation to develop problems, the user can visualize the simulation output in VisIt and examine the bad cell using the
OnionPeel operator. The OnionPeel operator takes a cell index or a node index as a seed from which to start growing

132 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

layers. Only the seed is shown initially but as you increase the number of layers, more of the cells around the seed are
added to the visualization. An example of the OnionPeel operator is shown in Figure 1.115.

Fig. 1.115: Onion peel operator example

Setting the seed

The OnionPeel operator uses a seed cell or a seed node as the seed to which all cells from other layers are added.
When a layer is added around the seed, the new cells are those immediately connected to the seed. You specify the
seed as a cell index or a node index by typing a new seed value into the Seed# or ij[k] text field. VisIt interprets
the seed as a cell index by default. If you want to start growing cell layers around a given node, click on the Node
radio button before entering a new seed value. The form of the seed index depends on how the underlying mesh is
organized. Unstructured meshes, which are a collection of independent cells, require only a single integer value for
the seed while structured meshes are indexed with i,j or i,j,k indices depending on the dimension of the mesh. To set
the seed using i,j,k indices, type the i and j and k indices, separated by spaces, into the Seed# or ij[k] text field.

Some meshes that have been decomposed into multiple smaller meshes known blocks or domains have an auxiliary
set of cell indices and node indices that allow cells and nodes from any of the domains to be addressed as though each
domain was part of a single, larger whole. If you have such a mesh and want to specify seed indices in terms of global
cell indices or global node indices, be sure to turn on the Seed# is Global check box.

The OnionPeel operator can only operate on one domain at a time and when the operator grows layers, they do not
cross domain boundaries. The seed cell index is always relative to the active domain. To make a cell in a different
domain the new seed cell, change the domain number by selecting a new domain from the Set combo box.

Growing layers

The OnionPeel operator starts with a seed and adds layers of new cells around that seed. The added cells are determined
by the layer number and the adjacency information. The cell adjacency rule determines the connectivity between cells.
Cells are next to each other if they share a cell face or a cell node. The visualization will differ slightly depending on
which adjacency rule is used. To change the adjacency rule, click the Node or the Face radio buttons in the OnionPeel
attributes window, shown in Figure 1.116.

1.4. Operators 133

VisIt User Manual Documentation, Release 3.1

Fig. 1.116: Onion peel attributes

The OnionPeel operator initially shows zero layers out from the seed, so only the seed is shown in the visualization
when the OnionPeel operator is first applied. Consequently, the visualization might appear to be empty since some
seed cells are very small. To add more layers around the seed, enter a larger layer number into the Layer Number text
field. Clicking the up or down buttons next to the Layer Number text field also increments or decrements the layer
number.

By default, Onion Peel will honor the structure of the original mesh. In some cases, as with arbitrary polyhedral data,
you may want to see how VisIt split the original mesh. In this case, use the combo box to change to Honor actual
mesh.

Project operator

The Project operator sets all of the Z values in the coordinates of a 3D mesh to zero and reduces the topological
dimension of the mesh by 1. The Project operator is, in essence, an operator to make 2D meshes out of 3D meshes.
An example of the Project operator is shown in Figure 1.117.

Setting the projection type

The Project operator can project 3D down to 2D using either Cartesian or Cylindrical transforms, which can be
performed along the X, Y or Z axis, as shown in (see Figure 1.118). To specify which of these transforms you want
to use when using the Project operator, choose the appropriate option from the Projection type combo box. Z-Axis
Cartesian is the default option.

Choosing how vectors are treated

The Project operator can treat vectors as instantaneous directions, as coordinate displacements or as point coordinates.
The Project operator can also ignore the vectors and not transform them at all. To specify how you wish vectors to

134 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.117: Project Operator Example

Fig. 1.118: Project Attributes Window showing available projection types

1.4. Operators 135

VisIt User Manual Documentation, Release 3.1

be treated during the projection transform, choose the appropriate option from the Vector transform method combo
box. (see Figure 1.119) The default is Treat as instantaneous directions.

Fig. 1.119: Project Attributes Window showing available vector treatments

Reflect operator

Use the Reflect operator to reflect database geometry across one or more axes. Scientific simulations often rely on
symmetry so they only need to simulate part of the problem. When creating a visualization, most users want to see the
entire object that was simulated. This often involves reflecting the database geometry to create the full geometry of
the simulated object. VisIt’s Reflect operator can be applied to both 2D and 3D databases and can reflect them across
one or more plot axes. An example of the Reflect operator is shown in Figure 1.120.

Fig. 1.120: Reflect operator example

Setting the Reflect attribute window’s input mode

The Reflect attributes window, shown in Figure 1.121, has two input modes. One input mode is for 2D data, in
which only reflection quadrants are shown, and the second input mode is for 3D data for which the window shows 3D
octants. In either input mode, clicking on the brightly colored shapes turns on different reflections and in the 3D input
mode, clicking on the cyan arrow rotates the view so you can more easily get to reflections in the back. To set the input
mode, click either the 2D or 3D radio buttons.

136 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.121: Reflect attributes window

Setting the data octant

The Reflect operator assumes that the database being reflected resides in the +X+Y+Z octant when performing its
reflections. Sometimes, due to the orientation of the database geometry, it is convenient to assume the geometry exists
in another octant. To change the data octant, make a new selection from the Original data octant menu in the Reflect
attributes window. The Reflect attributes window graphically depicts the original data octant as the octant that
contains a sphere instead of a cube, which correspond only to reflections.

Reflecting plots

Once the Reflect operator has been applied to plots, you must usually specify the direction in which the plots should be
reflected. To set the plot direction, click on the glyphs below the Original data octant menu. The possible reflections
are shown by cube and sphere glyphs. When a reflection is set to be on, the glyph in the octant or quadrant will be
green or magenta. When a reflection is not on, its glyph is smaller and silver. To turn a reflection on or off, just click
on its glyph. If the window is in its 3D input mode and you need to access octants in the back that are obscured by
other octants, clicking on the cyan arrow will rotate the glyphs so the octants in the back will be more accessible.

Reflection limits

Reflection limits determine the axes about which the database geometry is reflected. The Reflect attributes window
has three reflection limits controls; one for each dimension. You will usually want to reflect plots using the dataset min
value, which you set by clicking the Use dataset min radio button. When using the dataset min value to reflect plots,
the reflected plots will touch along the reflected edge. You can also specify another axis of reflection. When using a
custom axis of reflection, the reflected plots will not necessarily touch. This option, though not normally needed, can
produce interesting effects in animations. To specify a custom axis of reflection, click the Specify X, Specify Y, or
Specify Z radio buttons and enter a new X, Y, or Z value into the appropriate text field.

1.4. Operators 137

VisIt User Manual Documentation, Release 3.1

Resample operator

The Resample operator extracts data from any input dataset in a uniform fashion, forming a new 2D or 3D rectilinear
grid onto which the original dataset has been mapped. The Resample operator is useful in a variety of contexts such
as downsampling a high resolution dataset (shown in Figure 1.122), rendering Constructive Solid Geometry (CSG)
meshes, or mapping multiple datasets into a common grid for comparison purposes.

Fig. 1.122: Resample operator example

Resampling onto a rectilinear grid

Resampling a high resolution dataset onto a rectilinear grid is the most common use case for the Resample operator.
When a Resample operator is applied to a plot, the Resample operator clips out any data values that are not within
the operator’s bounding box. For the data that remains inside the bounding box, the operator samples it using the
user-specified numbers of samples for the X, Y, and Z dimensions. The default for the Resample operator is to use the
entire extents of the dataset. If you want to choose a smaller region, unselect the Resample Entire Extents checkbox
and enter new bounding box information. The bounding box is specified by entering new start and end values for
each dimension. For example, if you want to change the locations sampled in the X dimension then you could type
new floating point values into the Start X and End X text fields. The same pattern applies to changing the locations
sampled in the Y and Z dimensions. One difference between resampling 2D and 3D datasets is that 3D datasets
must have the 3D resampling check box enabled to ensure that VisIt uses the user-specified Z-extents and number of
samples in Z.

Samples for which there was no data in the original input dataset are provided with a default value that you can change
by typing a new floating point number into the Value for uncovered regions text field.

Using Resample with CSG meshes

Constructive Solid Geometry (CSG) modeling is a method whereby complex models are built by adding and subtract-
ing primitive objects such as spheres, cubes, cones, etc. When you plot a CSG mesh in VisIt, VisIt resamples the CSG
mesh into discrete cells that can be processed as an unstructured mesh and plotted. The Resample operator can be used
to tell VisIt the granularity at which the CSG mesh should be sampled, overriding the CSG mesh’s default sampling.
Naturally, higher numbers of samples in the Resample operator produce a more faithful representation of the original
CSG mesh. Figure 1.124 depicts a CSG model that contains a disc within a smooth ring. Note that as the number of
samples in the Resample operator increases, the model becomes smoother and jagged edges start to disappear.

138 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.123: Resample attributes window

Fig. 1.124: The Resample operator can be used to control the resolution of CSG meshes. Resolution is increased from
left to right.

1.4. Operators 139

VisIt User Manual Documentation, Release 3.1

Resampling surfaces projected to 2D

Sometimes is is useful to project complex surfaces into 2D and resample them onto a 2D mesh so queries and other
analysis can be performed.

When you project a complex surface to 2D using the Project operator, all of a plot’s geometry remains and its Z
coordinates are set to zero. This results in some areas where the plot is essentially crushed on top of itself, as shown in
Figure 1.125. When resampling the plot onto a new 2D grid, these overlapping areas can be treated in three different
ways. You can ensure that the top value is taken if you choose the random option by clicking on the random button
in the Resolve ties button group. You can use a mask variable to decide ties by clicking on the largest or smallest
buttons and by selecting an appropriate variable using the Variable to resolve ties menu.

Fig. 1.125: Using the Resample operator to create a 2D projection

When used in parallel, the resampled data is distributed across all processors. This can be changed by unselecting the
checkbox.

You can also force the output data to be cell centered by selecting the Make output cell centered checkbox.

Revolve operator

The Revolve operator is for creating 3D geometry from 2D geometry by revolving the 2D about an axis. The Revolve
operator is useful for incorporating 2D simulation data into a visualization along with existing 3D data. An example
of the Revolve operator is shown in Figure 1.126.

Using the Revolve operator

To use the Revolve operator, the first thing to do is pick an axis of revolution. The axis of revolution is specified as a
3D vector in the Axis of revolution text field (see Figure 1.127) and serves as the axis about which your 2D geometry
is revolved. If you want to revolve 2D geometry into 3D geometry without any holes in the middle, be sure to pick
an axis of revolution that is incident with an edge of your 2D geometry. If you want 3D geometry where the initial
2D faces do not meet, be sure to specify start and stop angles in degrees in the Start angle and Stop angle text fields.

140 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.126: Revolve operator example

Finally, the number of steps determines how many times the initial 2D geometry is revolved along the way from the
start angle to the stop angle. You can specify the number of steps by entering a new value into the Number of steps
text field.

By default, VisIt will choose the axis of revolution based on mesh type, which is also determined automatically. You
can specify the mesh type manually by selecting a radio button other than Auto. To specify the axis of revolution
manually, uncheck the Choose axis based on mesh type checkbox.

Fig. 1.127: Revolve attributes window

1.4. Operators 141

VisIt User Manual Documentation, Release 3.1

Slice operator

This operator slices a 3D database with a plane that can have an arbitrary orientation. Plots to which the Slice operator
has been applied are turned into 2D planar surfaces that are coplanar with the slice plane. The resulting plot can be left
as a 2D slice in 3D space or it can be projected to 2D space where other operations can be done to it. A Pseudocolor
plot to which a Slice operator has been applied is shown in Figure 1.128.

Fig. 1.128: Slice operator example

Positioning the slice plane

You can position the slice plane by setting the origin, normal, and up-axis vectors in the Slice operator attributes
window, shown in Figure 1.129 . The slice plane is specified using the origin-normal form of a plane where all that is
needed to specify the plane are two vectors; the origin and the normal. The origin of the plane is a point in the slice
plane. The normal vector is a vector that is perpendicular to the slice plane.

VisIt allows the slice plane normal to be aligned to a specific axis or it can be set to any arbitrary vector. If you want
the slice plane to be along any of the three axes, click the X-Axis, Y-Axis, or Z-Axis radio button. If you want to make
a slice plane that does not align with the principle axes, click the Arbitrary or Theta-Phi radio button and then type
a direction vector into the text field to the right of the radio button. The vector need not be normalized since VisIt will
normalize the vector before using it.

The slice plane’s origin, which specifies the location of the slice plane, can be set five different ways. The middle
of the Slice attributes window, or Origin area (see the Figures below), provides the necessary controls required to
set the slice plane origin. The Origin area provides five radio buttons: Point, Intercept, Percent, Zone, and Node.
Clicking on one of these radio buttons causes the Origin area to display the appropriate controls for setting the slice
plane origin. To set the slice plane origin to a specific point, click the Point radio button in the Origin area and then
type a new 3D point into the Point text field. To set the slice plane origin to a specific value along the principle slice
axis (usually an orthogonal slice), click the Intercept radio button and then type a new value into the Intercept text
field.

If you don’t know a good value to use for the intercept, consider using the percent slice mode. Percent slice mode,
which is most often used for an orthogonal slice, allows you to slice along a particular axis using some percentage of
the distance along that axis. For example, this allows you to see what the slice plane looks like if its origin is 50% of
the distance along the X-Axis. To set the origin using a percentage of the distance along an axis, click the Percent
radio button and then type a new percentage value into the Percent text field or use the Percent slider.

Sometimes it is useful to slice through a particular zone or node. The Slice operator allows you to pick an origin for the
slice plane so a specific zone or node lies in the slice plane. To make sure that a particular zone is sliced by the Slice
operator, click on the Zone radio button and then enter the zone to be sliced into the Zone text field. Be sure to also
enter the domain that contains the zone into the Domain text field if you are slicing a multi-domain database. If you

142 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.129: Slice attributes window

Fig. 1.130: Origin area appearance

1.4. Operators 143

VisIt User Manual Documentation, Release 3.1

want to make sure that the slice plane’s origin is at a specific node in a mesh, click the Node radio button and enter a
new node number into the Node text field. Note that you must also specify a domain if you are slicing a multi-domain
database. If the database contains multiple meshes, their will also be Mesh combo box option from which to choose
the mesh to use, as seen in the Node example in Figure 1.130.

Use the up-axis vector when you want the slice plane to be projected to 2D. The up-axis vector is a vector that lies in
the slice plane and defines a 2D coordinate system within the plane where the up-axis vector corresponds to the Y-axis.
To change the up-axis vector, type a new 3D vector into the Direction text field in the Up Axis area of the window.

Positioning the slice plane using the Plane Tool

You can also position the slice plane using VisIt’s interactive plane tool. The plane tool, which is available in the
visualization window’s popup menu, allows you to position a slice plane interactively using the mouse. The plane tool
is an object in the visualization window that can be moved and rotated. When the plane tool is changed, it gives its
new slice plane to the Slice operator if the operator is set to accept information interactively. To make sure that the
Slice operator can accept a new slice plane from the plane tool, check the Interactive check box in the Slice attributes
window. For more information about the plane tool, read the Interactive Tools chapter.

Projecting the slice to 2D

The Slice operator usually leaves sliced plots in 3D so you can position the slice with the plane tool. However, you
might want the plot projected to 2D. When a sliced plot is projected to 2D, any 2D operation, like Lineout , can be
applied to the plot. To project a plot to 2D, check the Project 2D check box in the Slice attributes window .

Smooth operator

The Smooth operator smooths a mesh to improve areas plagued by jagged edges or sharp peaks.

Fig. 1.131: Smooth operator example

144 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Using the Smooth operator

The Smooth operator has a number of controls that can be used to tune mesh smoothness. One such control is the
number of iterations, which controls the number of times the mesh relaxation algorithm is applied to the input mesh.
Larger numbers of iterations will produce smoother meshes but will also take more time to compute. To change
the number of iterations, type a new integer value into the Maximum number of iterations text field in the Smooth
attributes window (see Figure 1.132). The relaxation factor is a floating point number in the range [0,1] and it controls
how much the mesh is relaxed. Values near 1 produce a mesh that is very smooth relative to the input mesh. To use
a new relaxation factor, type a floating point number into the Relaxation Factor text field. The Maintain Features
check box allows you to tell VisIt to preserve sharp peaks in the mesh while still smoothing out most of the mesh. The
angle in the Feature Angle text field determines which features are kept. Any mesh angles less than the feature angle
are preserved while others are smoothed.

Fig. 1.132: Smooth attributes

SphereSlice operator

The SphereSlice operator slices a 2D or 3D database with an arbitrary sphere. Plots to which the SphereSlice operator
have been applied become 2D surfaces that are coincident with the surface of the slicing sphere. The resulting plots
remain in 3D space. You can use the SphereSlice operator to slice objects to judge their deviation from being perfectly
spherical. An example of the SphereSlice operator is shown in Figure 1.133.

Positioning and resizing the slice sphere

You can position the slice sphere by setting its origin in the SphereSlice attributes window shown in Figure 1.134 .
The slice sphere is specified by a center point and a radius. To change the slice sphere’s center, enter a new point into
the Origin text field. The origin is a 3D coordinate that is represented by three space-separated floating point numbers.
To resize the sphere, enter a new radius number into the Radius text field.

1.4. Operators 145

VisIt User Manual Documentation, Release 3.1

Fig. 1.133: SphereSlice operator example

Fig. 1.134: SphereSlice attributes window

146 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Positioning the slice sphere using the Sphere tool

You can also position the slice sphere using VisIt’s interactive sphere tool. The sphere tool, available in the visualiza-
tion window’s popup menu, allows you to position and resize a slice sphere interactively using the mouse. The sphere
tool is an object in the visualization window that can be moved and resized. When the sphere tool is changed, it gives
its new slice sphere to the SphereSlice operator. For more information about the sphere tool, read the Interactive Tools
chapter.

Tessellate operator

The Tessellate operator is an operator that tessellates high order elements so that they appear curved.

Fig. 1.135: Tessellate operator example

The Tessellate operator supports the following high order element types.

• QUADRATIC_EDGE

• CUBIC_LINE

• LAGRANGE_TRIANGLE

• QUADRATIC_TRIANGLE

• BIQUADRATIC_TRIANGLE

• LAGRANGE_QUADRILATERAL

• BIQUADRATIC_QUAD

• QUADRATIC_QUAD

• LAGRANGE_TETRAHEDRON

• QUATRADIC_TETRA

• LAGRANGE_HEXAHEDRON

1.4. Operators 147

VisIt User Manual Documentation, Release 3.1

• QUADRATIC_HEXAHEDRON

If the Tessellate operator encounters an unsupported element type it will remove the element from the mesh.

Changing the tessellation accuracy

The tessalation accuracy is controlled by the Chord error and Field criterion. The Chord error is with respect to
the curvature of the element and is ratio of a chord to the distance from the curve and is independent of the scale of
the object. The default Chord error is 0.035, which will typically do a good job. The Field criterion is with respect
to the error in the field within the element. The default Field criterion is also 0.035, which will also typically do
a good job. Reducing the Chord error and Field criterion will both improve the discretization. They should only
be decreased if necessary, since reducing them will increase the number of elements a single high order element is
tessellated into. This in turn increases the memory usage and the time to perform operations. The number of elements
a single high order element gets tessellated into may easily get into the hundreds.

Fig. 1.136: Tessellate attributes window

Merging the points

The points from the cells generated by the tessellation can either be shared or not shared by cells. The default Merge
points setting will merge the points. Point merging typically only affects the appearance of the Mesh plot. When
points are merged, the mesh lines of individual cells of the tessellation will be visible. When points are not merged,
the mesh lines of the high order element will typically only be visible.

ThreeSlice operator

The ThreeSlice operator slices 3D databases using three axis-aligned slice planes and leaves the resulting planes in 3D
where they can all be viewed at the same time. The ThreeSlice operator is meant primarily for quick visual exploration
of 3D data where the internal features cannot be readily observed from the outside.

Moving the ThreeSlice operator

The ThreeSlice operator is controlled by moving its origin, which is the 3D point where all axis-aligned slice planes
intersect. There are two ways to move the ThreeSlice operator’s origin. First, you can directly set the point that you
want to use for the origin by entering new x, y, z values into the respective X , Y , Z text fields in the ThreeSlice
operator attributes window , shown in Figure 1.138. You can also make sure that the Interactive toggle is turned
on so you can use VisIt’s interactive Point tool to set the ThreeSlice operator’s origin. When you use the Point tool

148 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.137: ThreeSlice operator example

to set the origin for the ThreeSlice operator, the act of moving the Point tool sets the ThreeSlice operator’s origin and
causes plots that use the ThreeSlice operator to be recalculated with the new origin. For more information about the
point tool, read the Interactive Tools chapter.

Fig. 1.138: ThreeSlice attributes window

Threshold operator

The Threshold operator extracts cells from 2D and 3D databases where the plotted variable falls into a specified range.
The resulting database can be used in other VisIt plots. You might use this operator when searching for cells with
certain values. One such example is searching for the cell with the minimum or maximum value for the plotted
variable. The Threshold operator removes all cells that do not have values in the specified range, making it easy to
spot cells with the desired values. The Threshold operator can also use variables other than the plotted variable, for
instance, you might want to see a Pseudocolor plot of pressure while using the Threshold operator to remove all cells
below a certain density. By specifying a different threshold variable, it is possible to visualize different quantities over

1.4. Operators 149

VisIt User Manual Documentation, Release 3.1

the subset of cells specified by the threshold variable and range. An example of the Threshold operator is shown in
Figure 1.139.

Fig. 1.139: Threshold operator example

Setting the variable range

The Threshold operator uses a range of values to determine which cells from the database should be kept in the
visualization. For the Default bounds input, you specify the range of values by lower and upper bounds on the
threshold variable. Cells with values below the lower bound or with values above the upper bound are removed from
the visualization. To specify a new lower bound, type a new number or the special keyword: min into the Threshold
attributes window’s (Figure 1.140) Lower bound text field. To specify a new upper bound, type a new number or
the special keyword: max into the Upper bound text field.

For the Custom bounds input, you can specify a list of ranges in the Range text field. A colon - ‘:’ defines a range
and a comma - ‘,’ defines a logical OR. The range shown in Figure 1.141 has the following meaning:

1 <= default <= 10 OR default = 17 OR 23 <= default <= max

Numbers, commas, and colons are the only valid symbols that can be used in specifying a range list.

When the threshold variable is a nodal quantity, the cell being considered by the Threshold operator has values at each
node in the cell. In this case, the Threshold operator provides a control that determines whether or not to keep the
cell if some nodes have values in the threshold range or if all nodes have values in the threshold range. More cells are
usually removed from the visualization when all nodes must be in the threshold range. Select Part in range from the
Show zone if combo box to allow cells where at least one value is in the threshold range into the visualization. Select
All in range from the Show zone if combo box to require that all nodal values exist in the threshold range.

Setting the threshold variable

The Threshold operator uses the threshold variable to determine whether cells remain in the visualization. The thresh-
old variable is usually the plotted variable in which case the Variable column displays: default. To specify a threshold
variable other than the plotted variable, click on the Add variable variable button and select a new scalar variable
from the list of available variables.

You might set the threshold variable when you apply the Threshold operator to plots which do not take scalar variables
as input. An example of this is the Mesh plot. When you apply the Threshold operator to a Mesh plot, you must set
the threshold variable to a valid scalar variable for cells to be removed from the plot. You can also use the threshold
variable to remove cells based on one variable while viewing the plotted variable.

150 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.140: Threshold attributes window - Default

1.4. Operators 151

VisIt User Manual Documentation, Release 3.1

Fig. 1.141: Threshold attributes window - Custom

152 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Setting the output mesh type

The Threshold operator removes all cells that do not meet the threshold criterion, leaving behind a set of cells that
are gathered into an unstructured mesh. Sometimes, it can be useful to transform the remaining cells into a point
mesh. You can specify the desired output mesh type using the Cells from input and Point mesh radio buttons in the
Threshold attributes window .

Transform operator

The Transform operator manipulates a 2D or 3D database’s coordinate field by applying rotation, scaling, and transla-
tion transformations. The operator’s transformations are applied in the following order: rotation, scaling, translation.
The Transform operator is applied to databases before they are plotted. You might use the Transform operator to rotate
database geometry to a more convenient orientation or to scale database geometry to make better use of the visual-
ization window. You can also use the Transform operator to make objects rotate and move around the visualization
window during animations. This works well when only one part of the visualization should move while other parts
and the view remain fixed. An example of the Transform operator is shown in Figure 1.142.

Fig. 1.142: Transform operator example

Rotation

You can use the Transform operator to rotate plots around an arbitrary axis in 3D and around the Z-axis in 2D. To apply
the rotation component of the Transform operator, be sure to check the Rotate check box in the Transform attributes
window (Figure 1.143). An origin and normal are needed to specify the axis of rotation. The origin serves as a
reference point for the object being rotated. The axis of rotation is a 3D vector that, along with the origin, determines
the 3D axis that will serve as the axis of rotation. You must supply an origin and an axis vector to specify an axis of
rotation. To change the origin, type a new 3D vector into the top Origin text field. To change the 3D axis, type a new
3D vector into the Axis text field. Both the origin and the axis are represented by three space-separated floating point
numbers.

When applying the Transform operator to plots, you probably want to make the origin the same as the center of the
plot extents which can be found by looking at the axis annotations. When the Transform operator is applied to 3D
plots, the axis of rotation can be set to any unit vector. When the Transform operator is applied to 2D plots, the axis of
rotation should always be set to the Z-axis (0 0 1).

Once you specify the axis of rotation, you must supply the angle of rotation. The default angle of rotation is zero
degrees, which gives no rotation. To change the angle of rotation, enter a number in degrees or radians into the
Amount text field and click the Deg radio button for degrees or the Rad radio button if the angle is measured in
radians.

1.4. Operators 153

VisIt User Manual Documentation, Release 3.1

Fig. 1.143: Transform attributes window

154 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Scale

You can use the Transform operator to scale plots. Each dimension can be scaled independently by entering a new
scale factor into the X, Y, Z text fields. Each scale factor is a multiplier so that a value of 1 scales plots to their original
size while a value of 2 scales plots to twice their original size. To apply the scale component of the Transform operator,
be sure to check the Scale check box in the Transform attributes window . All dimensions are scaled relative to a
scaling origin which can be changed by typing a new origin into the middle lower Origin text field.

Translation

You can use the Transform operator to translate plots. To apply the translation component of the Transform operator,
be sure to check the Translate check box in the Transform attributes window . To translate plots in the X dimension,
replace the default value of zero in the X translation text field. Translations in the Y and Z dimensions are handled in
the same manner.

Coordinate system conversion

In addition to being able to rotate, scale, and translate plots, the Transform operator can also perform coordinate
system conversions. A plot’s coordinates can be specified in terms of Cartesian, Cylindrical, or Spherical coordinates
(illustrated in Figure 1.144). Ultimately, when a plot is rendered in the visualization window, its coordinates must be
specified in terms of Cartesian coordinates due to the implementation of graphics hardware. If you have a database
where the coordinates are not specified in terms of Cartesian coordinates, you can apply the Transform operator to
perform a coordinate system transformation so the plot is rendered correctly in the visualization window.

Fig. 1.144: Cartesian, Cylindrical, Spherical coordinate systems

Figure 1.145 shows a model of an airplane that is specified in terms of spherical coordinates. When it is rendered
initially, VisIt assumes that the coordinates are Cartesian, which leads to the plot getting stretched and tangled. The
Transform operator was then applied to convert the plot’s spherical coordinates into Cartesian coordinates, which
allows VisIt to draw the plot as it is intended to look.

The Transform operator allows coordinate system transformations between any of the three supported coordinate
systems, shown in Figure 1.146 . To pick a coordinate system transformation, you must first pick the coordinate
system used for the input geometry. Next, you must pick the desired output coordinate system. In the example shown
in Figure 1.145, the input coordinate system was Spherical and the output coordinate system was Cartesian. Note
that if you use the Transform operator to perform a coordinate system transformation then you cannot also perform
rotation, scaling, or translation. If you must perform any of those operations, add a second Transform operator to your
plots.

1.4. Operators 155

VisIt User Manual Documentation, Release 3.1

Fig. 1.145: Coordinate system conversion using the Transform operator

Fig. 1.146: Supported coordinate systems

156 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Linear transforms

Linear transforms can be specified via a 4x4 matrix as shown in Figure 1.147. Vectors will be transformed by default,
uncheck the transform vectors checkbox if this is not desired. The inverse transform can be applied by selecting
Invert linear transform.

Fig. 1.147: Linear transformation options

Tube operator

The Tube operator is an operator that turns line geometry into tubes, making the lines appear fatter and shaded.

Changing tube appearance

The Tube operator provides a few knobs that control the appearance of the generated tubes. First of all, the tube
radius can be set by typing a new radius into the Radius text field in the Tube attributes window (Figure 1.149). The
specified radius can either be a Fraction of Bounding Box (default) or Absolute by changing the combo box option
next to the Radius text box. If you want the radius scaled by a variable instead, check the Scale width by variable?
checkbox, and choose a variable from the Variable menu.

The number of polygons used to make up the circumference of the tube can be altered by typing a new number of sides
into the Fineness of tube text field. Finally, the ends of tubes can be capped instead of remaining open by turning on
the Cap Tubes check box. See Figure 1.150 for result of capping.

1.4. Operators 157

VisIt User Manual Documentation, Release 3.1

Fig. 1.148: Linear transformation example

158 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.149: Tube attributes window

Fig. 1.150: Uncapped and capped tubes

1.4. Operators 159

VisIt User Manual Documentation, Release 3.1

1.5 Saving and Printing

In this chapter, we discuss how to save and print files from within VisIt. The section on saving files is further broken
down into four main areas: saving session files, saving images, saving movies, saving Cinema databases, and exporting
databases. We first learn about saving session files using the Save Session window. We then learn about saving images
of visualizations using the Save Window and then we move on to saving movies and sets of image files using the Save
movie wizard. In addition to movies, VisIt provides the Save to Cinema wizard to create Cinema image databases,
which surpass movies and allow the user to explore data from different viewpoints. After learning to save images,
movies, and Cinema databases, this chapter concentrates on exporting VisIt plots as databases using the Export
Database window. Finally, we learn to print images of visualizations using the Printer Window.

1.5.1 Session files

A session file is an XML file that contains all of the necessary information to recreate the plots and visualization
windows used in a VisIt session. You can set up complex visualizations, save a session file, and then run a new VisIt
session later and be able to pick up exactly where you left off when you saved the session file. If you often look at the
same types of plots with the same complex setup then you should save a session file for your visualization once it is
set up so you don’t have to do any manual setup in the future.

Saving session

Once you have set up your plots, you can select Save session option in the Main Window’s File menu to open up a
Save file dialog. Once the Save file dialog is opened, select the location and filename that you want to use to store the
session file. By default, VisIt stores all session files in your .visit directory on UNIX and MacOS X computers and
in the directory where VisIt was installed on Windows computers. Once you select the location and filename to use
when saving the session file, VisIt writes an XML description of the complete state of all vis windows, plots, and GUI
windows into the session file so the next time you come into VisIt, you can completely restore your VisIt session.

Restoring session

Restoring a VisIt session file deletes all plots, closes all databases, etc before VisIt reads the session file to get back to
the state described in the session file. After restoring a session file, VisIt will look exactly like it did when the session
file was saved. To restore a session file, click the Restore session option from the Main Window’s File menu to open
an Open file dialog. Choose a session file to open using the Open file dialog. Once a file is chosen, VisIt restores the
session using the selected session file. If you are on the Windows platform, you can double-click session files (.vses
files) stored on your computer in order to directly open them with VisIt.

1.5.2 Saving the Visualization Window

VisIt allows you to save the contents of any open visualization window to a variety of file formats. You can save
visualizations as images so they can be imported into presentations. Alternatively, you can save the geometry of the
plots in the visualization window so it can be imported into other computer modeling and visualization programs.

VisIt currently supports the image files formats: BMP, JPEG, PNG, PPM, Raster Postscript, RGB, and TIFF

VisIt currently supports the geometry file formats: Curve, Alias WaveFront Obj, PLY, POV, STL, ULTRA, and VTK

The Curve and ULTRA file formats are specially designed to store the data created from curve plots and can be used
with other Lawrence Livermore National Laboratory visualization software. The Alias Wavefront Obj file format is
supported so visualizations produced with VisIt can be imported into rendering programs such as Maya. VisIt can
save visualizations into STL files, which are used with stereolithographic printers to fabricate three-dimensional parts.

160 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Finally, VisIt can save visualizations into the VTK (Visualization Toolkit) format so they can be read back into VisIt
and used in other VTK-based applications.

When saving the geometry of plots in the visualization window into any of the afore-mentioned formats, you are
performing a type of database export operation. However, saving geometry in this manner differs from exporting
databases using the Export Database Window. Only the external faces of the plots are saved out when saving
plot geometry whereas during a database export, 3D cells are preserved in the final exported database. The topic of
exporting databases is covered later in this chapter.

The Save Window

You can set the Save window options before saving by selecting Set Save options. . . from the Main Window’s
File menu. The Set save options window contains the controls that allow you to set the options that govern how
visualizations are saved.

The Set Save options window, shown in Figure 1.151, contains four basic groups of controls. The first group, File-
name, allows you to set the file information. Use the file information controls to set the name and destination. If the
Family checkbox is selected, then each time an image is saved with the same name, a number will be appended to the
filename that is one more than the current file with the same name. The second group, Format options, allows you to
set the file type, compression type, and any optional quality parameters that may exist for the selected file type. Use the
third group of controls, Aspect ratio and resolution, to specify the dimensions of the saved image. If Screen capture is
checked, the aspect ratio and width/height will be ignored and the current screen image will be saved. The last group,
Multi-window save, allows you to set options for each window being saved by clicking on the Window drop-down
and selecting the appropriate window. When the save options are set and applied by clicking the Apply button, the
active visualization can be saved either through the Save Window option in the Main Window’s File menu, by the
keyboard shortcut Ctrl+S , or by clicking the Save button in the Set Save options window.

Selecting the output directory for saved files

On most platforms, VisIt’s default behavior is to save output files to the current directory, which is the directory where
VisIt was started. On the Windows platform, VisIt saves images to the location VUSER_HOME/My images. If you
want to specify a special output directory for your output files, you can turn off the Output files to current directory
check box and type in the path to the directory where you want VisIt to save your files in the Output directory text
field. If you want to browse the file system to find a suitable directory in which to save your images, click on the
“. . . ” button to the right of the Output directory text field to bring up a Directory chooser dialog. Once you select
a suitable directory using the Directory chooser dialog, the path that you chose is inserted into the Output directory
text field.

Setting the save file name

To set the file name that will be used to save files, type a file name into the Filename text field. The file name that
you use may contain a path to a directory where you want to write the saved files. If no path is specified, the saved
files are written to the directory from which VisIt was launched. A file extension appropriate for the type of file being
generated is automatically appended to the file name. For example, a BMP file will have a “.bmp” extension, while a
JPEG file will have a “.jpeg” extension, and so on.

The file name that VisIt uses to save visualizations is based on the specified file name, the file format, and also the
family toggle setting. The family toggle setting is set by checking the Family check box towards the top right part of
the Save Window.

The family toggle setting allows you to save series of files that all have essentially the same name except for a number
that is appended to the file name. The number increases by one each time an image is saved. If the family toggle
setting is on then a file named “visit” of type TIFF will save out as “visit0000.tiff”. If the family toggle setting is off,
the file will save as “visit.tiff”.

1.5. Saving and Printing 161

VisIt User Manual Documentation, Release 3.1

Fig. 1.151: Save Window

162 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Setting the file type

You set the file type by making a selection from the File type menu. You can choose from image file types or geometry
file types. Note that some areas of the Save Window become enabled or disabled for certain file types.

Choosing JPEG format files enables the Quality slider and the Progressive check box. These controls allow you to
specify the desired degree of quality in the resulting JPEG images. A lower quality setting results in blockier images
that fit into smaller files. The progressive setting stores the JPEG images in such a way that they progressively refine
as they are downloaded and displayed by Web browsers.

Choosing TIFF format files enables the Compression type combo box. The available compression types are: None,
PackBits, JPEG, and Deflate. When compression is enabled for TIFF files, they are smaller than they would be without
compression.

Choosing STL or VTK file formats saves visualizations as geometry files instead of images and also enables the
Binary check box. The Binary check box tells these formats to write their geometry data as binary data files instead
of human-readable ASCII text files. In general, files written with the binary option are smaller and faster to load than
their non-binary counterparts.

Saving images with screen capture

The Screen capture check box tells VisIt to grab the image directly off of the computer screen. This means that the
saved image will be exactly the same size as the image on the screen. There are advantages and disadvantages to using
screen capture. An advantage is that capturing the image from the screen does not require VisIt to redraw the image
to an internal buffer before saving, which usually results in a faster save. A disadvantage of screen capture is that any
other windows on top of VisIt’s visualization window occlude portions of the image. Screen capture can also be very
slow over a sluggish network connection. Finally, using screen capture might not provide images that have enough
resolution. Weigh the advantages and disadvantages of using screen capture for your own situation. Screen capture is
on by default.

Setting image resolution

You set image resolution using the controls in the Aspect ratio and resolution group. These controls are disabled
unless the file being saved is an image format and screen capture is not being used. You specify the image height and
width by typing new values into the Height and Width text fields. If the Maintain 1:1 aspect check box is on, VisIt
forces the image’s height and width to be the same, yielding a square image. Turn off this setting if you want to save
rectangular images. The image resolution is ignored unless you turn off the Screen capture check box.

Saving stereo images

When the Stereo check box is turned on and you save an image, VisIt will save a separate image for the left eye and
for the right eye. The cameras used to generate each image are offset such that when the images are played together at
high rates, they appear to have more depth. To enable saving of stereo images, click the Stereo check box in the Save
Window before you try to save an image.

When Family mode is not enabled, VisIt will prepend left_ and right_ designators to the saved filenames. However,
when Family mode is enabled, VisIt saves the two images in sequence without any left/right designation. The left
image is saved first followed by the right image. If next available number in the Family is odd, the left will be odd
and right will be even. On the other hand, if next available number in the Family is even, the left will be even and
right will be odd. However, the notification messages VisIt produces about the saved images may only mention the
first (left) saved image filename.

1.5. Saving and Printing 163

VisIt User Manual Documentation, Release 3.1

Saving binary geometry files

Some geometry file formats such as STL and VTK have both ASCII and binary versions of the file format. The ASCII
file formats are human-readable and are larger and slower for programs to process than binary formats, which are not
human-readable but are smaller and quicker for programs to read. When geometry file formats support both ASCII
and binary formats, the Binary check box is enabled. By default VisIt writes ASCII geometry files but you can click
the Binary check box to make VisIt write binary geometry files.

Selecting pixel data

Normally when saving an image, VisIt will simply save the RGB pixel data into the specified image format. It is
possible to request that VisIt saves additional pixel data when saving an image. This may result in additional files
being saved alongside the normal image file. These additional images will share the same filename root as the image
file but will have suffixes such as “value”, “depth”, or “lum”, depending on their contents. Special file formats such
as OpenEXR can contain all of these additional image channels. When OpenEXR is the selected file format, a single
“.exr” file will be written containing all pixel data.

The Save options window contains a Pixel data group that lets you request additional image channels. The RGB
check box selects RGB pixel data. The Alpha check box tells VisIt to also request transparency information and
to not render with a background when saving an image. This lets VisIt save images with a transparent background,
which makes compositing such an image in front of other backgrounds far easier (see Figure 1.152). The Depth check
box tells VisIt to export the depth buffer (Z-buffer) to a ZLib-compressed binary file containing 32-bit floating point
numbers. The Luminance check box tells VisIt to save a luminance image, which shows how much lighting is used
in various parts of the scene. The luminance image is saved to the selected image format. The Value check box tells
VisIt to produce a rendering of the actual scalar values in the scene in the form of a ZLib-compressed 32-bit floating
point buffer (same format as the depth image).

Fig. 1.152: Partially transparent plot saved to PNG with alpha channel

164 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Saving tiled images

Fig. 1.153: Saving tiled images example (before)

A tiled image is a large image that contains the images from all visualization windows that have plots. If you want to
save tiled images, make sure to check the Save tiled check box in the Set Save options window. To get an idea of how
VisIt saves your visualization windows into a tiled image, see Figure 1.153 and Figure 1.154.

1.5.3 Saving movies

In addition to allowing you to save images of your visualization window for the current time state, VisIt also allows
you to save movies and sets of images for your visualizations that vary over time. There are multiple methods for
saving movies with VisIt. This section introduces the Save movie wizard and explains how to use it to create movies
from within VisIt’s GUI. The Animation chapter explains some auxiliary methods that can be used to create movies.

The Save movie wizard (see Figure 1.155) is available in the Main Window’s Files menu. The Save movie wizard’s
purpose is to lead you through a set of simple questions that allow VisIt to gather the information required to create
movies of your visualizations. For example, the Save movie wizard asks which image and movie formats you want to
generate, where you want to store the movies, what you want to call the movies, etc. Each of these questions appears
on a separate screen in the Save movie wizard and once you answer the question on the current screen, clicking the
Next (Continue for OSX) button advances you to the next screen. You can cancel saving a movie at any time by
clicking on the Cancel button. If you advance to the last screen in the Save movie wizard then you have successfully
provided all of the required information that VisIt needs to make your movie. Clicking the Finish button at that point
invokes VisIt’s movie-making script to make the movie. If you want to make subsequent movies, you can choose to use
the settings for the movies that you just made or you can choose to create a new movie and provide new information.

1.5. Saving and Printing 165

VisIt User Manual Documentation, Release 3.1

Fig. 1.154: Saving tiled images example (after)

166 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.155: Save movie wizard (screen 1)

1.5. Saving and Printing 167

VisIt User Manual Documentation, Release 3.1

Fig. 1.156: Save movie wizard (screen 2)

Choosing movie formats

The Save movie wizard’s second screen, shown in Figure 1.156, allows you to pick the types of movies that you
want to create. You can select as many image and movie formats as you want and you can even specify multiple
resolutions of the same movie. VisIt allows you to order multiple versions of your movie because it is often easier to
create different versions of the movie all at once as opposed to doing it later once it is discovered that you need a new
version to play on a laptop computer or a tiled display wall.

The Save movie wizard’s second screen is divided vertically into two main areas. On the left you will find the Format
and resolution area, which displays the format and resolution for the current movie. On the right, you will find the
Output area, which lists the formats and resolutions for all of the movies that you have ordered. By default no movie
formats are present in the Output area’s list of movies. You cannot proceed to the next screen until you add at least
one movie format to the list of movies in the Output area.

To add a movie format to the list of movies in the Output area, first choose the desired movie format from the Format
combo box in the Format and resolution area. Next, choose the movie resolution. The movie resolution can be
specified in terms of the visualization window’s current size or it can be specified in absolute pixels. The default
movie resolution uses the visualization window’s current size with a scale of 1. You can change the scale to shrink or
grow the movie while keeping the visualization window’s current aspect ratio. If you want to specify an absolute pixel
size for the movie, click on the Specify movie size radio button and type the desired movie width and height into the
Width andHeight text fields. Note that if you specify a width and height that causes the movie’s shape to differ from
the visualization window’s shape, you might want to double-check that the view used for the visualization window’s
plots does not change appreciably.

The Save movie wizard allows you to create stereo movies if you check the Stereo movie box and select a stereo
type from the Stereo type drop-down menu. The default is to create non-stereo movies because stereo movies are not
widely supported.

168 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Note: “Streaming movie” format is an LLNL format

The only movie format that VisIt produces that is compatible with stereo movies is the “Streaming movie” format,
which is an LLNL format commonly used for tiled displays. The “Streaming movie” format can support stereo movies
where the image will flicker between left and right eye versions of the movie, causing a stereo effect if you view the
movie using suitable liquid-crystal goggles. The stereo option has no effect when used with other movie formats.
However, if you choose to save a stereo movie in any of VisIt’s supported image formats, VisIt will save images for
the left eye and images for the right eye. You can then take the left and right images into your favorite stereo movie
creation software to create your own stereo movie.

Once you have selected the desired movie format, width, and height, click on the right-arrow button that separates the
Format and resolution area from the Output area. Clicking the right-arrow button adds your movie to the list of
movies that you want to make. Once you have at least one movie in the Output area, the screen’s Next button will
become active. Click the Next button to go to the next screen in the Save movie wizard

Choosing movie length

Fig. 1.157: Save movie wizard (screen 3)

It is possible to specify the range of time states to use for the movie, as well as specify a stride if you have too many
time states saved (see Figure 1.157). The wizard will automatically set the range of time states.

Choosing the movie name

Once you have specified options that tell VisIt what kinds of movies that you want to make, you must provide the base
name and location for your movies. By default, movies are saved to the directory in which you started VisIt. If you

1.5. Saving and Printing 169

VisIt User Manual Documentation, Release 3.1

Fig. 1.158: Save movie wizard (screen 4)

170 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

want to specify an alternate directory, you can either type in a new directory path into the Output directory text field
(see Figure 1.158) or you can select a directory from the Choose directory dialog box activated by clicking on the
“. . . ” button.

The base filename for the movie is the name that is prepended to all of the movies that you generate. When generating
multiple movies with differing resolutions, the movie resolution is often encoded into the filename. VisIt may generate
many different movies with different names but they will all share the same base filename that you provided by typing
into the Base filename text field.

Choosing e-mail notification

Fig. 1.159: Save movie wizard (screen 5)

If you want to be notified by e-mail when the movie creation is complete, then select the Yes option and enter the
appropriate e-mail address (see Figure 1.159). By default, no e-mail notification is sent once the movie creation is
complete.

Choosing movie generation method

After all movie options are specified, VisIt prompts you how you would like your movie made. At this point, you can
click the Finish/Done button to make VisIt start generating your movie. You can change how VisIt creates your movie
by clicking a different movie generation method on the Save movie wizard’s sixth screen, shown in Figure Figure
1.160 .

The default option for movie creation allows VisIt to use your current VisIt session to make your movies. This has
the advantage that it uses your current compute engine and allocated processors, which makes movie generation start

1.5. Saving and Printing 171

VisIt User Manual Documentation, Release 3.1

Fig. 1.160: Save movie wizard (screen 6)

172 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

immediately. When you use this movie generation method, VisIt will launch its command line interface (CLI) and
execute Python movie-making scripts in order to generate your movie. This means that you have both the VisIt GUI
and CLI controlling the viewer. If you use this movie generation method, you will be able to watch your movie as
it is generated. You can track the movie’s progress using the Movie progress dialog , shown in Figure 1.161 . The
downside to using your currently allocated processors is that movie generation takes over your VisIt session until the
movie is complete. If you want to regain control over your VisIt session, effectively cancelling the movie generation
process, you can click the Movie progress dialog’s Cancel button.

Fig. 1.161: Movie progress dialog

The second movie generation method will cause VisIt to save out a session file containing every detail about your
visualization so it can be recreated by a new instance of VisIt. This method works well if you want to create a movie
without sacrificing your current VisIt session but you cannot watch the movie as it is generated and you may have to
wait for the second instance’s compute engine to be scheduled to run. The last movie generation option simply makes
VisIt display the command that you would have to type at a command prompt in order to make VisIt generate a movie
of your current visualizations.

1.5.4 Saving Cinema

VisIt lets you save Cinema databases in addition to saving images and movies of your plots. A Cinema database
is an image-based proxy for large scale data that lets you explore the data using far fewer computational resources.
Where post-processing full data might take a supercomputer, exploring a Cinema database can be done on a tablet.
Cinema databases consist of images that are indexed by a JSON file or CSV file. The index file is used by the Cinema
viewer (available at www.cinemascience.org) to determine a set of parameters that can be changed by the user. These
parameters are used to look up corresponding image files for display in the Cinema viewer. For example, Cinema
databases typically allow the user to navigate through time using a time parameter. Cinema databases also can be
saved using a spherical camera that is described by phi and theta parameters to let the user see the plots from various
camera angles. It is possible to create Cinema databases in situ using Libsim so Cinema databases can be created
incrementally as a simulation runs. This section introduces the Save Cinema wizard and explains how to create
Cinema databases from within VisIt’s GUI.

The Save Cinema wizard (see Figure 1.162) is available in the Main Window’s Files menu. The Save Cinema
wizard’s purpose is to let you set the options that are used to take the current visualizations and produce a Cinema
database. Progress through the screens using the Next button until the last screen is reached. Clicking Cancel at any
time will close the wizard. Clicking the Finish button will tell VisIt to produce a Cinema database with the current
settings.

1.5. Saving and Printing 173

http://www.cinemascience.org/

VisIt User Manual Documentation, Release 3.1

Fig. 1.162: Save Cinema wizard (screen 1)

174 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Choosing filename

Cinema databases are stored as a directory structure containing various nested directories with image files and an index
file. When saving a Cinema database, you must pick the name of the top level directory under which all other files will
be saved. The Save Cinema wizard contains a File name selection control that lets you select the name of the Cinema
“.cdb” directory. The control can accept file names that are typed in and clicking the . . . button opens a filename
selection window that permits a new filename to be selected.

Choosing specification

Cinema databases are described by specifications that dictate the format and allowable contents for the files that they
contain. There are currently 3 Cinema specifications in use: A, C, D.

Specification A describes a Cinema database format that contains image files (PNG, TIFF, etc.) that are associated with
various user-defined parameters such as time or camera angles in the case of a phi-theta camera. This specification is
compatible with any of the VisIt plots since images of the currently set up visualizations are saved. Specification C
describes a Cinema database format that adheres to a different directory structure over specification A and can contain
composite images. Composite images are comprised of 3 separate files: a PNG file containing a luminance image,
a ZLib-compressed file containing the Z-buffer, and a ZLib-compressed file containing a rendering of actual scalar
values for the plot. Specification D is similar to specification A except that it uses a CSV file to associate image files
with a set of parameters, enabling sparse sets of images.

The Save Cinema wizard contains a set of A, C, D radio buttons to let you choose the most appropriate specification
for the type of Cinema database to be created.

Image settings

The Save Cinema wizard contains controls for image settings such as the file format, image width/height, and whether
to use screen capture. The File format control lets you select the image file format to be used. Several pixel-based
image file formats are available such as BMP, PNG, TIFF, and when available EXR. OpenEXR is a format from ILM
that can store various image channels and data in multiple layers that can be composited later. Support for OpenEXR
is optionally compiled into VisIt. The Width and Height controls allow the output image width and height to be
specified when screen capture is not in use by setting the Use screen capture controls. This permits VisIt to save
images in a custom size as opposed to saving images based on the current visualization window’s size. Note that using
screen capture is faster for normal images since it does not require VisIt to re-render the visualizations.

Composite images

Specification C Cinema databases support saving composite images which consist of a luminance image, a Z image,
and a scalar image. The luminance image is a gray scale image that indicates the lighting used in the scene and it is
saved as a PNG image or other pixel format image. The Z image is contains the Z-buffer for the luminance image,
stored as a buffer of 32-bit floating point values that have been ZLib-compressed and written to a raw binary file. The
scalar image is stored the same as the Z buffer image but it contains float values that correspond to the actual scalars
that were rendered in the visualization. The scalar values are used in the Cinema viewer to dynamically recolor the
scene at render time. Composite images are most appropriate for surface-based VisIt plots that employ a continuous
color table, such as the Pseudocolor plot. Composite images can be enabled by turning on the Create composite
images check box in the Save Cinema wizard when specification C is used. When this setting is in effect, each VisIt
plot will be saved to a separate “layer” in the Cinema database so it can be composited into the scene at will. Figure
1.164 shows multiple VisIt plots that have been saved as separate layers to a composite image specification C Cinema
database that enables layers to be turned on and off at view time.

1.5. Saving and Printing 175

VisIt User Manual Documentation, Release 3.1

Fig. 1.163: Cinema viewer with composite layers

176 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Choosing Camera type

Cinema databases support multiple camera types. VisIt’s Cinema export supports static cameras and phi-theta cameras.
A static camera corresponds to the view that is currently in effect in the visualization and when it is used, all time states
in the Cinema database will be viewed from that camera orientation. A phi-theta camera defines 2 angles, phi and theta,
that define the view direction as in a spherical coordinate system. When a phi-theta camera is used, the Cinema export
will save the visualization from a multitude of different camera orientations. This allows the user later in the Cinema
viewer to interactively rotate around the object much as though the object was live instead of just a collection of image
frames. The camera type can be selected using the Camera type control in the Save Cinema wizard and either static
or phi-theta cameras can be selected. When a phi-theta camera is selected, the number of camera angles in the phi and
theta dimensions can be set using the Phi and Theta controls.

Frame settings

The second tab in the Save Cinema wizard (see Figure 1.164) contains controls that select the range and stride of time
states that will be included in the Cinema database. Use the Frame start controls to select the beginning time state
for the Cinema database. A value of zero corresponds to the first time state. Use the Frame end controls to set the last
time state that will be included in the Cinema database. Finally, use the Frame stride controls to set the stride that
will be used between the start and end time states, which is useful when making shorter preview databases that vary
over time but do not include all time states.

Fig. 1.164: Save Cinema wizard (screen 2)

1.5. Saving and Printing 177

VisIt User Manual Documentation, Release 3.1

Saving Cinema from Libsim

It is possible to use VisIt’s Libsim to directly save Cinema databases in situ from an instrumented simulation. This
means that the Cinema database can be generated incrementally as the simulation runs, making it possible to periodi-
cally check in on the simulation by viewing the Cinema database. To add Cinema support to a simulation instrumented
with Libsim, there are 3 calls that need to be made. First, the simulation must call VisItBeginCinema, which
passes the parameters that describe the Cinema database format and returns a handle to a Cinema object. Next, the
simulation must call VisItSaveCinema to make Libsim generate and add the appropriate images to the Cinema
database, taking into account the type of camera being used. The VisItSaveCinema function can be called repeat-
edly to add new time states to the Cinema database. It is the simulation’s responsibility to make Libsim calls that set
up VisIt plots or restore a session so there are plots when VisItSaveCinema is called. Finally, the simulation must
call VisItEndCinema to close out the Cinema database context and free associated memory. A working example
can be found in the batch simulation example in VisIt’s simulation directory. The overall call structure for creating a
Cinema database looks something like this:

visit_handle h = VISIT_INVALID_HANDLE;
visit_handle hvar = VISIT_INVALID_HANDLE;
double time_value = 0.;
VisItBeginCinema(&h, "visit.cdb", VISIT_CINEMA_SPEC_A, 0,

VISIT_IMAGEFORMAT_PNG, 800, 800,
VISIT_CINEMA_CAMERA_PHI_THETA, 12, 7,
hvar);

while(1) /* Simulation main loop */
{

/* Compute... */

VisItSaveCinema(h, time_value);

}

VisItEndCinema(h);

The above code example will generate a Cinema database using the plots that have been set up elsewhere using Libsim.
Since Cinema output may sometimes serve as the only simulation data product, it can be useful to save out additional
variables. The last argument to VisItBeginCinema is a handle to a name list object. When the handle is set to
VISIT_INVALID_HANDLE, there is no name list and the argument does nothing. If instead, the name list is created
and filled with a list of variable names from the simulation, the VisIt plots will have their variables changed to the
variables in the name list and Libsim will generate a Cinema database with images for each variable. The variable
becomes a parameter in the Cinema viewer. A name list object is created and populated like this:

visit_handle hvar;
VisIt_NameList_alloc(&hvar);
VisIt_NameList_addName(hvar, "pressure");
VisIt_NameList_addName(hvar, "rho");
VisIt_NameList_addName(hvar, "energy");

1.5.5 Exporting databases

Plot geometry can be saved to a handful of geometric formats by saving the plots in the window to a format such as
VTK. Often saving the plot geometry, which only consists of the visible faces required to draw the plot, is not enough.
When interfacing VisIt to other tools you may want to save out the database in a different file format. For instance,
you might plot a 3D database and want to export actual 3D cells for the entire database instead of just the externally
visible geometry. You might also want to save out additional variables that you did not plot. VisIt allows this kind of
data export via the Export Database Window , shown in Figure 1.165 .

178 Chapter 1. VisIt GUI User Manual

http://visit.ilight.com/svn/visit/trunk/src/tools/DataManualExamples/Simulations/batch.c

VisIt User Manual Documentation, Release 3.1

Fig. 1.165: Export Database Window

1.5. Saving and Printing 179

VisIt User Manual Documentation, Release 3.1

You can find the Export Database Window in the Main Window’s File menu. To save a database, you must first
have opened a database and created a plot. Note that the data transformations applied by plots or operators will affect
the data that you export. This allows you to alter the data using sophisticated chains of operators before you export it
for use in another tool.

Exporting variables

Fig. 1.166: Variables menu

The Export Database Window allows you to export a subset of the variables for your active plot’s database by letting
you specify which variables are to be exported. To choose which variables should be exported, you can type the names
of the variables to export into the Variables text field or you can select from the available variables in the Variables
menu depicted in Figure 1.166 . You can select as many variables as you want from the menu. Each time you select a
variable from the Variables menu, VisIt will append it to the list of variables to be exported.

Choosing an export file format

The Export Database Window lists the names of the database reader plugins that can also write data back into their
native file formats. A small handful of the total number of database plugins currently support this feature but in the
future most formats will support this capability more fully, making VisIt not only a powerful visualization tool but a
powerful database conversion tool.

You can try to use any of the supported export formats to export your data but some of the file formats may not be able
to accept certain types of data. The Silo file format can safely export any type of data that you may want to export.
If you want to export data to other applications and the data must be stored in an ASCII file that contains columns of
data, you might want to choose the Xmdv file format. If you want to choose a specific database plugin to export your
data files, make a selection from the Export to menu shown in Figure 1.167 .

180 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.167: Export file types

Export Options

Some export formats support various options. Those options will be presented in a dialog box when the Export button
is pressed in the Export Database Window. For example, shown below are some options for exporting to the Silo
database.

If VisIt has been compiled with HDF5 support, Silo’s export options will include the ability to select either the PDB or
HDF5 driver. The Checksums check-box indicates where the Silo library should compute checksums on the exported
data. In addition, the DBSetCompression() option text box is for specifying a compression string to be used in Silo’s
DBSetCompression() method before exporting data.

When the meaning of an export option is not clear, try also pressing the Help button in Export options for XXX
writer window to get more information.

1.5.6 Printing

VisIt allows you to print the contents of any visualization window to a network printer or to a PostScript file.

The Printer Window

Open the Printer Window by selecting Print window from the Main Window’s File menu. The Printer Window’s
appearance is influenced by the platform on which you are running VisIt so you may find that it looks somewhat
different when you use the Windows, Unix, or MacOS X versions of VisIt. The MacOS X version of the Printer
Window is shown in Figure 1.169 .

1.5. Saving and Printing 181

VisIt User Manual Documentation, Release 3.1

Fig. 1.168: Export options example (for Silo)

Fig. 1.169: Printer window

182 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

1.6 Visualization Windows

A visualization window, also known as a vis window, is a window that displays plots and allows you to interact with
them using the mouse. The vis window not only allows for direct manipulation of plots but it also provides a popup
menu and toolbar that allow you to switch window modes, activate interactive tools, and perform commonly used
operations. This chapter explains how to manage and use vis windows.

1.6.1 Managing vis windows

VisIt allows you to create up to 16 vis windows and to manage those vis windows, VisIt provides controls to add vis
windows, remove vis windows or alter their layout. The controls for managing vis windows are located in the Main
Window’s Windows menu (see Figure 1.170), as well as in the vis window’s Toolbars and Popup menu.

Fig. 1.170: Window menu

Adding a new vis window

You can add a new vis window in a few different ways, the first of which is by selecting the New option from the
Main Window’s Windows menu. You can also click on the New window icon in the vis window’s Toolbar or you
can select the New window option from the Windows submenu in the vis window’s Popup menu to add a new vis
window. When you add a new window, it will be sized according to the window layout so if you have only a single,
large vis window, the new vis window will also be large. You can change the window layout to shrink the vis windows
so that they both fit on the screen. Vis windows are numbered 1 to 16 so the new window will have the first available
number for which there is not already a window. If you have windows 1, 2, and 4, vis window 3 would be created by
adding a new window. Adding a new window also makes the new window the active window.

A new vis window can also be added by cloning the active window. You can clone the active window by selecting the
Clone option from the Main Window’s Windows menu or you can click the Clone window icon in the vis window’s
Toolbar. When you clone the active window, VisIt creates a new window as if you had clicked the Add option
but it also copies the plots, annotations, and lighting from the active window so that the new window is identical in
appearance to the active window. When plots are copied to the new cloned window, they have not yet been generated

1.6. Visualization Windows 183

VisIt User Manual Documentation, Release 3.1

so their plot list entries in the Plot list are green. You can force the plots to be generated by clicking the Draw button
in the Main Window.

Deleting a vis window

There are four ways to delete a vis window. The first way is to select the Delete option from the Main Window’s Win-
dows menu. When you delete a window in this manner, the active window gets deleted and VisIt makes the window
with the smallest number the new active window. The second way to delete a window is to click on the close window
button in the window decorations provided by the windowing system. The window decorations’ appearance varies
based on the platform and windowing system used to run VisIt, but the button used to close windows is commonly a
button with an X in it. An example of a close window button is shown in Figure 1.171.

Fig. 1.171: Window decorations with close button

The third way to delete a vis window is to click on the Delete window icon in the vis window’s Toolbar. The fourth
way to delete a vis window is to use the Delete option in the vis window’s Popup menu. When you use the Toolbar
or the Popup menu to delete a window, the window does not need to be the active window as when other controls are
used.

Clearing plots from vis windows

The Main Window’s Windows menu provides a Clear all option that you can use to clear the plots from all vis
windows. Selecting this option does not delete the plots from a vis window’s plot list but it does clear the plots so they
have to be regenerated by VisIt’s compute engine. You can also clear the plots for just the active window by selecting
the Plots option from the Clear submenu in the Main Window’s Windows menu (see Figure 1.172). You might find
clearing plots useful when you want to make several changes to plot attributes because, unlike plots that are already
generated, setting attributes of cleared plots does not force them to regenerate when you change their attributes.

In addition to clearing plots, you can also clear pick points and reference lines from a vis window. A pick point is a
marker that VisIt adds to a vis window when you click on a plot in pick mode. The marker indicates the location of
the pick point. A reference line is a line that you draw in a vis window when it is in lineout mode. You can clear a
vis window’s pick points or reference lines, by selecting the Pick points or Reference lines options from the Clear
submenu in the Main Window’s Windows menu.

Changing window layouts

VisIt uses different window layouts to organize vis windows so they all fit on the screen. Changing the window layout
typically resizes all of the vis windows and moves them into a tiled formation. If there are not enough vis windows
to complete the desired layout, VisIt creates new vis windows until the layout is complete. You can change the layout
selecting a new layout from the Layouts menu located in the Main Window’s Windows menu or you can click on a
layout icon in the vis window’s Toolbar.

Setting the active window

VisIt has the concept of an active window that is the window to which new plots are added. You can change the active
window by selecting a window number from the Active window menu located near the top of the Main Window.
Setting the active window updates the GUI so that it displays the state for the new active window. The Active window
menu is shown in Figure 1.173. You can also set the active window using the Active window submenu in the Main
Window’s Windows menu or you can click on the Active window icon in the vis window’s Toolbar.

184 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.172: Clear menu

Fig. 1.173: Active window menu

1.6. Visualization Windows 185

VisIt User Manual Documentation, Release 3.1

Copying window attributes

VisIt allows you to copy window attributes and plots from one window to another when you have more than one
window. This can be useful when you are comparing plots generated from similar databases. The Copy menu, shown
in Figure 1.174, contains options to copy the view, lighting, annotations, plots, or everything from other from other vis
windows. Under each option, the Copy menu provides a list of available vis windows from which attributes can be
copied so, for example, if you have two windows and you want to copy the view from vis window 1 into vis window 2,
you can select the Window 2 option from the View from submenu. The list of available windows depends on the vis
windows that you have created. You can copy the lighting from one window to another window by using the Lighting
from submenu or you can use the Annotations from or Plots from to copy the annotations or plots, respectively.
If you make a selection from the Everything from submenu, all attributes and plots are copied into the active vis
window.

Fig. 1.174: Copy menu

Locking vis windows together

When you use VisIt to do side by side comparisons of databases, you may find is useful to lock vis windows together.
Vis windows can be locked together in time so that when you change the active database timestep in one database, as
when viewing an animation, all vis windows that are locked in time switch to the same database timestep. You can
lock vis windows together in time by selecting the Time option from the Lock menu (see Figure 1.175) in the Main
Window’s Windows menu. Any number of windows can be locked together in time and you can turn off time locking
at any time.

You can also lock interactive tools together so that updating a tool in one window updates the tool in other windows
that have enabled tool locking. This can be useful when you have sliced a database using the plane tool in more than
one window and you want to be able to change the slice using plane tool in either window and have it affect the other
vis windows. You can enable tool locking by selecting the Tools option from the Lock menu.

In addition to locking vis windows in time, or locking their tools together, you can also lock vis windows’ views
together so that when you change the view in one vis window, other vis windows get the same view. When you
change the view in a vis window that has view locking enabled, the view only effects other vis windows that also have
view locking enabled and have plots of the same dimension. That is, when you change the view of a vis window that

186 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.175: Lock menu

contains 3D plots, it will only have an effect on other locked vis windows if they have 3D plots. Vis windows that
contain 2D plots are not affected by changing the view of a vis window containing 3D plots and vice-versa. When you
enable view locking, the vis window snaps to the view used by other vis windows with locked views or it stays the
same if no other vis windows have locked views. To enable view locking, select the View option from the Lock menu
or click on the Lock view icon in the vis window’s Toolbar.

1.6.2 Using vis windows

The first thing to know about using a vis window is how to change window modes. A window mode is a state in
which the vis window behaves in a specialized manner. There are four window modes: Navigate, Zoom, Lineout, and
Pick. Vis windows are in navigate mode by default. This means that most mouse actions are used to move, rotate,
or zoom-in on the plots that the vis window displays. Each vis window has a Popup menu that can be activated by
clicking the right mouse button while the mouse is inside of the vis window. The Popup menu contains options that
can put the vis window into other modes and perform other common operations. To put the vis window into another
window mode, open the Popup menu, select Mode and then select one of the four window modes. You can also
change the window mode using the vis window’s Toolbar, which has buttons to set the window mode. You can find
out more about the Popup menu and Toolbar later in this chapter.

Navigate mode

Navigate mode is VisIt lingo for moving and zooming-in on plots. When the vis window is in navigate mode, clicking
the left mouse button and dragging with the mouse will perform an action that moves, rotates, or zooms the plot. The
mouse motions used to rotate plots are shown in Figure 1.176. You can translate plots by holding down the Shift key
before left-clicking and dragging the plot. You zoom in on plots by clicking the middle button and moving the mouse
up or down. Sometimes the controls are modified based on the interactor settings. For more information, look at the
section on Interactor settings.

1.6. Visualization Windows 187

VisIt User Manual Documentation, Release 3.1

Fig. 1.176: Mouse motions used to rotate plots in navigate mode

Zoom mode

When the window is in zoom mode, you can draw a box around the area of the vis window that you want drawn larger.
Press the left mouse button and move the mouse to sweep out a box that will define the area to be zoomed. Release the
mouse button when the zoom box covers the desired area. If you start zooming and decide against it before releasing
the left mouse button, clicking one of the other mouse buttons cancels the zoom operation. Changes to the view can
be undone by selecting the Undo view option from the popup menu’s View menu. Sometimes the zoom controls can
change based on the interactor settings, which are described further on in Interactor settings.

Lineout mode

Lineout mode is only available when the vis window contains 2D plots. A lineout is essentially a slice of a two
dimensional dataset that produces a one dimensional curve in another vis window. When a vis window is in lineout
mode, pressing the left mouse button in the vis window creates the first endpoint of a line that will be used to create
a curve. As you move the mouse around, the line to be created is drawn to indicate where the lineout will be applied.
When you release the mouse button, VisIt adds a lineout to the vis window and a curve plot is created in another vis
window.

Pick mode

When a vis window is in pick mode, any click with the left mouse button causes VisIt to calculate the value of the plot
at the clicked point and place a pick point marker in the vis window to indicate where you clicked. The calculated
value is printed to the Output Window and the Pick Window.

1.6.3 Interactor settings

Some window modes such as Zoom mode and Navigate mode have certain interactor properties that you can set.
Interactor properties influence how user interaction is fed to the controls in the different window modes. For example,
you can set zoom interactor settings that clamp a zoom rectangle to a square or fill the viewport when zooming. VisIt
provides the Interactors window so you can set properties for window modes that have interactor properties. The
Interactors window is shown in Figure 1.177.

188 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.177: Interactors window

Zoom interactor settings

The zoom interactor settings are mostly used when the vis window is in zoom mode. When the vis window is in zoom
mode, clicking in the vis window will anchor a point that becomes one of the corners of a zoom rectangle. When you
release the mouse, the point over which the mouse was released becomes the opposite corner of the zoom rectangle.
VisIt’s default behavior is to show guidelines that extend from the edges of the zoom rectangle to the edges of the
plots’ bounding box when the vis window is in 2D mode. If you want to turn off the guidelines, click off the Show
Guidelines check box in the Interactors window.

When sweeping out a zoom rectangle in zoom mode, VisIt allows you to draw a rectangle of any proportion. The
relative shape of the zoom rectangle, in turn, influences the shape of the viewport drawn in the vis window. If you hold
down the Shift key while sweeping out the zoom rectangle, VisIt will constrain the shape of the zoom rectangle to a
square. If you want VisIt to always force a square zoom rectangle so that you don’t have to use the Shift key, you can
click on the Clamp to Square check box, click Apply in the Interactors window and save your settings.

Using the Clamp to Square zoom mode is a good way to maximize the amount of the vis window that is used when
you zoom in on plots and when the vis window is in zoom mode. When the vis window is in navigate mode, the
middle mouse button also effects a zoom. By default, zooming with the middle mouse button zooms into the plots but
keeps the same vis window viewport which may, depending on the aspect ratio of the plots, not make the best use of
the vis window’s pixels. Fortunately, you can turn on the Fill viewport on zoom check box to force middle mouse
zooming to also enlarge the viewport to its largest possible size in order to make better use of the vis window’s pixels.

Navigation styles

When VisIt displays 3D plots, there are a few navigation styles from which you can choose by clicking on the following
radio buttons in the Interactors window: Trackball, Dolly, and Flythrough. The default navigation style for 3D plots

1.6. Visualization Windows 189

VisIt User Manual Documentation, Release 3.1

is: Trackball and it allows you to interactively rotate plots and move around them but it keeps the camera at a fixed
distance from the plots and while it can get infinitely close to plots when you zoom in, it can never touch them or go
inside of them. The Dolly navigation style behaves like the trackball style except that the when the camera zooms, it is
actually moved. The Flythrough navigation style moves the camera and allows you to fly into plots and out the other
side.

1.6.4 The Popup menu and the Toolbar

Each vis window contains a Popup menu and a Toolbar, which can be used to perform several categories of operations
such as window management, setting the window mode, activating tools, manipulating the view, or playing animations.
Options in the Popup menu exist in the Toolbar and vice-versa. A group of actions that is represented in the Popup
menu as a menu usually maps to a toolbar in the vis window’s Toolbar. To perform an action using the Toolbar, you
can just click on its buttons. Access the Popup menu by pressing the right mouse button in the vis window. Select the
desired item, then release the mouse button.

Hiding toolbars

The Popup menu has a Customize menu that lets you customize the vis window’s Toolbar. For instance, you can
choose to hide all of the toolbars so that they do not take up any of your screen space if you use a small monitor. If
you want to hide all toolbars, you can select the Hide toolbars option from the Customize menu. If you want to show
the toolbars again, you can click the Show toolbars option in the Customize menu. Note that when you select the
Show toolbars option, VisIt only shows the toolbars that were enabled before they were hidden. If you want to enable
or disable individual toolbars, you can select from the Toolbars menu under the Customize menu so VisIt only shows
the toolbars that you routinely need. Once you tell VisIt which toolbars you want to use, you can save your preferences
using the Save settings option in the Main Window’s Options menu so that the next time you run VisIt, it only shows
the toolbars that you enabled.

Moving toolbars

Each of the vis window Toolbar’s smaller toolbars can be moved to other edges of the vis window by clicking the
small tab on the left or top side of the toolbar and dragging it to other edges of the vis window.

Switching window modes

The Popup menu contains a Mode menu (see Figure 1.179) that contains the 5 window modes. You can select a
window mode from the Mode menu to change the vis window’s mode. If you want to move or zoom the plot, choose
navigate or zoom modes. If you want to extract data from the plots in the vis window, choose lineout mode or one of
the pick modes. You can also use the Mode toolbar to change the vis window’s window mode.

Activating tools

The Popup menu contains a Tools menu (see Figure 1.180) that lists of all of VisIt’s interactive tools. Each tool shown
in the menu has an associated icon that is used to indicate if the tool is enabled and if it is available in the vis window.
Some tools are not available if the vis window does not contain plots or if the plots in the vis window are the wrong
dimension to be used with the tool. In that event, the tool cannot be activated and the menu and toolbar entries for that
tool are disabled. If a tool is available, its icon is bright blue; otherwise the icon is grayed out. If a tool is enabled, its
icon has a selection rectangle around it. To activate a tool, choose an inactive tool from the Tools menu or click on its

190 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.178: Customize menu

1.6. Visualization Windows 191

VisIt User Manual Documentation, Release 3.1

Fig. 1.179: Mode toolbar and menu

button in the Toolbar. To deactivate a tool, choose the tool that you want to deactivate from the Tools menu or click
on its button in the Toolbar.

View options

VisIt’s Popup menu and Toolbar (see Figure 1.181) have several options that are available for manipulating the view.
You can reset the view, recenter the view, undo a view change, toggle perspective viewing, save and reuse useful views,
or choose a new center of rotation.

Resetting the view

The Popup menu has a Reset view option (see Figure 1.181) that resets the view used to view the plots in the vis
window. The view is typically reset to look down the -Z axis in a right-handed coordinate system. You can reset the
view by selecting the Reset view option from the Popup menu or by clicking on the Reset view icon in the Toolbar.

Recentering the view

Sometimes adding a plot to a vis window that already contains plots can result in a lop-sided visualization. This
happens when the spatial extents of the plots do not match. The Popup menu has a Recenter view option (see Figure
1.181) to calculate a new center of rotation for the plots so they are drawn in the center of the window. You can

192 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.180: Tool toolbar and menu

Fig. 1.181: View toolbar and menu

1.6. Visualization Windows 193

VisIt User Manual Documentation, Release 3.1

also recenter the view by clicking on the Recenter view icon in the Toolbar. To make sure that the view updates
appropriately when new plots are added to the vis window, you may also want to check the Auto center view check
box that is available in the View Window .

Undo view

The vis window saves the last ten views in a buffer so that you can restore them if you make an unintended change to
the view. You can undo a view change, by selecting the Undo view option in the Popup menu’s View menu or by
clicking the Undo view icon in the Toolbar (see Figure 1.181).

Changing view perspective

Fig. 1.182: Perspective examples

When the vis window contains 3D plots, the perspective setting can be used to enhance how 3D the plot looks. In a
perspective projection, graphics grow smaller as they recede into the distance which makes them look more realistic.
To change the perspective setting, click on the Perspective option in the Popup menu’s View menu (see Figure
1.181). When the vis window uses a perspective projection, the Popup menu’s Perspective option will have a selection
rectangle around its icon. You can also turn perspective on or off by clicking on the Perspective icon in the Toolbar.
The difference in appearance having perspective and not having it is shown in Figure 1.182.

Locking views

The vis window can lock its view to other vis windows. When this toggle is set, making a change that affects the view
in the active vis window will cause other vis windows that have the lock views toggle set to receive the same view as
the active window. To lock the view, select the Lock view option from the Popup menu’s View menu (see Figure
1.181) or click on the Lock view icon in the Toolbar. Note that you can lock 2D and 3D windows separately.

Saving and reusing views

Sometimes when analyzing a database, it is useful to be able to toggle between several different views. VisIt allows
you to save up to 15 views that you can then use to look at different parts of your visualization. When you navigate to

194 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

a view that you like, click the Save view icon in the View toolbar or click the Save view option in the Popup menu’s
View menu to save the view. When you save a view, VisIt adds a new numbered camera icon to the View toolbar and
the Popup menu . Clicking on a view icon makes VisIt use the view that is associated with the clicked icon so you
have one-click access to all of your saved views. You can preserve the saved views across VisIt sessions if you save
your settings. If you want to delete the saved views so you can create different saved views, click the Clear saved
views icon next to the Save views icon in the View toolbar.

Fullframe mode

Some databases yield plots that are so long and skinny that they leave most of the vis window blank when VisIt
displays them. VisIt provides Fullframe mode to stretch the plots so they fill more of the vis window so it is easier to
see them. It is worth noting that Fullframe mode does not preserve a 1:1 aspect ratio for the displayed plots because
they are stretched in each dimension so they fit better in the vis window. To activate Fullframe mode, click on the
Fullframe option in the Popup menu’s View menu.

Choosing a new center of rotation

When you are working with a 3D database and you have created plots and zoomed in on them, you should set the
center of rotation. The center of rotation is the point about which the plots are rotated when you rotate the plots in
navigate mode. Normally, the center of rotation is set to the center of the plots being visualized. When you zoom way
in on plots and attempt to rotate them, the default center of rotation often causes plots to whiz off of the screen when
you rotate because the center of rotation is not close enough to the geometry that you are actually viewing. To set
the center of rotation to something more suitable, VisIt provides the Choose center button, which can be accessed in
the Popup menu or in the View toolbar. Once you click the Choose center button, VisIt temporarily switches to pick
mode so you can click on the part of your visualization that you want to become the new center of rotation. Once you
click on a plot, VisIt exits pick mode and uses the picked point as the new center of rotation. After setting the center
of rotation, VisIt will make sure that the picked point is visible at all times.

Animation options

The animation controls in VisIt’s Main Window are not the only controls that are provided for playing animations.
Each vis window’s Popup menu and Toolbar has options for playing and stepping through animations. To play an
animation, select the Play option from the Popup menu’s Animation menu or click on the Play icon in the Toolbar,
shown in Figure 1.183. To play the animation in reverse, select the Reverse play option or click on the Reverse play
icon in the Toolbar. To stop the animation from playing, select the Stop option in the Animation menu or click on
the Stop icon in the Toolbar. If you want to advance or reverse one frame at a time, use forward or reverse step.

Window options

Many window options have previously been explained in this chapter so this section describes some addition options
that were not covered. Many of the options in the Main Window’s Windows menu are also present in the Popup
menu’s Window menu and toolbar (see Figure 1.184).

1.6. Visualization Windows 195

VisIt User Manual Documentation, Release 3.1

Fig. 1.183: Animation toolbar and menu

Fig. 1.184: Window toolbar and menu

196 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Changing bounding-box mode

The vis window allows a simple wireframe box to be substituted for complex plots when you want to rotate or move
them. This is called bounding-box navigation and you can use it during navigate mode for complex plots so you can
navigate faster when a vis window contains plots that take a long time to redraw. You can change the bounding-box
mode by selecting the Navigate bbox option from the Popup menu’s Window menu shown in Figure 1.184. You can
also change the bounding-box mode by clicking on the Bounding-box icon in the Toolbar.

Engaging spin

Spin is a setting that makes plots spin after the user stops rotating them and it provides a nice, easy way to see the entire
plot without having to actively rotate it. To spin a 3D plot, turn on the Spin option in the Popup menu’s Windows
menu and then rotate the plot as you would in navigate mode. The plot will continue to spin after you release the
mouse buttons. You can also engage spin using the Spin option in the Main Window’s Windows menu or by clicking
the Spin icon in the vis window’s Toolbar. You can stop plots from spinning by turning off spin.

Inverting the foreground and background colors

Sometimes it is useful to swap the vis window’s foreground and background colors. You can invert the background and
foreground colors by clicking on the Windows menu’s Invert background option. Note that this option is disabled
when the vis window has a gradient background.

Clear options

The Clear menu (see Figure 1.185) in the Popup menu contains options that cause certain items such as: plots, pick
points, and reference lines to be removed from a vis window. The Clear menu also appears in the Main Window’s
Windows menu.

Fig. 1.185: Clear menu

1.6. Visualization Windows 197

VisIt User Manual Documentation, Release 3.1

Clearing plots from all windows

Sometimes it is useful to clear all plots from the vis window. Clearing plots from the vis window does not delete the
plots but instead deletes their computed geometry and returns them to the new state so they appear green in the Plot
list. An example of when you might want to clear plots is when you change material interface reconstruction options
since changing them requires a plot to be regenerated. Rather than deleting plots that existed before changing the
material interface reconstruction parameters, you can clear the plots and force them to be completely regenerated by
clearing the plots.

Clearing pick points

Click on the Clear menu’s Clear pick points option if you want to remove all of the pick labels that were added when
you picked on the plots in the vis window. Clearing the pick points also removes any pick information related to those
pick points in the Pick window.

Clearing reference lines

Click on the Clear menu’s Clear reference lines option if you want to remove all of the reference lines that were
added to the vis window when you performed lineouts on the plots in the vis window.

Plot options

The Plot toolbar and Plot menu let you create new plots using variables from the open databases and also let you
hide, delete, and draw the plots that correspond to the selected plot entries in VisIt’s Plot list. The Plot menu is always
available in the Popup menu but the Plot toolbar is not visible by default. If you want to make the Plot toolbar visible,
you can turn it on in the Popup menu’s Customize menu. The Plot menu and toolbar are shown in Figure 1.186.

Adding a plot

The Plot menu and toolbar both provide options for you to add new plots. Each plot has its own menu option or icon
that contains the variables that can be plotted from the open database. To add a new plot using the Plot menu, click the
Add plot option to activate the list of available plots and then select a variable for the desired plot type. To add a new
plot using the Plot toolbar, click on the icon for the desired plot type and select a variable from its variable menu. A
new plot will appear in the Main Window’s Plot list and it will be in the new state. To draw the plot, click the Draw
button.

Drawing a plot

All plots added using the Plot menu or toolbar are in the new state, indicating that they have not been generated yet.
To generate a plot once it has been created, click the Draw plots option in the Plot menu.

Hiding active plots

To hide the active plots, which are the plots that are highlighted in the Main Window’s Plot list, click the Plot menu’s
Hide active plots option. Once clicked, the selected plots are made invisible until you hide them again to show them.

198 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.186: Plot toolbar and menu

1.6. Visualization Windows 199

VisIt User Manual Documentation, Release 3.1

Deleting active plots

To delete the active plots, which are the plots that are highlighted in the Main Window’s Plot list, click the Plot
menu’s Hide active plots option. Once a plot has been deleted, you can’t get it back.

Operator options

The Operator menu and toolbar allow you to add new operators and remove operators from plots. The Operator
menu is always available in the Popup menu but the Operator toolbar is not visible by default. If you want to make
the Operator toolbar visible, you can turn it on in the Popup menu’s Customize menu. The Operator menu and
Operator toolbar are shown in Figure 1.187.

Adding an operator

The Operator menu and toolbar both provide options for you to add new operators. Each operator has its own menu
option or icon that adds an operator of that type to the selected plots when you click its menu option or icon.

Removing the last operator

The Operator menu and toolbar both have options for you to remove the last operator from a plot. Each plot has a list
of applied operators and clicking the Remove last operator menu option or icon will remove the last operator from
each plot that is selected in the Plot list. Plots that have been drawn are regenerated.

Removing all operators

The Operator menu and toolbar both have options for you to remove all operators from a plot. Each plot has a list
of applied operators and clicking the Remove all operators menu option or icon will remove all operators from each
plot that is selected in the Plot list. Plots that have been drawn are regenerated.

Lock options

The Lock menu and toolbar, both shown in Figure 1.188, allow you to lock certain visualization window attributes so
that when you change them, other locked visualization windows also update. Currently, you can lock the view, time
and tools. See Locking Windows for more information on how to use the lock options.

1.7 Subsetting

Meshes are frequently composed of a variety of subsets that represent different portions of the mesh. Common exam-
ples are domains, groups (of domains), AMR patches and levels, part assemblies, boundary conditions, node sets and
zone sets, materials and even material species.

200 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.187: Operator toolbar and menu1.7. Subsetting 201

VisIt User Manual Documentation, Release 3.1

Fig. 1.188: Lock toolbar and menu

Users often find it useful to restrict which subsets are used in any given operation to focus their analyses on only
certain regions of interest. This is handled through VisIt’s Subset Window. Here, we describe VisIt’s subsetting
functionality and Subset Window in detail.

What is described here is primarily about pre-defined, first-class, named subsets as created by the data producer and
supported within VisIt. Nonetheless, It is important to keep in mind that there are other ways that the data producer
can organize data within VisIt’s GUI or that users can employ VisIt’s Expressions and Operators to create and manage
subsets. However, using these other approaches for the sole purpose of subsetting is often cumbersome through VisIt’s
GUI. To understand why as well as read about other issues related to subsetting, please see these developer notes.

1.7.1 What is a subset?

VisIt has first-class support for four different kinds of subsets; Domains, Groups (also called Blocks), Materials and
material Species. In particular, as currently designed, any given mesh in VisIt can have only one decomposition into
each of these kinds of subsets. That is, a mesh can have only one Domain decomposition, one Group decomposition,
one Material decomposition and one material Species decomposition. A fifth kind of subset, Enumerated, is also
supported and provides some additional generality but cannot be used in combination with the other four or even with
other Enumerated subsets.

Data producers as well as the database plugins that read data into VisIt often have flexibility in deciding how to utilize
these various kinds of subsets in representing their data. We describe each of these kinds of subsets and constraints in
their use below.

Domain Subsets

VisIt’s concept of a Domain subset is fundamental to its parallel programming and execution model. A domain in VisIt
represents a chunk of mesh plus its variables that is both stored (in files and in memory) and processed coherently
as a single, self-contained unit. Large meshes in VisIt are typically decomposed into Domain subsets for parallel
processing. In fact, except in rare cases, the maximum number of MPI tasks VisIt may use is determined by the

202 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://www.visitusers.org/index.php?title=Generalized_Subsetting

VisIt User Manual Documentation, Release 3.1

number of Domain subsets created by the data producer. VisIt’s approach to processing a mesh in parallel is often
described as piggy-backing off of the parallel decomposition created by the data producer.

Domain subsets also represent the unit of work VisIt allocates in its load balancing algorithms. If VisIt is running on
M processors and reading a mesh of N domains, then if N<M, N-M processors will idle for operations involving that
mesh. On the other hand, if N>kM (k an integer), some processors will be assigned k domains and some k+1 domains.

In almost all cases, if a mesh is to be processed in parallel by VisIt, it must have been decomposed into Domain subsets
by the data producer prior to reading the data into VisIt. In general, VisIt does not perform any on-the-fly domain
decomposition of data it is reading. However, there is one, special case where VisIt can perform on-the-fly domain
decomposition of a large, monolithic mesh; a structured mesh stored in a file format that supports hyper-slabbed I/O.
In this simple case, VisIt will try to evenly decompose the 2 or 3D mesh into roughly equal sized hyper-slabs whose
number is determined by the number of parallel tasks. VisIt will also then utilize the file format’s hyper-slab I/O
routines to read into each parallel task only the part(s) of the mesh assigned to that task.

A mesh is required to have domains if it is ever to be processed in parallel by VisIt.

Group or Block Subsets

Groups (or Blocks) are just unions of Domains. They are optional. A mesh is not required to have groups. On the
other hand, if a mesh has Groups, then every domain in the mesh must be assigned to one and only one Group subset.
Groups may be used to represent, for example, the files in which multiple domains are stored or sets of neighboring
domains that share a common logical/structured indexing arrangement in an otherwise globally unstructured mesh.

The key constraint about group subsets is that they can represent only unions of the domain subsets. Internally in VisIt,
a group subset is implemented as a list of domain subset ids.

Material Subsets

Material subsets are used to represent the decomposition of a mesh into various materials. For example, a mesh may
be composed of steel, brass, and aluminum materials. If these materials are given integer ids 83 (int('S')), 66
(int('B')) and 65 (int('A')), then each zone (or cell) in the mesh can be assigned a value of 83, 66 or 65 to
indicate the zone is composed of steel, brass or aluminum. This would be equivalent to an integer valued (with 3
unique values), zone-centered variable on the mesh.

For material subsets, however, VisIt also supports a notion of mixing where a single zone (or cell) can be composed of
multiple materials each occupying some fractional volume of a whole zone (or cell). From a sub-setting perspective,
a more formal way of thinking about mixing is that it is way of supporting partial inclusion of a mesh zone (or cell)
within a given material subset.

Material subsets are optional. Furthermore, if material subsets are defined additionally supporting mixing is also
optional. Only some data producers that involve Material subsets also involve mixing.

When mixing materials are involved, VisIt can employ a variety of sophisticated Material Interface Reconstruction
(MIR) algorithms to draw the interfaces between materials based on the volume fractions of the mixing. The main point
about MIR is that it represents an additional computational burden when manipulating Material subsets. Manipulating
Group or Domain subsets has no such equivalent computational cost.

Mesh Variables with Material Specific Properties

For some mesh variables, data producers may have different values of the variable for each of the materials within
various zones (or cells) of the mesh where mixing is occurring. When such a variable is being plotted, for example
with the Pseudocolor Plot, what value/color should VisIt show for such zones? The fact is, depending on the user’s
needs, VisIt is capable of showing either an overall value for the zone or showing the material-specific values in the
zone. This can be handled through appropriate use of VisIt’s (MIR) algorithms and Subset Window controls.

1.7. Subsetting 203

VisIt User Manual Documentation, Release 3.1

Species Subsets

In addition to mixing, another feature Materials subsets support is a notion of Species. For example, there are many
different varieties of brass and steel depending on the alloys used. Neither brass nor steel are themselves pure elements
on the periodic table. They are instead alloys of other pure metals. Common Yellow Brass is, nominally, a mixture of
Copper (Cu) and Zinc (Zn) while Tool Steel is composed primarily of Iron (Fe) but mixed with some Carbon (C) and
a variety of other elements.

Lets suppose we are dealing with the following alloys and species compositions. . .

Material Species composition
Brass Cu:65%, Zn:35%
T-1 Steel Fe:76.3%, W:18%, Cr:4.0%, C:0.7%, V:1%
O-1 Steel Fe:96.2%, W:0.5%, Cr:0.5%, C:0.9%, Mn:1.4%, Ni:0.5%

The Materials decomposition would consist of 3 subsets for Brass, T-1 Steel and O-1 Steel. For the Species decom-
position, Brass would be further decomposed into 2 Species subsets, T-1 Steel into 5 Species subsets and O-1 Steel, 6
Species subsets.

Alternatively, one could opt to characterize both T-1 Steel and O-1 Steel has a single, non-specific Steel having 7
Species subsets, Fe, W, Cr, C, V, Mn, Ni where for T-1 Steel, the Mn and Ni Species subsets are always empty and for
O-1 Steel the V Species subset is always empty. In that case, there would only be 2 Materials subsets for Brass and
non-specific Steel.

Species subsets are optional. A mesh does not need to have them defined. However, as currently designed, a data
producer cannot define Species subsets without also defining Materials subsets (even if there is only one material
subset for the whole mesh).

A final thing to note about Species subsets is that they do not represent spatially distinct parts of the mesh like Domains,
Groups, or Materials. Instead, Species, if they are defined are ever present, everywhere in the mesh. Only their relative
concentrations vary at any given point in the mesh. But, Species do permit subsetting a particular physical quantity’s
value in that, for example the total pressure in a zone can be decomposed into partial pressures on each of the species
comprising the materials in the zone. Furthermore, using the Subset Window, VisIt can then control which partial
value(s) are used in a particular plot.

Domains, Groups, Materials and Species In Combination

A given mesh may involve any combination of Domain, Group and Material subsets. Furthermore, VisIt’s Subset
Window makes it possible to manipulate these four kinds of subset in combination. That is, a user can simultaneously
control which domains, which materials and which groups VisIt should process in any given operation. However,
manipulating subsets in combination works only for these kinds of subsets. Other kinds of sub-setting, such as Enu-
merated subsets which are discussed next, are not as well integrated.

Enumerated Subsets

A key constraint of the other kinds of subsets is that any given mesh can have only one decomposition into domains
and one decomposition into groups and one decomposition into materials. However, a mesh can be composed of
any number of Enumerated subsets. Enumerated subsets are defined by first defining the enumeration class and then
creating a bitmap like variable over the mesh to indicate which mesh entities (nodes, edges, faces or volumes) belong
to which subsets of the enumeration class.

Within an enumeration class, the sets can be arranged hierarchically so that some sets contain other sets as in a part
assembly.

204 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Enumerated subsets do not work in combination with domains, groups or materials or in combination with other classes
of Enumerated subsets. On the other hand, for any given mesh, there can be any number of enumeration classes, each
defining a collection of related subsets. For example, if a mesh has defined two enumeration classes, one for node sets
and one for face sets, then different subsets of nodes can be manipulated simultaneously or different subsets of faces
can be manipulated simultaneously but different sets of nodes cannot simultaneously be manipulated in combination
with different sets of faces. Finally, manipulating enumerated subsets can also incur small a computational burden due
to the work involved in finding the mesh entities within a given subset.

1.7.2 Subset Inclusion Lattice

VisIt relates all possible subsets in a database using what is called a Subset Inclusion Lattice (SIL). Ultimately the
subsets in a database are cells that can be grouped into different categories such as material region, domain, patch,
refinement level, etc. Each category has some number of possible values when taken together form a collection. A
collection lets you group the subsets that have different values but are still part of the same category. For example, the
mesh shown in Figure 1.189 is broken down into domain and material categories and there are 3 domain subsets in the
domain category. VisIt uses the SIL to remove pieces of a database from a plotted visualization by turning off bottom
level subsets that are arrived at through turning off members in various collections or turning off entire collections.
When various subsets have been turned off in a SIL, the collective on/off state for each subset is known as a SIL
restriction.

Fig. 1.189: Whole mesh divided up into domains and materials

1.7. Subsetting 205

VisIt User Manual Documentation, Release 3.1

1.7.3 Using the Subset Window

Users can open the Subset Window, shown in Figure 1.190, by clicking on the Subset option in the Main Window’s
Controls menu or by clicking on the Subset Venn Diagram-looking icon next to the name of a plot in the Plot list.
VisIt’s Subset Window shows the relationships between subsets and provides controls that allow users to turn subsets
on and off.

Fig. 1.190: Subset window

The Subset Window initially has three panels that display the sets associated with mesh of the currently active plot.
The window will grow more panels to the right, when necessary as the subset structure of a mesh is browsed. Each
successive panel shows the next level of subsets in the mesh. The leftmost panel contains the top level (e.g. whole) set
for the whole mesh of the currently active plot. The top level or whole set, which includes all subsets in the mesh, is
usually decomposed into the various kinds of subsets described in the section What is a subset?. For example, it can be
decomposed by material, processor domain, etc. The various ways in which a database can be decomposed are called
subset categories. The subset categories will vary depending on how the data producer(s) create the database(s).

Browsing subsets

To browse the subsets for a database, users must first have created a plot. Once a plot is created and selected, open the
Subset Window. The left panel in the Subset Window contains the database’s top level set and may also list some
subset categories. Some simple databases don’t include any subset and so VisIt will not show any subsets for them.
To start browsing the available subsets, users can click on one of the subset categories to display the subsets in that
category. For instance, clicking on a “Material” subset category will list all of the mesh’s materials in the next panel to
the right. The materials are subsets of the top level set. Double clicking on a set or clicking on an expand arrow lists
any subset categories that can be used to further break down the set.

206 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Changing a SIL restriction

Each set in the Subset Window has a small check box next to it that allows users to turn the set on or off. The check
box not only displays whether a set is on or off, but it also displays whether or not a set is partially on. When a set is
partially on, it means that at least one (but not all) of the subsets it contains is turned on. When a set is partially on, its
check box shows a small slash instead of a check or an empty box. Uncheck the check box next to a set name to turn
the set off.

Suppose a user has a database that contains 4 domains, numbered 1 through 4. If the user wants to turn off the subset
named “domain1”, first click on the “domains” category to list the subsets in that category. Next, click the check box
next to the subset name “domain1” and click the Apply button. The result of this operation, shown in Figure 1.191,
removes the “domain1” subset from the visualization. Note that the Subset Window “domain1” set’s check box is
unchecked and the top level set’s check box has a slash through it to show that some subsets are turned off.

Fig. 1.191: Removing one subset.

Creating complex subsets

When visualizing a database, it is often useful to look at combinations of subsets. Suppose a user has a database that
has two subset categories: “Materials”, and “Domains” and that the user wants to turn off the “domain1” subset but
also wants to turn off a material in the “domain4” subset. Users can do this by clicking on the “Domains” category and
then unchecking the “domain1” check box in the second panel. Now, to turn off a material in the “domain4” subset,
the user clicks on the “domains” category in the left panel. Next, double-click on the “domain4” subset in the second
panel. Select the “Materials” subset category in the second panel to make the third panel list the materials that can be
removed from the “domain4” subset. Turning off a couple materials from the list in the third panel will only affect

1.7. Subsetting 207

VisIt User Manual Documentation, Release 3.1

Fig. 1.192: Subset window with one subset removed.

208 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

the “domain4” subset. An example of a complex subset selection is shown in Figure 1.193 and the state of the Subset
window is shown in Figure 1.194.

Fig. 1.193: Example of a complex subset.

Turning multiple sets on and off

When databases contain large numbers of subsets, it is convenient to turn many of them on and off at the same time.
Users can select ranges of subsets by clicking on the name of a subset using the left mouse button and dragging the
mouse up or down to other subsets in the list while still holding down the left mouse button. Alternatively, users can
click on a subset to select it and then click on another subset while holding down the Shift key to select all of the
subsets in the middle. Finally, users can select a group of multiple nonconsecutive subsets by holding down the Ctrl
key while clicking on the subsets to be selected.

Once a group of subsets has been selected, the buttons at the bottom of the pane can be used to adjust the selection
in various ways. The top button applies an action to all of the sets in the pane regardless of how they have been
selected. The bottom button applies an action to only the subsets that have been selected. Each action button has three
possible actions: Turn on, Turn off, and Reverse. Users can change the action for an action button by clicking on the
down-arrow button to its right and selecting one of the Turn on, Turn off, and Reverse menu options. When the Turn
on action is used, the appropriate subsets will be turned on. When the Turn off action is used, they will be turned off.
When the Reverse action is used, the on/off state of the sets will be reversed (or toggled).

1.7.4 Material Interface Reconstruction

Many data producers create meshes with material subsets. In some cases, materials include mixing where multiple
materials exist within each mesh zone and in other cases materials are clean in each zone (e.g. no mixing).

The materials are often used to break meshes into subsets that correspond to physical parts of a model. Materials are
commonly stored out as a list of materials and material volume fractions for each cell in the database. If a cell has
only one material then is a clean cell. If a cell has more than one material, it has some fraction of each of the materials
and it is known as a mixed cell. The fraction of the material in a cell if accounted for by the material volume fraction.
Since only the volume fractions are known, and not any information about how the materials are distributed in the cell,
VisIt must make a guess at the location of the boundaries between materials.

Material interface reconstruction (MIR) is the process of constructing the boundaries between materials, in cells with
mixed materials, from the material volume fraction information stored in the database. MIR is not usually needed when

1.7. Subsetting 209

VisIt User Manual Documentation, Release 3.1

Fig. 1.194: Subset window for complex subset example.

210 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

you visualize the entire database but when you start to subset the database by removing materials, VisIt must perform
MIR to remove only the parts of the database that contain the material to be removed. Without MIR, visualizations
containing mixed materials would be very blocky when materials are removed. VisIt’s MIR algorithms have several
settings, which you can change using the controls in the Material Reconstruction Options Window (see Figure
1.195), that influence the appearance of the final plot. To open the Material Reconstruction Options Window, click
on the Materials option in the Main Window’s Controls menu.

Fig. 1.195: Material Reconstruction Options Window

Choosing a MIR algorithm

VisIt currently provides three MIR algorithms: Tetrahedral, Zoo-based, and Isovolume. Each MIR algorithm recon-
structs the interfaces between materials using a different method and one method may work better or worse than
another based on the complexities of the input data. You can select your preferred MIR algorithm by choosing from
the Algorithm combo box in the Material Reconstruction Options Window. Note that if you have plots that have
already been generated, the new material options will not take effect for those plots unless you clear the plots and
redraw them.

The Tetrahedral algorithm breaks up each mixed cell into tetrahedra and computes the interfaces through the original
cell by recursively subdividing the tetrahedra until the approximate volume fractions, which determine the amount of
material in a cell, are reached. The Tetrahedral MIR algorithm results in a high cell count so it is not often used.

The Zoo-based MIR algorithm breaks up mixed cells into elements based on supported finite elements (tetrahedra,
prisms, pyramids, wedges, cubes). The resulting reconstruction results in far fewer cells than other methods while
also producing superior material boundaries. The Zoo-based algorithm is the default because of the quality of the
material boundaries and because the zoo-based cell representation saves memory and ultimately leads to faster pipeline
execution due to the smaller cell count.

The Isovolume algorithm computes an isovolume containing portions of cells that contain a user-specified fraction of
materials. The Isovolume approach to MIR does not generally produce very good looking results since there are gaps
where several materials join. However, the Isovolume algorithm does do a better job than the other two algorithms
when it comes to finding cells that contain very small fractions of a certain material when the cells are heavily mixed.
If you use the Isovolume MIR algorithm, you can specify the amount of material required to be present before VisIt
creates a material interface for a material. The amount of material is specified as a volume fraction in the range [0,1].

1.7. Subsetting 211

VisIt User Manual Documentation, Release 3.1

Fig. 1.196: Tetrahedral MIR vs. Zoo-based MIR

Specifying smaller values in the Volume Fraction for Isovolume text field will find materials that may be omitted by
other MIR algorithms.

Finding materials with low volume fractions

When mixed cells contain several materials, the Zoo-based MIR algorithm will often omit materials with very small
volume fractions, leaving only the materials in the mixed cell that had the highest volume fractions. If you want to plot
materials in mixed cells where the volume fraction is very small then you can try using the Isovolume MIR algorithm
since it can be used to find materials whose volume fractions are above a user-specified threshold. Figure 1.198 shows
an example of a dataset containing five mixed materials where the first four mixed materials are roughly equal in the
amount of area that they occupy. The fifth material has a volume fraction that never exceeds 0.08 so it is omitted by the
Zoo-based MIR algorithm due to its comparatively low volume fraction. To ensure that VisIt plots the fifth material,
the Isosurface MIR algorithm is used with a Volume Fraction for Isovolume setting of 0.02. Using the Isovolume
MIR algorithm with a low Volume Fraction for Isovolume value can find materials that have been distributed into
many heavily mixed cells.

Simplifying heavily mixed cells

VisIt provides the Simplify heavily mixed cells check box in the Material Reconstruction Options Window so you
can tell VisIt to throw away information materials that have low volume fractions. When you tell VisIt to omit these
materials, VisIt will use less memory and will also finish MIR faster because fewer materials have to be considered.
The Simplify heavily mixed cells check box is especially useful for databases where most of the cells are mixed or
where there are many cells that contain tens of materials. When you tell VisIt to simplify heavily mixed cells, you
can tell VisIt how many of the top materials to keep from each cell by entering a new number of materials into the
Maximum materials per zone text field. By keeping the N top materials, VisIt will be sure to preserve the features
that are contributed by the most dominant materials.

212 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.197: Zoo-based MIR vs. Isovolume MIR

Fig. 1.198: Materials with low volume fractions can be found with the isosurface MIR algorithm

1.7. Subsetting 213

VisIt User Manual Documentation, Release 3.1

Smoother material boundary interfaces

VisIt’s material interface reconstruction algorithm sometimes produces small, pointy outcroppings on reconstructed
material boundaries next to where clean cells are located. Since these are often distracting features when looking
at a visualization, VisIt provides an interface smoothing option that allows materials to bleed a little bit into clean
cells to improve how they look when their material boundary is reconstructed. Figure 1.199 shows a plot that has not
been smoothed next to a plot that has been smoothed. To enable interface smoothing, check the Enable interface
smoothing check box. Note that changing this setting will not affect plots that have already been generated. If you
want to make your current plots regenerate with smoother interfaces, you must also clear them out of the visualization
window by choosing the Plots option from the Clear submenu located in the Main Window’s Windows menu.

Fig. 1.199: Effect of material interface smoothing

Forcing material interface reconstruction

VisIt tries to minimize the amount of work that it must do to generate a plot so that it can be done quickly. Sometimes
databases have variable information for each material in a cell instead of just having a single value for each cell or node.
Because the variable is defined for each material in the cell, these variables are known as mixed variables. VisIt tends
to just plot the value for the entire cell since it is more work to go through the material interface reconstruction (MIR)
stage, which is usually only done when removing material subsets but is required to plot mixed variables correctly.
You can force VisIt to always do MIR by checking the Force interface reconstruction check box. This will make
mixed variables plot correctly even when you are not removing any material subsets.

Mixed variables

Some simulations write out multiple scalar values for cells that contain mixed materials so each material in the cell can
have its own scalar value. Once a cell has undergone MIR, it is split into multiple cells if the original cell contained
more than one material. Each split cell gets its corresponding scalar value from the original mixed variable data. The
resulting plot can then display each split cell’s actual value, taking into account the material boundaries. Suppose you
are simulating the interaction between hot lava and ice and you have a material interface that happens to cross in the
middle of a cell. Obviously each material in the cell has its own temperature. Plotting mixed variables allows the
visualization to more faithfully depict the material boundaries while preserving the actual data so the multiple mix

214 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

values do not have to be averaged in the cell (see Figure 1.200). Note that VisIt does not use mixed variable values for
variables that have them unless the Force interface reconstruction check box is enabled because most scalar fields
are not mixed variables and automatically performing MIR can be expensive. If your scalars are mixed variables and
you want to visualize them as such, be sure to enable the Force interface reconstruction check box.

Fig. 1.200: Mixed variables can improve a visualization

1.7.5 Species

VisIt adds species, which are components of materials, to the SIL when they are defined by the data producer. Air is a
common material in simulations since many things in the real world are surrounded by air. The chemical composition
of air on Earth is roughly 78% Nitrogen, 21% oxygen, 1% Argon. One can say that if air is a material then it
has species: Nitrogen, Oxygen, and Argon with mass fractions 78%, 21%, 2%, respectively. Suppose one of the
calculated quantities in a database with the aforementioned air material is atmospheric temperature. Now suppose that
we are examining one cell that contains only the air material from the database and its atmospheric temperature is 100
degrees Fahrenheit. If we wanted to know how much the Nitrogen contributed to the atmospheric temperature, we
could multiply its concentration of 78% times the 100 degrees Fahrenheit to yield: 78 degrees Fahrenheit. Species are
often used to track chemical composition of materials and their effects on various calculated quantities.

When species are defined, VisIt creates a scalar variable called Species and it is available in the variable menus for
each plot that can accept scalar variables. The Species variable is a cell-centered scalar field defined over the whole
mesh. When all species are turned on, the Species variable has the value of 1.0 over the entire mesh. When species
are turned off, the Species variable is set to 1.0 minus the mass fraction of the species that was turned off. Using the
previous example, if we plotted the Species variable and then turned off the air material’s Nitrogen species, we would
be left with only Oxygen’s 21% and Argon’s 1% so the species variable would be reduced to 22% or 0.22. When
species are turned off, the amount of mass left to be multiplied by the plotted variable drops so the plotted variable’s
value in turn drops.

VisIt adds species to the SIL as a category that contains the various chemical constituents for all materials that have
species. Since species are handled using the SIL, one can use VisIt’s Subset Window to turn off species. Turning
off species has quite a different effect than turning off entire materials. When materials are turned off, they no longer
appear in the visualization. When species are turned off, no parts of the visualization disappear but the plotted data
values may change due to drops in the Species variable.

1.7. Subsetting 215

VisIt User Manual Documentation, Release 3.1

Fig. 1.201: Species variable

216 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Plotting species

VisIt provides the Species scalar variable so users can plot or create expressions that involve species. If the user creates
a Pseudocolor plot of the Species variable, the resulting plot will have a constant value of 1.0 over the entire mesh
because when no species have been removed, they all sum to 1.0. Once species are removed by turning off species
subsets in the Subset Window, the plotted value of Species changes, causing plots that use it to also change. If all
but one species are removed, the plots that use the Species variable will show zero for all areas that do not contain the
one selected species (see Figure 1.202). For example, if a user had air for a material and then removed every species
except for oxygen, the plots that use the Species variable would show zero for every place that had no oxygen.

Fig. 1.202: Plots of materials and species

Turning off species

VisIt adds species information to the SIL as new subsets under a category called: Species. Since species are part of the
SIL, users can use the Subset Window (see Figure 1.203) to turn off species. To access the list of species, select the
Species category under the whole mesh. Once the Species category is clicked, the second pane in the Subset Window
is populated with the species for all materials. Users can turn off the species that are not needed to look at by clicking
off the check box next to the name of the species subset. When the user applies these changes, the values for the
Species variable are recalculated to include only the mass fractions for the species that are still turned on.

1.8 Quantitative Analysis

Simulation data must often be compared to experimental data so VisIt provides a number of features that allow quanti-
tative information to be extracted from simulation databases. This chapter explains how to visualize derived variables
created with expressions and query information about a database. This chapter also explains VisIt’s Pick, Query and
Lineout capabilities which allow users to compute highly sophisticated quantitative, as opposed to visual, results.

1.8.1 Expressions

Danger: Confirm the text here adequately characterizes that an expression has value everywhere over the whole
mesh it is defined on. Its a field.

Scientific simulations often keep track of several dozen variables as they run. However, only a small subset of those
variables are usually written to a simulation database to save disk space. Sometimes variables can be derived from

1.8. Quantitative Analysis 217

VisIt User Manual Documentation, Release 3.1

Fig. 1.203: Turning off species in the Subset Window

218 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

other variables using a variable expression. VisIt provides variable expressions to allow scientists to create derived
variables using variables that are stored in the database. Expressions are extremely powerful because they allow users
to analyze new data without necessarily having to rerun a simulation. Variables created using expressions behave just
like variables stored in a database; they appear in menus where database variables appear and can be visualized like
any other database variable.

Expression Window

VisIt provides an Expression Window, shown in Figure 1.204, that allows users to create new variables that can be
used in visualizations. Users can open the Expression Window by clicking on the Expressions option in the Main
Window’s Controls menu. The Expression Window is divided vertically into two main areas with the Expression
list on the left and the Definition area on the right. The Expression list contains the list of expressions. The Definition
area displays the definition of the expression that is highlighted in the Expression list and provides controls to edit the
expression definition.

Fig. 1.204: Expression Window

Expressions in VisIt are created either manually by the user or automatically by various means including. . .

• Preferences

– Mesh quality expressions

– Time derivative expressions

– Vector magnitude expressions

• GUI wizards

1.8. Quantitative Analysis 219

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

• Operators

• Databases

By default, the Expression list will display only those expressions created manually by the user. A check box near the
bottom of the Expression list controls the display of automatically created expressions. When this box is checked, the
Expression list will also include expressions created automatically by Preferences and Databases but not expressions
created automatically by GUI wizards or Operators.

Creating a new expression

Users can create a new expression by clicking on the Expression Window’s New button. When the user clicks on
the New button, VisIt adds a new expression and shows its new, empty definition in the Definitions area. The initial
name for a new expression is “unnamed” followed by some integer suffix. After the user types a new name for the
expression into the Name text field, the expression’s name in the Expression list will update. If the user types a name
that already exists in the expression list, then Visit will automatically append a number to the end of the name to avoid
duplicate expression names.

Each expression also has a Type that specifies the type of variable the expression produces. The available types are:

• Scalar

• Vector

• Tensor

• Symmetric Tensor

• Array

• Curve

Users must be sure to select the appropriate type for any expression they create. The selected type determines the
menu in which the variable appears and subsequently the plots that can operate on the variable.

To edit an expression’s definition, users can type a new expression comprised of constants, variable names, and even
other VisIt expressions into the Definition text field. The expression definition can span multiple lines as the VisIt
expression parser ignores whitespace. For a complete list of VisIt’s built-in expressions, refer to the table in section
Built-in expressions. Users can also use the Insert Function. . . menu, shown in Figure 1.205, to insert any of VisIt’s
built-in expressions directly into the expression definition. The list of built-in expressions is divided into certain
categories as shown by the structure of the Insert Function. . . menu.

In the example shown in Figure 1.205, the Insert Function. . . operation inserted a sort of template for the function
giving some indication of the argument(s) to the function and their meanings. Users can then simply edit those parts
of the function template that need to be specified.

In addition to the Insert Function. . . menu, which lets users insert built-in functions into the expression definition,
VisIt’s Expression Window provides an Insert Variable. . . menu that allows users to insert variables from the active
database into the expression definition. The Insert Variable. . . menu, shown in Figure 1.206, is broken up into
Scalars, Vectors, Meshes, etc. and has the available variables under the appropriate heading so they are easy to find.

Some variables can only be expressed as very complex expressions containing several intermediate subexpressions
that are only used to simplify the overall expression definition. These types of subexpressions are seldom visualized
on their own. If users want to prevent them from being added to the Plot menu, turn off the Show variable in plot
menus check box.

220 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.205: Expression Window’s Insert Function. . . menu

1.8. Quantitative Analysis 221

VisIt User Manual Documentation, Release 3.1

Fig. 1.206: Expression Window’s Insert Variable. . . menu

222 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Deleting an expression

Users can delete an expression by clicking on it in the Expression list and then clicking on the Delete button. Deleting
an expression removes it from the list of defined expressions and will cause unresolved references for any other
expressions that use the deleted expression. If a plot uses an expression with unresolved references, VisIt will not be
able to generate it until the user resolves the reference.

Expression grammar

VisIt allows expressions to be written using a host of unary and binary math operators as well as built-in and user-
defined functions. VisIt’s expressions follow C-language syntax, although there are a few differences. The following
paragraphs detail the syntax of VisIt expressions.

Math operators

These include use of +, -, *, /, ^ as addition, subtraction, multiplication, division, and exponentiation as infix operators,
as well as the unary minus, in their normal precedence and associativity. Parentheses may be used as well to force a
desired associativity.

Examples: a+b^-c (a+b)*c

Constants

Scalar constants include floating point numbers and integers, as well as booleans (true, false, on, off) and strings.

Examples: 3e4 10 “mauve” true false

Vectors

Expressions can be grouped into two or three dimensional vector variables using curly braces.

Examples: {xc, yc} {0,0,1}

Lists

Lists are used to specify multiple items or ranges, using colons to create ranges of integers, possibly with strides, or
using comma-separated lists of integers, integer ranges, floating points numbers, or strings.

Examples: [1,3,2] [1:2, 10:20:5, 22] [silver, gold] [1.1, 2.5, 3.9] [level1, level2]

Identifiers

Identifiers include function names, defined variable and function names, and file variable names. They may include
alphabetic characters, numeric characters, and underscores in any order. Identifiers should have at least one non-
numeric character so that they are not confused with integers, and they should not look identical to floating point
numbers such as 1e6.

Examples: density x y z 3d_mesh

1.8. Quantitative Analysis 223

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Functions

These are used for built in functions, but they may also be used for functions/macros defined by the user. They take
specific types and numbers of arguments within the parentheses, separated by commas. Some functions may accept
named arguments in the form identifier=value.

Examples: sin(pi / 2) cross(vec1, {0,0,1}) my_xform(mesh1) subselect(materials=[a,b])

Database variables

These are like identifiers, but may also include periods, plus, and minus characters. A normal identifier will map to
a file variable when it is not defined as another expression. To force variables that look like integers or floating point
numbers to be interpreted as variable names, or to force variable names which are defined by another expression to
map to a variable in a file, they should be enclosed with < and >, the left and right carats/angle brackets. Note that
quotation marks will cause them to be interpreted as string constants, not variable names. In addition, variables in files
may be in directories within a file, so they may include slashes in a path when in angle brackets.

Examples: density <pressure> <a.001> <a.002> <domain1/density>

Databases

A database specification looks similar to a database variable contained in angle brackets, but it is followed by a colon
before the closing angle bracket, and it may also contain extra information. A database specification includes a file
specification possibly followed a machine name, a time specification by itself, or a file/machine specification followed
by a time specification. A file specification is just a file name with a path if needed. A machine specification is an
at-sign @ followed by a host name. A time specification looks much like a list in that it contains integer numbers or
ranges, or floating point numbers, separated by commas and enclosed in square brackets. However, it may also be
followed by a letter c, t, or i to specify if the time specification refers to cycles, times, or indices, respectively. If no
letter is specified, then the parser guesses that integers refer to cycles, floating point numbers refer to times. There is
also an alternative to force indices which is the pound sign # after the opening square bracket.

Examples: </dir/file:> <file@host.gov:> <[# 0:10]:> <file[1.234]:> <file[000, 023, 047]:> <file[10]c:>

Qualified file variables

Just like variables may be in directories within a file, they may also be in other timesteps within the same database,
within other databases, and even within databases on other machines. To specify where a variable is located, use the
angle brackets again, and prefix the variable name with a database specification, using the colon after the database
specification as a delimiter.

Examples: <file:var> </dir/file:/domain/var> <file@192.168.1.1:/var> <[#0]:zerocyclevar>

Built-in expressions

Danger: Add examples for some of the more complicated cases.

The following table lists built-in expressions that can be used to create more advanced expressions. Unless otherwise
noted in the description, each expression takes scalar variables as its arguments.

224 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Arithmetic Operator Expressions (Math Expressions)

In binary arithmetic operator expressions, each operand must evaluate to the same type field. For example, both must
evaluate to a scalar field or both must evaluate to a vector field.

In addition, if the two expressions differ in centering (e.g. one is zone or cell centered or piecewise-constant over
mesh cells while the other is node or point centered or pieceiwse-linear over mesh cells), VisIt will recenter any node-
centered fields to zone centering to compute the expression. This may not always be desirable. When it is not, the
recenter() may be used to explicitly control the centering of specific operands in an expression.

Sum Operator (+) [exprL + exprR] Creates a new expression which is the sum of the exprL and exprR ex-
pressions.

Difference Operator (-) [exprL - exprR] Creates a new expression which is the difference of the exprL and
exprR expressions.

Product Operator (*) [exprL * exprR] Creates a new expression which is the product of the exprL and exprR
expressions.

Division Operator (/) [exprL / exprR] Creates a new expression which is the quotient after dividing the exprL
expression by the exprR expression.

Division Operator [divide(val_numerator, val_denominator, [div_by_zero_value,
tolerance])] Creates a new expression which is the quotient after dividing the val_numerator
expression by the val_denominator expression. The div_by_zero_value is used wherever the
val_denominator is within tolerance of zero.

Exponent Operator (^) [exprL ^ exprR] Creates a new expression which is the product after multiplying the
exprL expression by itself exprR times.

Logical AND Operator (&) [exprL & exprR] Creates a new expression which is the logical AND of the exprL
and exprR expressions treating each value as a binary bit field. It is probably most useful for expressions
involving integer data but can be applied to expressions involving any type.

Associative Operator (()) [(expr0 OP expr1)] Parenthesis, () are used to explicitly group partial results of
sub expressions and control evaluation order.

For example, the expression (a + b) / c first computes the sum, a+b and then divides by c.

Absolute Value Function (abs()) [abs(expr0)] Creates a new expression which is everywhere the absolute
value if its argument.

Ceiling Function (ceil()) [ceil(expr0)] Creates a new expression which is everywhere the ceiling (smallest
integer greater than or equal to) of its argument.

Exponent Function (exp()) [exp(expr0)] Creates a new expression which is everywhere e (base of the natural
logarithm) raised to the power of its argument.

Floor Function (floor()) [floor(expr0)] Creates a new expression which is everywhere the floor (greatest
integer less than or equal to) of its argument.

Natural Logarithm Function (ln()) [ln(expr0)] Creates a new expression which is everywhere the natural log-
arithm of its argument.

Base 10 Logarithm Function (log10()) [log10(expr0)] Creates a new expression which is everywhere the
base 10 logarithm of its argument.

Max Function (max()) [max(expr0, exrp1 [, ...])] Creates a new expression which is everywhere the
maximum among all input variables.

Min Function (min()) [min(expr0, exrp1 [, ...])] Creates a new expression which is everywhere the
minimum among all input variables.

1.8. Quantitative Analysis 225

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Modulo Function (mod()) [mod(expr0,exrp1)] Creates a new expression which is everywhere the first argu-
ment, expr0, modulo the second argument, expr1.

Random Function (random()) [random(expr0)] Creates a new expression which is everywhere a random
floating point number between 0 and 1, as computed by (rand()%1024) ÷ 1024 where rand() is the stan-
dard C library rand() random number generator. The argument, expr0, must be a mesh variable. The seed used
on each block of the mesh is the absolute domain number.

Round Function (round()) [round(expr0)] Creates a new expression which is everywhere the result of round-
ing its argument.

Square Function (sqr()) [sqr(expr0)] Creates a new expression which is everywhere the result of squaring its
argument.

Square Root Function (sqrt()) [sqrt(expr0)] Creates a new expression which is everywhere the square root
of its argument.

Relational, Conditional and Logical Expressions

The if() conditional expression is designed to be used in concert with relation and logical expressions. Together,
these expressions can be used to build up more complex expressions in which very different evaluations are performed
depending on the outcome of other evaluations. For example, the if() conditional expression can be used together
with one or more relational expressions to create a new expression which evaluates to a dot-product on part of a mesh
and to the magnitude of a divergence operator on another part of a mesh.

If Function (if()) [if(exprCondition, exprTrue, exprFalse)] Creates a new expression which is
equal to exprTruewherever the condition, exprCondition is non-zero and which is equal to exprFalse
wherever exprCondition is zero.

For example, the expression if(and(gt(pressure, 2.0), lt(pressure, 4.0)), pressure,
0.0) combines the if expression with the gt and lt expressions to create a new expression that is equal to
pressure wherever it is between 2.0 and 4.0 and 0 otherwise.

Danger: Confirm relational and logical expressions produce new, boolean valued expression variables which are
themselves plottable in VisIt. Their original intent may have been only to be used as args in the IF expression and
not so much be plottable outputs in their own right.

Equal Function (eq()) [eq(exprL,exprR)] Creates a new expression which is everywhere a boolean value (1
or 0) indicating whether its two arguments are equal. A value of 1 is produced everywhere the arguments are
equal and 0 otherwise.

Greater Than Function (gt()) [gt(exprL,exprR)] Creates a new expression which is everywhere a boolean
value (1 or 0) indicating whether exprL is greater than exprR. A value of 1 is produced everywhere exprL
is greater than exprR and 0 otherwise.

Greater Than or Equal Function (ge()) [ge(exprL,exprR)] Creates a new expression which is everywhere a
boolean value (1 or 0) indicating whether exprL is greater than or equal to exprR. A value of 1 is produced
everywhere exprL is greater than or equal to exprR and 0 otherwise.

Less Than Function (lt()) [lt(exprL,exprR)] Creates a new expression which is everywhere a boolean value
(1 or 0) indicating whether exprL is less than exprR. A value of 1 is produced everywhere exprL is less than
exprR and 0 otherwise.

Less Than or Equal Function (le()) [le(exprL,exprR)] Creates a new expression which is everywhere a
boolean value (1 or 0) indicating whether exprL is less than or equal to exprR. A value of 1 is produced
everywhere exprL is less than or equal to exprR and 0 otherwise.

226 Chapter 1. VisIt GUI User Manual

http://www.cplusplus.com/reference/cstdlib/rand/
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Equal Function (ne()) [ne(exprL,exprR)] Creates a new expression which is everywhere a boolean value (1
or 0) indicating whether its two arguments are not equal. A value of 1 is produced everywhere the arguments
are not equal and 0 otherwise.

Logical And Function (and()) [and(exprL,exprR)] Creates a new expression which is everywhere the logical
and of its two arguments. Non-zero values are treated as true whereas zero values are treated as false.

Logical Or Function (or()) [or(exprL,exprR)] Creates a new expression which is everywhere the logical or
of its two arguments. Non-zero values are treated as true whereas zero values are treated as false.

Logical Not Function (not()) [not(expr0)] Creates a new expression which is everywhere the logical not of its
argument. Non-zero values are treated as true whereas zero values are treated as false.

Trigonometric Expressions

Arc Cosine Function (acos()) [acos(expr0)] Creates a new expression which is everywhere the arc cosine of
its argument. The returned value is in radians.

Arc Sine Function (asin()) [asin(expr0)] Creates a new expression which is everywhere the arc sine of its
argument. The returned value is in radians.

Arc Tangent Function (atan()) [atan(expr0)] Creates a new expression which is everywhere the arc tangent
of its argument. The returned value is in radians.

Cosine Function (cos()) [cos(expr0)] Creates a new expression which is everywhere the cosine of its argu-
ment. The argument is treated as in units of radians.

Hyperbolic Cosine Function (cosh()) [cosh(expr0)] Creates a new expression which is everywhere the hy-
perbolic cosine of its argument. The argument is the hyperbolic angle.

Sine Function (sin()) [sin(expr0)] Creates a new expression which is everywhere the sine of its argument.
The argument is treated as in units of radians.

Hyperbolic Sine Function (sinh()) [sinh(expr0)] Creates a new expression which is everywhere the hyper-
bolic sine of its argument. The argument is the hyperbolic angle.

Tangent Function (tan()) [tan(expr0)] Creates a new expression which is everywhere the tangent of its argu-
ment. The argument is treated as in units of radians.

Hyperbolic Tangent Function (tanh()) [tanh(expr0)] Creates a new expression which is everywhere the hy-
perbolic tangent of its argument. The argument is the hyperbolic angle.

Degrees To Radians Conversion Function (deg2rad()) [deg2rad(expr0)] Creates a new expression which
is everywhere the conversion from degrees to radians of its argument. The argument should be a variable
defined in units of degrees.

Radians To Degrees Conversion Function (rad2deg()) [rad2deg(expr0)] Creates a new expression which
is everywhere the conversion from radians to degrees of its argument. The argument should be a variable
defined in units of radians.

Vector and Color Expressions

Vector Compose Operator ({}) [{expr0, expr1, ... , exprN-1}] Curly braces, {} are used to create a
new expression of higher tensor rank from 2 or more expression of lower tensor rank. A common use is to
compose several tensor rank 0 expressions (e.g. scalar expressions) into a tensor rank 1 expression (e.g. a vector
expression). The component expressions, expr0, expr1, etc. must all be the same tensor rank and expression
type. For example, they must all be rank 0 (e.g. scalar expressions) or they must all be rank 1 (e.g. vector)
expressions of the same number of components. If they are all scalars, the result is a tensor of rank 1 (e.g. a

1.8. Quantitative Analysis 227

VisIt User Manual Documentation, Release 3.1

vector). If they are all vectors, the result is a tensor of rank 2 (e.g. a tensor). The vector compose operator is
also used to compose array expressions.

For example, the expression {u, v, w} takes three scalar mesh variables named u, v and w and creates a
vector mesh variable.

Vector Component Operator ([]) [expr[I]] Square brackets, [], are used to create a new expression of lower
tensor rank by extracting a component from an expression of higher tensor rank. Components are indexed
starting from 0. If expr is a tensor of rank 2, the result will be a tensor of rank 1 (e.g. a vector). If expr is a
tensor of rank 1, the result will be a tensor of rank 0 (e.g. a scalar). To obtain the J-th component of the I-th
row of a tensor of rank 2, the expression would be expr[I][J]

Color Function (color()) [color(exprR,exprG,exprB)] Creates a new, RGB vector, expression which de-
fines a color vector where exprR defines the red component, exprG defines the green component and exprB
defines the blue component of the color vector. The resulting expression is suitable for plotting with the True-
color Plot. The arguments are used to define color values in the range 0. . . 255. Values outside that range are
clamped. No normalization is performed. If the arguments have much smaller or larger range than [0. . . 255], it
may be appropriate to select a suitable multiplicative scale factor.

Color4 Function (color4()) [color4(exprR,exprG,exprB,exprA)] See color(). This function is similar
to the color() function but also supports alpha-transparency as the fourth argument, again in the range
0. . . 255.

Color lookup Function (colorlookup()) [colorlookup(expr0,tabname,scalmode,skewfac)]
Creates a new vector expression that is the color that each value in expr0 maps to. The tabname argument
is the name of the color table. The expr0 and tabname arguments are required. The scalmode and
skewfac arguments are optional. Possible values for scalmode are 0 (for linear scaling mode), 1 (for log
scaling mode) and 2 (for skew scaling mode). The skewfac argument is required only for a scalmode of 2.

Cross Product Function (cross()) [cross(exprV0,exprV1)] Creates a new vector expression which is the
vector cross product created by crossing exprV0 into exprv1. Both arguments must be vector expression.

Dot Product Function (dot()) [dot(exprV0,exprV1)] Creates a new scalar expression which is the vector
dot product of exprV0 with exprV1.

HSV Color Function (hsvcolor()) [hsvcolor(exprH,exprS,exprV)] See color(). This function is simi-
lar to the color() function but takes Hue, Saturation and Value (Lightness) arguments as inputs and produces
an RGB vector expression.

Magnitude Function (magnitude()) [magnitude(exprV0)] Creates a new scalar expression which is every-
where the magnitude of the exprV0.

Normalize Function (normalize()) [normalize(exprV0)] Creates a new vector expression which is every-
where a normalized vector (e.g. same direction but unit magnitude) of exprV0.

Curl Function: curl() [curl(expr0)] Creates a new vector expression which is everywhere the curl of its input
argument, which must be vector valued. In a 3D context, the result is also a vector. However, in a 2D context
the result vector would always be [0,0,V] so expression instead returns only the scalar V.

Divergence Function: divergence() [divergence(expr0)] Creates a new scalar expression which is ev-
erywhere the divergence of its input argument, which must be vector valued.

Gradient Function: gradient() [gradient(expr0)] Creates a new vector expression which is everywhere
the gradient of its input argument, which must be scalar. The method of calculation varies depending on the
type of mesh upon which the input is defined. See also ij_gradient() and ijk_gradient().

IJ_Gradient Function: ij_gradient() [ij_gradient(expr0)] No description available.

IJK_Gradient Function: ijk_gradient() [ijk_gradient(expr0)] No description available.

Surface Normal Function: surface_normal() [surface_normal(expr0)] This function is an alias for
cell_surface_normal()

228 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Point Surface Normal Function: point_surface_normal() [point_surface_normal(expr0)] Like
cell_surface_normal() except that after computing face normals, they are averaged to the nodes.

Cell Surface Normal Function: cell_surface_normal() [cell_surface_normal(<Mesh>)] Com-
putes a vector variable which is the normal to a surface. The input argument is a Mesh variable. In addition,
this function cannot be used in isolation. It must be used in combination the external surface, first, and the defer
expression, second, operators.

Edge Normal Function: edge_normal() [edge_normal(expr0)] No description available.

Point Edge Normal Function: point_edge_normal() [point_edge_normal(expr0)] No description
available.

Cell Edge Normal Function: cell_edge_normal() [cell_edge_normal(expr0)] No description avail-
able.

Tensor Expressions

Contraction Function: contraction() [contraction(expr0)] Creates a scalar expression which is ev-
erywhere the contraction of expr0 which must be a tensor valued expression. The contraction is the sum of
pairwise dot-products of each of the column vectors of the tensor with itself as shown in the code snip-it below.

Show/Hide Code for contraction()

// Conceptually it is like as doting each column vector with
// itself and adding the column results
//

ctract +=vals[0] * vals[0] + vals[1] * vals[1] + vals[2] * vals[2];
ctract +=vals[3] * vals[3] + vals[4] * vals[4] + vals[5] * vals[5];
ctract +=vals[6] * vals[6] + vals[7] * vals[7] + vals[8] * vals[8];

Determinant Function: determinant() [determinant(expr0)] Creates a scalar expression which is ev-
erywhere the determinant of expr0 which must be tensor valued.

Effective Tensor Function: effective_tensor() [effective_tensor(expr0)] Creates a scalar ex-
pression which is everywhere the square root of three times the second principal invariant of the stress deviator
tenosr,

√
3 * 𝐽2, where 𝐽2 is the second principal invariant of the stress deviator tensor. This is also known as

the von Mises stress or the Huber-Mises stress or the Mises effective stress.

Show/Hide Code for effective_tensor()

double s11 = vals[0], s12 = vals[1], s13 = vals[2];
double s21 = vals[3], s22 = vals[4], s23 = vals[5];
double s31 = vals[6], s32 = vals[7], s33 = vals[8];

// First invariant of the stress tensor
// aka "pressure" of incompressible fluid in motion
// aka "mean effective stress"
double trace = (s11 + s22 + s33) / 3.;

// components of the deviatoric stress
double dev0 = s11 - trace;
double dev1 = s22 - trace;
double dev2 = s33 - trace;

// The second invariant of the stress deviator
// aka "J2"

(continues on next page)

1.8. Quantitative Analysis 229

https://en.wikipedia.org/wiki/Determinant

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

double out2 = 0.5*(dev0*dev0 + dev1*dev1 + dev2*dev2) +
s12*s12 + s13*s13 + s23*s23;

// stress deviator
out2 = sqrt(3.*out2);

Eigenvalue Function: eigenvalue() [eigenvalue(expr0)] The expr0 argument must evaluate to a 3x3
symmetric tensor. The eigenvalue expression returns the eigenvalues of the 3x3 symmetric matrix argument
as a vector valued expression where each eigenvalue is a component of the vector. Use the vector component
operator, [], to access individual eigenvalues. If a non-symmetric tensor is supplied, results are indeterminate.

Eigenvector Function: eigenvector() [eigenvector(expr0)] The expr0 argument must evaluate to a
3x3 symmetric tensor. The eigenvector expression returns the eigenvectors of the 3x3 matrix argument as a
tensor (3x3 matrix) valued expression where each column in the tensor is one of the eigenvectors.

In order to use the vector component operator [], to access individual eigenvectors, the result must be transposed
with the transpose(), expression function.

For example, if evecs = transpose(eigenvector(tensor)), the expression evecs[1]will return
the second eigenvector.

Inverse Function: inverse() [inverse(expr0)] Creates a new tensor expression which is everywhere the
inverse of its input argument, which must also be a tensor.

Principal Deviatoric Tensor Function: principal_deviatoric_tensor()
[principal_deviatoric_tensor(expr0)] Deviatoric stress is the stress tensor which results
after subtracting the hydrostatic stress tensor. Hydrostatic stress is a scalar quantity also often referred to as
average pressure or just pressure. However, it is often characterized in tensor form by multiplying it through a
3x3 identity matrix.

The principal_deviatoric_tensor() expression function creates a new vector expression which is
everywhere the principal components of the deviatoric stress tensor computed from the symmetric tensor argu-
ment expr0. In other words, the eigenvalues of the deviatoric stress tensor.

Potentially, it would be more appropriate to create a new tensor field here with all zeros for off-diagonal elements
and the eigenvalues on the main diagonal.

This expression can also be computed by using a combination of the trace() and principal_tensor()
expression functions. The trace() (divided by 3) would be used to subtract out hydrostatic stress and the
result could be used in the principal_tensor() expression to arrive at the same result.

Show/Hide Code for principal_deviatoric_tensor()

double pressure = -(vals[0] + vals[4] + vals[8]) / 3.;
double dev0 = vals[0] + pressure;
double dev1 = vals[4] + pressure;
double dev2 = vals[8] + pressure;

// double invariant0 = dev0 + dev1 + dev2;
double invariant1 = 0.5*(dev0*dev0 + dev1*dev1 + dev2*dev2);
invariant1 += vals[1]*vals[1] + vals[2]*vals[2] + vals[5]*vals[5];
double invariant2 = -dev0*dev1*dev2;
invariant2 += -2.0 *vals[1]*vals[2]*vals[5];
invariant2 += dev0*vals[5]*vals[5];
invariant2 += dev1*vals[2]*vals[2];
invariant2 += dev2*vals[1]*vals[1];

double princ0 = 0.;

(continues on next page)

230 Chapter 1. VisIt GUI User Manual

http://www.continuummechanics.org/hydrodeviatoricstress.html

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

double princ1 = 0.;
double princ2 = 0.;
if (invariant1 >= 1e-100)
{

double alpha = -0.5*sqrt(27./invariant1)

*invariant2/invariant1;
if (alpha < 0.)

alpha = (alpha < -1. ? -1 : alpha);
if (alpha > 0.)

alpha = (alpha > +1. ? +1 : alpha);

double angle = acos((double)alpha) / 3.;
double value = 2.0 * sqrt(invariant1 / 3.);
princ0 = value*cos(angle);
angle = angle - 2.0*vtkMath::Pi()/3.;
princ1 = value*cos(angle);
angle = angle + 4.0*vtkMath::Pi()/3.;
princ2 = value*cos(angle);

}

double out3[3];
out3[0] = princ0;
out3[1] = princ1;
out3[2] = princ2;

Principal Tensor Function: principal_tensor() [principal_tensor(expr0)] Creates a new vector
expression which is everywhere the principal stress components of the input argument, which must a sym-
metric tensor. The principal stress components are the eigenvalues of the stress tensor. So, the vector expression
computed here is the same as eigenvalue().

Potentially, it would be more appropriate to create a new tensor field here with all zeros for off-diagonal elements
and the eigenvalues on the main diagonal.

Transpose Function: transpose() [transpose(expr0)] Creates a new tensor expression which is every-
where the transpose of its input argument which must also be a tensor. The first row vector in the input becomes
the first column vector in the output, etc.

Tensor Maximum Shear Function: tensor_maximum_shear() [tensor_maximum_shear(expr0)]
Creates a new Scalar expression which is everywhere the maximum shear stress as defined in J.C. Ugural and
S.K. Fenster “Advanced Strength and Applied Elasticity”, Prentice Hall 4th Edition, page 81. the specific
mathematical operations of which are shown in the code snip-it below.

Show/Hide Code for tensor_maximum_shear()

1.8. Quantitative Analysis 231

https://uclageo.com/CEE220/Section2.3.php

VisIt User Manual Documentation, Release 3.1

double *vals = in->GetTuple9(i);
double s11 = vals[0], s12 = vals[1], s13 = vals[2];
double s21 = vals[3], s22 = vals[4], s23 = vals[5];
double s31 = vals[6], s32 = vals[7], s33 = vals[8];

// Hydro-static component
double pressure = (s11 + s22 + s33) / 3.;

// Deviatoric stress components
double dev0 = s11 - pressure;
double dev1 = s22 - pressure;
double dev2 = s33 - pressure;

// double invariant0 = dev0 + dev1 + dev2;
// Second invariant of stress deviator
double invariant1 = 0.5*(dev0*dev0 + dev1*dev1 + dev2*dev2);
invariant1 += s12*s12 + s13*s13 + s23*s23;

// Third invariant of stress deviator
double invariant2 = -dev0*dev1*dev2;
invariant2 += -2.0*s12*s13*s23;
invariant2 += dev0*s23*s23;

(continues on next page)

232 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

invariant2 += dev1*s13*s13;
invariant2 += dev2*s12*s12;

// Cubic roots of the characteristic equation
// http://mathworld.wolfram.com/CubicFormula.html
double princ0 = 0.;
double princ2 = 0.;
if (invariant1 >= 1e-100)
{

double alpha = -0.5*sqrt(27./invariant1)

*invariant2/invariant1;
if (alpha < 0.)

alpha = (alpha < -1. ? -1 : alpha);
if (alpha > 0.)

alpha = (alpha > +1. ? +1 : alpha);

double angle = acos((double)alpha) / 3.;
double value = 2.0 * sqrt(invariant1 / 3.);
princ0 = value*cos(angle);
// Displace the angle for princ1 (which we don't calculate)
angle = angle - 2.0*vtkMath::Pi()/3.;
// Now displace for princ2
angle = angle + 4.0*vtkMath::Pi()/3.;
princ2 = value*cos(angle);

}

// set the output value

Trace Function: trace() [trace(expr0)] Creates a new scalar expression which is everywhere the trace of
expr0 which must be a 3x3 tensor. The trace is the sum of the diagonal elements.

Viscous Stress Function: viscous_stress() [viscous_stress(expr0)] Creates a new tensor expression
which is everywhere the viscous stress. The key difference between viscous stress and elastic stress (which is
the kind of stress many of the other functions here deal with) is that viscous stress is related to the rate of change
of deformation whereas elastic stress is related to the amount of deformation. These two are related in the same
way velocity and distance are related.

The argument here, expr0 is a vector valued velocity. In addition, the current implementation of this function
works only for 2D, structured gridded meshes.

Show/Hide Code for viscous_stress()

dx[0] = .5 * (px[0] + px[1] - px[2] - px[3]);
dx[1] = .5 * (px[1] + px[2] - px[3] - px[0]);

dy[0] = .5 * (py[0] + py[1] - py[2] - py[3]);
dy[1] = .5 * (py[1] + py[2] - py[3] - py[0]);

du[0] = .5 * (vx[0] + vx[1] - vx[2] - vx[3]);
du[1] = .5 * (vx[1] + vx[2] - vx[3] - vx[0]);

dv[0] = .5 * (vy[0] + vy[1] - vy[2] - vy[3]);
dv[1] = .5 * (vy[1] + vy[2] - vy[3] - vy[0]);

div = 1.0 / (dx[0] *dy[1] - dx[1] *dy[0] + tiny);

dvx[0] = div * (du[0]*dy[1] - du[1] * dy[0]);

(continues on next page)

1.8. Quantitative Analysis 233

https://en.wikipedia.org/wiki/Trace_(linear_algebra)
https://en.wikipedia.org/wiki/Viscous_stress_tensor

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

dvx[1] = div * (du[1]*dx[0] - du[0] * dx[1]);

dvy[0] = div * (dv[0]*dy[1] - dv[1] * dy[0]);
dvy[1] = div * (dv[1]*dx[0] - dv[0] * dx[1]);

// create the tensor

// if rz mesh include extra divergence term
if(rz_mesh)
{

cyl_term = (vy[0] + vy[1] + vy[2] + vy[3]) /
(py[0] + py[1] + py[2] + py[3] + tiny);

}

// diag terms
vstress[0] = 1/3.0 * (2.0 * dvx[0] - dvy[1]- cyl_term);
vstress[4] = 1/3.0 * (2.0 * dvy[1] - dvx[0]- cyl_term);
vstress[8] = 0.0;
// other terms
vstress[1] = 0.5 * (dvy[0] + dvx[1]);
vstress[2] = 0.0;
vstress[5] = 0.0;

// use symm to fill out remaining terms
vstress[3] = vstress[1];
vstress[6] = vstress[2];
vstress[7] = vstress[5];

}

Array Expressions

Array Compose Function: array_compose() [array_compose(expr0, expr1, ..., exprN-1)]
Create a new array expression variable which is everywhere the array composition of its arguments, which
all must be scalar type. An array mesh variable is useful when using the label plot or when doing picks and
wanting pick values to always return a certain selected set of mesh variables. But, all an array mesh variable
really is is a convenient container to hold a group of individual scalar mesh variables. Each argument to the
array_compose expression must evaluate to a scalar expression and all of the input expressions must have the
same centering. Array variables are collections of scalar variables that are commonly used with certain plots to
display the contents of multiple variables simultaneously. For example, the Label plot can display the values in
an array variable.

Array Compose With Bins Function: array_compose_with_bins() [array_compose_with_bins(expr0,
...,exprN-1,b0,...bn-1)] This expression combines two related concepts. One is the array concept
where a group of individual scalar mesh variables are grouped into an array variable. The other is a set of
coordinate values (you can kinda think of as bin boundaries), that should be used by VisIt for certain kinds of
operations involving the array variable. If there are N variables in the array, expr0, expr1, and so on, there
are N+1 coordinate values (or bin boundaries), b0, b1. When such a variable is picked using one of VisIt’s pick
operations, VisIt can display a bar-graph. Each bar in the bar-graph has a height determined by the associated
scalar mesh variable (at the picked point) and a width determined by the associated bin-boundaries.

For example, suppose a user had an array variable, foo, composed of 5 scalar mesh variables, a1, a2, a3, a4,
and a5 like so. . .

array_compose_with_bins(a1,a2,a3,a4,a5,0,3.5,10.1,10.7,12,22)

For any given point on a plot, when the user picked foo, there are 5 values returned, the value of each of the 5

234 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

scalar variable members of foo. If the user arranged for a pick to return a bar-graph of the variable using the
bin-boundaries, the result might look like. . .

Fig. 1.207: Bar graph created from picking an array variable created with array_compose_with_bins()

Array Decompose Function: array_decompose() [array_decompose(Arr,Idx)] Creates a new scalar
expression which is everywhere the scalar member of the array input argument at index Idx (numbered starting
from zero).

Array Decompose 2D Function: array_decompose2d() [array_decompose2d(expr0)] No description
available.

Array Component-wise Division Function: array_componentwise_division()
[array_componentwise_division(<Array>,<Divisor>)] Return a new array variable which is
the old input <Array> variable with each of its components divided by the <Divisor>.

Array Component-wise Product Function: array_componentwise_product()
[array_componentwise_product(<Array>,<Multiplier>)] Return a new array variable
which is the old input <Array> variable with each of its components multiplied by the <Multiplier>.

Array Sum Function: array_sum() [array_sum(<Array>)] Return a new scalar variable which is the sum
of the <Array> components.

Material Expressions

Dominant Material Function: dominant_mat() [domimant_mat(<Mesh>)] Creates a new scalar expres-
sion which is for every mesh cell/zone the material having the largest volume fraction.

Material Error Function: materror() [materror(<Mat>,[Const,Const...])] Creates a new scalar
expression which is everywhere the difference in volume fractions as stored in the database and as computed by

1.8. Quantitative Analysis 235

VisIt User Manual Documentation, Release 3.1

VisIt’s material interface reconstruction (MIR) algorithm. The <Mat> argument is a material variable from a
database and the Const argument is one of the material names as an quoted string or a material number as an
integer. If multiple materials are to be selected from the material variable, enclose them in square brackets as a
list.

Examples. . .

materror(materials, 1)
materror(materials, [1,3])
materror(materials, "copper")
materror(materials, ["copper", "steel"])

Material Volume Fractions Function: matvf() [matvf(<Mat>,[Const,Const,...])] Creates a new
scalar expression which is everywhere the sum of the volume fraction of the specified materials within the
specified material variable. The <Mat> argument is a material variable from a database and the Const argu-
ment(s) identify one or more materials within the material variable.

Examples. . .

matvf(materials, 1)
matvf(materials, [1,3])
matvf(materials, "copper")
matvf(materials, ["copper", "steel"])

NMats Function: nmats() [nmats(<Mat>)] Creates a new scalar expression which for each mesh cell/zone is
the number of materials in the cell/zone. The <Mat> argument is a material variable from a database.

Specmf Function: specmf() [specmf(<Spec>,<MConst>,[Const,Const,...])] Performs the analo-
gous operation to matvf for species mass fractions. The <Spec> argument is a species variable from a
database. The <MConst> argument is a specific material within the species variable. The <Const> argu-
ment(s) identify which species within the species variable to select.

Examples:

specmf(species, 1, 1)
specmf(species, "copper", 1)
specmf(species, "copper", [1,3])

Value For Material Function: value_for_material() [value_for_material(<Var>,<Const>)]
Creates a new scalar expression which is everywhere the material-specific value of the variable specified by
<Var> for the material specified by <Const>. If variable specified by <Var> has no material specific values,
the values returned from this function will be just the variable’s values.

Mesh Expressions

Area Function: area() [area(<Mesh>)] See the Verdict Manual

cylindrical Function: cylindrical() [cylindrical(<Mesh>)] Creates a new vector variable on the mesh
which is the cylindrical coordinate tuple (R,theta,Z) of each mesh node.

Cylindrical Radius [cylindrical_radius(<Mesh>)] Creates a scalar new variable on the mesh which is the
radius component of the cylindrical coordinate (from the Z axis) of each mesh node.

cylindrical theta Function: cylindrical_theta() [cylindrical_theta(<Mesh>)] Creates a new
scalar variable on the mesh which is the angle component of the cylindrical coordinate (around the Z axis
from the +X axis) of each mesh node.

polar radius Function: polar_radius() [polar_radius(<Mesh>)] Creates a new scalar variable on the
mesh which is the radius component of the polar coordinate of each mesh node.

236 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

polar theta Function: polar_theta() [polar_theta(<Mesh>)] Creates a new scalar variable on the mesh
which is the theta component of the polar coordinate of each mesh node.

polar phi Function: polar_phi() [polar_phi(<Mesh>)] Creates a new scalar variable on the mesh which is
the phi component of the polar coordinate of each mesh node.

min coord Function: min_coord() [min_coord(expr0)] No description available.

max coord Function: max_coord() [max_coord(expr0)] No description available.

external node Function: external_node() [external_node(expr0)] No description available.

external cell Function: external_cell() [external_cell(expr0)] No description available.

Zoneid Function: zoneid() [zoneid(<Mesh>)] Return a zone-centered scalar variable where the value for
each zone/cell is local index of a zone, staring from zero, within its domain.

Global Zoneid Function: global_zoneid() [global_zoneid(<Mesh>)] If global zone ids are specified
by the input database, return a zone-centered scalar variable where the value for each zone/cell is the global
index of a zone, as specified by the data producer.

Nodeid Function: nodeid() [nodeid(expr0)] Return a node-centered scalar variable where the value for each
node/vertex/point is local index of a node, staring from zero, within its domain.

Global Nodeid Function: global_nodeid() [global_nodeid(expr0)] If global node ids are specified by
the input database, return a node-centered scalar variable where the value for each node/vertex/point is the
global index of a node, as specified by the data producer.

Volume Function: volume() [volume(<Mesh>)] No description available.

Volume2 Function: volume2() [volume2(<Mesh>)] No description available.

Revolved Volume Function: revolved_volume() [revolved_volume(<Mesh>)] No description avail-
able.

Revolved Surface Area Function: revolved_surface_area() [revolved_surface_area(<Mesh>)]
No description available.

Zone Type Function: zonetype() [zonetype(<Mesh>)] Return a zone centered, character valued variable
which indicates the shape type of each zone suitable for being used within the label plot. Upper case charac-
ters generally denote 3D shapes (e.g. T for tet) while lower case characters denote 2D shapes (e.g. t for
triangle).

Zone Type Rank Function: zonetype_rank() [zonetype_rank(<Mesh>)] Return a zone centered, integer
valued variable which indicates the VTK shape type of each zone. This expression is often useful with the
threshold operator to select only certain shapes within the mesh to be displayed.

Mesh Quality Expressions

VisIt employs the Verdict Mesh Quality Library to support a number of expressions related to computing cell-by-cell
mesh quality metrics. The specific definitions of the various mesh quality metrics defined by the Verdict Mesh Quality
Library are amply explained in the Verdict Manual. Below, we simply list all the mesh quality metrics and
describe in detail only those that are not part of the Verdict Mesh Quality Library

In all cases in the Mesh Quality Expressions, the input argument is a mesh variable from a database and the output
is a scalar expression.

Neighbor Function: neighbor() [neighbor(<Mesh>)] See the Verdict Manual

Node Degree Function: node_degree() [node_degree(<Mesh>)] See the Verdict Manual

degree Function: degree() [degree(expr0)] No description available.

1.8. Quantitative Analysis 237

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Aspect Function: aspect() [aspect(<Mesh>)] See the Verdict Manual

Skew Function: skew() [skew(<Mesh>)] See the Verdict Manual

Taper Function: taper() [taper(<Mesh>)] See the Verdict Manual

Minimum Corner Angle Function: min_corner_angle() [min_corner_angle(<Mesh>)] See the Ver-
dict Manual

Maximum Corner Angle Function: max_corner_angle() [max_corner_angle(<Mesh>)] See the Ver-
dict Manual

Minimum Edge Length Function: min_edge_length() [min_edge_length(<Mesh>)] See the Verdict
Manual

Maximum Edge Length Function: max_edge_length() [max_edge_length(<Mesh>)] See the Verdict
Manual

Minimum Side Volume Function: min_side_volume() [min_side_volume(<Mesh>)] See the Verdict
Manual

Maximum Side Volume Function: max_side_volume() [max_side_volume(<Mesh>)] See the Verdict
Manual

Stretch Function: stretch() [stretch(<Mesh>)] See the Verdict Manual

Diagonal Ratio Function: diagonal_ratio() [diagonal_ratio(<Mesh>)] See the Verdict Manual

Maximum Diagonal Function: max_diagonal() [max_diagonal(<Mesh>)] See the Verdict Manual

Minimum Diagonal Function: min_diagonal() [min_diagonal(<Mesh>)] See the Verdict Manual

Dimension Function: dimension() [dimension(<Mesh>)] See the Verdict Manual

Oddy Function: oddy() [oddy(<Mesh>)] See the Verdict Manual

Condition Function: condition() [condition(<Mesh>)] See the Verdict Manual

Jacobian Function: jacobian() [jacobian(<Mesh>)] See the Verdict Manual

Scaled Jacobian Function: scaled_jacobian() [scaled_jacobian(<Mesh>)] See the Verdict Manual

Shear Function: shear() [shear(<Mesh>)] See the Verdict Manual

Shape Function: shape() [shape(<Mesh>)] See the Verdict Manual

Relative Size Function: relative_size() [relative_size(<Mesh>)] See the Verdict Manual

Shape and Size Function: shape_and_size() [shape_and_size(<Mesh>)] See the Verdict Manual

Aspect Gamma Function: aspect_gamma() [aspect_gamma(<Mesh>)] See the Verdict Manual

Warpage Function: warpage() [warpage(<Mesh>)] See the Verdict Manual

Maximum Angle Function: maximum_angle() [maximum_angle(<Mesh>)] See the Verdict Manual

Minimum Angle Function: minimum_angle() [minimum_angle(<Mesh>)] See the Verdict Manual

Minimum Corner Area Function: min_corner_area() [min_corner_area(<Mesh>)] See the Verdict
Manual

Minimum Sin Corner Function: min_sin_corner() [min_sin_corner(<Mesh>)] See the Verdict Man-
ual

Minimum Sin Corner CW Function: min_sin_corner_cw() [min_sin_corner_cw(<Mesh>)] See the
Verdict Manual

238 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Face Planarity Function: face_planarity() [face_planarity(<Mesh>)] Creates a new expression
which is everywhere a measure of how close to planar all the points comprising a face are. This is com-
puted for each face of a cell and the maximum over all faces is selected for each cell. Planarity is measured as
the maximum distance from an arbitrary plane defined by the first 3 points of a face of the remaining points of
the face. Values closer to zero are better. A triangle face will always have a planarity measure of zero. This
mesh quality expression is not part of the Verdict library.

Relative Face Planarity Function: relative_face_planarity() [relative_face_planarity(<Mesh>)]
Performs the same computation as the face_planarity(), except where each face’s value is normalized by the
average edge length of the face.

Comparison Expressions

Comparing variables defined on the same mesh is often as simple as taking their difference. What about comparing
variables when they are defined on different meshes? A common example is taking the difference between results
from two runs of the same simulation application. Even if the two runs operate on computationally identical meshes,
the fact that each run involves its own instance of that mesh means that as far as VisIt is concerned, they are different
meshes.

In order to compose an expression involving variables on different meshes, the first step is to map the variables onto a
common mesh. The position-based CMFE function and its friend, the connectivity-based CMFE function, conn_cmfe()
are the work-horse methods needed when working with variables from different meshes in the same expression. CMFE
is an abbreviation for cross-mesh field evaluation.

The syntax for specifying CMFE expressions can be complicated. Therefore, the GUI supports a wizard to help create
them. See the Data-Level Comparisons Wizard for more information. Here, we describe the details of creating CMFE
expressions manually.

All of the comparison expressions involve the concepts of a donor variable and a target mesh. The donor variable (e.g.
pressure) is the variable to be mapped. The target mesh is the mesh onto which the donor variable is to be mapped. In
addition, the term donor mesh refers to the mesh upon which the donor variable is defined.

Position-Based CMFE Function: pos_cmfe() [pos_cmfe(<Donor Variable>,<Target Mesh>,
<Fill>)] The pos_cmfe() function performs the mapping assuming the two meshes, that is the <Target
Mesh> and the mesh upon which the <Donor Variable> (e.g. the donor mesh) is defined, share only a
common spatial (positional) extent. Its friend, the conn_cmfe() function is optimized to perform the mapping
when the two meshes are also topologically identical. In other words, their coordinate and connectivity arrays
are 1:1. In this case, the mapping can be performed with more efficiency and numerical accuracy. Therefore,
when it is possible and makes sense to do so, it is always best to use conn_cmfe().

We’ll describe the arguments to pos_cmfe() working backwards from the last.

The last, <Fill> argument is a numerical constant that VisIt will use to determine the value of the result in
places on the target mesh that do not spatially overlap with the mesh of the donor variable. Note that if a value
is chosen within the range of the donor variable, it may by difficult to distinguish regions VisIt deemed were
non-overlapping. On the other hand, if a value outside the range is chosen, it will effect the range of the mapped
variable. A common practice is to choose a value that is an extremum of the donor variable’s range. Another
practice is to choose a value that is easily distinguishable and then apply a threshold operator to remove those
portions of the result. If the Fill argument is not specified, zero is assumed.

Working backwards, the next argument, is the <Target Mesh>. The <Target Mesh> argument in
pos_cmfe() is always interpreted as a mesh within the currently active database. The CMFE expressions
are always mapping data from other meshes, possibly in other databases onto the <Target Mesh> which is
understood to be in the currently active database. When mapping data between meshes in different databases,
the additional information necessary to specify the other database is encoded with a special syntax prepending
the Donor Variable argument.

1.8. Quantitative Analysis 239

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

The Donor Variable argument is a string argument of the form:

<PATH-TO-DATABASE-FROM-CWD[SSS]MM:VARNAME>

consisting of the donor variable’s name and up to three pre-pending sub-strings which may be optionally
needed to specify. . .

1. . . . the Database (PATH-TO-DATABASE-FROM-CWD) in which the donor variable resides,

2. . . . the State Id ([SSS]) from which to take the donor variable,

3. . . . the Modality (MM) by which states are identified in the State Id sub-string.

Depending on circumstances, specifying the Donor-Variable argument to the CMFE functions can
get cumbersome. For this reason, CMFE expressions are typically created using the Data-Level Compar-
isons Wizard under the Controls menu. Nonetheless, here we describe the syntax and provide examples
for a number of cases of increasing complexity in specifying where the Donor Variable resides.

When the donor variable is in the same database and state as the target mesh, then only the variable’s
name is needed. The optional substrings are not. See case A in the examples below.

When the donor variable is in a different database and the databases do not have multiple time states, then
only sub-string 1, above, is needed to specify the path to the database in the file system. The path to the
database can be specified using either absolute or relative paths. Relative paths are interpreted relative to
the current working directory in which the VisIt session was started. See cases B and C in the examples
below.

When the donor variable is in a different database and the databases have multiple states, then all 3
sub-strings, above, are required. The State Id substring is a square-bracket enclosed number used
to identify which state from which to take the donor variable. The Modality substring is a one- or
two-character moniker. The first character indicates whether the number in the the State Id substring
is a cycle (c), a time (t), or an index (i). The second character, if present, is a d character to indicate
the cycle, time or index is relative (e.g. a delta) to the current state. For example, the substring [200]c
means to treat the 200 as a cycle number in the donor database whereas the the substring [-10]id
means to treat the -10 as an (i) index (d) delta. So, [200]c would map the donor at cycle 200 to
the current cycle of the target and [-10]id would map the donor at the current index minus 10 to the
current index of the target. In particular, the string [0]id is needed to create a CMFE that keeps donor
and target in lock step. Note that in cases where the donor database does not have an exact match for
the specified cycle or time, VisIt will chose the state with the cycle or time which is closest in absolute
distance. For the index modality, if there is no exact match for the specified index, an error results. See
cases D-I in the examples below.

Note that the relative form of specifying the State Id is needed even when working with different states
within the same database. In particular, to create an expression representing a time derivative of a variable
in a database, the key insight is to realize it involves mapping a donor variable from one state in the
database onto a mesh at another state. In addition, the value in using the relative form of specifying the
State Id of the donor variable is that as the current time is changed, the expression properly identifies
the different states of the donor variable instead of always mapping a fixed state.

Examples. . .

Case A: Donor variable, "pressure" in same database as mesh, "ucdmesh"
Note that due to a limitation in Expression parsing, the '[0]id:' is
currently required in the donor variable name as a substitute for
specifying a file system path to a database file. The syntax '[0]id:'
means a state index delta of zero within the active database.
pos_cmfe(<[0]id:pressure>,<ucdmesh>,1e+15)

Case B: Donor variable in a different database using absolute path

(continues on next page)

240 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

pos_cmfe(</var/tmp/foo.silo:pressure>,<ucdmesh>,1e+15)

Case C: Donor variable in a different database using relative path
pos_cmfe(<foo/bar.silo:pressure>,<ucdmesh>,1e+15)

Case D: Map "p" from wave.visit at state index=7 onto "mesh"
pos_cmfe(<./wave.visit[7]i:p>, mesh, 1e+15)

Case E: Map "p" from wave.visit at state index current-1 onto "mesh"
pos_cmfe(<./wave.visit[-1]id:p>, mesh, 1e+15)

Case F: Map "p" from wave.visit at state with cycle~200 onto "mesh"
pos_cmfe(<./wave.visit[200]c:p>, mesh, 1e+15)

Case G: Map "p" from wave.visit at state with cycle~cycle(current)-200 onto "mesh"
pos_cmfe(<./wave.visit[-200]id:p>, mesh, 1e+15)

Case H: Map "p" from wave.visit at state with time~1.4 onto "mesh"
pos_cmfe(<./wave.visit[1.4]t:p>, mesh, 1e+15)

Case I: Map "p" from wave.visit at state with time~time(current)-0.8 onto "mesh"
pos_cmfe(<./wave.visit[-0.8]td:p>, mesh, 1e+15)

Connectivity-Based CMFE Function: conn_cmfe() [conn_cmfe(<Donor Variable>,<Target
Mesh>)] The connectivity-based CMFE is an optimized version of pos_cmfe() for cases where the Target
Mesh and the mesh of the Donor Variable are topologically and geometrically identical. In such cases,
there is no opportunity for the two meshes to fail to overlap perfectly. Thus, there is no need for the third,
<Fill> argument. In all other respects, conn_cmfe() performs the same function as pos_cmfe() except that
conn_cmfe() assumes that any differences in the coordinates of the two meshes are numerically insignificant
to the resulting mapped variable. In other words, differences in the coordinate fields, if they exist, are not
incorporated into the resulting mapping.

Curve CMFE Function: curve_cmfe() [curve_cmfe(<Donor Curve>,<Target Curve>)] The
curve-based CMFE performs the same function as pos_cmfe() except for curves. The arguments specify the
Target Curve and Donor Curve and the same syntax rules apply for specifying the Donor Curve as
for the Donor Variable in pos_cmfe(). However, if curves represent different spatial extents or different
numbers of samples or sample spacing, no attempt is made to unify them.

Symmetric Difference By Point Function: symm_point() [symm_point(<Scalar>,<Fill>,[Px,Py,
Pz])] Return a new scalar variable which is the symmetric difference of <Scalar> reflected about the point
[Px, Py, Pz]. In 2D, Pz is still required but ignored. The <Fill> argument is a numerical constant that
VisIt will use to determine the value of the result in places symmetry about the point doesn’t overlap with the
donor mesh. This operation involves both the reflection about the point and taking the difference. If the input
<Scalar> is indeed symmetric about the point, the result will be a constant valued variable of zero.

Symmetric Difference By Plane Function: symm_plane() [symm_plane(<Scalar>,<Fill>,[Nx,Ny,
Nz,Px,Py,Pz])] Return a new scalar variable which is the symmetric difference of <Scalar> reflected
about the plane defined by the point [Px, Py, Pz] and normal [Nx, Ny, Nz]. In 2D, the Nz and Pz
arguments are still required but ignored. The <Fill> argument is a numerical constant that VisIt will use to
determine the value of the result in places symmetry about the plane doesn’t overlap with the donor mesh. This
operation involves both the reflection about the plane and taking the difference. If the input <Scalar> is
indeed symmetric about the plane, the result will be a constant valued variable of zero.

Symmetric Difference By Transform Function: symm_transform() [symm_transform(<Scalar>,
<Fill>,[T00,T01,T02,...,T22])] Return a new scalar variable which is the symmetric difference of
<Scalar> reflected through the 3x3 transformation where each point, [Px,Py,Pz], in the mesh supporting

1.8. Quantitative Analysis 241

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

<Scalar> is transformed by the transform coefficients, [T00, T01,...,T22] as shown below. In 2D,
all 9 transform coefficients are still required but the last row and column are ignored. The <Fill> argument
is a numerical constant that VisIt will use to determine the value of the result in places symmetry through the
transform doesn’t overlap with the donor mesh. This operation involves both the transform and taking the
difference. If the input <Scalar> is indeed symmetric through the transform, the result will be a constant
valued variable of zero.⎡⎣𝑇00 𝑇01 𝑇02

𝑇10 𝑇11 𝑇12

𝑇20 𝑇21 𝑇22

⎤⎦ *

⎡⎣𝑃𝑥

𝑃𝑦

𝑃𝑧

⎤⎦ =

⎡⎣𝑇00 * 𝑃𝑥 + 𝑇01 * 𝑃𝑦 + 𝑇02 * 𝑃𝑧

𝑇10 * 𝑃𝑥 + 𝑇11 * 𝑃𝑦 + 𝑇12 * 𝑃𝑧

𝑇20 * 𝑃𝑥 + 𝑇21 * 𝑃𝑦 + 𝑇22 * 𝑃𝑧

⎤⎦
Evaluate Point Function: eval_point() [eval_point(<Scalar>,<Fill>,[Px,Py,Pz])] Performs

only the reflection half of the symm_point() operation. That is, it computes a new scalar variable which is the
input <Scalar> reflected through the symmetric point. It does not then take the difference between with the
input <Scalar> as symm_point() does.

Evaluate Plane Function: eval_plane() [eval_plane(<Scalar>,<Fill>,[Nx,Ny,Nz,Px,Py,
Pz])] Performs only the reflection half of the symm_plane() operation. That is, it computes a new scalar
variable which is the input <Scalar> reflected through the symmetric plane. It does not then take the
difference between with the input <Scalar> as symm_plane() does.

Evaluate Transform Function: eval_transform() [eval_transform(expr0,<Fill>,[T00,T01,
T02...T22])] Performs only the transform half of the symm_transform() operation. That is, it computes a
new scalar variable which is the input <Scalar> mapped through the transform. It does not then take the
difference between with the input <Scalar> as symm_transform() does.

Image Processing Expressions

conservative smoothing Function: conservative_smoothing() [conservative_smoothing(expr0)]
No description available.

Mean Filter Function: mean_filter() [mean_filter(<Scalar>,<Int>)] Return a filtered version of
the input scalar variable using the mean filter of width specified by <Int> argument. By default, the filter
width is 3 (3x3). The input scalar must be defined on a structured mesh.

Danger: It is not clear how filtering is handled across different domain boundaries.

Median Filter Function: median_filter() [median_filter(expr0)] Return a filtered version of the in-
put scalar variable using a 3x3 median filter. The input scalar must be defined on a structured mesh.

Abel Inversion Function: abel_inversion() [abel_inversion(expr0)] No description available.

Miscellaneous Expressions

Zonal Constant Function: zonal_constant() [zonal_constant(expr0)] Return a scalar, zone-
centered field that is everywhere on <Mesh> the constant value <Const>.

Zone Constant Function: zone_constant() [zone_constant(<Mesh>,<Const>)] An alias for
zonal_constant()

Cell Constant Function: cell_constant() [cell_constant(expr0)] An alias for zonal_constant()

Nodal Constant Function: nodal_constant() [nodal_constant(<Mesh>,<Const>)] Return a scalar,
node-centered field that is everywhere on <Mesh> the constant value <Const>.

242 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Node Constant Function: node_constant() [node_constant(expr0)] An alias for nodal_constant()

Point Constant Function: point_constant() [point_constant(expr0)] An alias for nodal_constant()

Time Function: time() [time(expr0)] Return a constant scalar variable which is everywhere the time of the
associated input argument within its time-series.

Cycle Function: cycle() [cycle(expr0)] Return an integer constant scalar variable which is everywhere the
cycle of the associated input argument within its time-series.

Timestep Function: timestep() [timestep(expr0)] Return an integer constant scalar variable which is ev-
erywhere the index of the associated input argument within its time-series.

curve domain Function: curve_domain() [curve_domain(expr0)] No description available.

curve integrate Function: curve_integrate() [curve_integrate(expr0)] No description available.

curve swapxy Function: curve_swapxy() [curve_swapxy(expr0)] No description available.

curve Function: curve() [curve(expr0)] No description available.

Enumerate Function: enumerate() [enumerate(<Int-Scalar>,<[Int-List]>)] Map an integer val-
ued scalar variable to a new set of integer values. If K is the maximum value in the Int-Scalar input
argument, the [Int-List] argument must be a square bracketed list of K+1 integer values. Value i in the
Int-Scalar input argument is used to index the ith entry in the [Int-List] to produce mapped value.

Map Function: map() [map(<Scalar>,<[Input-Value-List]>,<[Output-Value-List]>)] A
more general form of enumerate() which supports non-integer input scalar variables and input and output
maps which are not required to include all values in the input scalar variable. The [Input-Value-List]
and [Output-Value-List] must have the same number of entries. A value in the input scalar variable
that matches the ith entry in the [Input-Value-List] is mapped to the new value at the ith entry in the
[Output-Value-List]. Values that do not match any entry in the [Input-Value-List] are mapped
to -1.

Resample Function: resample() [resample(<Var>,Nx,Ny,Nz)] Resample <Var> onto a regular grid de-
fined by taking the X, Y and for 3D, Z spatial extents of the mesh <Var> is defined on and taking Nx samples
over the spatial extents in X, Ny samples over the spatial extents in Y, and, for 3D, Nz samples over the spatial
extents in Z. Any samples that miss the mesh <Var> is defined on are assigned the value -FLT_MAX. For 2D,
the Nz argument is still required but ignored.

Recenter Expression Function [recenter(expr, ["nodal", "zonal", "toggle"])] This function
can be used to recenter expr. The second argument is optional and defaults to “toggle” if it is not speci-
fied. A value of “toggle” for the second argument means that if expr is node centered, it is recentered to zone
centering and if expr is zone centered, it is recentered to node centering. Note that the quotes are required for
the second argument. This function is typically used to force a specific centering among the operands of some
other expression.

Process Id Function: procid() [procid(<Var>)] Return an integer scalar variable which is everywhere the
MPI rank associated with each of the blocks of the possibly parallel decomposed mesh upon which <Var> is
defined. For serial execution or for parallel execution of a single-block mesh, this will produce a constant zero
variable. Otherwise, the values will vary block by block.

Thread Id Function: threadid() [threadid(expr0)] Return an integer scalar variable which is everywhere
the local thread id associated with each of the blocks of the possibly parallel decomposed mesh upon which
<Var> is defined. For non-threaded execution, this will produce a constant zero variable. Otherwise, the values
will vary block by block.

isnan Function: isnan() [isnan(expr0)] No description available.

q criterion Function: q_criterion() [q_criterion(<gradient(velocity[0])>,
<gradient(velocity[1])>, <gradient(velocity[2])>)] Generates the Q-criterion value
developed by Hunt et. al.. It is based on the observation that, in regions where the Q-criterion is greater than

1.8. Quantitative Analysis 243

VisIt User Manual Documentation, Release 3.1

zero, rotation exceeds strain and, in conjunction with a pressure min, indicates the presence of a vortex. The
three arguments to the function are gradient vectors of the x-, y-, and z-velocity. The gradient function (see
gradient()) can be used to create the gradient vectors.

lambda2 Function: lambda2() [lambda2(<gradient(velocity[0])>, <gradient(velocity[1])>,
<gradient(velocity[2])>)] Generates the Lambda-2 criterion. It is based on the observation that,
in regions where Lambda-2 is less than zero, rotation exceeds strain and, in conjunction with a pressure min,
indicates the presence of a vortex. The three arguments to the function are gradient vectors of the x-, y-, and
z-velocity. The gradient function (see gradient()) can be used to create the gradient vectors.

mean curvature Function: mean_curvature() [mean_curvature(expr0)] No description available.

Gauss Curvature Function: gauss_curvature() [gauss_curvature(expr0)] No description available.

agrad Function: agrad() [agrad(expr0)] No description available.

key aggregate Function: key_aggregate() [key_aggregate(expr0)] No description available.

Laplacian Function: laplacian() [laplacian(expr0)] No description available.

rectilinear Laplacian Function: rectilinear_laplacian() [rectilinear_laplacian(expr0)] No
description available.

conn components Function: conn_components() [conn_components(expr0)] No description available.

resrad Function: resrad() [resrad(expr0)] No description available.

Time Iteration Expressions

Average Over Time Function: average_over_time() [average_over_time(<Scalar>,<Start>,
<Stop>,<Stride>)] Return a new scalar variable in which each zonal or nodal value is the average over
the times indicated by Start, Stop and Stride.

Danger: How does this work with changing topology? Also, what is the actual math of the average? Is it an
update algorithm or a sum and then division by number of iterations?

Min Over Time Function: min_over_time() [min_over_time(<Scalar>,<Start>,<Stop>,
<Stride>)] Return a new scalar variable in which each zonal or nodal value is the minimum value the
variable, <Scalar>, attained over the times indicated by Start, Stop and Stride.

Max Over Time Function: max_over_time() [max_over_time(<Scalar>,<Start>,<Stop>,
<Stride>)] Return a new scalar variable in which each zonal or nodal value is the maximum value the
variable, <Scalar>, attains over the times indicated by Start, Stop and Stride.

Sum Over Time Function: sum_over_time() [sum_over_time(<Scalar>,<Start>,<Stop>,
<Stride>)] Return a new scalar variable in which each zonal or nodal value is the sum of the values the
variable, <Scalar> attains over the times indicated by Start, Stop and Stride.

First Time When Condition Is True Function: first_time_when_condition_is_true()
[first_time_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,<Stride>)]
Return a new scalar variable in which each zonal or nodal value is the first time (not cycle and not time-index,
but floating point time) at which the true/false condition, <Cond> is true. The <Fill> value is used if there is
no first time the condition is true.

Last Time When Condition Is True Function: last_time_when_condition_is_true()
[last_time_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,<Stride>)]
Return a new scalar variable in which each zonal or nodal value is the last time (not cycle and not time-index,

244 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

but floating point time) at which the true/false condition, <Cond> is true. The <Fill> value is used if there is
no last time the condition is true.

First Cycle When Condition Is True Function: first_cycle_when_condition_is_true()
[first_cycle_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,<Stride>)]
Return a new integer valued scalar variable in which each zonal or nodal value is the first cycle (not time and
not time-index, but integer cycle) at which the true/false condition, <Cond> is true. The <Fill> value is used
if there is no first cycle the condition is true.

Last Cycle When Condition Is True Function: last_cycle_when_condition_is_true()
[last_cycle_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,<Stride>)]
Return a new integer valued scalar variable in which each zonal or nodal value is the last cycle (not time and
not time-index, but integer cycle) at which the true/false condition, <Cond> is true. The <Fill> value is used
if there is no last cycle the condition is true.

First Time Index When Condition Is True Function: first_time_index_when_condition_is_true()
[first_time_index_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,
<Stride>)] Return a new integer valued scalar variable in which each zonal or nodal value is the first time
index (not cycle and not time, but integer time-index) at which the true/false condition, <Cond> is true. The
<Fill> value is used if there is no first time-index the condition is true.

Last Time Index When Condition Is True Function: last_time_index_when_condition_is_true()
[last_time_index_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,
<Stride>)] Return a new integer valued scalar variable in which each zonal or nodal value is the last
time index (not cycle and not time, but integer time-index) at which the true/false condition, <Cond> is true.
The <Fill> value is used if there is no last time-index the condition is true.

var when condition is first true Function: var_when_condition_is_first_true()
[var_when_condition_is_first_true(expr0)] No description available.

var when condition is last true Function: var_when_condition_is_last_true()
[var_when_condition_is_last_true(expr0)] No description available.

time at minimum Function: time_at_minimum() [time_at_minimum(expr0)] No description available.

cycle at minimum Function: cycle_at_minimum() [cycle_at_minimum(expr0)] No description avail-
able.

time index at minimum Function: time_index_at_minimum() [time_index_at_minimum(expr0)]
No description available.

value at minimum Function: value_at_minimum() [value_at_minimum(expr0)] No description avail-
able.

time at maximum Function: time_at_maximum() [time_at_maximum(expr0)] No description available.

cycle at maximum Function: cycle_at_maximum() [cycle_at_maximum(expr0)] No description avail-
able.

time index at maximum Function: time_index_at_maximum() [time_index_at_maximum(expr0)]
No description available.

value at maximum Function: value_at_maximum() [value_at_maximum(expr0)] No description avail-
able.

localized compactness Function: localized_compactness() [localized_compactness(expr0)]
No description available.

merge tree Function: merge_tree() [merge_tree(expr0)] No description available.

split tree Function: split_tree() [split_tree(expr0)] No description available.

local threshold Function: local_threshold() [local_threshold(expr0)] No description available.

1.8. Quantitative Analysis 245

VisIt User Manual Documentation, Release 3.1

python Function: python() [python(expr0)] No description available.

relative difference Function: relative_difference() [relative_difference(expr0)] No descrip-
tion available.

var skew Function: var_skew() [var_skew(expr0)] No description available.

apply data binning Function: apply_data_binning() [apply_data_binning(expr0)] No descrip-
tion available.

distance to best fit line Function: distance_to_best_fit_line() [distance_to_best_fit_line(expr0)]
No description available.

distance to best fit line2 Function: distance_to_best_fit_line2() [distance_to_best_fit_line2(expr0)]
No description available.

geodesic vector quantize Function: geodesic_vector_quantize() [geodesic_vector_quantize(expr0)]
No description available.

bin Function: bin() [bin(expr0)] No description available.

biggest neighbor Function: biggest_neighbor() [biggest_neighbor(expr0)] No description avail-
able.

smallest neighbor Function: smallest_neighbor() [smallest_neighbor(expr0)] No description
available.

neighbor average Function: neighbor_average() [neighbor_average(expr0)] No description avail-
able.

Displacement Function: displacement() [displacement(expr0)] No description available.

Expression Compatibility Gotchas

VisIt will allow you to define expressions that it winds up determining to be invalid later when it attempts to execute
those expressions. Some common issues are the mixing of incompatible mesh variables in the same expression without
the necessary additional functions to make them compatible.

Tensor Rank Compatibility

For example, what happens if you mix scalar and vector mesh variables in the same expression? VisIt will allow users
to define such an expression. But, when it is plotted, the plot will fail.

As an aside, as the user goes back and forth between the Expressions window creating and/or adjusting expression
definitions, VisIt makes no attempt to keep track of all the changes made in expressions and automatically update
plots as expressions change. Users have to manually clear or delete plots to force VisIt to re-draw plots in which the
expressions changed.

If what is really intended was a scalar mesh variable, then users must use one of the expression functions that converts
a vector to a scalar such as the magnitude() built-in expression or the array de-reference operator.

Centering Compatibility

Some variables are zone centered and some are node centered. What happens if a user combines these in an expression?
VisIt will default to zone centering for the result. If this is not the desired result, the recenter() expression function
should be used, where appropriate, to adjust centering of some of the terms in the expression. Note that ordering of
operations will probably be important. For example

246 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

node_var + recenter(zone_var)
recenter(zone_var + node_var)

both achieve a node-centered result. But, each expression is subtly (and numerically) different. The first recenter’s
zone_var to the nodes and then performs the summation operator at each node. In the second, there is an implied
recentering of node_var to the zones first. Then, the summation operator is applied at each zone center and finally the
results are recentered back to the nodes. In all likelihood this creates in a numerically lower quality result. The moral
is that in a complex series of expressions be sure to take care where you want recentering to occur.

Mesh Compatibility

In many cases, especially in Silo databases, all the available variables in a database are not always defined on the same
mesh. This can complicate matters involving expressions in variables from different meshes.

Just as in the previous two examples of incompatible variables where the solution was to apply some function to
make the variables compatible, we have to do the same thing when variables from different meshes are combined in
an expression. The key expression functions which enable this are called Cross Mesh Field Evaluation or CMFE
expression functions. We will only briefly touch on these here. CMFEs will be discussed in much greater detail
elsewhere.

Just as for centering, we have two options when dealing with variables from two different meshes. Each of which
involves mapping one of the variables onto the other variable’s mesh using one of the CMFE expression functions.

Automatic expressions

1.8.2 Query

VisIt allows you to gather quantitative information from the database being visualized through the use of queries. A
query is a type of calculation that can either return values from the database or values that are calculated from data in
the database. For example, VisIt’s Pick and Lineout capabilities (described later in this chapter) are specialized point
and line queries that print out the values of variables in the database at points or along lines. In addition to point and
line queries, VisIt provides database queries that return values that are based on all of the data in a database.

Some queries can even be executed for all of the time states in a database to yield a Curve plot of the query’s behavior
over time. This feature will be covered in more detail a little later.

VisIt’s queries are available in the Query Window (shown in Figure 1.208), which you can open by clicking the Query
option in the Main Window’s Control menu. The Query Window consists of upper and lower areas where the upper
area allows you to select a query and set its query parameters. The controls for setting a query’s parameters change
as required and some queries have no parameters and thus have no controls for setting parameters. The bottom area
of the window displays the results of the query once VisIt has finished processing it. The results for new queries are
appended to the output from previous queries until you clear the Query results by clicking the Clear results button.

Query types

VisIt’s queries can be divided into three types: database queries, point queries, and line queries. Database queries
usually calculate information for the database as a whole instead of concentrating on a single zone or node but some
Pick-related database queries do concentrate on cells and nodes. Point queries calculate information for a point in the
database and several types of variable picking queries fall into this category. Line queries calculate information along
a line. Each type of query has different controls in the Query parameters area (see Figure 1.209) and as you highlight
different queries, the controls in the Query parameters area may change.

1.8. Quantitative Analysis 247

VisIt User Manual Documentation, Release 3.1

Fig. 1.208: Query window

248 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

1.8. Quantitative Analysis 249

VisIt User Manual Documentation, Release 3.1

Fig. 1.209: Query parameters area

Database queries provide a few different interfaces depending on the query. Many database queries require no addi-
tional input so they have no controls except for the Query button. Other database queries ask whether the query is to
be performed with respect to the original data or the actual data, which is that data that is left in the plot after subsets
have been removed and operators have transformed the data. Finally, some database queries ask for a specific domain
number and zone or node number.

Point queries provide interfaces in the Query parameters area that allow you to enter a 3D point or a screen space
point to use as the point for the query. Line queries provide an interface that lets you specify the start and end positions
of the line as well as the number of sample points to consider along the length of the line. Nearly all query types allow
you to provide additional variables to query in a Variables text field.

Built-in queries

Database Queries

2D Area The 2D area query calculates the area of the 2D plot highlighted in the Plot list and prints the result to the
Query results. VisIt can produce a Curve plot of this query with respect to time.

250 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

3D Surface Area The 3D surface area calculates the area of the plot highlighted in the Plot list and prints the result
to the Query results. VisIt can produce a Curve plot of this query with respect to time.

Connected Component Area Performs the same operation as either 2/3D area query except individually for each
component of a disconnected mesh. The query result is a list of values, one for each component.

Connected Component Length Performs an operation similar to Connected Component Area except that it works
only for 1D components and returns their length. The query result is a list of values, one for each component.

Area Between Curves The Area Between Curves query calculates the area between 2 curve plots. The plots that will
serve as input to this query must both be highlighted in the Plot list or VisIt will issue an error message. Once
the area has been calculated, the result is printed to the Query results.

Centroid This query will calculate the centroid of a dataset. The contribution of each cell is calculated assuming its
mass all lies at the center of the cell. If the query is performed on a Pseudocolor plot, the plot’s variable will be
assumed to be density. If the query is performed on a plot such as a Mesh plot or FilledBoundary plot, uniform
density will be used. The results are print to the Query results.

Connected Component Centroid Performs the same operation as either Centroid query except individually for each
component of a disconnected mesh. The query result is a list of values, one for each component.

Chord Length Distribution The Chord Length Distribution query calculates a probability density function of chord
length over a two or three dimensional object. Axially symmetric objects (RZ-meshes) are treated as 3D meshes
and chords are calculated over the revolved, 3D object. A statistical approach, casting uniform density, random
lines, is used. The result of this query is a curve, which is outputted as a separate file. This curve is a probability
density function over length scale. The name of the resulting file is printed to the Query results.

Compactness The Compactness query calculates mesh metrics and prints them in the Query results.

Cycle The Cycle query prints the cycle for the plot that is highlighted in the Plot list to the Query results.

Distance from Boundary The Distance From Boundary query calculates how much mass is at a given distance away
from the boundary of a shape. An important distinction for this query is that distance from the boundary (for
a given point) is not defined as the shortest distance to the boundary, but simultaneously as all surrounding
distances. Axially symmetric objects (RZ-meshes) are treated as 3D meshes and length scales are calculated
over the revolved, 3D object. The implementation employs a statistical approach, with the casting of uniform
density, random lines. The result of this query is a curve, which is outputted as a separate file. This curve
contains the amount of mass as a function of length scale. Integrating the curve between P0 and P1 will give
the total mass at distance between P0 and P1 (given the interpretation above). The name of the resulting file is
printed to the Query results.

Eulerian The Eulerian query calculates the Eulerian number for the mesh that is used by the highlighted plot in the
Plot list. The results are printed to the Query results.

Expected Value The Expected Value query calculates the integral of 𝑥𝑓(𝑥)𝑑𝑥 for some curve f(x). The curve should
be highlighted in the Plot list and prints the result to the Query results. This query is intended for distribution
functions.

Grid Information The Grid Information query prints information for each domain in a multi- domain mesh. The
mesh type is printed as well as the mesh sizes. For structured meshes the size information contains the logical
mesh dimensions (IJK sizes) and for unstructured meshes the size information contains the number of nodes and
number of cells in the mesh. The query can optionally accept a get_extents parameter that will cause the spatial
extents for each domain to be obtained. The query also accepts an optional get_ghosttype parameter that causes
the ghost zone information for each domain to be obtained. Both the numerical value and list of or’d values for
ghost values are obtained. All query outputs are printed to the Queryresults.

Integrate The Integrate query calculates the area under the Curve plot that is highlighted in the Plot list and prints the
result to the Query results.

Kurtosis The Kurtosis query calculates the kurtosis of a normalized distribution function. The normalized distribution
function must be represented as a Curve plot in VisIt. Kurtosis measures the variability of a distribution by

1.8. Quantitative Analysis 251

VisIt User Manual Documentation, Release 3.1

comparing the ratios of the fourth and second central moments. The results are print to the Query results.

L2Norm The L2Norm query calculates the L2Norm, or square of the integrated area, of a Curve plot. The Curve plot
must be highlighted in the Plot list. The results are printed to the Query results.

L2Norm Between Curves The L2Norm query takes two Curve plots as input and calculates the L2Norm between
the 2 curves. Both Curve plots must be highlighted in the Plot list or VisIt will issue an error message. The
results are printed to the Query results.

Min The Min query calculates the minimum value for the variable used by the highlighted plot in the Plot list and
prints the value and the logical and physical coordinates where the minimum value was found to the Query
results.

Mass Distribution The Mass Distribution query calculates how much mass occurs at different length scales over a
two or three dimensional object. Axially symmetric objects (RZ-meshes) are treated as 3D meshes and length
scales are calculated over the revolved, 3D object. The implementation employs a statistical approach, with the
casting of uniform density, random lines. The result of this query is a curve, which is outputted as a separate
file. This curve contains the amount of mass as a function of length scale. Integrating the curve between P0 and
P1 will give the total mass between length scale P0 and length scale P1. The name of the resulting file is printed
to the Query results.

Max The Max query calculates the maximum value for the variable used by the highlighted plot in the Plot list and
prints the value and the logical and physical coordinates where the maximum value was found to the Query
results.

MinMax The MinMax query calculates the minimum and maximum values for the variable used by the highlighted
plot in the Plot list and prints the values and their logical and physical coordinates in the Query results.

Moment of inertia This query will calculate the moment of inertia tensor for each cell in a three-dimensional dataset.
The contribution of each cell is calculated assuming its mass all lies at the center of the cell. If the query is
performed on a Pseudocolor plot, the plot’s variable will be assumed to be density. If the query is performed on
a plot such as a mesh plot or FilledBoundary plot, uniform density will be used. The results are printed to the
Query results.

NodeCoords The NodeCoords query prints the node coordinates for the specified node and prints the values in the
Query results.

NumNodes The NumNodes query prints the number of nodes for the mesh used by the highlighted plot in the Plot
list to the Query results.

NumZones The NumZones query prints the number of zones for the mesh used by the highlighted plot in the Plot
list to the Query results.

Revolved surface area The Revolved surface area query revolves the mesh used by the highlighted plot in the Plot
list about the X-axis and prints the plot’s revolved surface area to the Query results.

Revolved volume The Revolved volume area query revolves the mesh used by the highlighted plot in the Plot list
about the X-axis and print’s the plot’s volume to the Query results.

Skewness The Skewness query calculates the skewness of a normalized distribution function. The normalized distri-
bution function must be represented as a Curve plot in VisIt. Skewness measures the symmetry of a distribution
using its second and third central moments. The results are print to the Query results

Spatial Extents The Spatial Extents query calculates the original or actual spatial extents for the plot that is high-
lighted in the Plot list. Whether the original or actual extents are calculated is determined by setting the options
in the Query parameters area. The spatial extents are printed to the Query results when the query has finished.

Spherical compactness factor This query attempts to measure how spherical a three dimensional shape is. The query
first determines what the volume of a shape is. It then constructs a sphere that has that same volume. Finally,
the query positions the sphere so that the maximum amount of the original shape is within the sphere. The

252 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

query returns the percentage of the original shape that is contained within the sphere. The results are print to the
Query results. VisIt can produce a Curve plot of this query with respect to time.

Time The Time query prints the time for the plot that is highlighted in the Plot list to the Query results.

Variable Sum The Variable Sum query adds up the variable values for all cells using the plot highlighted in the Plot
list and prints the results to the Query results. VisIt can produce a Curve plot of this query with respect to time.

Connected Component Variable Sum Performs the same operation as Variable Sum query except individually for
each component of a disconnected mesh. The query result is a list of values, one for each component.

Volume The Volume query calculates the volume of the mesh used by the plot highlighted in the Plot list and prints
the value to the Query results. VisIt can use this query to produce a Curve plot of volume with respect to time.

Connected Component Volume Performs the same operation as Volume query except individually for each compo-
nent of a disconnected mesh. The query result is a list of values, one for each component.

Watertight The Watertight query determines if a three-dimensional surface mesh, of the plot highlighted in the Plot
list, is “watertight”, meaning that it is a closed volume with mesh connectivity such that every edge is incident
to exactly two faces. This means that no edge can have a duplicate in the exact same position. The result of the
query is printed in the Query results.

Weighted Variable Sum The Weighted Variable Sum query adds up the variable values, weighted by cell size (vol-
ume in 3D, area in 2D, length in 1D), for all cells using the plot highlighted in the Plot list and prints the results
to the Query results. VisIt can produce a Curve plot of this query with respect to time.

Connected Component Weighted Variable Sum Performs the same operation as Weighted Variable Sum query ex-
cept individually for each component of a disconnected mesh. The query result is a list of values, one for each
component.

ZoneCenter The ZoneCenter query calculates the zone center for a certain cell in the database used by the highlighted
plot in the Plot list. The cell center is printed to the Query results and the Pick Window.

Point Queries

Pick In general, the Pick query allows users to query a single zone or node at a user specified location in the dataset.
There are several options for determining how this zone or node is chosen:

1. Pick using coordinates

2. Pick using domain and element id

3. Pick using unique element label

It’s important to make sure that the plot you wish to query is highlighted in the Plot list. Information from
your picked element, when available, will appear in both the Pick Window and the Query results window. If
querying a 3D dataset, the queried element need not be on the surface of the mesh.

The Pick query also provides the option to generate a curve with respect to time, allowing the user to set the start
time, stop time, and stride. Note on performance: when generating a curve over time, users have the option
to preserve either the picked coordinate or the picked element. While each of these choices will produce very
different results, it’s worth keeping in mind that preserving the picked element will be substantially faster than
preserving the picked coordinate when working with datasets with large numbers of time steps.

TrajectoryByNode and TrajectoryByZone The TrajectoryByNode and TrajectoryByZone queries first perform a
Pick using domain and element id on their respective elements, and they then generate a curve plotting one vari-
able with respect to another. You’ll notice that, next to the Variables parameter, there is a text box containing
default variables var_for_x and var_for_y. Replace these defaults with your desired variables for the query,
and the resulting curve will plot your replacement for var_for_x with respect to var_for_y.

1.8. Quantitative Analysis 253

VisIt User Manual Documentation, Release 3.1

Line Queries

Lineout The Lineout query creates a new instance of the highlighted plot in the Plot list, applies a Lineout operator,
and copies the plot to another vis window. The properties of the Lineout operator such as the start and end
points are set using the controls in the Query parameters area of the Query Window. Creating Lineouts in
this manner instead of using VisIt’s interactive lineout allows you to create 1D Curve plots from 3D databases.

Executing a query

VisIt has many queries from which to choose. You can choose the type of query to execute by clicking on the name of
the query in the Queries list. The Queries list usually displays the names of all of the queries that VisIt knows how
to execute. If you instead want to view a subset of the queries, grouped by function, you can make a selection from
the Display as combo box. Once you have clicked on a query in the Query list, the Query parameters area updates
to show the controls that you need to edit the parameters for the query. In the case of a point query like Pick, the only
parameters you need to specify are the 3D point where VisIt will extract values and the names of the variables that you
want to examine. Once you specify the query parameters, click the Query button to tell VisIt to process the query.
Once VisIt has fulfilled your request, the query results are displayed in the Query results at the bottom of the Query
Window.

Querying over time

Many of VisIt’s queries can be executed for every time state in the database used by the queried plot. The results
from a query over time is a Curve plot that plots the query results with respect to time. The Query parameters area
contains a Time Curve button when the selected query can be plotted over time. Clicking the Time Curve button
executes the selected query for each time state in the database used by the plot highlighted in the Plot list. VisIt then
creates a new Curve plot in a new vis window and uses the query results versus time as the curve data.

By default, querying over time will force VisIt to execute the selected query on every time state in the relevant database.
If you want to restrict the number of time states used when querying over time or if you want to set some general
options that also affect how time curves are created, you can set additional options in the Query Over Time Window
(see Figure 1.210). If you want to open the Query Over Time Window, click on the Query over time option in the
Controls menu in VisIt’s Main Window.

Querying over a time range

You can restrict the range of time states that are considered when VisIt is performing a query over time if you specify
a start or end time state in the Query Over Time Window. To set a starting time state, click the Starting timestep
check box and enter a new time state into the adjacent text field. To set an ending time state, click the Ending timestep
check box and enter a new ending time state into the adjacent text field.

In addition to setting the starting and ending time states, you can also specify a stride so VisIt can skip frames in the
middle and consider every Nth frame instead of every frame. If you want to specify a stride, enter a new stride into the
Stride text field in the Query Over Time Window and click the Apply button.

Setting the axis title

When VisIt creates a new Curve plot, after having calculated a query over time, the horizontal axis label is labeled with
the database cycles. If you prefer to think about time in terms of time state or simulation time then you can change the
axis label by clicking one of the following radio buttons in the Query Over Time Window : Cycle, Time, Timestep.

254 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.210: Query Over Time Window

1.8. Quantitative Analysis 255

VisIt User Manual Documentation, Release 3.1

Setting the time curve’s destination window

When VisIt creates a Curve plot using the results of a query over time, the Curve plot is placed in a vis window
designated for Curve plots. If there is no vis window into which the Curve plot can be added, VisIt creates a new vis
window to contain the Curve plot. If you want VisIt to always place the new Curve plot in a specific window, turn off
the Use 1st unused window or create new one check box and enter a new window number into the Window# text
field. After setting these options, subsequent Curve plots created by querying over time will be added to the specified
vis window.

1.8.3 Pick

VisIt provides a way to interactively pick values from the visualized data using the visualization window’s Zone
Pick and Node Pick modes. When a visualization window is in one of those pick modes, each mouse click in the
visualization window causes VisIt to find the location and values of selected variables at the pick point. When VisIt
is in Zone pick mode, it finds the variable values for the zones that you click on. When VisIt is in node pick mode,
similar information is returned but instead of returning information about the zone that you clicked on, VisIt returns
information about the node closest to the point that you clicked. Pick is an essential tool for performing data analysis
because it can extract exact information from the database about a point in the visualization.

Pick mode

You can put the visualization window into one of VisIt’s pick modes by selecting Zone Pick or Node Pick from the
Popup menu’s Mode submenu. After the visualization window is in pick mode, each mouse click causes VisIt to
determine the values of selected variables for the zone that contains the picked point or the node closest to the picked
point. Each picked point is marked with an alphabetic label which starts at A, cycles through the alphabet and repeats.
The pick marker is added to the visualization window to indicate where pick points have been added in the past. To
clear pick points from the visualization window, select the Pick points option from the Clear menu in the Main
Window’s Window menu. The dimension of the plots in the visualization does not matter when using pick mode.
Both 2D and 3D plots can be picked for values. However, when using pick mode with 3D plots, only the surface of
the plots can be picked for values. If you want to obtain interior values then you should use one of the Pick queries or
apply operators that expose the interiors of 3D plots before using pick. An example of the visualization window with
pick points is shown in Figure 1.211 and an example of node pick and zone pick markers is shown in Figure 1.212.

Pick Window

Each time a new pick point is added to the visualization window by clicking on a plot, VisIt extracts information about
the pick point from the plot’s database and displays it in the Pick Window (Figure 1.213) and the Output Window.
If the Pick Window does not automatically open after picking, you can open the Pick Window by selecting the Pick
option from the Main Window’s Controls menu.

The Pick Window mainly consists of a group of tabs, each of which displays the values from a pick point. The tab
label A, B, C, etc. corresponds to the pick point label in the visualization window. Since there is a fixed number of
tabs in the Pick Window, tabs are recycled as the number of pick points increases. When a pick point is added, the
next available tab, which is usually the tab to the right of the last unused tab, is populated with the pick information.
If the rightmost tab already contains pick information, the leftmost tab is recycled and the process repeats. To see a
complete list of picked points, open the Output Window.

The information displayed in each tab consists of the database name and timestep, the coordinates of the pick point,
the zone/cell that contains the pick point, the nodes that make up the cell containing the pick point, and the picked
variables. The rest of the Pick Window is devoted to setting options that format the pick output.

256 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.211: Visualization window with pick points

1.8. Quantitative Analysis 257

VisIt User Manual Documentation, Release 3.1

Fig. 1.212: Zone pick marker L and node pick markers M, N, O, P

258 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.213: Pick Window

1.8. Quantitative Analysis 259

VisIt User Manual Documentation, Release 3.1

Setting the pick variable

The Pick Window contains a Variables text field that allows you to specify pick variables Most of the time, the value
in the text field is the word “default” which tells VisIt to use the plotted variables as the pick variables. You can
replace the default pick variable by typing one or more valid variable names, separated by spaces, into the Variables
text field. You can also select additional pick variables by selecting a new variable name from the Variables variable
button to the left of the Variables text field. When more than one variable is picked, multiple variables appear in the
pick information displayed in the information tabs.

Concise pick output

Pick returns a lot of information when you pick on a plot. The Pick Window usually displays the pick output one
item per line, which can end up taking a lot of vertical space. If you want to condense the information into a smaller
area, click the Concise output check box. Sometimes, not all of the information is relevant for your analysis so VisIt
provides options to hide certain items in the pick output. If you don’t want VisIt to display the name of the picked
mesh, turn off the Show Mesh Name check box. If you don’t want VisIt to show the time state, turn of the Show
timestep check box.

Turning off incident nodes and cells in pick output

When VisIt performs a pick, the default behavior is to show a lot of information about the cell or node that was picked.
This information usually includes the nodes or cells that were incident to the node or cell that was picked. The incident
nodes and cells are included to give more information about the neighborhood occupied by the cell or node. If you
want to turn off incident nodes and cells in the pick output, click off the Display incident nodes/zones check box.

Displaying global node and cell numbers

Many large meshes are decomposed into smaller meshes called domains that, when added together, make up the
whole mesh. Each domain typically has its own range of cell numbers that begin at 0 or 1, depending on the mesh’s
cell origin. Any global cell numbering scheme that may have been in place before the original mesh was decomposed
into domains is often lost. However, some meshes have auxiliary information that allows VisIt to use the original
global node and cell numbers for the domains. If you want the pick output to contain global node and cell numbers if
they are available, click on the Display global nodes/zones check box.

Turning off pick markers for new pick points

Some queries that perform picks create pick markers by default, as do VisIt’s regular pick modes. If you want to
prevent pick queries from creating pick markers, click off the Pick Window’s Display reference pick letter check
box.

Returning node information

In addition to printing the values of the pick variables, pick can also display information about the nodes or cells over
which the pick variables are defined. By default, VisIt only returns the integer node indices of the nodes contained by
the picked cell. You can make VisIt return the node coordinates in other formats by checking the Id check box in the
Display for Nodes area. The node coordinates can be displayed 4 different ways: Node indices, physical coordinates,
domain-logical coordinates, or block-logical coordinates. Click the check boxes in the Display for Nodes area that
correspond to the types of node information that you want to examine.

260 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Returning zone information

The Pick Window has controls in its Display for Zones area that allow you to specify how you want VisIt to display
zone information. Click the check boxes that correspond to the types of information that you want to examine.

Automatically showing the Pick Window

When you pick on a plot, VisIt automatically opens the Pick Window to display the results of the pick operation. You
can prevent VisIt from automatically showing the Pick Window after a pick operation by turning off the Automati-
cally show window check box in the Pick Window. If the Pick Window does not automatically appear after picking
then you can turn on the Automatically show window check box.

Picking over time

Querying over time is normally done using the controls in the Query Window but you can also pick over time to
generate curves that show the behavior of a picked zone or node over time. To pick over time, you must click the
Create time curve with next pick check box in the Pick Window. Once that check box is turned on, each pick
operation will result in a new Curve plot that shows the behavior of the most recently picked zone or node over time.

Note on performance: You’ll notice that you can either choose to follow the picked coordinates or the picked element
through time. While each of these options generates very different results, it’s worth keeping in mind that following
the picked element will be substantially faster when working with datasets with large numbers of time steps.

1.8.4 Lineout

One-dimensional curves, created using data from 2D or 3D plots, are popular for analyzing data because they are
simple to compare. VisIt’s visualization windows can be put into a mode that allows you to draw lines, along which
data are extracted, in the visualization window. The extracted data are turned into a Curve plot in another visualization
window. If no other visualization window exists, VisIt creates one and adds the Curve plot to it. Curve plots are often
more useful than 2D Pseudocolor plots because they allow the data along a line to be seen spatially as a 1D curve
instead of relying on differences in color to convey information. Furthermore, the curve data can be exported to curve
files that allow the data to be imported into other Lawrence Livermore National Laboratory curve analysis software
such as Ultra.

Lineout mode

You can put the visualization window into lineout mode by selecting the Lineout icon (Figure 1.214) in the visual-
ization window’s Toolbar or from the Popup menu’s Mode submenu. Note that lineout mode is only available with
2D plots in this version though you can create 3D lineouts using the Lineout query in the Query Window. After the
visualization window is in lineout mode, you can draw reference lines in the window. Each reference line causes VisIt
to extract data from the database along the prescribed path and draw the data as a Curve plot in another visualization
window. Each reference line is drawn in a color that matches the initial color of the Curve plot so the reference lines,
which may not have labels, can be easily associated with their corresponding Curve plots. To clear the reference lines
from the visualization window, select the Clear reference lines option from Popup menu’s Clear submenu. An
example of the visualization window with reference lines and Curve plots is shown in Figure 1.215.

Fig. 1.214: Lineout mode toolbar icon

1.8. Quantitative Analysis 261

VisIt User Manual Documentation, Release 3.1

Fig. 1.215: Visualization windows with reference line and Curve plots

Curve plot

Curve plots are created by drawing reference lines. The visualization window must be in lineout mode before reference
lines can be created. You can create a reference line by positioning the mouse over the first point of interest, clicking
the left mouse button and then moving the mouse, while pressing the left mouse button, and releasing the mouse
over the second endpoint. Releasing the mouse button creates a reference line along the path that was drawn with
the mouse. When you draw a reference line, you cause a Curve plot of the data along the reference line to appear in
another visualization window. If another visualization window is not available, VisIt opens a new one before creating
the Curve plot. The Curve plot in the second window can be modified by setting the active window to the visualization
window that contains the Curve plots.

See Curve Plot for information on changing the Curve plot’s appearance.

Saving curves

Once a curve has been generated, it can be saved to a curve file. A curve file is an ASCII text file that contains the
X-Y pairs that make up the curve and it is useful for exporting curve data to other curve analysis programs. To save
a curve, make sure you first set the active window to the visualization window that contains the curve. Next, save the
window using the curve file format. All of the curves in the visualization window are saved to the specified curve file.

Lineout Operator

The Curve plot uses the Lineout operator to extract data from a database along a linear path. The Lineout operator is
not generally available since curves are created only through reference lines and not the Plot menu. Still, once a curve
has been created using the Lineout operator, certain attributes of the Lineout can be modified. Note that when you
modify the Lineout attributes, it is best to turn off the Apply operators to all plots check box in the Main Window
so that all curves do not get the same set of Lineout operator attributes.

There are two factors that affect how the interpolation along the line is performed. These are the centering of the
variable and the lineout sampling method. There are two types of centering and two types of sampling. The following

262 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

sections will go into detail for the four cases.

Zonal variables are constant within a cell and a lineout would be expected to be a step function as the line moves from
cell to cell.

All the images associated with the examples can be generated with the script lineout.py.

Zonal centering with sampling

In the case of sampling, the step function will become more and more apparent as the number of sample points
increases.

In the example below there are only 12 samples points and the step function is only somewhat apparent, since the
number of sample points within a cell ranges between one and three.

Fig. 1.216: A zonal variable with relatively few sample points.

In the example below there are 60 sample points and the step function is quite apparent.

Zonal centering without sampling

In the case of non-sampling, the sample points are chosen where the line intersects cell boundaries, which are lines in
2D and faces in 3D. The first point of the line has the zonal value of the cell it is within and the remaining points have
the value of the cell the line is about to enter. In this case the step function nature of the variable is completely lost.

In the example below the sample points are placed based on where the line intersects the edges of the cells. The step
function nature of the variable is completely lost and the line looks smoother than the sampled case.

Nodal variables vary linearly within a cell. Using sampling produces high quality results as long as the number of
sample points is chosen such that all the cells along the line contain at least one sample point. Using non sampling
tends to produce poor results based on its interpolation method (described below) and may result in jagged lines, even
for smoothly varying functions.

1.8. Quantitative Analysis 263

VisIt User Manual Documentation, Release 3.1

Fig. 1.217: A zonal variable with a large number of sample points.

Fig. 1.218: A zonal variable without sampling.

264 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Nodal centering with sampling

In the example below the 12 samples points do a good job of capturing the data along the line since all the cells are
sampled at least once.

Fig. 1.219: A nodal variable with relatively few sample points.

Increasing the number of sample points in this case doesn’t change the shape of the curve.

Nodal centering without sampling

In the example below the sample points are placed based on where the line intersects the edges of the cells. The first
point of the line has the average of the nodes of the cell that the point is within and the remaining points have the value
of the average of the nodes of the cell the line is about to enter. This can lead to a jagged line even for a smoothly
varying function.

Further exploring the Linout operator

The following script was used to generate 6 images above and can be used to further understand the behavior of the
Lineout operator.

import math
import time

def create_images(sampling, n_samples, var):
if (sampling == 1):

save_name = "rect2d_%s_%d_lineout_sampled" % (var, n_samples)
curve1_name = "rect2d_%s_%d_lineout_sampled.curve" % (var, n_samples)
curve2_name = "rect2d_%s_%d_refline_sampled.curve" % (var, n_samples)
image_name = "rect2d_%s_%d_pc_sampled" % (var, n_samples)

else:
(continues on next page)

1.8. Quantitative Analysis 265

VisIt User Manual Documentation, Release 3.1

Fig. 1.220: A nodal variable with many sample points.

Fig. 1.221: A nodal variable without sampling.

266 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

save_name = "rect2d_%s_lineout_nonsampled" % var
curve1_name = "rect2d_%s_lineout_nonsampled.curve" % var
curve2_name = "rect2d_%s_refline_nonsampled.curve" % var
image_name = "rect2d_%s_pc_nonsampled" % var

#
Open the database to make the lineouts from.
#
OpenDatabase("rect2d.silo")

#
Turn off extraneous annotations.
#
annot = AnnotationAttributes()
annot.userInfoFlag = 0
annot.databaseInfoFlag = 0
annot.timeInfoFlag = 0
annot.legendInfoFlag = 0
SetAnnotationAttributes(annot)

#
Create the lineout and do the lineout.
#
AddPlot("Mesh", "quadmesh2d")
AddPlot("Pseudocolor", var)
AddPlot("Label", var)
labelAtts = LabelAttributes()
labelAtts.numberOfLabels = 400
SetPlotOptions(labelAtts)
DrawPlots()
view2D = View2DAttributes()
view2D.windowCoords = (0.070, 0.255, 1.022, 1.210)
view2D.viewportCoords = (0.15, 0.95, 0.1, 0.95)
SetView2D(view2D)
Lineout(start_point=(0.11137, 1.18468), end_point=(0.21461, 1.05520), use_

→˓sampling=sampling, num_samples=n_samples)

#
Go to the lineout window, save the image, save the curve and create
a reference line with the sample points from the saved curve.
#
SetActiveWindow(2)
SetAnnotationAttributes(annot)
curveAtts = CurveAttributes()
curveAtts.showPoints = 1
curveAtts.pointSize = 8
curveAtts.showLegend = 0
curveAtts.showLabels = 0
curveAtts.curveColorSource = curveAtts.Custom
curveAtts.curveColor = (85, 85, 127, 255)
SetPlotOptions(curveAtts)
saveAtts = SaveWindowAttributes()
saveAtts.fileName = save_name
saveAtts.family = 0
saveAtts.format = saveAtts.CURVE
SetSaveWindowAttributes(saveAtts)
SaveWindow()

(continues on next page)

1.8. Quantitative Analysis 267

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

saveAtts.width = 600
saveAtts.height = 600
saveAtts.screenCapture = 0
saveAtts.resConstraint = saveAtts.NoConstraint
saveAtts.format = saveAtts.PNG
SetSaveWindowAttributes(saveAtts)
SaveWindow()

#
Create a reference line with the sampled point from the saved curve
to overlay on the pseudocolor plot.
#
time.sleep(1)

file1 = open(curve1_name, "r")
file2 = open(curve2_name, "w")

x1 = 0.11137
y1 = 1.18468
x2 = 0.21461
y2 = 1.05520
dx = x2 - x1
dy = y2 - y1
len = math.sqrt(dx * dx + dy * dy)
dx = dx / len
dy = dy / len
slope = dy / dx

line = file1.readline()
line = file1.readline()
file2.write("# refline\n")
while line:

vals = line.split()
dist = float(vals[0])
val = float(vals[1])
x = x1 + (dist / len) * (x2 - x1)
y = y1 + (dist / len) * (y2 - y1)
file2.write("%g %g\n" % (x, y))
line = file1.readline()

file1.close()
file2.close()

time.sleep(1)

#
Add the reference line to the pseudocolor plot.
#
SetActiveWindow(1)
OpenDatabase(curve2_name)
AddPlot("Curve", "refline")
DrawPlots()
SetPlotOptions(curveAtts)
saveAtts.fileName = image_name
SetSaveWindowAttributes(saveAtts)
SaveWindow()

(continues on next page)

268 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

#
Clean up.
#
DeleteAllPlots()
SetActiveWindow(2)
DeleteAllPlots()
SetActiveWindow(1)
CloseDatabase("rect2d.silo")
CloseDatabase(curve2_name)

OpenComputeEngine("localhost", ("-np", "1"))

DefineScalarExpression("d2", "recenter(<d>, \"nodal\")")

create_images(1, 12, "d")
create_images(1, 60, "d")
create_images(0, 12, "d")
create_images(1, 12, "d2")
create_images(1, 60, "d2")
create_images(0, 12, "d2")

quit()

Setting lineout endpoints

You can modify the line endpoints by typing new coordinates into the Point 1 or Point 2 text fields of the Lineout
attributes window (Figure 1.222). Each endpoint is a 3D coordinate that is specified by three space-separated floating
point numbers. If you are performing a Lineout operation on 2D data, you can set the value for the Z coordinate to
zero.

Fig. 1.222: Lineout attributes window

1.8. Quantitative Analysis 269

VisIt User Manual Documentation, Release 3.1

Setting the number of lineout samples

The sampling is controlled with the Use Sampling toggle button and the Samples text field. The Use Sampling toggle
button controls whether sampling is used and Samples is used to set the number of sample points when sampling.

Interactive mode

When the Interactive check box is checked, changes to the Lineout operator can be made by using the Line tool
available from the originating plot’s visualization window Toolbar or Popup menu. Interactive mode does not apply to
lineouts created via the Curve plot’s variable menu.

To utilize the line tool to modify a Lineout curve, make the visualization window with the originating plot the active
window. Choose the Line tool. It should be initialized with the endpoints of the reference line. Moving the tool will
change the lineout. (Note: Due to a current bug, the tool must be activated, deactivated, then activated a second time
in order to be properly initialized with the Lineout’s endpoint values.) See Interactive Tools for more information on
tool utilization.

Reference line labels

You can make the reference lines in the window that caused Curve plots to be generated to have labels by checking
the Lineout operator’s Refline Labels check box.

Lineout query

Performing a Lineout query requires an existing non-hidden plot in the active window. Choose Lineout from the
Query window (available from the GUI’s Controls dropdown menu). Set start and end points (similar to Setting
lineout endpoints). Lineout query is the only Lineout method that allows you to create curves for multiple variables.
Simply select the desired variables from the Variables dropdown menu. Default means the variable as plotted in the
currently active plot. A lineout curve will be generated for each variable, plotted along the same reference line. Each
curve will have its own color. The Use Sampling and Sample Points option is the same as before.

Lineout via Curve plot variable menu

With this method, Lineout is considered one of the Operators that Generate New Variables. That means you can
use it without first generating a plot of the data from which you wish to extract the lineout. To create a Lineout in
this manner, open your database, select Curve plot, then choose operators/Lineout/<var-name> from the Curve plot’s
variable menu as shown in Figure 1.224.

It is highly recommended that you modify the Lineout’s endpoints before clicking draw, as the defaults will probably
not be appropriate for your data.

Global lineout options

The Lineout Options Window, available by selecting Lineout from the Controls menu in the Main Window contains
global lineout options. They are global in the sense that they will apply to all future lineouts. The Lineout Options
Window has controls for choosing the destination window of the lineout curve plots, as well as settings for how
changes to the originating plot affect the lineout curve plot. Modifying these options will only apply to future lineouts,
not lineouts already created.

270 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.223: Lineout query’s parameters window

Fig. 1.224: Choosing lineout from the Curve plot’s variable menu

1.8. Quantitative Analysis 271

VisIt User Manual Documentation, Release 3.1

Fig. 1.225: Lineout Options Window

272 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Lineout destination window

By default, VisIt will place all lineout curves in the same window. It will use the first unused open window or create
one if one does not yet exist. You can override this behavior for future lineouts by unchecking the Use 1st unused
window checkbox, and typing a window number into the Window # text box.

Freeze In Time

If the plot that originated the Lineout curve was from a time-varying database, the curve can be advanced in time using
the animation controls for the window containing the lineout curve. If you would rather the lineout be frozen at the
timestep from which it was taken, check the Freeze in Time option. This will also disable the ability to synchronize
the lineout curve with its originating plot.

Synchronous lineout

Normally when you perform a lineout operation, the Curve plot that results from the lineout operation is in no way
connected to the plots in the window that originated the Curve plot. If you want variable or time state changes made to
the originating plots to also affect the Curve plots that were created via lineout, click the Synchronize with originating
plot check box in the Lineout Options Window (see Figure 1.225).

With this option selected, any change to the variable in the plot that originated the lineout, will update the lineout to
reflect the new variable’s data. When you change time states for the plot that originated the lineout, the lineout will
update to reflect the data at the new time state.

To make VisIt create a new Curve plot for the lineout instead of updating when you change time states in the originating
plot, change the Time change behavior in the Lineout Options Window from updates curve to creates new curve.
VisIt will then put a new curve in the lineout destination window each time you advance to a new time state, resulting
in many Curve plots (see Figure 1.226). By default, VisIt will make all of the related Curve plots be the same color.
You can override this behavior by selecting creates new color instead of repeats color from the New curve combo
box.

Synchronization does not apply to lineout curves created via the Curve plot variable menu, as this type of lineout does
not have an originating plot.

Sampling and Refline labels

These options are the same as described for individual lineouts. Use these options when you want your choices to
apply to all lineouts.

1.8.5 Data-Level Comparisons Wizard

The data-level comparisons wizard facilitates creation of expressions that can be used when comparing fields on
different meshes and/or in different databases. Such expressions are also known as Cross-Mesh Field Evaluation
(CMFE) expressions because they effectively take a field defined on one mesh and evaluate it (e.g. map it) onto a new
mesh. The data-level comparisons wizard is a very helpful alternative to entering CMFE expressions directly into the
expression system manually.

These expressions involve the concepts of a donor variable and a target mesh. The donor variable is the variable
to be mapped onto a new mesh. The target mesh is the mesh onto which the donor variable is to be mapped. In
addition, the term donor mesh refers to the mesh upon which the donor variable is defined. Also, the target mesh is
always interpreted as a mesh in the currently active database. Data-level comparison expressions (CMFEs) are always

1.8. Quantitative Analysis 273

VisIt User Manual Documentation, Release 3.1

Fig. 1.226: Dynamic lineout can be used to create curves for multiple time states

mapping data from other meshes, possibly in other databases onto a target mesh which is understood to be in the
currently active database.

To start the wizard, go to Controls->Data-Level Comparisons. . . as shown in Figure 1.227.

This will open the the initial window where the user is asked to choose between a few basic varieties of CMFE
expressions. These differ in the relative locations (e.g. which database) of the donor variable and target mesh.

1. Donor variable and target mesh are in the same database.

2. Donor variable and target mesh are from different time states of the same database.

3. Donor variable and target mesh are in wholly different databases.

Note: if you wish to create a CMFE that works properly across a time series with wholly different databases (3rd case
above), the data-level comparisons wizard does not directly support that. However, you can use wizard to construct
an initial CMFE expression and then edit it manually in the Expression Window to adjust it for a time series following
the documentation on donor variable syntax.

If the user is unsure, selecting the last option is usually fine. There are some simplifications and maybe some small
performance optimizations in the creation and evaluation of the expressions that can be made for the other cases. But,
VisIt will operate fine even if those are not chosen. In the description that follows, we demonstrate only this selection
but describe variations where necessary.

After selecting the variety of CMFE expression to create, the user is presented with the next wizard window to specify
the target mesh and donor variables to be used in the expression.

The target mesh selection will present the user with a pull-down list of currently opened databases with the currently
active database in the list selected. If another database is desired, the user may either select it from among the pull-
down list of currently open databases or, if the database is not yet open, press the ellipsis (3 dots) button next to the
database selection list to open a file browser and navigate to the desired database in the file system as shown in Figure
1.230

Once the database of the target mesh is specified, the target mesh within that database is specified with the Target
Mesh: pull down list.

274 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.227: Starting the Data-Level Comparisons Wizard

1.8. Quantitative Analysis 275

VisIt User Manual Documentation, Release 3.1

Fig. 1.228: Selecting among varieties of CMFE expressions

Fig. 1.229: Setting up the target mesh and donor variables

276 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.230: Setting up the target mesh and donor variables

1.8. Quantitative Analysis 277

VisIt User Manual Documentation, Release 3.1

A similar sequence of steps is followed for specifying the donor variable. The example in Figure 1.231 demonstrates
the selection of a specific donor variable from the donor database with the Donor Variable: pull down list.

Fig. 1.231: Selecting a specific variable from a database

Next, the user is presented with a window to specify the manner in which the CMFE expression is to be evaluated.
The choices are either connectivity-based or position-based. A position-based CMFE is a more general evaluation at
the likely expense of lower performance. When in doubt, it is best to use this option. Connectivity-based evaluation
is applicable only when donor and target meshes are one-for-one both topologically and geometrically. In this case,
VisIt can optimize the evaluation and avoid having to deal with cases where the donor and target meshes do not wholly
overlap.

For a position-based CMFE, the user is required to also specify what VisIt should do for those positions on the target
mesh that do not overlap with the mesh of the donor variable. The user can choose either a constant numerical value
(e.g. a fill value) or can specify a variable already defined on the target mesh. It is possible for the user to make a choice
that either enhances or inhibits one’s ability to distinguish between values in the result that come from the donor and
values that come from the selected fill choice. A common practice is to choose a constant value that is an extremum
of the donor variable’s range. For example, if the donor variable has a maximum value of 25.7, then selecting this as
the constant to use for non-overlapping regions in the CMFE has the benefit of not altering the variable’s range but
then also being indistinguishable from real data. Another practice is to choose a value that is easily distinguishable
and later apply a threshold operator to remove those portions of the result.

The final step in the wizard is to give the result variable a name and then decide what to do with the result variable. In
Figure 1.233, we have given the result variable the name hardyglobal_onto_mesh1_from_globe.

Often, it is sufficient to have VisIt just compute the mapped variable and then allow the user to use the result variable
in other expressions. However, for convenience, the wizard also offers a number of options common to the work of
comparing the mapped variable to another variable. This last window in the wizard allows the user to select from
among several common methods for comparing the mapped variable to another variable on the target mesh. By
selecting the Expression with option, the user is then offered the ability to select a variable already defined on the
target mesh from the pull down list. Then, the user can select from one of several common methods for comparing the

278 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.232: Selecting the mode of evaluation

Fig. 1.233: Selecting result variable name and comparison method

1.8. Quantitative Analysis 279

VisIt User Manual Documentation, Release 3.1

two variables. For example, the Absolute value of difference choice will have the effect of creating a single expression
that computes the difference in the donor and selected variables and then take its absolute value.

At any point during the steps in the wizard, the user can hit the Go Back button to go back and make different choices.
The user completes the wizard by hitting the Done button. There is no way to go back after hitting the Done button.
Upon completion of the wizard, a new expression is created according to user’s selections. This new expression can
be edited in the expression window, like any other expression as illustrated in Figure 1.234

Fig. 1.234: New can be manipulated in the Expression window

In addition, this new expression can be used in other expressions. Finally, if for some reason the resulting expression
is problematic, it can be deleted from the Expression system and the Data-Level Comparisons wizard can be run again
to re-create it as desired.

1.9 Making it pretty

Now that you know how to visualize databases, it is time to learn how to make presentation quality visualizations.
This chapter explains what options are available for making professional looking visualizations and introduces new
windows that allow you to control annotations, colors, lighting, and the view.

1.9.1 Annotations

Annotations are objects in the visualization window that convey information about the plots. Annotations can be global
objects that show information such as the database name, or they can be objects like plot legends that are directly tied

280 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

to plots. Annotations are an essential component of a good visualization because they make it clear what is being
visualized and make the visualization appear more polished.

VisIt supports several different annotation types that can be used to enhance visualizations. The first category of
annotations includes general annotations like the database name, the user name, and plot legends. These annotations
convey a good deal of information about what is being visualized, what values are in the plots, and who created
the visualization. The second category of annotations include the plot axes and labels. This group of annotations
comes in three groups: 2D, 3D and Array. The attributes for these groups can be set independently. Colors can
greatly enhance the look of a visualization so VisIt provides controls to set the colors used for annotations and the
visualization window that contains them. The third and final category includes annotation objects that can be added
to the visualization window. You can add as many annotation objects as you want to a visualization window. The
currently supported annotation objects are: 2D text, 3D text, time slider, 2D line, 3D line, and image annotations.

Annotation Window

The Annotation Window (Figure 1.235) contains controls for the various annotations that can appear in a visualization
window. You can open the window choosing the Annotation option from the Main Window’s Controls menu. The
Annotation Window has a tabbed interface which groups the different categories of annotations together.

General Annotations

VisIt has a few general annotations that describe the visualization and are independent of the type of database in the
visualization. General annotations encompass the user name, the database name, and plot legends. The general anno-
tation controls are located in the General tab. Figure 1.236 shows common locations for some general annotations.

Turning plot legends off globally

Plot legends are special annotations that are added by plots. An example of a plot legend is the color bar and title that
the Pseudocolor plot adds to the visualization window. Normally, plot legends are turned on or off by a check box in
a plot attribute window but VisIt also provides a check box in the General tab that can turn off the plot legends for
all the plots in the visualization window. You can use the Legend check box at the top of the General tab to turn plot
legends off if they are present.

Displaying database information

When plots are displayed in the visualization window, the name of the database used in the plots is shown in the
visualization window’s upper left corner. You can turn the database information on or off using the Database check
box in the General tab.

The Path Expansion selection box controls the display of the filename text. File causes just the name of the file to
be displayed. Directory causes the directory name of the file to be displayed. Full causes the full path of the file to
be displayed. Smart uses simulation code specific conventions to display the file name in an optimal fashion. Smart
Directory uses simulation code specific conventions to display the directory name in an optimal fashion.

The Time check box controls the display of the time associated with the current database. If Time is enabled then the
Time scale factor and Time offset controls become active, allowing you to scale as well as apply an offset to the time
associated with a database when displaying it.

1.9. Making it pretty 281

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.235: The Annotation window

282 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.236: 2D plot with annotations

1.9. Making it pretty 283

VisIt User Manual Documentation, Release 3.1

Displaying user information

When you add plots to the visualization window, your username is shown in the lower right corner. The user informa-
tion annotation is turned on or off using the User information check box. You may want to turn off user information
when you are generating images for presentations.

2D Annotations

VisIt has a number of controls in the Annotation Window to control 2D annotations on the 2D tab (Figure 1.237). The
2D annotation settings are primarily concerned with the appearance of the 2D axes that frame plots of 2D databases.
Figure 1.236 shows a plot with various annotations.

Fig. 1.237: The general 2D properties

The Show axes check box turns on and off the display of the 2D axes.

284 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

General 2D axis properties

Auto scale label values causes the labels to be multiplied by a factor of 10 to a multiple of 3 power such that the labels
are in the range 0.001 to 999. It then displays the multiplier in the axis title. An example is shown in Figure 1.238.
The X-Axis range is 0 to 100,000, which causes the labels to be in the range 0 to 100, with a (x10^3) added to the
X-Axis and Y-Axis labels to indicate that the true range is actually 0 to 100x10^3 or 100,000.

Fig. 1.238: 2D plot with axes labels being scaled by 10^3

The tick marks are small lines that are drawn along the edges of the 2D viewport. Tick marks can be drawn on a
variety of axes by selecting a new option from the Show tick marks menu. Tick marks can also be drawn on the
inside, outside, or both sides of the plot viewport by selecting a new option from the Tick mark locations menu.

Tick mark spacing is usually changed to best suite the plots in the visualization window but you can explicitly set the

1.9. Making it pretty 285

VisIt User Manual Documentation, Release 3.1

tick mark spacing by first unchecking the Auto set ticks check box and then typing new tick spacing values into the
Major minimum, Major maximum, Major spacing, and Minor spacing text fields in the X-Axis and Y-Axis tabs.

Setting the X-Axis and Y-Axis properties

There are tabs for separately controlling the properties of the X and Y axes. The tab for setting the X-Axis properties
is shown in Figure 1.239.

Fig. 1.239: The 2D axes properties

The axis titles are the names that are drawn along each axis, indicating the meaning of the values shown along the axis.
Normally, the names used for the axis titles come from the database being plotted so the axis titles are relevant for the
displayed plots. Many of VisIt’s database readers plugins read file formats that have no support for storing axis titles
so VisIt uses default values such as: “X-Axis”, “Y-Axis”. VisIt provides options that allow you to override the defaults
or the axis titles that come from the file. You can control the display of the axis titles by enabling and disabling the

286 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Title check box. If you want to override the axis titles that VisIt uses for 2D visualizations, turn on the Custom title
check box and type the new axis title into the adjacent text field.

In addition to overriding the names of the axis titles, you can also override the units that are displayed next to the axis
titles. Units are displayed only when they are available in the file format and like axis titles, they are not always stored
in the file being plotted. If you want to specify units for the axes, turn on the Custom Units check box and type new
units into the adjacent text field.

The axis labels are the labels that appear along the 2D plot viewport. By default, the axis labels are enabled and set
to appear. You can turn the labels off by unchecking the Labels check box. You can change the label scale factor by
changing the Scaling (x10^?) text field.

Tick mark spacing is usually changed to best suite the plots in the visualization window but you can explicitly set the
tick mark spacing by first unchecking the Auto set ticks check box on the General 2D tab and then typing new tick
spacing values into the Major minimum, Major maximum, Major spacing, and Minor spacing text fields.

The 2D grid lines are a set of lines that make a grid over the 2D viewport. The grid lines are disabled by default but
you can enable them by checking the Show grid check box. The grid lines correspond to the major tick marks.

3D Annotations

VisIt has a number of controls, located on the 3D tab in the Annotation Window for controlling annotations that are
used when the visualization window contains 3D plots. Like the 2D controls, these controls focus mainly on the axes
that are drawn around plots. Figure 1.240 shows an example 3D plot with the 3D annotations. Figure 1.241 and Figure
1.242 shows the Annotation Window’s 3D tab.

The Show axes check box turns on and off the display of the 3D axes.

The Show triad check box turns on and off the display of the triad annotation. The triad annotation consists of a small
set of axes and is displayed in the lower left corner of the visualization window and help you get your bearings in 3D.

The Show bounding box check box turns on an off the display of the bounding box. The bounding box annotation
displays the edges of a box that contains all the data.

General 3D axis properties

Auto scale label values causes the labels to be multiplied by a factor of 10 to a multiple of 3 power such that the labels
are in the range 0.001 to 999. It then displays the multiplier in the axis title. A 2D example is shown in Figure 1.238.
The X-Axis range is 0 to 100,000, which causes the labels to be in the range 0 to 100, with a (x10^3) added to the
X-Axis and Y-Axis labels to indicate that the true range is actually 0 to 100x10^3 or 100,000.

The tick marks are small lines that are drawn along the edges of the bounding box surfaces. Tick marks can be drawn
on a variety of axes by selecting a new option from the Show tick marks menu. Tick marks can also be drawn on the
inside, outside, or both sides of the plot bounding box by selecting a new option from the Tick mark locations menu.

Tick mark spacing is usually changed to best suite the plots in the visualization window but you can explicitly set
the tick mark spacing by first unchecking the Auto set ticks check box and then typing new tick spacing values into
the Major minimum, Major maximum, Major spacing, and Minor spacing text fields in the X-Axis, Y-Axis and
Z-Axis tabs.

Setting the X-Axis, Y-Axis and Z-Axis properties

There are tabs for separately controlling the properties of the X, Y and Z axes. The tab for setting the X-Axis properties
is shown in Figure 1.242.

1.9. Making it pretty 287

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.240: 3D plot with annotations

288 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.241: The general 3D properties

1.9. Making it pretty 289

VisIt User Manual Documentation, Release 3.1

Fig. 1.242: The 3D axes properties

290 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

The axis titles are the names that are drawn along each axis, indicating the meaning of the values shown along the
axis. Normally, the names used for the axis titles come from the database being plotted so the axis titles are relevant
for the displayed plots. Many of VisIt’s database readers plugins read file formats that have no support for storing axis
titles so VisIt uses default values such as: “X-Axis”, “Y-Axis” and “Z-Axis”. VisIt provides options that allow you to
override the defaults or the axis titles that come from the file. You can control the display of the axis titles by enabling
and disabling the Title check box. If you want to override the axis titles that VisIt uses for 3D visualizations, turn on
the Custom title check box and type the new axis title into the adjacent text field.

In addition to overriding the names of the axis titles, you can also override the units that are displayed next to the axis
titles. Units are displayed only when they are available in the file format and like axis titles, they are not always stored
in the file being plotted. If you want to specify units for the axes, turn on the Custom Units check box and type new
units into the adjacent text field.

The axis labels are the labels that appear along the edges of the bounding box. By default, the axis labels are enabled
and set to appear. You can turn the labels off by unchecking the Labels check box. You can change the label scale
factor by changing the Scaling (x10^?) text field.

Tick mark spacing is usually changed to best suite the plots in the visualization window but you can explicitly set
the tick mark spacing by first unchecking the Auto set ticks check box on the General 3D tab then typing new tick
spacing values into the Major minimum, Major maximum, Major spacing, and Minor spacing text fields.

The 3D grid lines are a set of lines that make a grid over the the bounding box. The grid lines are disabled by default
but you can enable them by checking the Show grid check box. The grid lines correspond to the major tick marks.

Annotation Colors

Colors are very important in a visualization since they help to determine how easy it is to read annotations. VisIt
provides a tab in the Annotation Window, shown in Figure 1.243, specifically devoted to choosing annotation colors.
The Colors tab contains controls to set the background and foreground for the visualization window which, in turn,
set the colors used for annotations. The Colors tab also provides controls for more advanced background colors called
gradients which are colors that bleed into each other.

The Background color and Foreground color buttons allow you to set the background and foreground colors. To
set the color, click the color button and select a color from the Popup color menu (see Figure 1.244). Releasing the
mouse outside of the Popup color menu cancels color selection and the color is not changed. Once you select a new
color and click the Apply button, the colors for the active visualization window change. Note that each visualization
window can have different background and foreground colors.

The Background style setting allows you to select from four background styles. The default background style is Solid
where the entire background is a single color. The second style is a Gradient background. In a gradient background,
two colors are blended into each other in various ways. The resulting background offers differing degrees of contrast
and can enhance the look of many visualizations. The third style is an Image background, where an image is tiled
across the background. The fourth style is an Image sphere, where an image is projected onto a sphere. This can be
used to paint the stars onto the background of an astrophysics simulation. To change the background style, click the
Background style radio buttons.

VisIt provides controls for setting the colors and style used for gradient backgrounds. There are two color buttons:
Gradient color 1 and Gradient color 2 that are used to change colors. To change the gradient colors, click on the
color buttons and select a color from the Popup color menu. The gradient style is used to determine how colors blend
into each other. To change the gradient style, make a selection from the Gradient style menu. The available options
are Bottom to Top, Top to Bottom, Left to Right, Right to Left, and Radial. The first four options blend gradient color
1 to gradient color 2 in the manner prescribed by the style name. For example, Bottom to Top will have gradient color
1 at the bottom and gradient color 2 at the top. The radial gradient style puts gradient color 1 in the middle of the
visualization window and blends gradient color 2 radially outward from the center. Examples of the gradient styles
are shown in Figure 1.245.

1.9. Making it pretty 291

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.243: The annotation colors tab

292 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.244: The popup color menu and the color selection dialog

Fig. 1.245: The various gradient styles

1.9. Making it pretty 293

VisIt User Manual Documentation, Release 3.1

The Background image text field allows you to specify the name of the file to use for the background image. The
Repetitions in X and Repetitions in Y settings allow you to specify how many times to replicate the image in each of
the X and Y image directions.

Annotation Objects

So far, the annotations that have been described can only have a single instance. To provide more flexibility in the
types and numbers of annotations, VisIt allows you to create annotation objects, which are objects that are added to the
visualization window to convey information about the visualization. Currently, VisIt supports six types of annotation
objects: 2D text objects, 3D text objects, time slider objects, 2D line objects, 3D line objects and image objects. All
of those types of annotation objects will be described herein. The Objects tab, in the Annotation Window (Figure
1.246) is devoted to managing the list of annotation objects and setting their properties.

Fig. 1.246: The annotation objects tab

294 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

The Objects tab in the Annotation Window is divided up into three main areas. The top of the window is split
vertically into two areas that let you create new annotation objects and manage the list of annotation objects. The
bottom half of the Objects tab displays the controls for setting the attributes of the selected annotation object. Each
annotation object provides a separate user interface that is tailored for setting its particular attributes. When you select
an annotation in the annotation object list, the appropriate annotation object interface is displayed.

Creating a new annotation object

The Create new area in the Annotation Window’s Objects tab contains one button for each type of annotation object
that VisIt can create. Each button has the name of the type of annotation object VisIt creates when you push it. After
pushing one of the buttons, VisIt creates a new instance of the specified annotation object type, adds a new entry to the
Annotation objects list, and displays the appropriate annotation object interface in the bottom half of the Objects tab
to display the attributes for the new annotation object.

Selecting an annotation object

The Objects tab displays the annotation object interface for the selected annotation object. To set attributes for a
different annotation object, or to hide or delete a different annotation object, you must first select a different annotation
object in the Annotation objects list. Click on a different entry in the Annotation objects list to highlight a different
annotation object. Once you have highlighted a new annotation object, VisIt displays the object’s attributes in the
lower half of the Objects tab.

Hiding an annotation object

To hide an annotation object, select it in the Annotation objects list and then click the Hide/Show button on the
Objects tab. To show the hidden annotation object, click the Hide/Show button a second time. The interfaces for the
currently provided annotation objects also have a Visible check box that can be used to hide or show the annotation
object.

Deleting an annotation object

To delete an annotation object, select it in the Annotation objects list and then click the Delete button on the Objects
tab. You can delete more than one object if you select multiple objects plots in the Annotation objects list before
clicking the Delete button.

Text annotation objects

Text annotation objects, shown in Figure 1.247, are created by clicking the Text button in the Create new area on
the Objects tab. Text annotation objects are simple 2D text objects that are drawn on top of plots in the visualization
window and are useful for adding titles to a visualization.

The text annotation object properties, shown in Figure 1.248, can be used to set the position, size, text, colors, and font
properties.

Text annotation objects are placed using 2D coordinates where the X, and Y values are in the range [0,1]. The point
(0,0) corresponds to the lower left corner of the visualization window and the point (1,1) corresponds to the upper
right of the visualization window. The 2D coordinate used to position the text annotation matches the text annotation’s
lower left corner. To position a text annotation object, enter a new 2D coordinate into the Lower left text field. You
can also click the down arrow next to the Lower left text field to interactively choose a new lower left coordinate
for the text annotation using the screen positioning control, which represents the visualization window. The screen

1.9. Making it pretty 295

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.247: Examples of text annotations

296 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.248: The text annotation interface

positioning control, shown in Figure 1.249, lets you move a set of cross-hairs to any point on a square area that
represents the visualization window. Once you release the left mouse button, the location of the cross-hairs is used as
the new coordinate for the text annotation object’s lower left corner.

Fig. 1.249: Screen positioning control

The size of the text is set using the Height spin box. The height is the fraction of the visualization window height.

To set the text that a text annotation object displays, type a new string into the Text text field. You can make the
text annotation object display any characters that you type in but you can also use the $time wildcard string to make
the text annotation object display the time for the current time state of the active database. A text string of the form:
Time=$time will display Time=10 in the visualization window when the active database’s time is 10. Whatever text
you enter for the text annotation object is used to identify the text annotation object in the Annotation objects list.

In addition to the usual text properties, text annotation objects can also include a shadow.

3D text annotation objects

3D text annotation objects, shown in Figure 1.250, are created by clicking the 3D Text button in the Create new area
on the Objects tab. 3D text annotation objects are extruded text that are positioned in 3D and are part of the 3D scene,

1.9. Making it pretty 297

VisIt User Manual Documentation, Release 3.1

so they may become obscured by other objects in the scene and will move in space as the image is panned and zoomed.

Fig. 1.250: Examples of 3d text annotations

The 3D text annotation object properties, shown in Figure 1.251, can be used to set the text, position, size, orientation
and color properties.

To set the text that a 3D text annotation object displays, type a new string into the Text text field.

3D text annotation objects are placed in 3D coordinates in the same coordinate system used by the simulation data. To
position a 3D text annotation object, enter a new 3D coordinate into the Position text field.

The size of the text can be specified in two different ways. The first is using a relative height, where the height is a
fraction of the size of the simulation data. The second is a fixed size, where the size is specified in the coordinate
system of the simulation data. If you were to specify a relative height and apply the Transform operator to scale the
data in each direction by a factor of 10, the size of the text would not change. If you were to specify a fixed height,
scaling the data by a factor of 10 would result in the text being one tenth the size. To specify a relative height, select
the Relative radio button and set the size using the spin box next to it. The specify a fixed height, select the Fixed
radio button and enter the new height in the text box next to it.

The orientation of the text can also be specified in two different ways. The first is relative to the screen coordinate
system and the second is in the coordinate system of the simulation data. If the orientation is relative to the screen
coordinate system, then rotating the image will not change the orientation of the text. If the orientation is relative to
the coordinate system of the simulation data, then rotating the image will change the orientation of the text. To make
the orientation relative to the screen, select the Preserve orientation when view changes radio button. To make the

298 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.251: The 3D text annotation interface

orientation relative to the simulation coordinate system, uncheck the Preserve orientation when view changes radio
button. To set the orientation, set the Rotate Y, Rotate X and Rotate Z spin boxes. The rotations are applied in the
left to right order of the spin boxes in the interface.

Time slider annotation objects

Time slider annotation objects, shown in Figure 1.252, are created by clicking the Time slider button in the Create
new area on the Objects tab. Time slider annotation objects consist of a graphic that shows the progress through an
animation using animation and text that shows the current database time. Time slider annotation objects can be placed
anywhere in the visualization window and you can set their size, text, colors, and appearance properties.

Time slider annotation objects are placed using 2D coordinates where the X, and Y values are in the range [0,1]. The
point (0,0) corresponds to the lower left corner of the visualization window and the point (1,1) corresponds to the upper
right of the visualization window. The 2D coordinate used to position the text annotation matches the text annotation’s
lower left corner. To position a text annotation object, enter a new 2D coordinate into the Lower left text field. You
can also click the down arrow next to the Lower left text field to interactively choose a new lower left coordinate for
the text annotation using the screen positioning control, which represents the visualization window.

The size of a time slider annotation object is controlled by settings its height and width as a percentage of the visu-
alization window height and width. Type new values into the Width and Height spin buttons to set a new width or
height for the time slider annotation object.

You can set the text displayed by the time slider annotation object by typing a new text string into the Text label text
field. Text is displayed below the time slider annotation object and it can contain any message that you want. The
text can even include wildcards such as $time, which evaluates to the current time for the active database. If you use
$time to make VisIt incorporate the time for the active database, you can also specify the format string used to display
the time. The format string is a standard C-language format string (e.g. “%4.6g”) and it determines the precision
used to write out the numbers used in the time string. You will probably want to specify a format string that uses a
fixed number of decimal places to ensure that the time string remains the same length during the animation, preventing
distracting differences in the length of the string from taking the eye away from the visualization. Type a C-language
format string into the Time format text field to change the time format string.

1.9. Making it pretty 299

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.252: An example of a time slider annotation object

300 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.253: The time slider interface

Time slider annotations have three color attributes: start color, end color, and text color. A time slider annotation
object displays time like a progress bar in that the progress bar starts out small and then grows to the right until it
takes up the whole length of the annotation. The color used to represent the progress can be set by clicking the Start
color button and choosing a new color from the Popup color menu. As the time slider annotation object shows more
progress, the color that is used to fill up the time that has not been reached yet (end color) is overtaken by the start
color. To set the end color for the time slider annotation object, click the End color button and choose a new color
from the Popup color menu. Normally, time slider annotation objects use the foreground color of the visualization
window when drawing the annotation’s text. If you want to make the annotation use a special color, turn off the Use
foreground color check box and click the Text color button and choose a new color from the Popup color menu.

Time slider objects have two more attributes that affect their appearance. The first of those attributes is set by clicking
on the Rounded check box. When a time slider annotation object is rounded, the ends of the annotation are curved.
The last attribute is set by clicking on the Shaded check box. When a time slider annotation object is shaded, simple
lighting is applied to its geometry and the annotation will appear to be more 3-dimensional.

2D line annotation objects

2D line annotation objects, shown in Figure 1.255, are created by clicking the 2D Line button in the Create new area
on the Objects tab. 2D line annotation objects are simple line objects that are drawn on top of plots in the visualization
window and are useful for pointing to features of interest in a visualization. 2D line annotation objects can be placed
anywhere in the visualization window and you can set their locations, arrow properties, and color.

2D line annotations are described mainly by two coordinates that specify the start and end points for the line. The start
and end coordinates are specified as pairs of floating point numbers in the range [0,1] where the point (0,0) corresponds
to the lower left corner of the visualization window and the point (1,1) corresponds to the upper right corner of the
visualization window. You can set the start or end points for the 2D line annotation by entering new start or end points
into the Start or End text fields in the 2D line object interface. You can also click the down arrow to the right of the
Start or End text fields to interactively choose new coordinates using the screen positioning control.

Once the 2D line annotation has been positioned there are other attributes that can be set to improve its appearance.
First of all, if the 2D line annotation is being used to point at important features in a visualization, you might want to
increase the 2D line annotation’s width to make it stand out more. To change the width, select the new pixel width

1.9. Making it pretty 301

VisIt User Manual Documentation, Release 3.1

Fig. 1.254: Examples of 2D line annotations

302 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.255: The 2D line object interface

from the Width menu. It is also possible to set the line style. To change the style of the line, select the new line style
from the Style menu. After changing the width and style, the color of the 2D line annotation should be chosen to stand
out against the plots in the visualization. The color that you use should be chosen such that the line contrasts sharply
with the plots over which it is drawn. To choose a new color for the line, click on the Line color button and choose a
new color from the Popup color menu. You can also adjust the opacity of the line by using the opacity slider next to
the Line color button.

The last properties that are commonly set for 2D line annotations determine whether the end points of the line have
arrow heads. The 2D line annotation supports two different styles of arrow heads: filled and lines. To make your line
have arrow heads at the start or the end, make new selections from the Begin arrow and End arrow menus.

3D line annotation objects

3D line annotation objects, shown in Figure 1.250, are created by clicking the 3D Line button in the Create new area
on the Objects tab. 3D line annotation objects are lines that are positioned in 3D and are part of the 3D scene, so they
may become obscured by other objects in the scene and will move in space as the image is panned and zoomed.

The 3D line annotation object properties, shown in Figure 1.256, can be used to set the position, style and color
properties.

3D text annotation objects are placed in 3D coordinates in the same coordinate system used by the simulation data. To
position a 3D line annotation object, specify the start and end location of the line by entering the start location in the
Start text field and the end location in the End text field.

There are two types of lines supported, one is a normal line and the other is a tube. The line type is selected through
the Line type menu. When using a normal line, you can specify the normal line width and line style properties using
the Line Width and Line Style menus. When using a tube you can specify the tube quality and radius. The tube is
created from a series of flat surfaces around the center of the line to approximate a tube. The number of surfaces used
is controlled by the tube quality. The tube radius is the radius of the tube in the coordinate system of the simulation
data. These properties can be changed through the Tube Quality and Tube Radius menus.

It is also possible to add arrows to the beginning and end of the line. These can be enabled with the Begin Arrow
and End Arrow toggle buttons. For each arrow, the user can also control the resolution and radius of the arrows. The
arrows consist of cones places at the ends of the line and are constructed out of triangles that approximate a cone. The

1.9. Making it pretty 303

VisIt User Manual Documentation, Release 3.1

Fig. 1.256: The 3D line object interface

number of triangles used is controlled by the resolution. The radius is the radius of the cone in the same coordinate
system as the simulation data. The resolution can be changed using the Resolution spin box and the radius is changed
by typing a new value into the Radius text field.

Image annotation objects

Image annotation objects, shown in Figure 1.257, are created by clicking the Image button in the Create new area on
the Objects tab. Image annotation objects display images from image files on disk in a visualization window. Images
are drawn on top of plots in the visualization window and are useful for adding logos, pictures of experimental data, or
other views of the same visualization. Image annotation objects can be placed anywhere in the visualization window
and you can set their size, and optional transparency color.

The first step in incorporating an image annotation into a visualization is to choose the file that contains the image that
will serve as the annotation. To choose an image file for the image annotation, type in the full path and filename to
the file that you want to use into the Image source text field. You can also use the file browser to locate the image
file if you click on the “. . . ” button to the right of the Image source text field in the Image annotation interface,
shown in Figure 1.258. Note that since image annotations are incorporated into a visualization inside of VisIt’s viewer
component, the image file must be located on the same computer that runs the viewer.

After selecting an image file, you can position its lower left coordinate in the visualization window. The lower left
corner of the visualization window is the origin (0,0) and the upper right corner of the visualization window is (1,1).

Once you position the image where you want it, you can optionally scale it relative to its original size. Unlike some
other annotation objects, the image annotation does not scale automatically when the visualization window changes
size. The image annotation will remain the same size - something to take into account when setting up movies that
use the image annotation. To scale the image relative to its original size, enter new percentages into the Width and
Height spin boxes. If you want to scale one dimension of the image and let the other dimension remain unchanged,
turn off the Lock aspect check box.

Finally, if you are overlaying an image annotation whose image contains a constant background color or other area
that you want to remove, you can pick a color that VisIt will make transparent. For example, Figure 1.257 shows an
image of some Curve plots overlaid on top of the plots in the visualization window and the original background color
in the annotation object was removed to make it transparent. If you want to make a color in an image transparent

304 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.257: An Example of a visualization with two overlaid image annotations

Fig. 1.258: The image object interface

1.9. Making it pretty 305

VisIt User Manual Documentation, Release 3.1

before VisIt displays it as an image annotation object, click on the Transparent color check box and then select a new
color by clicking on the Transparent color button and picking a new color from the Popup color menu.

1.9.2 Color Tables

A color table is a set of colors that is used by certain plots to color variables. Color tables can be immensely important
for understanding visualizations since changes in color can highlight interesting features. VisIt has several built-in
color tables that can be used in visualizations. VisIt also provides a Color table window for designing custom color
tables.

Color tables come in two types: continuous and discrete. A continuous color table is defined as a relatively few color
control points defined at certain intervals in the color table and the gaps in between the color control points are filled
by smoothly interpolating the colors. This makes continuous color tables look smooth since there are several colors
that are blended to form the color table. Continuous color tables are used by several plots including the Pseudocolor,
Tensor, and Vector plots. A plot that uses a continuous color table attempts to use all of the colors in the color table.
Some plots that opt to only use a handful of colors from a continuous color table pick colors that are evenly distributed
through the color table so that the plots end up with colors that still somewhat resemble the original colors from the
continuous color table.

A discrete color table is a set of N colors that can be set individually. There are no other colors in a discrete color
table other than the colors that you provide. Discrete color tables are usually used by plots like the Boundary, Contour,
FilledBoundary, or Subset plots, which need only a small set of colors. Typically, these plots use a color from a discrete
color table to color some object and then use the next color to color another object, and so on. When they reach the
end of the color table and still need more colors, they start again at the beginning with the first color from the discrete
color table.

Color Table Window

You can open VisIt’s Color table window, shown in Figure 1.259, by selecting Color table from the Main Window’s
Controls menu. The Color table window is vertically separated into three areas. The top area allows you to set the
active color tables. The middle area, or manager portion of the window, allows you to create or delete new color tables,
as well as export color tables. The bottom area, or editor portion of the window, allows you to edit color tables by
adding, removing, moving, or changing the color of color control points. A color control point is a point with a color
that influences how the color table will look.

Setting the active color table

VisIt has the concept of active color tables, which are the color tables used to color plots that do not specify a color
table. There is both an active continuous color table (for plots that prefer to use continuous color tables) and an active
discrete color table (for plots that prefer to use discrete color tables). The active color table can be different for each
visualization window. To set the active continuous color table, select a new color table name from the Continuous
menu in the Active color table area. To select a new active discrete color table, select a new color table name from
the Discrete menu in the Active color table area.

Creating a new color table

Creating a new color table is a simple process where you first type a new color table name into the Name text field
and then click the New button. This creates a copy of the currently highlighted color table, which is the color table
that is selected in the Manager area, and inserts it into the color table list with the specified name. After creating the
new color table, you can modify the color control points to fashion a new color table.

306 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.259: The color table window

1.9. Making it pretty 307

VisIt User Manual Documentation, Release 3.1

Deleting a color table

To delete a color table, click on a color table name in the color table list and then click the Delete button. You can
delete all color tables except for the last color table. VisIt makes no distinction between built-in color tables and
user-defined color tables so any color table can be deleted. When you delete a color table, the active color table is set
to the color table that comes first in the list. If a color table is in use when it is deleted, plots that used the deleted color
table will use the default color table from that point on.

Exporting a color table

If you design a color table that you want to share with colleagues, click the Export button in the Manager area to save
an XML file containing the color table definition for the highlighted color table to your .visit directory. The name of a
color table file will usually be composed of the name of the color table with a “.ct” extension. Copying a color table
file to a user’s .visit directory will allow VisIt to find the color table the next time VisIt runs. Look for the color table
file in the directory in which VisIt was installed if you use the Windows version of VisIt.

Editing a continuous color table

Fig. 1.260: The continuous color table editor

There are a handful of controls in the editor portion of the Color table window, shown in Figure 1.260, that are used
to change the definition of a color table. To change a color table definition, you must alter its color control points. This
means adding and removing color control points as well as changing their colors and locations.

You can change the number of color control points in a color table using the Number of colors spin box. When a new
color control point is added, it appears to the right of the selected color control point and to the left of the next color
control point. Color control points are represented as a pointy box just above the color spectrum. The color control
point that has a small triangular mark is the selected color control point. When a color control point is removed, the
color control point that was created before the deleted color control point becomes the new selected color control
point. Clicking the Align button makes all color control points have equal spacing.

Clicking on a color control point makes it active. You can also use the Space bar if the color spectrum has keyboard
focus. Clicking and dragging on a color control point changes its position. Clicking the arrow keys on the keyboard

308 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

also moves a color control point. To change a color control point’s color, right click on it and choose a new color from
the Popup color menu that appears under the mouse cursor. You can also change the color control point’s color by
making the color control point active and then using the Red, Green and Blue sliders.

The Color table window also has a couple of settings that can be set to influence a color table’s appearance without
having permanent effects on the color table. The Smoothing menu can be used to select between no smoothing,
linear smoothing and cubic spline smoothing. The Equal check box can temporarily tell the color table to ignore
the positions of its color control points and use equal spacing instead. The Equal check box is often used with no
smoothing.

Editing a discrete color table

Fig. 1.261: The discrete color table editor

The Color table window’s Editor area looks different when you edit a discrete color table. Instead of showing a
spectrum of colors, the window shows a grid of colors that correspond to the colors in the discrete color table. The
order of the color control points if left to right, top to bottom. To edit a discrete color table, first left click on the color
that you want to edit and then use the Red, Green, and Blue sliders to change the color. You can also right click on a
color to select it and open the Popup color menu to choose a new color.

Numerically Controlled Banded Coloring

Sometimes it is convenient to create numerically controlled banded coloring of smoothly varying data. A Discrete
color table does indeed wind up banding smoothly varying data. However, the band boundaries are uniformly spaced
in the variable’s range and this may not always be desirable. Sometimes, it is desirable to have finely tuned banding
around specific portions of the variable’s range. This requires the coordination of a Discrete color table and an
appropriately constructed conditional expression.

For example, given the a smoothly varying variable, u, in the range [-1...+1] shown in normal (e.g. hot) Pseu-
docolor plot in Fig. 1.262.

we would like to produce a 4-color banded plot using the coloring logic in the table below. . .

1.9. Making it pretty 309

VisIt User Manual Documentation, Release 3.1

Fig. 1.262: Smoothly colored variable using hot color table.

310 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Values in Range Map to this Hex Color
-inf. . . -0.95 blue
-0.95. . . 0 cyan
0. . . +0.95 green
+0.95. . . +inf red

Using a 4-color Discrete color table alone, only the plot in Fig. 1.263 is produced.

Fig. 1.263: A 4-color Discrete color table coloring alone

This is because the colors in a Discrete color table are always uniformly spaced over the variable’s value range. To
produce the desired coloring we need to use a conditional expression that maps the input variable into 4 distinct
values using the range logic from the table. In this case, the correct expression would be if(lt(u,-0.95),0,
if(lt(u,0),1, if(lt(u,0.95),2,3))). Then, plotting this expression using the 4-color Discrete color
table, the desired coloring is produced as shown in

1.9. Making it pretty 311

VisIt User Manual Documentation, Release 3.1

Fig. 1.264: A 4-color Discrete color table coloring combined with a conditional expression

312 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Converting color table types

It is possible to convert a continuous color table to a discrete color table and vice-versa using the Continuous and
Discrete radio buttons in the editor portion of the Color table window. Changing the color table type from discrete
to continuous does not change the color table’s color control points; it only changes how they are used. If you select
the levels color table and click the Continuous radio button, the color table will be changed into a continuous color
table and the Editor area will change to continuous mode and show the color table in a spectrum but no color control
points will have changed. You can even turn the color table back into a discrete color table and the Editor area will
show the color table in discrete mode, but the color control points will not have changed.

1.9.3 Lighting

Lighting is an important element when producing 3D visualizations because all areas of interest in the visualization
should be lit so they can be easily seen. To this end, it is often necessary to have multiple light sources so all of the
visualization’s important areas are bright enough. VisIt can have up to 8 light colored light sources in order to improve
the look of 3D visualizations. Each light source can be positioned and colored using VisIt’s Lighting Window. It
is also possible to have specular highlights in addition to multiple colored lights. For more information on specular
highlights, which can make visualizations appear much more realistic, read about specular lighting in the Preferences
chapter.

Lighting Window

You can open the Lighting Window (see Figure 1.265) by selecting the Lighting option from the Main Window’s
Controls menu. The Lighting Window has two modes of operation: edit and preview. When the window is in
preview mode, light sources cannot be modified, but they are all visible and illuminate the Lighting Window’s test
sphere so the cumulative effect of the lights can be observed. When the window is in edit mode, light sources can be
modified one at a time. You set light properties using the controls in the Properties panel and you can position lights
interactively by moving them around in the lighting panel to the left of the Properties panel.

Switching between edit mode and preview mode

Changing the Mode between Edit and Preview switches the Lighting Window into the desired mode. When the
Lighting Window is in edit mode, one light source at a time is shown in the lighting panel and the lights properties
can be set by moving the light interactively or by settings its properties by using the controls in the Properties panel.
When the Lighting Window is in preview mode, all lights are shown in the lighting panel and none of them can be
modified.

Choosing the active light

The active light is the light whose properties are shown in the Lighting Window. Only the active light can be modified
so you must switch active lights each time you want to make changes to a light. To change the active light, select a
new light from the Active light menu (Figure 1.266). The Active light menu contains a list of eight possible lights of
which only light 1 is active by default. When a light is active, it has a small light bulb icon next to it. Inactive lights
have no light bulb icon. Once a new light has been selected from the Active light menu, its properties are displayed in
the Lighting Window’s Properties panel.

1.9. Making it pretty 313

VisIt User Manual Documentation, Release 3.1

Fig. 1.265: The lighting Window

Fig. 1.266: The active light menu

314 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Turning a light on

You can turn lights on and off using the Enabled check box that appears at the bottom of the Lighting Window’s
Properties panel. You can only modify lights when the Lighting Window is in edit mode.

Light type

Fig. 1.267: The different kinds of lights

VisIt supports three types of lights. The first type is called an ambient light. An ambient light is a light that has no
direction and contributes brightness to the entire visualization. When an ambient light is present, the lighting panel
displays a small light bulb. The second type of light and the default light in VisIt is a camera light. A camera light stays
fixed in space and always points the same direction regardless of how the objects in the visualization are positioned.
Camera lights are represented in the lighting panel as small blue arrows. The third type of light in VisIt is the object
light. An object light has a direction that is relative to the orientation of the object in the visualization. When the
objects in the visualization are rotated, an object light keeps shining on the same area of the object. Object lights are
represented in the lighting panel as small yellow cones. To change the light type for the active light, select a new light
type from the Light type menu in the Properties panel.

Positioning a light

There are two ways to position a light. The first, and most intuitive, way is to interactively position the light by
dragging it to the desired location in the lighting panel. Lights move in a sphere around the test sphere. Experiment
with the motion until you are comfortable moving the light. The second way to move the light is to type a direction
vector into the Direction text field. The coordinate system for specifying a direction vector is right-handed. Suppose
you want to create a light that looks directly into the visualization. Since the Z-axis points directly out of the screen,
the negative Z-axis points into the screen. This can be captured by entering a direction vector of: 0 0 -1. Note that
ambient lights have no direction.

1.9. Making it pretty 315

VisIt User Manual Documentation, Release 3.1

Light color and brightness

VisIt allows lights to have color as well as brightness. Colored lighting can produce interesting effects that may be
desirable for presentations. To change the light color, click on the light Color button and select a new color from the
Color menu. Once a color is picked, you can also set the brightness for the light. The brightness is essentially a knob
that allows you to dim the light. If the brightness is set completely to the right then the light will have exactly the
color that was picked for it. If the brightness is not set to full intensity then the light will be dimmer. You can set the
brightness by adjusting the Brightness slider in the Lighting Window.

1.9.4 Rendering Options

VisIt provides support for setting various global rendering options that improve quality and realism of the plots in the
visualization. Specifically, VisIt provides controls that let you smooth the appearance of lines, add specular highlights,
add shadows, and apply depth cueing to plots in your visualizations. The controls for setting these options are located
in the Rendering options Window (see Figure 1.268) and they will be covered here while the other controls in that
window will be covered in the Preferences chapter. To open the Rendering options Window, click on Rendering in
the Main Window’s Preferences menu.

Making Lines Look Smoother

Computer monitors contain an array of millions of tiny rectangular pixels that light up to form patterns which your
eyes perceive as images. Lines tend to look blocky on computer monitors because they are drawn using a relatively
small set of pixels. Lines can be made to look better by blending the edges of the line with the color of the background
image. This is a form of antialiasing that VisIt can use to make plots which use lines, such as the Mesh plot, look better
(see Figure 1.269). If you want to enable antialiasing, which is off by default, you check the Antialiasing check box
located at the top of the Basic tab (see Figure 1.268). When antialiasing is enabled, all lines drawn in a visualization
window are blended with the background image so that they look smoother.

Specular Lighting

VisIt supports specular lighting, which results in bright highlights on surfaces that reflect a lot of incident light from
VisIt’s light sources. Specular lighting is not handled in the Lighting Window because specular lighting is best
described as a property of the material reflecting the light. The controls for specular lighting don’t control any lights
but instead control the amount of specular highlighting caused by the plots. Specular lighting is not enabled by default.
To enable specular lighting, click the Specular lighting check box near the bottom of the Basic tab (see Figure 1.268).

Once specular lighting is enabled, you can change the strength and sharpness properties of the material reflecting the
light. The strength, which you can set using the Strength slider, influences how glossy the plots are and how much
light is reflected off of the plots. The sharpness, which is set using the Sharpness slider, controls the locality of the
reflections. Higher sharpness values result in smaller specular highlights. Specular highlights are a crucial component
of lighting models and including specular lighting in your visualizations enhances their appearance by making them
more realistic. Compare and contrast the plots in Figure 1.270. The plot on the left side has no specular highlights and
the plot on the right side has specular highlights.

Shadows

VisIt supports shadows when scalable rendering is being used. Shadows can be useful for increasing the realism of
your visualization. The controls to turn on shadows can be found near the bottom of the Advanced tab (see Figure
1.271). To turn on shadows, you must turn on scalable rendering by clicking on the Always radio button under the
Use scalable rendering label. Once scalable rendering has been turned on, the shadows controls become enabled.
The default shadow strength is 50%. If you desire a stronger or weaker shadow, adjust the Strength slider until you

316 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.268: The basic rendering options

Fig. 1.269: An example of antialiasing

1.9. Making it pretty 317

VisIt User Manual Documentation, Release 3.1

Fig. 1.270: The effects of specular lighting on plots

are satisfied with the amount of shadow that appears in the visualization. The same plot is shown with and without
shadows in Figure 1.272.

Depth Cueing

VisIt supports depth cueing when scalable rendering is being used. Depth cueing can be useful for increasing the
realism of your visualization. Depth cueing causes objects to be blended with the background with increasing distance
from the camera. The controls to turn on depth cueing can be found near the bottom of the Advanced tab (see Figure
1.271). To turn on depth cueing, you must turn on scalable rendering by clicking on the Always radio button under the
Use scalable rendering label. Once scalable rendering has been turned on, the depth cueing controls become enabled.
By default, depth cueing is performed along the camera direction. The depth cueing can be done along a different
direction by unchecking the Cue automatically along camera depth check box and then entering the coordinates
defining the direction to perform the depth cueing in the Manual start point and Manual end point text fields. The
coordinates are defined in the coordinate system of the simulation data. The same plot is shown with and without
depth cueing in Figure 1.273.

1.9.5 View

The view is one of the most critical properties of a visualization since it determines what parts of the dataset are seen.
The view is also one of the most difficult properties to set. It is not that the act of setting the view is difficult. In fact,
it is quit the opposite. The problem with setting the view is finding a flattering view for a database that will continue
to be a good view for the entire life of the visualization. Many plots will deform or expand over the course of an
animation and you have to decide how to pick a good view. You can pick a view that is zoomed way out and then
let your plots expand and deform until they make good use of the visualization window. You can also decide to keep
changing the view throughout the animation. A common technique is to interpolate views or do some sort of fly-by
animation when the plots in the animation are expanding or not behaving in a static manner. The fly-by animation is
used to distract the audience from the fact that you need to change to a more suitable view.

The view in VisIt can be set in two different ways. The first and best way to set the view is to navigate to it interactively
in the visualization window. This is the fastest and most direct way of setting the view. The problem with setting the

318 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.271: The advanced rendering options

1.9. Making it pretty 319

VisIt User Manual Documentation, Release 3.1

Fig. 1.272: The effects of shadows on plots

Fig. 1.273: The effects of depth cueing on plots

320 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

view in this manner is that it is not very reproducible. It is often the case that users want to look at the same feature
in their database using the same view. VisIt provides a View Window that they can use to set the view information
exactly the same every time.

View Window

You can open the View Window by selecting View from the Main Window’s Controls menu. The View Window is
divided into five tabbed sections. The first tab sets the curve view, the second tab sets the 2D view, the third tab sets
the 3D view, the fourth tab sets the axis array view, and the last tab sets advanced view options. The View Window
also contains a Command text field at the bottom for entering view commands.

Setting the curve view

Visualization windows that contain Curve plots use a special type of view known as a curve view. A curve view
consists of: viewport, domain, and range. The viewport is the area of the visualization window that will be occupied
by the plots and is specified using X and Y values in the range [0,1]. The point (0,0) corresponds to the lower-left
corner of the visualization window while the point (1,1) corresponds to the visualization window’s upper-right corner.
To change the viewport, type new numbers into the Viewport text field on the Curve view tab of the View Window
(Figure 1.274). The minimum and maximum X values should come first, followed by the minimum and maximum Y
values.

The domain and range refer to the limits on the X and Y axes. You can set the domain, which is the range of X values
that will be displayed in the viewport, by typing new minimum and maximum values into the Domain text field. You
should use domain values that use the same dimensions as the Curve plot that will be plotted in the visualization
window. You can set the range, which is the range of Y values that will be displayed in the viewport, by typing
new values into the Range text field. The domain and range values may also be log scaled and may be controlled
independently. To log scale the domain, check the Log radio box to the right of the Domain Scale label. To log scale
the range, check the Log radio box to the right of the Range Scale label.

Setting the 2D view

Setting the 2D view is conceptually simple. There are only two pieces of information that you need to supply. The first
piece of information that you must enter is the viewport, which is an area of the visualization window in which you
want the 2D plots to appear. Imagine that the lower left corner of the visualization window is the origin of a coordinate
system and that the upper left and lower right corners both have values of 1. Every point in the visualization window
can be characterized as a Cartesian coordinate where both values in the coordinate are in the range [0,1]. The viewport
is specified by entering four numbers in the form x0 x1 y0 y1 where x0 is the leftmost X value, x1 is the rightmost X
value, y0 is the lower Y value, and y1 is the upper Y value that will be used in the viewport. The window is an area
in the space occupied by the 2D plots. You can start with a window that is the same size as the plot’s spatial extents
and then zoom in from there by making the window values smaller and smaller. The window values are also of the
form x0 x1 y0 y1. To change the 2D view, type new values into the Viewport and Window text fields on the View
Window’s 2D view tab (Figure 1.275).

Some databases yield plots that are so long and skinny that they leave most of the visualization window blank when
VisIt displays them. A common example is equation of state data, which often has at least 1 exponential dimension.
VisIt provides Fullframe mode to stretch long, skinny plots so they fill more of the visualization window so it is easier
to see them. It is worth noting that Fullframe mode does not preserve a 1:1 aspect ratio for the displayed plots because
they are stretched in each dimension so they fit better in the visualization window. To activate full frame mode, click
on the Auto or On radio buttons to the left of the Full Frame label. When full frame mode is set to Auto, VisIt
determines the aspect ratio of the X and Y dimensions for the plots being visualized and automatically scales the plots
to fit the window when extents for one of the dimensions are much larger than the extents of the other dimension.

1.9. Making it pretty 321

VisIt User Manual Documentation, Release 3.1

Fig. 1.274: The curve view options

322 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.275: The 2D view options

1.9. Making it pretty 323

VisIt User Manual Documentation, Release 3.1

Fig. 1.276: The effect of full frame mode on an extremely skinny plot

Just like the with the curve view, the x and y values may be log scaled independently. To log scale the x values, check
the Log radio box to the right of the X Scale label. To log scale the y values, check the Log radio box to the right of
the Y Scale label.

Setting the 3D view

Setting the 3D view using controls in the View Window’s 3D view tab (see Figure 1.277) demands an understanding
of 3D views. A 3D view is essentially a location in space (view normal) looking at another location in space (focus)
with a cone of vision (view angle). There are also clipping planes that lie along the view normal that clip the near and
far objects from the view. Figure 1.278 depicts the various components of a 3D view.

To set the 3D view, fill in the following fields:

View normal Where you want to look from.

Focus What you want to look at.

Up axis Determines which way is up. A good default value for the up axis is 0 1 0. VisIt will often calculate a better
value to use for the up axis so it is not too important to figure out the right value.

View Angle Determines how wide the field of view is. The view angle is specified in degrees and a value around 30
is usually sufficient.

Near clipping and Far clipping Values along the view normal that determine where the near and far clipping planes
are to be placed. It is not easy to know that good values for these are so you will have to experiment.

Parallel scale Acts like a zoom factor that zooms the camera towards the focus. For a parallel projection, it is half the
height of an object in the window. For example, if you had a sphere of radius 10, setting the parallel scale to 10,
would result in the top and bottom of the sphere touching the top and bottom of the image. Where the sphere
touches on the left and right edges depends on the aspect ratio of the image. If it was 1:1, then the sphere would
also touch the left and right edges of the image. When doing a perspective projection, it attempts to have the top
and bottom of the sphere touch the top and bottom of the image.

324 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.277: The 3D view options

1.9. Making it pretty 325

VisIt User Manual Documentation, Release 3.1

Fig. 1.278: The 3D perspective view volume

Perspective Applies to 3D visualizations and it causes a more realistic view to be used where objects that are farther
away are drawn smaller than closer objects of the same size. VisIt uses a perspective view for 3D visualizations
by default.

VisIt supports stereo rendering, during which VisIt draws the image in the visualization window twice with the camera
eye positioned in slightly different locations to mimic the differences in images seen by your left eye and your right
eye. With the right stereo goggles, the image that you see appears to hover in 3D space within your monitor since the
effect of the stereo image adds much more depth to the visualization. You can set the angle that VisIt uses to separate
the cameras used to draw the images by typing a new angle into the Eye angle text field or by using the Eye angle
slider.

The Align to axis menu provides a convenient way to get side, top, and bottom views of your 3D data. It provides six
options corresponding to the six axis aligned directions and sets both the View normal and the Up vector.

Setting the axis array view

Visualization windows that contain Parallel Coordinate plots use a special type of view known as an axis array view.
An axis array view consists of: viewport, domain, and range. The viewport is the area of the visualization window
that will be occupied by the plots and is specified using X and Y values in the range [0,1]. The point (0,0) corresponds
to the lower-left corner of the visualization window while the point (1,1) corresponds to the visualization window’s
upper-right corner. To change the viewport, type new numbers into the Viewport text field on the Curve view tab of
the View Window (Figure 1.279). The minimum and maximum X values should come first, followed by the minimum
and maximum Y values.

The Domain and Range settings are not very intuitive and we will give a short description followed by some examples.
The domain controls the position and spacing of the parallel axes. The larger the value the more tightly they are
spaced or the more axes that will fit in the view. For example, a domain of 0. to 2. would have room for exactly three

326 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.279: The axis array view options

1.9. Making it pretty 327

VisIt User Manual Documentation, Release 3.1

coordinate axes, with the first one at the extreme left edge of the viewport and the third one at the extreme right edge
of the viewport. Changing the domain to 1. to 3. would shift the second axis to the extreme left edge of the viewport
and move the third axis to the center of the viewport. If there were only three axes, then the right half of the viewport
would be empty. The range controls the height of the coordinate axes. The larger the value, the shorter the axes. For
example, the default range of 0. to 1. results in the axes filling the height of the viewport. A range of 0. to 2. results
in the axes filling the bottom half of the viewport. You can play with the controls to get a better understanding of the
domain and range settings.

Advanced view features

The View Window’s Advanced tab, shown in Figure 1.280, contains advanced features that are not needed by all
users.

Fig. 1.280: The advanced view options

The View based on menu is used to specify if the view is set based on the original spatial extents of the plot or the
actual current extents which are the plot’s current extents after it has been subsetted in some way. By default, VisIt
bases the view on the plot’s original extents which leaves the remaining bits of a plot, after being subsetted, in the
same space as the original plot. This makes it easy to see where the remaining pieces of the plot were situated relative
to the whole plot but it does not always make best use of the visualization window. To fill up more of the visualization
window, you might want to base the view on the actual current extents by selecting Actual current extents from the

328 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

View based on menu.

When using more than one visualization window, such as when comparing plots using two different databases side by
side, it is often useful for the plots being compared to have the same view. VisIt allows you to lock the views together
for the multiple visualization windows so that when you change the view of any window whose view is locked, all
other windows with locked views get the new view. To lock the view for a visualization window, click the Locked
view check box or click on the Toolbar button to lock views.

Normally, VisIt will adjust the view to match the extents of the data. For example, if you are looking at data from a
simulation whose extents expand over time, VisIt will automatically adjust the view so that the data fills roughly the
same amount of space as the extents expand. Another example is when the extents move from left to right, VisIt will
adjust the view so that the extents are always centered in the same portion of the screen. This behavior is not always
desired in certain situations. To turn off this behavior and fix the view, no matter how the extents of the data change,
click on the Maintain view limits check box.

The Reset view, Recenter view, and Undo view can be used to reset the view, recenter the view, and undo the last
view change. Resetting the view resets all aspects of the view based on the data extents. Recentering the view resets
all aspects of the view except the view orientation based on the data extents. Undoing the view returns the view to the
last view setting. The last 10 views are stored so you can undo the view up to 10 times.

The Locked view check box, the Maintain view limits check box, the Reset view button, the Recenter view button,
and Undo view buttons behave differently than the rest of the controls in the view window in that they effects take
effect immediately, without having to press the Apply button.

The Copy view from camera check box and the Make camera keyframe from view button are deprecated and will
be removed in the next release.

The center of rotation is the point about which plots are rotated when you set the view. You can type a new center
of rotation into the Center text field and click the User defined center of rotation check box if you want to specify
your own center of rotation. The center of rotation is, by default, the center of your plots’ bounding box. When you
zoom in to look at smaller plot features and then rotate the plot, the far away center of rotation causes the changes
to the view to be large. Large view changes when you are zoomed in often make the parts of the plot that you were
inspecting go out of the view frustum. If you are zoomed in, you should pick a center of rotation that is close to the
surface of the plot that you are inspecting. You can also pick a center of rotation using the Choose center from the
visualization window’s Popup menu.

Using view commands

The Commands text field at the bottom of the View Window allows you to enter one or more semi-colon delimited
legacy MeshTV commands to change the view. The following list has a description of the supported view commands:

pan x y Pans the 3D view to the left/right or up/down. The x, y arguments, which are floating point fractions of the
screen in the range [0,1], determine how much the view is panned in the X and Y dimensions.

pan3 x y Same as pan.

panx x Pans the 3D view left or right. The x argument is a floating point fraction of the screen in the range [0,1].

pany y Pans the 3D view up or down. The y-argument is a floating point fraction of the screen in the range [0,1].

ytrans y Same as pany.

rotx x Rotates the 3D view about the X-axis x degrees.

rx x Same as rotx.

roty y Rotates the 3D view about the Y-axis y degrees.

rotz z Rotates the 3D view about the Z-axis z degrees.

rz z Same as rotz.

1.9. Making it pretty 329

VisIt User Manual Documentation, Release 3.1

zoom val Scales the 3D zoom factor. If you provide a value of 2.0 for the val argument, the object being viewed will
appear twice as large. A value of 0.5 for the val argument will make the object appear only half as large.

zf Same as zoom.

zoom3 Same as zoom.

vp x0 x1 y0 y1 Sets the window, which is how much space relative to the plot will be visible inside of the viewport,
for the 2D view. All arguments are floating point numbers that are in the same range as the plot extents. The x0
and x1 arguments are the minimum and maximum values for the edges of the window in the X dimension. The
y0 and y1 arguments are the minimum and maximum values for the edges of the window in the Y dimension.

wp x0 x1 y0 y1 Sets the window, which is how much space relative to the plot will be visible inside of the viewport,
for the 2D view. All arguments are floating point numbers that are in the same range as the plot extents. The x0
and x1 arguments are the minimum and maximum values for the edges of the window in the X dimension. The
y0 and y1 arguments are the minimum and maximum values for the edges of the window in the Y dimension.

reset Resets the 2D and 3D views.

recenter Recenters the 3D view.

undo Changes back to the previous view.

1.10 Animation

This chapter discusses how to use VisIt to create animations. There are three ways of creating animations using
VisIt: flipbooks, keyframing, and scripting. For complex animations with perhaps hundreds or thousands of database
time steps, it is often best to use scripting via VisIt’s Python command-line interface. VisIt provides Python and
Java language interfaces that allow you to program animation and save image files that get converted into a movie.
The flipbook approach is strictly for static animations in which only the database time step changes. This method
allows database behavior over time to be quickly inspected without the added complexity of scripting or keyframing.
Keyframed animation can exhibit complex behavior of the view, plot attributes, and database time states over time.
This chapter emphasizes the flipbook and keyframe approaches and explains how to create animations both ways.

Scripting is the recommended method of producing animations. Scripting is more difficult than other methods because
users have to script each event by writing a Python or Java program to control VisIt’s viewer. One clear strength of
scripting is that it is very reproducible and can be used to generate animation frames in a batch computing environment.
For in-depth information about writing Python scripts for Visit, consult the Python command-line interface. Scripting
for purposes of animations is not described further here.

1.10.1 Animation basics

Animation is used mainly for looking at how scientific databases evolve over time. Databases usually consist of many
discrete time steps that contain the state of a simulation at a specific instant in time. Creating visualizations using just
one time step from the database does not reveal time-varying behavior. To be most effective, visualizations must be
created for all time steps in the database.

The .visit file

Since scientific databases usually consist of dozens to thousands of time states. Those time states can reside in any
number of actual files. Some database file formats support multiple time states in a single file while other formats
require each time state to be located in its own file. When all time states are in their own file, it is important for VisIt to
know which files comprise the database. VisIt attempts to use automatic file grouping to determine which files are in
a database but sometimes it is better if you provide the actual list of files in a database when you want to generate an
animation using VisIt. You can create a .visit file that contains a list of the files in the database. By having a list of files

330 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

that make up the database, VisIt does not have to guess database membership based on file naming conventions. While
this may appear to be inconvenient, it removes the possibility that VisIt will include a file that is not in the database. It
also frees VisIt from having to know about dozens of ad hoc file naming conventions. Having a .visit file also allows
VisIt to make certain optimizations when generating a visualization.

VisIt provides a File grouping combo box in the File open window (see Figure 1.281) to assist in grouping related
time-varying files into a virtual database. A virtual database accomplishes the same function as a .visit file except
that no extra file needs to be created. Selecting On or Smart will group files into a virtual database. The On setting
applies file matching rules to group files with similar prefixes into a virtual database. VisIt will attempt to generate a
pattern from a filename so sequences of numbers can be abstracted out. Multiple files that match the same pattern are
added to the same virtual database. The Smart setting applies the same logic as well as some extra rules that permit
additional file grouping. For instance, certain file extensions that include numbers such as .hdf5 are excluded from
the pattern generation so the number in the file extension does not prevent useful file groupings.

Fig. 1.281: File open window

Flipbook animation

All that is needed to create a flipbook animation is a time-varying database. To view a flipbook animation, open a
time-varying database, create plots as usual, and click the Play button in the GUI shown in Figure 1.282 highlighted

1.10. Animation 331

VisIt User Manual Documentation, Release 3.1

Fig. 1.282: Animation controls

332 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

in red or in the visualization window’s Animation Toolbar . A flipbook animation repeatedly cycles through all of
the time states in the database displaying the plots for the current time state in the visualization window. The result is
an animation that allows you to see the database evolve over time. The VCR buttons, shown in Figure 1.282 , allow
you to control how a flipbook animation plays. The animation controls are are also used for controlling keyframe
animations. Clicking the Play button causes VisIt to advance the database timestep until the Stop button is clicked.
As the plots are generated for each database time state, the animation proceeds only as fast as the compute engine
can generate plots. As described in the Animation Window section, you have the option of caching the geometry for
each time state so animations will play smoothly according to the animation playback speed once the plots for each
database time state have been generated.

Setting the time state

There are several ways that you can set the time state for an animation. You can use the VCR controls to play
animations or step through them one state at a time. You can also use the Time slider to access a specific animation
time state. To set the animation time state using the Time slider , click on the time slider and drag horizontally to a
new time state. The time state to which you drag it will be displayed in the Cycle/Time text field as you drag the time
slider so you will know when to let go of the Time slider . Once you release the mouse button at a new time state,
VisIt will calculate the visualized plots using the data at the specified time state.

If you prefer more precise control over the time state, you can type a cycle or time into the Cycle/Time text field to
make VisIt jump to the closest cycle or time for the active database. You can also highlight a new time state for the
active database in the Selected files list and then click the Replace button to make VisIt change the time state for the
visualization.

Animation Window

You can open the Animation Window, shown in Figure 1.283 , by clicking on the Animation . . . option from the
Controls menu. The Animation Window contains controls that allow you to turn off pipeline caching and adjust the
animation playback mode and speed.

Animation playback speed

The animation playback speed is used when playing flipbook or keyframe animations. The playback speed determines
how fast VisIt cycles through the database states that make up the animation. Rather than using states per second as
a measurement for the playback speed, VisIt uses a simple scale of slower to faster. To set the animation playback
speed, use the Animation speed slider. Moving the slider to the left and slower setting slows down animations so they
change time states once every few seconds. Moving the slider to the right and faster setting will make VisIt play the
animation as fast as the host graphics hardware allows.

Pipeline caching

When pipeline caching is enabled, VisIt tries to retain all of the geometric primitives that are used to draw a plot. This
greatly speeds up animations once the geometry for all time states is cached. The downside to pipeline caching is that
it can consume large amounts of memory. Pipeline caching is enabled by default, but sometimes it makes sense to
turn it off. The deciding factors are the size of the database, the number of animation frames, and the number of plots
in each animation frame. Try leaving pipeline caching enabled until you notice performance degradation. To turn off
pipeline caching, uncheck the Pipeline caching check box in the Animation Window .

1.10. Animation 333

VisIt User Manual Documentation, Release 3.1

Fig. 1.283: Animation window

334 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Animation playback mode

The animation playback mode determines how VisIt gets to the next time state after playing until the end of the
animation. There are three animation playback modes: looping, play once, and swing. VisIt loops animations by
default so once the end of the animation is reached, it starts playing from the beginning. When the animation mode
is set to play once, VisIt plays the animation through until the end and then stops playing the animation. When VisIt
reaches the end of the animation in swing mode, the animation starts playing in reverse until it gets to the start, at
which point, it starts playing forward again. To set the animation mode, click on one of the Looping, Play once , and
Swing radio buttons in the Animation Window .

1.10.2 Keyframing

Keyframing is an advanced form of animation that allows you create animations where certain animation attributes
such as view or plot attributes can change as the animation progresses. You can design an entire complex animation
upfront by specifying a number of animation frames to be created and then you can tell VisIt which plots exist over the
animation frames and how their time states map to the frames. You can also specify the plot attributes so they remain
fixed over time or you can make individual plot and operator attributes evolve over time. With keyframing, you can
make a plot fade out as the animation progresses, you can make a slice plane move, you can make the view slowly
change, etc. Keyframe animations allow for quite complex animation behavior.

There is a video tutorial that demonstrates the process of creating a keyframing animation and saving it as a movie.

Keyframing Window

Keyframe animations are designed using VisIt’s Keyframing Window (see Figure 1.284), which you can open by
selecting the Keyframing option from the Controls menu. The window is dominated by the Keyframe area , which
consists of many vertical lines that correspond to each frame in the animation and horizontal lines, or Keyframe lines
, that correspond to the state attributes that are being keyframed. The horizontal lines are the most important because
they allow you to move and delete keyframes and set the plot range, which is the set of animation frames over which
the plot is defined.

Keyframing mode

To create a keyframe animation, you must first open the Keyframing Window and check the Keyframing enabled
check box. When VisIt is in keyframing mode, a keyframe is created for the active animation state each time you set
plot or operator attributes and time is set using the Animation time slider. The Animation time slider is a special time
slider that is made active when you enter keyframing mode and the animation frame can only be set using it. Changing
time using any other time slider results in a new database state keyframe instead of changing the animation frame.

If you have created plots before entering keyframing mode, VisIt converts them into plots that can be keyframed when
you enter keyframing mode. When you leave keyframing mode, extra keyframing attributes associated with plots are
deleted, the animation containing the plots reverts to a flipbook animation, and the Animation time slider is no longer
accessible.

Setting the number of frames

When you go into keyframing mode for the first time, having never set a number of keyframes, VisIt will use the
number of states in the active database for the number of frames in the new keyframe animation. The number of
frames in the keyframe animation will vary with the length of the database with the most time states unless you
manually specify a number of animation frames, which you can do by entering a new number of frames into the

1.10. Animation 335

https://www.youtube.com/embed/tLm_3Vl9rLg?vq=720hd

VisIt User Manual Documentation, Release 3.1

Fig. 1.284: Keyframing Window

336 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Keyframing Window’s Number of frames text field. Once you enter a number of frames, the number of frames will
not change unless you change it.

Adding a keyframe

Fig. 1.285: Keyframe area

To add a keyframe, you must first have created some plots and put VisIt into keyframing mode by clicking the
Keyframing enabled check box in the Keyframing Window . After you have plots and VisIt is in keyframing
mode, you can add a keyframe by opening a plot’s attribute window, changing settings, and clicking its Apply button.
To set a keyframe for a later frame in the animation, move the Keyframe time slider, which is located under the
Keyframe area (see Figure 1.285), to a later time and change the plot attributes again. Each time you add a keyframe
to the animation, a small black diamond, called a Keyframe indicator , will appear along the Keyframe line for the
plot. When you play through the animation using any of VisIt’s animation controls, the plot attributes are calculated
for each animation frame and they are used to influence how the plots look when they appear in the Viewer window.

Adding a database state keyframe

Each plot that exists at a particular animation frame must use a specific database state so the correct data will be
plotted. When VisIt is in keyframing mode, the database state can also be keyframed so you can control the database
state used for a plot at any given animation frame. The ability to set an arbitrary database state keyframe for a plot
allows you to control the flow of time in novel ways. You can, for example, slow down time, stop time, or even make
time flow backwards for a little while.

There are two ways to set database state keyframes in VisIt. The first way is to move the Keyframe time slider to the
desired animation frame, enter a new number into the text field next to the Keyframe Window’s Add state keyframe
button, and the click the Add state keyframe button. As an alternative, you can use the ** Main Window’s Time
slider** to create a database state keyframe, provided the active time slider is not the Animation time slider. To set a
database state keyframe using the Time slider , select a new database time slider from the Active time slider combo
box and then change time states using the Time slider . Instead of changing the active state for the plots that use the
specified database, VisIt uses the information to create a new database state keyframe for the active animation frame.

Adding a view keyframe

In addition to being able to add keyframes for plot attributes, operator attributes, and database states, you can also set
view keyframes so you can create sophisticated flybys of your data. To create a view keyframe, you must interactively
change the view in the Viewer window using the mouse or specify an exact view in the View Window . Once the view
is where you want it for the active animation frame, open the View Window and click the Make camera keyframe

1.10. Animation 337

VisIt User Manual Documentation, Release 3.1

from view button on the Advanced tab in order to make a view keyframe. Once the view keyframe has been added, a
keyframe indicator will be drawn in the Keyframing Window .

VisIt will not use view keyframes by default when you are in keyframing mode because it can be disruptive for VisIt
to set the view while you are still adding view keyframes. Once you are satisfied with your view keyframes, click the
Copy view from camera button on the Advanced tab in the View Window in order to allow VisIt to set the view
using the view keyframes when you change animation frames.

Deleting a keyframe

To delete a keyframe, move the mouse over a Keyframe indicator and right click on it with the mouse once the
indicator becomes highlighted.

Moving a keyframe

To move a keyframe, move the mouse over a Keyframe indicator , click the left mouse button and drag the Keyframe
indicator left or right to a different animation frame. If at any point you drag the Keyframe indicator outside of the
green area, which is the plot time range, and release the mouse button, moving the keyframe is cancelled and the
Keyframe indicator returns to its former animation frame.

Changing the plot time range

The plot time range determines when a plot appears or disappears in a keyframed animation. Since VisIt allows plots
to exist over a subset of the animation frames, you can set a plot’s plot range in the Keyframe area to make a plot
appear later in an animation or be removed before the animation reaches the last frame. You may find it useful to set
the plot range if you have increased the number of animation frames but found that the plot range did not expand to
fill the new frames. To change the plot time range, you left-click on the beginning or ending edges of the Plot time
range (the green band on the Keyframe line) in the Keyframe area and drag it to a new animation frame.

1.10.3 Movie tools

VisIt provides a command line utility based on VisIt’s Command Line Interface that is called visit -movie . The
visit -movie movie generation utility is installed with all versions of VisIt and can be used to generate movies
using session files or Python scripts as input. If you want to design movies based on visualizations that you have
created while using VisIt’s GUI then you might also want to read about the Save movie wizard . If the visit command
is in your path then typing visit -movie at the command prompt, regardless of the platform that you are using,
will launch the visit -movie utility. The following list provides visit -movie command line arguments:

-format fmt The format option allows you to set the output format for your movie. The supported values for fmt
are:

• mpeg : MPEG 2 movie.

• qt : QuickTime movie.

• sm : Streaming movie format.

• png : Save raw movie frames as individual PNG files.

• ppm : Save raw movie frames as individual PPM files.

• tiff : Save raw movie frames as individual TIFF files.

• jpeg : Save raw movie frames as individual JPEG files.

338 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

• bmp : Save raw movie frames as individual BMP (Windows Bitmap) files.

• rgb : Save raw movie frames as individual RGB (SGI format) files.

-geometry size The geometry option allows you to set the movie resolution. The size argument is of the form
WxH where W is the width of the image and H is the height of the image. For example, if you want an image
that is 1024 pixels wide and 768 pixels tall, you would provide: -geometry 1024x768.

-sessionfile name The sessionfile option lets you pick the name of the VisIt session to use as input for your
movie. The VisIt session is a file that describes the movie that you want to make and it is created when you save
your session from within VisIt’s GUI after you set up your plots how you want them.

-scriptfile name The scriptfile option lets you pick the name of a VisIt Python script to use as input for your
movie.

-framestep name The number of frames to advance when going to the next frame.

-start frame The frame at which to start.

-end frame The frame at which to end.

-fps number Sets the frames per second at which the movie should be played.

-output The output option lets you set the name of your movie.

The visit -movie utility always supports creation of series of image files but it does not always support creation
of movie formats such as QuickTime, or Streaming movie. Support for movie formats varies based on the platform.
QuickTime and Streaming movie formats are currently limited to computers running IRIX and the appropriate movie
conversion tools (makemovie, img2sm) must be in your path or VisIt will create a series of image files instead of a
single movie file. You can always use visit -movie to generate the individual movie frames and then use your favorite
movie generation software to convert the frames into a single movie file.

Fig. 1.286: Movie generation options for session files on Windows platform

If you browse the Windows file system and come across a VisIt session file, which ends with a .session extension,
you can right click on the file and choose from several movie generation options. The movie generation options make
one-click movie generation possible so you don’t have to master the arguments for visit -movie like you do on
other platforms. After selecting a movie generation option for a VisIt session file, Windows runs visit -movie
implicitly with the right arguments and saves out the movie frames to the same directory that contains the session file,
and will have the same name as the session file. The movie generation options in a session file’s context menu are
shown in Figure 1.286.

1.10. Animation 339

VisIt User Manual Documentation, Release 3.1

1.11 Interactive Tools

An interactive tool is an object that can be added to a visualization window to set attributes for certain plots and
operators such as the Parallel Coordinates plot or Slice operator. You can turn interactive tools on and off by clicking
on the tool icons in a visualization window’s Toolbar or Popup menu (see Figure 1.287). Note that some tools prefer
to operate in visualization windows that contain plots of a certain dimension so some tools are not always available.

Fig. 1.287: Tools menu

Once you enable a tool, its appears in the visualization window. Tools have one or more small red rectangles called
hot points that cause the tool to perform an action when you click or drag the hot point with the mouse. When you use
the mouse to manipulate a tool’s hot point, all mouse events are delivered to the tool so it can respond to the mouse
interaction. When the mouse is outside of a hot point, the mouse responds as it would if there were no tools activated
so you can still rotate and zoom-in on plots while still having tools enabled.

1.11.1 Box Tool

The box tool, which is shown in Figure 1.288, allows you to move an axis-aligned box around in 3D space. You can
use the box tool with the Box and Clip operators to interactively restrict plots to a certain volume. The box tool is
drawn as a box with five hotpoints that allow you to move the box in 3D space or resize it in any or all dimensions.

You can move the box tool around the Viewer window by clicking on the origin hotpoint, which has the word “Origin”
next to it, and dragging it around the Viewer window. When you move the box tool, it moves in a plane that is parallel
to the screen. You can move the box tool backward and forward along an axis by holding down the keyboard’s Shift
key before you click and drag the origin hotpoint. When the box tool moves, red, green, and blue boxes appear to give
a point of reference for the box with respect to the X, Y, and Z dimensions (see Figure 1.289).

You can extend one of the box’s faces at a time by clicking on the appropriate hotpoint and moving the mouse up to
extend the box or by moving the mouse down to shrink the box in the given dimension. Hotpoints for the box’s back
faces are drawn smaller than their front-facing counterparts. When the box is resized in a single dimension, reference

340 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.288: Box tool with a plot restricted to the box

planes are drawn in the dimension that is changing so you can see where the edges of the box are in relation to the
bounding box for the visible plots. You can also resize all of the dimensions at the same time by clicking on the
“Resize XYZ” hotpoint and dragging the mouse in an upward motion to scale the box to a larger size in X,Y, and Z or
by dragging the mouse down to shrink the box. When all box dimensions are resized at the same time, the shape of
the box remains the same but the scale of the box changes.

1.11.2 Line Tool

It is common to create Curve plots when analyzing a simulation database. Curve plots are created using VisIt’s
lineout mechanism where reference lines are drawn in a visualization window and Curve plots are created in another
visualization window using the path described by the reference lines. VisIt’s line tool allows reference lines to be
moved after they are initially drawn. The line tool allows the user to see a representation of a line in a visualization
window and position the line relative to plots that exist in the window.

The line tool is drawn as a thick line with three hot points positioned along the length of the line. Both of the line tool’s
endpoints, as well as its center, have a hotpoint. Since the line tool can be used for both 2D and 3D databases, the line
tool’s behavior is slightly different for 2D than it is for 3D. Clicking and dragging on either endpoint will move the
selected endpoint causing the line to change shape. Another way of moving an endpoint is to hold down the Ctrl key
and then click on the point and move the mouse up and down to extend or shorten the line. Clicking and dragging the
middle hot point moves the entire line tool.

In 2D, the line endpoints can only be moved in the X-Y plane (Figure 1.290). In 3D, the line endpoints can be moved
in any dimension. Since it is more difficult to see how the line is oriented relative to plots in 3D, when the line tool
is moved, 3D crosshairs appear. The crosshairs intersect the bounding box and show the position of the line endpoint
relative to the plots. Clicking and dragging endpoints will move them in a plane that is perpendicular to the screen.
Moving the endpoints, while first pressing and holding down the Shift key, causes the selected endpoint to move back
and forth in the dimension that most faces the screen. This allows endpoints to be moved in one dimension at a time.

1.11. Interactive Tools 341

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.289: Box tool while it is resized or moved

Fig. 1.290: Line tool with a 2D plot

342 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

An example of the line tool in 3D is shown in Figure 1.291.

Fig. 1.291: Line tool in 3D

The line tool can be used to set the attributes for certain VisIt operators such as VisIt’s Lineout operator. If a plot has a
Lineout operator applied to it, the line tool is initialized with that operator’s endpoints when it is first enabled. As the
line tool is repositioned and reoriented, the line tool’s line endpoints are given to the Lineout operator and and Curve
plots that are fed by the Lineout operator are recalculated.

1.11.3 Plane Tool

The plane tool allows the user to see a representation of a slice plane in a visualization window and position the plane
relative to plots that may exist in the window. The plane tool, shown in Figure 1.292, is represented as a set of 3D axes,
a bounding rectangle, and text which gives the plane equation in origin-normal form. The plane tool provides several
hot points positioned along the 3D axes that are used to position and orient the tool. The hot point nearest the origin
allows the user to move the plane tool in a plane parallel to the computer screen. The hot point that lies in the middle
of the plane’s Z-axis translates the plane tool along its normal vector when the hotpoint is dragged up and down. The
hot point on the end of the Z-axis causes the plane tool to rotate freely when the hot point is moved. When the plane
tool is facing into the screen, the Z-axis vector turns red to indicate which direction the plane tool is pointing. The
other hot points also rotate the plane tool but they restrict the rotation to a single axis of rotation.

You can use the plane tool to set the attributes for certain VisIt plots and operators. The Slice operator, for example,
can update its plane equation from the plane tool’s plane equation. If a plot has a Slice operator applied to it, the
plane tool is initialized with that operator’s slice plane when it is first enabled. As the plane tool is repositioned and
reoriented, the plane tool’s plane equation is given to the operator and the sliced plot is recalculated.

1.11.4 Point Tool

The point tool allows you to position a single point relative to plots that exist in the visualization window. The point
tool provides one hot point at the tool’s origin. Clicking on the hot point and moving the mouse moves the point tool’s
origin in a plane perpendicular to the screen. Holding down the Shift key before clicking on the hot point moves the
point tool’s origin along the plot axis that most faces the user. Holding down the Ctrl key moves the point tool along
the plot axis that points up. Figure 1.293 shows the point tool being used to set the origin for the ThreeSlice operator.

1.11. Interactive Tools 343

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.292: Plane tool with sliced plot

344 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.293: Point tool

1.11. Interactive Tools 345

VisIt User Manual Documentation, Release 3.1

1.11.5 Sphere Tool

The sphere tool allows you to position a sphere relative to plots that exist in the visualization window. The sphere tool,
shown in Figure 1.294, provides several hot points that are used to position and scale the sphere. The hot point nearest
the center of the sphere is the origin hot point and it is used to translate the sphere in a plane parallel to the screen. The
other hot points are all used to scale the sphere. To scale the sphere, click on one of the scaling hot points and move
the mouse towards the origin hot point to shrink the sphere or move the hot point away from the origin to enlarge the
sphere.

Fig. 1.294: Sphere tool

You can use the sphere tool to set the attributes for certain VisIt plots and operators. The sphere tool is commonly used
to set the attributes for the SphereSlice operator. After applying a SphereSlice operator to a plot, enable the Sphere
tool to interactively position the sphere that slices the plot.

346 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

1.11.6 Axis Restriction Tool

The AxisRestriction tool is used in conjunction with the Parallel Coordinates plot allowing you to modify the axis
restrictions used by the plot. The Axis Restriction tool, shown in Figure 1.295, provides triangular hot points that are
originally positioned at the tops and bottoms of each axis in the plot. As the hot points are moved up or down the axis,
the plot is changed to reflect the new min or max.

Fig. 1.295: Axis Restriction tool

1.12 Multiple Databases and Windows

In this chapter, we discuss how to use VisIt to visualize multiple databases using either a single window or multiple
visualization windows that have been locked together. After a general discussion of databases, we move to database
correlation, which is used to relate multiple time-varying databases together in some fashion. The use of database cor-

1.12. Multiple Databases and Windows 347

VisIt User Manual Documentation, Release 3.1

relations will be explained in detail followed by a description of database comparisons, then common useful operations
involving multiple visualization windows.

1.12.1 Databases

One main use of a visualization tool such as VisIt is to compare multiple related simulation databases. Simulations are
often run over and over with a variety of different settings or physics models and this results in several versions of a
simulation database that all describe essentially the same object or phenomenon. Simulations are also often run using
different simulation codes and it is important for a visualization tool to compare the results from both simulations
for validation purposes. You can use VisIt to open any number of databases at the same time so you can create plots
from different simulation databases in the same window or in separate visualization windows that have been locked
together.

Active database

VisIt can have any number of databases open simultaneously but there is still an active database that is used to create
new plots. VisIt calls this the Active source. Each time you open a database, the newly opened database becomes the
active source for any new plots that you decide to create. If you want to create a plot using a database that is open but
is not your active source, you must make that database the active source. When a database becomes the active source,
its variables are added to the menus for the various plot types. To changing the active source, select a database from
the Active source combo box in the Main Window as shown in Figure 1.296.

Fig. 1.296: Changing the active source.

Multiple time sliders

When your open databases all have only a single time state, the Time slider in the Main Window is disabled. When
you have one database that has multiple time states, the Time slider is enabled and can be used exclusively to change
time states for the database that has multiple time states; the database does not even have to be the active database.
Things get a little more complicated when you have opened more than one time-varying database - especially if you
have plots from more than one of them.

When you open a database in VisIt, it becomes the active database. If the database that you open has multiple time
states, VisIt creates a new logical time slider for it so you can end up having a separate time slider for every open
database with multiple time states. When VisIt has to create a time slider for a newly opened database, it also makes
the new database’s (the active source) be the active time slider. There is only one Time slider control in the Main
Window so when there are multiple logical time sliders, VisIt displays an Active time slider combo box (see Figure
1.297) that lets you choose which logical time slider to affect when you change time using the Time slider.

Since VisIt allows each time-varying database to have its own logical time slider, you can create plots from more than
one time-varying database in a single visualization window and change time independently for each database. Another

348 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.297: Time slider and related controls

benefit of having multiple logical time sliders is that the databases plotted in the visualization windows are free to have
different numbers of time states. Suppose you have opened time-varying databases A and B and created plots from
both databases in the same visualization window. Assuming you opened database A and then database B, database B
will be the active database. If you want to change time states for database A but not for database B, you can select
database A from the Active time slider combo box and then change the time state using the Time slider. If you then
wanted to change time states for database B, you could select it in the Active time slider combo box and then change
the time state using the Time slider . If you wanted to change time states for both A and B at the same time, you have
to use database correlations, which are covered next.

Fig. 1.298: Active time slider and time slider controls

1.12. Multiple Databases and Windows 349

VisIt User Manual Documentation, Release 3.1

1.12.2 Database correlations

A database correlation is a map that relates one or more different time-varying databases so that when accessed with
a common time state, the database correlation can tell VisIt which time state to use for any of the databases in the
database correlation. VisIt supports multiple logical time sliders, so time states can be changed independently for
different time-varying databases in the same window. No time slider for any database can have any effect on another
database. Sometimes when comparing two different, but related, time-varying databases, it is useful to make plots of
both databases and see how they behave over time. Since changing time for each database independently would be
tedious, VisIt provides database correlations to simplify visualizing multiple time-varying databases.

Database correlations and time sliders

When you open a database for the first time, VisIt creates a trivial database correlation for that single database and
creates a new logical time slider for it. Each database correlation has its own logical time slider. Figure 1.299 shows a
database correlation as the active time slider.

Fig. 1.299: Database correlation as the active time slider

Suppose you have plots from time-varying database A and database B in the same visualization window. You can use
the logical time slider for database A to change database A’s time state and you can use the logical time slider for
database B to change database B’s time state. If you want to change the time state for both databases at the same time
using a single logical time slider, you can create a database correlation involving database A and database B and then
change time states using the database correlation’s logical time slider. When you change time states using a database
correlation’s time slider, the time state used in each plot is calculated by using the database correlation’s time slider’s
time state to look up the plot’s expected time state in the database correlation. Thus changing time states using a
database correlation also updates the logical time slider for each database involved in the database correlation.

Types of database correlations

A database correlation is a map that relates one or more databases. When there is more than one database involved in a
database correlation, the time states from each database are related using a correlation method. Database correlations
currently have 4 supported correlation methods: padded index, stretched index, time, and cycle. This section describes
each of the correlation methods and when you might want to use each method.

For illustration purposes, the examples describing each correlation method use two databases, though database cor-
relations can have any number of databases. The examples refer to the databases as: database A and database B.
Both databases consist of a rectilinear grid with a material variable. The material variable is used to identify the
database using a large letter A or B and also to visually indicate progress through the databases’ numbers of time
states by sweeping out a red material like a clock in reverse. At the first time state, there is no red material but as
time progresses, the read material increases and finally totally replaces the material that was blue. Database A has 10
time states and database B has 20 time states. The tables below list the cycles and times for each time state in each
database so the time and cycle behavior of database A and database B will make more sense later when time database
correlations and cycle database correlations are covered.

350 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Table 1.1: Database A
Time state 0 1 2 3 4 5 6 7 8 9
Times 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5
Cycles 0 1 2 3 4 5 6 7 8 9

Table 1.2: Database B (part 1)
Time state 0 1 2 3 4 5 6 7 8 9
Times 16 17 18 19 20 21 22 23 24 25
Cycles 10 11 12 13 14 15 16 17 18 19

Table 1.3: Database B (part 2)
Time state 10 11 12 13 14 15 16 17 18 19
Times 26 27 28 29 30 31 32 33 34 35
Cycles 20 21 22 23 24 25 26 27 28 29

Padded index database correlation

A padded index database correlation, like any other database correlation, involves multiple input databases where each
database potentially has a different number of time states. A padded index database correlation has as many time states
as the input database with the largest number of time states. All other input databases that have fewer time states than
the longest database have their last time state repeated until they have the same number of time states as the input
database with the largest number of time states. Using the example databases A and B, since B has 20 time states and
A only has 10 time states, database A will have its last time state repeated 10 times to make up the difference in time
states between A and B. Note how database A’s last time state is repeated in Figure 1.300.

Fig. 1.300: Padded index database correlation of A and B (every 5th time state)

Stretched index database correlation

A stretched index database correlation, like any other database correlation, involves multiple input databases where
each database potentially has a different number of time states. Like a padded index database correlation, a stretched
index database correlation also has as many time states as the input database with the largest number of time states.
The difference between the two correlation methods is in how the input databases are mapped to a larger number
of time states. The padded index database correlation method simply repeated the last frame of the input databases
that needed more time states to be made even with the length of the database correlation. Stretched index database
correlations on the other hand do not repeat only the last frame; they repeat frames throughout the middle time states
until shorter input databases have the same number of time states as the database correlation. The effect of repeating
time states throughout the middle is to evenly spread out the time states over a larger number of time states.

1.12. Multiple Databases and Windows 351

VisIt User Manual Documentation, Release 3.1

Stretched index database correlations are useful for comparing related related simulation databases where one simula-
tion wrote out data at 2x, 3x, 4x, . . . the frequency of another simulation. Stretched index database correlations repeat
the data for smaller databases, which makes it easier to compare the databases. Figure 1.301 shows example databases
A and B related using a stretched index database correlation. Note how the plots for both databases, even though the
databases contain a different number of time states, remain roughly in sync.

Fig. 1.301: Stretched index database correlation of A and B (every 5th time state)

Time database correlation

A time index database correlation, like any other database correlation, involves multiple input databases where each
database potentially has a different number of time states. The number of time states in a time database correlation
is not directly related to the number of time states in each input database. The number of time states in the database
correlation are instead determined by counting the number of unique time values for every time state in every input
database. The times from each input database are arranged on a number line and each unique time value is counted as
one time state. Time values from different input databases that happen to have the same time value are counted as a
single time state. Once the time values have been arranged on the number line and counted, VisIt calculates a list of
time state indices for each database that identify the right time state to use for each database with respect to the time
database correlation’s time state. The first time state for each database is always the first time state index stored for a
database. The first time state is used until the time exceeds the first time on the number line, and so on.

Time database correlations are useful in many of the same situations as stretched index database correlations since
they are both used to align different databases in time. Unlike a stretched index database correlation, the time database
correlation does a better job of aligning unrelated databases in actual simulation time rather than just spreading out the
time states until each input database has an equal number. Use a time database correlation when you are correlating
two or more databases that were generated with different dump frequencies or databases that were generated by
totally different simulation codes. Figure 1.302 shows the behavior of databases A and B when using a time database
correlation.

Fig. 1.302: Time database correlation of A and B (every 5th time state)

Cycle database correlation

Cycle database correlations operate in exactly the same way as time database correlations except that they correlate
using the cycles from each input database instead of using times. Figure 1.302 shows the behavior of databases A and
B when using a cycle database correlation.

352 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.303: Cycle database correlation of A and B (every 5th time state)

Managing database correlations

If you want to create a new database correlation or edit properties related to database correlations, you can use the
Database Correlation Window. You can open the Database Correlation Window, shown in Figure 1.304, by click-
ing on the Database correlations option in the Main Window’s Controls menu. The Database Correlation Window
contains the list of database correlations, along with controls that allow you to create new database correlations, edit
existing database correlations, delete database correlations, or set global settings that tell VisIt when to automatically
create database correlations.

Fig. 1.304: Database Correlation Window

Creating a new database correlation

If you want to create a new database correlation to relate time-varying databases that you have opened, you can do
so by opening the Database Correlation Window. The Database Correlation Window contains a list of trivial
database correlations for the time-varying databases that you have opened. You can create a new, database correlation
by clicking on the New button to the left of the list of database correlations. Clicking the New button opens a Database
Correlation Properties Window (Figure 1.305) that you can use to edit properties for the database correlation.

New database correlations are automatically named when you first create them but you can change the name of the
database correlation to something more memorable by entering a new name into the Name text field. Once you have
entered a name, you should set the correlation method that the database correlation will use to relate the time states

1.12. Multiple Databases and Windows 353

VisIt User Manual Documentation, Release 3.1

Fig. 1.305: Database Correlation Properties Window

from all of the input databases. The available choices, shown in Figure 1.306, are: padded index, stretched index,
time, and cycle.

Fig. 1.306: Correlation methods

Once you have chosen a correlation method, it is time to choose the input databases for the correlation. The input
databases, or sources as they are sometimes called in VisIt, are listed in the Sources list (see Figure 1.307). The
Sources list only contains the databases that you have opened so far. If you do not see a database that you would
like to have in the database correlation, you can either click the Cancel button to cancel creating the new database
correlation or you can continue creating the database correlation and then add the other database to the correlation
later after you have opened it. To add databases to the new database correlation, click on the them in the Sources
list to highlight then and then click on the Right arrow button to move the highlighted databases into the database
correlation’s Correlated sources list. If you want to remove a database from the Correlated sources list, highlight
the database in the Correlated sources list and then click the Left arrow button to move it back to the Sources list.
Once you are satisfied with the new database correlation, click the Create database correlation button to create a
new database correlation.

354 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.307: Sources list and Correlated sources list

When you create a new database correlation, VisIt also creates a new time slider for the new database correlation. The
database correlation’s active time state is initially set to the first time state, which might not match the time state of
individual plots in the vis window. Once you change time states using the Time slider, the plots in the vis window
will be updated using the correct time state with respect to the correlation’s active time state. As always, if you want to
update the time state for only one database, you can select a different time slider using the Active time slider combo
box and then change time states using the Time slider. Any time state changes made to an individual database that
is also an input database for a database correlation has no effect on the database correlations that involve the changed
database. Time state changes for a database correlation can only happen if you have selected the database correlation
as your active time slider.

Altering an existing database correlation

Once a database correlation has been created, you can alter it at any time by highlighting it in the Correlation list in
the Database Correlation Window and clicking the Edit button to the left of the Correlation list. Clicking the Edit
button opens the Database Correlation Properties Window and allows you to change the correlation method and
the input databases. Once the desired changes are made, clicking the Alter database correlation button will make
the specified database correlation use the new options and all plots in all vis windows that are subject to the changed
database correlation will update to the new time states prescribed by the altered database correlation.

Using the Database Correlation Properties Window explicitly alters a database correlation. Reopening a file or
refreshing the file list can implicitly alter a database correlation if after reopening the affected databases, there are
different numbers of time states in the databases. When reopened databases that are input databases to database
correlations have a new number of time states, VisIt recalculates the indices used to access the input databases via the
time slider and updates any plots that were affected. In addition to the time state indices changing, the number of time
states in the database correlation and its time slider can also change.

Deleting a database correlation

Database correlations are automatically deleted when you close a database that you are not using anymore provided
that the closed database is not an input database to any database correlation except for that database’s trivial database
correlation. You can delete non-trivial database correlations that you have created by highlighting a database corre-
lation in the Correlation list in the Database Correlation Window and clicking the Delete button to the left of the

1.12. Multiple Databases and Windows 355

VisIt User Manual Documentation, Release 3.1

Fig. 1.308: Altering a database correlation

Correlation list. When you delete a database correlation, the new active time slider will be set to the active database’s
time slider if the active database has more than one time state. Otherwise, the new active time slider, if any, will be set
to the time slider for the first source that has more than one time state.

Automatic database correlation

VisIt can automatically create database correlations when they are needed if you enable certain global settings to
control the creation of database correlations. By default, VisIt will prompt you when it wants to create a database
correlation. VisIt can automatically create a database correlation when you add a plot of a multiple time-varying
database to a vis window that already contains a plot from a different time-varying database. VisIt first looks for
the most suitable existing database correlation and if the one it picks must be modified to accommodate a new input
database or if an entirely new database correlation must be created, VisIt will prompt you using a Correlation question
dialog (Figure 1.309). If you prevent VisIt from creating a database correlation or altering the most suitable correlation,
you will no longer be prompted to create a database correlation for the list of databases listed in the Correlation
question dialog.

Fig. 1.309: Correlation question dialog

By default, VisIt will only attempt to create a database correlation for you if the new plot’s database has the same
number of time states as the existing plot. You can change when VisIt creates a database correlation for you by
selecting a different option from the When to create correlation combo box in the Database Correlation Window.
The available options are: Always, Never, and Same number of states. You can change the default correlation

356 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

method by selecting a new option from the Default correlation method combo box. Finally, you can prevent VisIt
from prompting you when it needs to create a database correlation if you turn off the Prompt before creating new
correlation check box.

1.12.3 Database comparison

Comparing the results of multiple related simulation databases is one of VisIt’s main uses. Users can plot multiple
databases in the same window or adjacent windows, allowing comparison of plots visually. In addition to these visual
modes of comparison, VisIt also supports more direct numerical comparison through the expression system. Database
comparison allows users to plot direct differences between two databases or between different time states in the same
database including even in the definition of time derivatives.

Numerical database comparisons use special expressions called Cross-Mesh Field Evaluation (CMFE) expressions,
pos_cmfe() and conn_cmfe(), which are capable of mapping a field from one mesh, the donor, onto another mesh, the
target. The name conn_cmfe() stands for connectivity-based cross mesh field evaluation (CMFE). It is a specialization
of position-based cmfe, pos_cmfe(), for cases in which donor and target meshes be topologically congruent (e.g. size,
connectivity, decomposition, etc. are identical). More information on CMFE expressions are found in the Cross-Mesh
Field Evaluation (CMFE) section of the Exprssions chapter. There is also a helpful wizard, the Data Level Comparison
Wizard, that simplifies the process of defining comparison expressions. Here, we walk through a few basic examples
of using CMFE expressions and demonstrate how to use them in comparisons.

Plotting the difference between two databases

The typical case is where two slightly different databases time series have been generated from the same simulation
code and the user wishes to work with the difference between the two databases and to have this difference update as
the time slider is changed.

<mesh/ireg> - conn_cmfe(</usr/local/visit/data/dbB00.pdb[0]id:mesh/ireg>, <mesh>)

In the above expression, the first argument to conn_cmfe() serves as the donor field and the second argument is the
target mesh. This expression is a simple difference operation of database A minus database B. Note the special [0]id
time specification syntax before the colon but after the file system path in the first argument conn_cmfe(). The i means
to interpret the number in brackets, [0] as a time state index. The d means to further interpret that number as an
index difference from the current time slider index. This syntax is described in greater detail in the section describing
pos_cmfe().

The assumption made by this expression is that database A is the active database and the user wishes to map database B
onto it to subtract it from database A’s mesh/ireg variable. In this example, database B’s mesh/ireg field is being mapped
onto database A’s mesh and their difference is then being taken. Figure 1.310 illustrates the database differencing
operation.

Plotting values relative to the first time state

Plotting a variable relative to its initial values can be important for understanding how the variable has changed over
time. The conn_cmfe expression is also used to plot values from one time state relative to the values at the current
time state. Consider the following expression:

<mesh/ireg> - conn_cmfe(</usr/local/visit/data/dbA00.pdb[0]i:mesh/ireg>, mesh)

The above expression subtracts the value of mesh/ireg at time state zero (in the [0]i without the d means to always map
absolute time index zero from the donor) from the value of mesh/ireg at the current time As the time slider is changed,
the values for the active database will change but the part of the expression using conn_cmfe, which in this case uses
the first database time state, will not change. This allows users to create expressions that compare the current time
state to a fixed time state.

1.12. Multiple Databases and Windows 357

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.310: Database B subtracted from database A

Fig. 1.311: Time state 6 minus time state 0

358 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Plotting time derivatives

Plotting time derivatives is much like plotting the difference between the current time state and a fixed time state except
that instead of being fixed, the second time state being compared is free to move relative to the current time state. To
plot a simple time derivative such as the current time state minus the last time state, create an expression similar to the
following expression:

<mesh/ireg> - conn_cmfe(</usr/local/visit/data/dbA00.pdb[-1]id:mesh/ireg>, mesh)

The important piece of the above expression is its use of “[-1]id” to specify a time state delta of -1, which means
add -1 to the current time state to get the time state whose data will be used in the conn_cmfe calculation. You could
provide different values for the time state in the [] operator. Substituting a value of 3, for example, would make the
conn_cmfe expression consider the data for 3 time states beyond the current time state. If you use a time state delta,
which always uses the “d” suffix, the time state being considered is always relative to the current time state. This
means that as you change time states for the active database using the time slider, the plots that use the conn_cmfe
expression will update properly. Figure 1.312 shows an example plot of a time derivative.

Fig. 1.312: Plot of a variable and its time derivative plot

1.12.4 Multiple window operations

This section focuses on some of the common techniques for exploring multiple databases when you have multiple
visualization windows.

Reflection and Translation

When you visualize multiple related databases, they often occupy the same space in the visualization window since
they may have been generated using the same computational mesh but with different physics. When this is the case,
you can modify the location of the plots from one of the databases in two immediately obvious ways. First of all, if
you simulated the same object and it does not make use of any symmetry then you could use the Transform operator
to translate the coordinate system of one of the plots out of the way of the other plot so you can look at the two plots
from the different databases side by side in the same visualization window. If your databases make use of symmetry
(maybe you only simulated half of the problem) then you can apply the Reflect operator to one of the plots to show
them side by side but reflected to show the entire problem. Each method has its merits.

1.12. Multiple Databases and Windows 359

VisIt User Manual Documentation, Release 3.1

Fig. 1.313: Plots side by side using the Reflect or Transform operator

Copying Windows

If you visualize multiple databases and you want to create identical plots for each database but have them placed in
different visualization windows then you can either have VisIt copy windows on first reference or you can clone an
existing window and then replace the database used in the new window’s plots with a different database.

If you have already created multiple visualization windows, perhaps as the result of a change to VisIt’s layout, then
you can make VisIt copy the attributes of the active window to another visualization window when you switch active
windows by enabling Clone window on first reference in the Preferences Window. To open the Preferences Win-
dow, choose the Preferences option from the Main Window’s Options menu. This form of window cloning copies
the plots, lights, colors, etc from the active window to a pre-existing visualization window when you access it for the
first time. If you have already accessed a visualization window but you would still like to copy plots, lights, colors,
etc from another visualization window, you can make the destination visualization window be the active window and
then copy everything from the source visualization window using the Copy everything menu option in the Main
Window’s Windows menu.

If you have no empty visualization window to contain plots for the another database, you can click the Clone option
in the Main Window’s Windows menu to create a new visualization window with the same plots and settings as
the active window. Once the new window has been created, you could visualize a new database by choosing a new
database in the Active source combo box and clicking the Replace button.

Locking Windows

When you visualize databases using multiple visualization windows, it is often convenient to keep the time state and
view in sync between windows so you can concentrate on comparing plots instead of dealing with the intricacies of
setting the view or time state for each visualization window. VisIt’s visualization windows can be locked with respect
to time, view, or interactive tools. To lock visualization windows, use the Popup menu, Toolbar, or the Lock options
from the Main Window’s Windows menu as shown in Figure 1.314.

360 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.314: Mechanisms for locking windows

Locking views

If you have created plots from related databases in multiple visualization windows, you can lock the views for the
visualization windows together so that as you change the view in one of the visualization windows with a locked view,
the other visualization windows with locked views also update to have the same view. There are four types of views
in VisIt: curve, 2D, 3D, and AxisArray. If you have 2D plots in a visualization window, the visualization window is
considered to be 2D. Locking that 2D visualization window’s view will only update other visualization windows that
are also 2D and vice-versa. The same is true for curve, 3D and AxisArray views.

Locking time

If you have created plots from related databases in multiple visualization windows, you can lock the visualization
windows together in time so that as you change time in one visualization window, it updates in all other visualization
windows that are locked in time.

Locking visualization windows together in time may cause VisIt to prompt you to create a new database correlation that
involves all of the databases in the visualization windows that are locked in time. VisIt creates a database correlation
because the visualization windows must use a common time slider to really be locked in time. If the visualization
windows did not use a common time slider then changing time in one visualization window would not cause other
visualization windows to update. Once VisIt creates a suitable database correlation for all windows, the active time
slider is set to that database correlation in all visualization windows that are locked in time. If you alter a database
correlation at this point, it will cause the time state in each locked visualization window to change. Since the same
database correlation is used in all locked visualization windows, changing the time state for the database correlation
changes the time state in all of the locked windows. This frees you to examine time-varying database behavior
without having to set the time state independently in each visualization window. See Database correlations for more
information.

1.12. Multiple Databases and Windows 361

VisIt User Manual Documentation, Release 3.1

Locking tools

In addition to locking visualization windows together with respect to the view and time, you can also lock their tools.
This capability can be useful when exploring data that often requires the use of an operator whose attributes can be set
interactively using a tool since the same tool can be used to set the operator attributes for operators in more than one
visualization window. See Interactive Tools for information on the different tools and how they are used.

Consider the following scenario: you have two related 3D databases and you want to examine the same slice plane for
each database and you want each database to be plotted in a separate visualization window. You can set up separate
visualization windows and slice the plots from each database independently but locking tools is easier and requires
much less setup.

Start off by opening the first 3D database and create the desired plots from it. If you want to maintain a 3D view
of the plots, you can clone the visualization window to get a new window with the same plots or you can apply a
Slice operator to the plots. Apply a Slice operator but make sure the slice is not projected to 2D and also be sure
that its Interactive check box is turned on. Turn on VisIt’s plane tool and make sure that tools are locked. Clone
the visualization window twice and for each of the new visualization windows, make sure that their Slice operator
projects to 2D. There should now be four visualization windows if you opted to keep a 3D view of the data. In the last
visualization window, replace the database with another related database that you want to compare to the first database.

Now that all of the setup steps are complete, you can save a session file so you can get back to this state when you run
VisIt next time. Now, in the window that still has a slice in 3D, use the plane tool to reposition the slice. Both of the
2D visualization windows should also update so they use the new slice plane attributes calculated by the plane tool.
The four visualization windows, arranged in a 2x2 window layout are shown in Figure 1.315.

1.13 Client Server

Scientific simulations are almost always run on a powerful supercomputer and accessed using desktop workstations.
This means that the databases usually reside on remote computers. In the past, the practice was to copy the databases
to a visualization server, a powerful computer with very fast computer graphics hardware. With ever increasing
database sizes, it no longer makes sense to copy databases from the computer on which they were generated. Instead,
it makes more sense to examine the data on the powerful supercomputer and use local graphics hardware to draw the
visualization. VisIt can run in a client-server mode that allows this exact use case. The GUI and viewer run locally
(client) while the database server and parallel compute engine run on the remote supercomputer (server). Running
VisIt in client-server mode is almost as easy as running all components locally. This chapter explains the differences
between running locally and remotely and describes how to run VisIt in client-server mode.

1.13.1 Client-Server Mode

When you run VisIt locally, you usually select files and create plots using the open database. Fortunately, the procedure
for running VisIt in client-server mode is no different than it is for running in single-computer mode. You begin by
launching the File Open Window and typing the name of the computer where the files are stored into the Host text
field.

Once you have told VisIt which host to use when accessing files, VisIt launches the VisIt Component Launcher (VCL)
on the remote computer. The VCL is a VisIt component that runs on remote computers and is responsible for launching
other VisIt components such as the metadata server (mdserver) and compute engine. (Figure 1.316). Once you are
connected to the remote computer and VCL is running, you won’t have to enter a password again for the remote
computer because VCL stays active for the life of your VisIt session and it takes care of launching VisIt components
on the remote computer.

If VCL was able to launch on the remote computer and if it was able to successfully launch the metadata server, the
files for the remote computer will be listed in the Files pane of the File Open Window, just as if you were running

362 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.315: Multiple visualization windows with locked tools

1.13. Client Server 363

VisIt User Manual Documentation, Release 3.1

Fig. 1.316: VisIt’s Architecture

locally. You then select the file or virtual database and click OK. Now that you have files from the remote computer
at your disposal, you can create plots as usual.

Passwords

Sometimes when you try to access files on a remote computer, VisIt prompts you for a password by opening a Pass-
word Window (Figure 1.317). If you are prompted for a password, type your password into the window and click
the Ok button. If the password window appears and you decide to abort the launch of the remote component, you can
click the Password Window’s Cancel button to stop the remote component from being launched.

Fig. 1.317: Password Window

If your username for the remote machine is not listed correctly, you can click on the Change username button and a
new window will pop up allowing you to enter the proper username for the remote system. (Figure 1.318). Enter the
correct username in the text field provided and click Confirm username. Proceed with entering the password in the
Password Window.

364 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.318: Change Username Window

VisIt uses ssh for authentication and you can set up ssh so that passwords are not required. This is called passwordless
ssh and once it is set up for a computer, VisIt will no longer need to prompt for a password.

Setting Up Password-less SSH

The following instructions describe how to set up ssh to allow password-less authentication among a collection of
machines.

On the Local Machine

If you do not already have a ~/.ssh/id_rsa.pub file, generate the key:

cd

ssh-keygen -t rsa

Accept default values by pressing <Enter>. This will generate two files, ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub. The
~/.ssh/id_rsa.pub file contains your public key in one very long line of text. This information needs to be concatenated
to the authorized_keys file on the remote machine, so copy it to a temp file on the remote machine:

scp ~/.ssh/id_rsa.pub <your-user-name>@<the.remote.machine>:tmp

On the Remote Machine

If you do not already have a ~/.ssh directory, create one with r-w-x permission for the owner only:

cd

mkdir .ssh

chmod 700 .ssh

If you do not already have a ~/.ssh/authorized_keys file, create an empty one with permission for the owner only:

cd ~/.ssh

touch authorized_keys

chmod 600 authorized_keys

Concatenate the temporary file you copied into authorized_keys:

1.13. Client Server 365

VisIt User Manual Documentation, Release 3.1

cd ~/.ssh

cat authorized_keys ~/tmp > authorized_keys

rm ~/tmp

Completing the Process

If you have more remote machines you want to access from the same local machine using passwordless ssh, repeat the
process starting with copying the ~/.ssh/id_rsa.pub file from the local machine to the remote, and continuing from
there.

You can also repeat the above sections, reversing the local and remote machines, in order to allow passwordless ssh to
the local machine from the remote machine.

Environment

It is important to have VisIt in your default search path instead of specifying the absolute path to VisIt when starting
it. This is not as important when you run VisIt locally, but VisIt may not run properly in client-server mode if it is not
in your default search path on remote machines. If you regularly run VisIt using the network configurations provided
for LLNL computers then VisIt will have host profiles, which are sets of information that tell VisIt how to launch
its components on a remote computer. The provided host profiles have special options that tell the remote computer
where it can expect to find the installed version of VisIt so it is not required to be in your path. If you did not opt to
install the provided network configurations or if you are at a site that requires other network configurations then you
will probably not have host profiles by default and it will be necessary for you to add VisIt to your path on the remote
computer. You can add VisIt to your default search path on Linux systems by editing the initialization file for your
command line shell.

Launch Progress Window

When VisIt launches a compute engine or metadata server, it opens the Launch Progress Window when the compo-
nent cannot be launched in under four seconds. An exception to this rule is that VisIt will always show the Launch
Progress Window when launching a parallel compute engine or any compute engine on OSX. VisIt’s components
frequently launch fast enough that it is not necessary to show the Launch Progress Window but you will often see it
if you launch compute engines using a batch system.

Fig. 1.319: Launch Progress Window

The Launch Progress Window indicates VisIt is waiting to hear back from the component being launched on the
remote computer and gives you some indication that VisIt is still alive by animating a set of moving dots representing

366 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

the connection from the local computer to the remote computer. The icon used for the remote computer will vary
depending on whether a serial or parallel VisIt component is being launched. The Launch Progress Window for a
parallel compute engine is shown in Figure 1.319. The window is visible until the remote compute engine connects
back to the viewer or the connection is cancelled. If you get tired of waiting for a remote component to launch, you
can cancel it by clicking the Cancel button. Once you cancel the launch of a remote component, you can return to your
VisIt session. Note that if the remote compute is a parallel compute engine launched via a batch system, the engine
will still run when it is finally scheduled but it will immediately die since VisIt has stopped listening for it. On heavily
saturated batch systems, it might be prudent for you to manually remove your compute engine job from the queue.

1.13.2 Host Profiles

When VisIt launches a component on a remote computer, it looks for something called a host profile. A host profile
contains information that VisIt uses to launch components on a remote computer. Host profiles allow you to specify
information like the remote username, the number of processors, the parallel launch method, etc. You can have
multiple launch profiles for any given host, most often a serial profile and one or more parallel profiles.

Host profiles window

Fig. 1.320: Host profiles window

VisIt provides a Host profiles window, shown in Figure 1.320, that you can use to manage your host profiles. You
can open the Host profiles window by choosing Host profiles from the Options dropdown menu. The Host profiles
window is divided into two main areas. The left area contains a list of host profiles currently installed, as well as

1.13. Client Server 367

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

controls to create, delete, copy and export profiles. The right area contains two vertical tabs: Remote Profiles, used
for installing profiles retrieved from a remote location; and Machines, which displays all attributes for the selected
host profile. The Remote Profiles tab is useful for obtaining profiles that were not installed with VisIt. Machines has
two sections contained in tabs displayed horizontally across the top: Host Settings and Launch Profiles. The Host
Settings tab displays information for the selected machine, including the nickname, the full host name, aliases, the
username, and connection information. The Launch Profiles tab displays a list of available profiles in the top section,
and information for the selected launch profile in tabs on the bottom.

If the Hosts section in the left pane of the Host profiles window has no hosts listed, you have two options for installing
already generated profiles. The first is to install one or more of the pre-defined host profiles shipped with VisIt while
the second is to install one or more of the pre-defined host profiles from the VisIt repository. See Installing pre-defined
host profiles shipped with VisIt and Installing pre-defined host profiles from the VisIt repository.

Click Apply when you are finished making changes in this window, and remember to save your settings (How to Save
Settings) before exiting VisIt in order for your changes to be available in future sessions of VisIt.

Creating a new host profile

You click the New Host button to create a new host profile. The host profile will have a default name corresponding to
the machine on which you are running VisIt. When you change the Host nickname the new name will be reflected in
the Hosts list. See Setting general options, Managing launch profiles and Setting parallel options for more information
on the available settings.

Deleting a host profile

If a host profile is no longer useful, you can click on it in the hosts list to select it and then click the Delete Host button
to delete it.

Copying a host profile

To copy a host profile, select the desired source host from the Hosts list, then click the Copy Host button at the bottom
of the Hosts list. A new host profile called Copy of XXX (where XXX is the name of the host you chose to copy)
will be added to the Hosts list. Select this new host from the list and modify it’s Host Settings and Launch Profiles
appropriately. Once you change the Host nickname the new name will be reflected in the Hosts list.

Exporting a host profile

The Export Host button is useful for saving a host profile installed on your machine to share with someone else.
Select the host profile you wish to export, and click the Export Host button. The exported host will be saved to your
user VisIt directory (~/.visit/hosts on Linux). The name of the host profile file will start with hosts_, followed by
the Host nickname, where letters are all converted to lower case and blanks are converted to underscores, followed
by “.xml”.

To share the host profile with someone else have them copy the host profile to their VisIt directory. It is recommended
that you don’t change the name of the file, but if you do, be aware that VisIt will only recognize it as a host profile if
it starts with hosts_ of HOSTS_ and ends with .xml or .XML.

Setting general options

The Host Settings tab allows you to set general attributes for all launch profiles on the host.

368 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.321: Host Settings tab

1.13. Client Server 369

VisIt User Manual Documentation, Release 3.1

Host nickname

Change the Host nickname to the name as you would like it to appear in the Hosts list in the left pane.

Remote host name

The Remote host name should be the fully qualified host name (hostname.domain.net).

Host name aliases

Some clustered systems have one overall host name but also have names for the individual compute nodes that com-
prise the system. The compute nodes are often named by appending the node number to the host name. For example,
if the clustered system is called cluster, you might be logged into node cluster023. When you launch a remote
component, VisIt will not find any host profiles if the host name in the host profiles is: cluster.

To ensure that VisIt correctly matches a computer’s node name to one of VisIt’s host profiles, you should include
host name aliases in the host profile for a clustered system. Host name aliases typically consist of the host name
with different wildcard characters appended to it. Three wildcards are supported. The ? wildcard character lets any
one character replace it while the * wildcard character lets any character or group of characters replace it and the
wildcard character lets any numeric digit replace it. Appropriate host aliases for the previous example would be:
cluster#, cluster## , cluster###, etc. If you need to enter host name aliases for the host profile, type them
into the Host name aliases text field.

Maximum nodes/processors

If the host has a maximum number of nodes and/or processors that can be allocated, these can be specified by checking
the Maximum nodes or Maximum processors checkboxes and entering a number in the corresponding text fields.

Path to VisIt installation

Most of the host profiles that are installed with VisIt specify the expected installation directory for VisIt so VisIt does
not have to be in your path on remote computers. Enter the path to VisIt on the host in the Path to VisIt installation
text field. It should be the full path up-to but not including the bin directory.

Account

The remote user name is the name of the account that you want to use when you access the remote computer. The
remote user name does not have to match your local user name and it is often the case that your desktop user name
will not match your remote user name. To change the remote user name, type a new user name into the Username
text field.

Sharing a compute job

Some computers place restrictions on the number of interactive sessions that a single user can have on the computer. To
allow VisIt to run on computer systems that enforce these kinds of restrictions, VisIt can optionally force the metadata
server and parallel compute engine to share the same job in the batch system. If you want to make the database server
and parallel compute engine share the same batch job, you can click the Share batch job with Metadata Server
check box.

370 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Determining the host name

There are many different network naming schemes and each major operating system type seems to have its own variant.
While being largely compatible, the network naming schemes sometimes present problems when you attempt to use
a computer that has one idea of what its name is with another computer that may use a somewhat different network
naming scheme. Since VisIt users are encouraged to use client-server mode because it provides fast local graphics
hardware without sacrificing computing power, VisIt must provide a way to reconcile the network naming schemes
when 2 different computer types are used.

Workstations often have a host name that was arbitrarily set when the computer was installed and that host name
has nothing to do with the computer’s network name, which ultimately resolves to an IP address. This condition is
common on computers running MS Windows though other operating systems can also exhibit this behavior. When
VisIt launches a component on a remote computer, it passes information that includes the host name of the local
computer so the remote component will know how to connect back to the local computer. If the local computer did
not supply a valid network name then the remote component will not be able to connect back to the local computer
and VisIt will wait for the connection until you click the Cancel button in the Launch progress window.

By default, VisIt tunnels data connections through SSH. If you don’t want to tunnel, or SSH tunneling is not working
you can turn it off by unchecking Tunnel data connections through SSH in the Connection section. If you want VisIt
to rely on the the name obtained from the local computer, click on Use local machine name. If you choose the Parse
from SSH_CLIENT environment variable option then VisIt will not pass a host name for the local computer but
will instead tell the remote computer to inspect the SSH_CLIENT environment variable to determine the IP address of
the local computer that initiated the connection. This option usually works if you have a local computer that does not
accurately report its host name. If you don’t trust the output of any implicit scheme for getting the local computer’s
name, you can provide the name of the local computer by typing its name or IP address into the text field next to the
Specify manually radio button.

SSH command

VisIt uses ssh for its connections to remote computers. On Windows, VisIt packages its own putty-based ssh program:
qtssh.exe. Regardless of the system, you can override VisIt’s SSH by clicking the SSH command checkbox and
entering the full path to the ssh command you want to use in the text box.

SSH port

VisIt uses secure shell (ssh) to launch its components on remote computers. Secure shell often uses port 22 but if you
are attempting to communicate with a computer that does not use port 22 for ssh then you can specify a port for ssh
by clicking the SSH port check box and then typing a new port number into the adjacent text field.

In addition to relying on remote computers’ ssh port, VisIt listens on its own ports (5600-5605) while launching
components. If your desktop computer is running a firewall that blocks ports 5600-5605 then any remote components
that you launch will be unable to connect back to the viewer running on your local computer. If you are not able to
successfully launch VisIt components on remote computers, be sure that you make sure your firewall does not block
VisIt’s ports. Windows’ default software firewall configurations block VisIt’s ports so if you run those software firewall
programs, you will have to unblock VisIt’s ports if you want to run VisIt in client-server mode.

Gateway

If access to the compute nodes on your remote cluster is controlled by a gateway computer, then check the Use gateway
checkbox, and enter the fully qualified name of the gateway computer in the text field. In order for VisIt to tunnel
SSH connections through the gateway computer, passwordless-ssh needs to be set up from the gateway computer to
the hose where you ultimately want to run VisIt. See Setting Up Password-less SSH for instructions on how to do this.

1.13. Client Server 371

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Managing launch profiles

The Launch Profiles tab (Figure 1.322) displays the launch profiles available for the selected host, generally a serial
profile and one or more parallel profiles. There are controls for creating, deleting and copying launch profiles as well
as tabs for setting the launch profile attributes.

Fig. 1.322: Launch Profiles tab

Creating a new launch profile

Click the New Profile button. Give the profile an appropriate name by filling in the Profile name text box. The new
name will be reflected in the profiles list as soon as it is entered. After filling out all the necessary attributes, click
Apply in the lower left corner of the window in order to use the new profile immediately. The new profile to be
available in future sessions of VisIt.

372 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Deleting a launch profile

Select the profile to be deleted by clicking on its name in the list, then click the Delete Profile button. If you have
made a mistake in deleting the profile, you must exit VisIt and restart. Saving your settings will make the change
permanent for future sessions.

Activating a launch profile

Only one launch profile can be active for any given host. When VisIt launches a remote component, it looks for the
active launch profile for the host where the component is to be launched. The currently active launch profile is the one
with the box to the left of the name checked in the list of launch profile names. To activate a different launch profile,
select it from the list and click the Apply button. The VCL and the metadata server use the active launch profile but
VisIt will prompt you for a launch profile to use before launching a compute engine if you have more than one launch
profile or your only launch profile has parallel options set for the compute engine.

Setting the timeout

The compute engine and metadata server have a timeout mechanism that causes them to exit if no requests have been
made of them for a certain period of time so they do not run indefinitely if their connection to VisIt’s viewer is severed.
You can set this period of time, or timeout, by typing in a new number of minutes into the Timeout text field. You can
also increase or decrease the timeout by clicking on the up and down arrows next to the Timeout text field.

Setting the number of threads

If VisIt is running in threading mode, the number of threads per task can be set by typing in the desired number of
threads in the Number of threads per task text field, or by utilizing the up and down arrows next to the text field.

Providing additional command line options

The Launch Profiles tab allows you to provide additional command line options to the compute engine and metadata
server through the Additional arguments text field. When you provide additional command line options, you should
type them, separated by spaces, into the Additional arguments text field. Command line options influence how the
compute engine and metadata server are executed. For more information on VisIt’s command line options, see Startup
Options.

Setting parallel options

The chief purpose of host profiles is to make launching compute engines easier. This is even more the case when host
profiles are used to launch parallel compute engines on large computers that often have complex scheduling programs
that determine when parallel jobs can be executed. It is easy to forget how to use the scheduling programs on a
large computer because each scheduling program requires different arguments. In order to make launching compute
engines easy, VisIt hides the details of the scheduling program used to launch parallel compute engines. VisIt instead
allows you to set some common parallel options and then figures out how to launch the parallel compute engine on the
specified computer using the parallel options specified in the host profile. Furthermore, once you create a host profile
that works for a computer, you rarely need to modify it.

To enable parallel options open the Parallel tab of the Launch Profiles tab, and click the Launch parallel engine
checkbox.

1.13. Client Server 373

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.323: Parallel options

374 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Setting the parallel launch method

The parallel launch method option allows you to specify which launch program should be used to execute the parallel
compute engine. This setting depends on the computer where you plan to run the compute engine and how the
computer is configured. Some computers have multiple launch programs depending on which part of the parallel
machine you want to use. Figure 1.324 shows some common parallel-launch options that VisIt currently supports.

Fig. 1.324: Parallel launch method options

Setting the partition/pool/queue

Some parallel computers are divided into partitions so that batch processes might be executed on one part of the
computer while interactive processes are executed on another part of the computer. You can use launch profiles to tell
VisIt which partition to use when launching the compute engine on systems that have multiple partitions. To set the
partition, check the Partition/Pool/Queue check box and type a partition name into the text field.

Setting the number of processors

You can set the number of processors by typing a new number of processors into the Number of processors text field
in the Defaults section. When the number of processors is greater than 1, VisIt will attempt to run the parallel version
of the compute engine. You can also click on the up and down arrows next to the text field to increase or decrease
the number of processors. If VisIt finds a parallel launch profile, you will have the option of changing the number of
processors before the compute engine is actually launched.

Setting the number of nodes

The number of nodes refers to the number of compute nodes that you want to reserve for your parallel job. Each
compute node typically contains more than one processor (often 2, 4, 16) and the number of nodes required is usually

1.13. Client Server 375

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

the ceiling of the number of processors divided by the number of processors per node. It is only necessary to set the
number of nodes if you want to use fewer processors than the number of processors that exist on a compute node. This
option is not available on some computers as it is meant primarily for compute clusters. To set the number of nodes,
check the Number of nodes check box and type a new number into the text field.

Setting the default bank

Some computers, if they are large enough, have scheduling systems that break up the number of processors into banks,
which are usually reserved for particular projects. Users who contribute to a project take processors from their default
bank of processors. By default, VisIt uses environment variables to get your default bank when submitting a parallel
job to the batch system. If you want to override those settings, you can click the Bank/Account check box to turn it
on and then type your desired bank into the text field next to the check box.

Setting the parallel time limit

The parallel time limit is the amount of time given to the scheduling program to tell it the maximum amount of
time, usually in minutes, that your program will be allowed to run. The parallel time limit is one of the factors that
determines when your compute engine will be run and smaller time limits often have a greater likelihood of running
before jobs with large time limits. To specify a parallel time limit, click the Time Limit check box and enter a number
of minutes or hours into the text field. If you want to specify minutes, be sure to append m to the number or append an
h for hours. If you want to specify a timeout of 30 minutes, you would type: 30m.

Specifying a machine file

When using VisIt with some versions of MPI on some clustered computers, it may be necessary to specify a machine
file, which is a file containing a list of the compute nodes where the VisIt compute engine should be executed. If you
want to specify a machine file when you execute VisIt in parallel on a cluster that requires a machine file, click on the
Machine File check box and type the name of the machine file that you want to associate with your host profile into
the text field.

Specifying constraints

Some machines constrain the processor-to-node ratio. In order to prevent accidentally requesting nodes/processors
outside those constraints, they can be entered in table form by clicking the Constraints checkbox to enable the con-
trols. Click Add row to add a new row to the table, and Delete row to remove a row from the table. For each row,
enter number of nodes and appropriate associated number of processors in appropriate columns. When the launch
engine dialog pops up, users won’t be able to specify node-processor combinations outside of the constraints.

Advanced host profile options

The Advanced tab (see Figure 1.326) in the Launch Profiles tab lets you specify advanced networking options to
ensure that the VisIt components running on the remote computer use resources correctly and can connect back to the
viewer running on your local workstation.

Load balancing

Load balancing refers to how well tasks are distributed among computer processors. The goal is to make each computer
processor have roughly the same amount of work so they all finish at the same time. VisIt’s compute engine supports

376 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.325: Parallel launch constraints

Fig. 1.326: Advanced options tab

1.13. Client Server 377

VisIt User Manual Documentation, Release 3.1

two forms of load balancing. The first form is static load balancing where the entire problem is distributed among
processors and that distribution of work never changes. The second form of load balancing is dynamic load balancing.
In dynamic load balancing, the work is redistributed as needed each time work is done. Idle processors independently
ask for work until the entire task is complete. VisIt allows you to specify the form of load balancing that you want to
use. You can choose to use static or dynamic load balancing by clicking the Static or Dynamic radio buttons. There
is also a default setting that uses the most appropriate form of load balancing.

Setting up the parallel environment

VisIt is usually executed by a script called: visit, which sets up the environment variables required for VisIt to
execute. When the visit script is told to launch a parallel compute engine, it sets up the environment variables as
it usually does and then invokes an appropriate parallel launch program that takes care of either spawning the VisIt
parallel compute engine processes or scheduling them to run in a batch system. When VisIt is used with some versions
of MPI on some clusters, the parallel launch program does not replicate the environment variables that the visit script
set up, preventing the VisIt parallel compute engine from running. On clusters where the parallel launch program does
not replicate the VisIt environment variables, VisIt provides an option to start each process of the VisIt compute engine
under the visit script. This ensures that the environment variables that VisIt requires in order to run are indeed set up
before the parallel compute engine processes are started. To enable this feature, click on the Use VisIt script to set
up parallel environment check box.

Setting launcher arguments

In addition to choosing a launch program, you can also elect to give it additional command line options to influence
how it launches your compute engine. To give additional command line options to the launch program, click the
Launcher arguments check box and type command line options into the text field to the right of that check box.

Setting sublauncher options

To give additional command line options to the sublauncher program, click the Sublauncher arguments, Sub-
launcher pre-mpi command or Sublauncher post-mpi command check box and type options into the text field
to the right of that check box.

Installing pre-defined host profiles shipped with VisIt

The Setup Host Profiles And Configuration window is used to install pre-defined host profiles that are shipped with
VisIt. It can be accessed from the Options dropdown. It will list all the pre-defined host profiles shipped with the
installation, listed according to location. From the list, you can choose one or more locations and all the host profiles
for the selected locations will be installed. However, you will need to exit and restart VisIt for them to become available
for use. With this window, you can also specify a default configuration for VisIt to use. Don’t forget to click Install
before dismissing the window. (Figure 1.327)

Installing pre-defined host profiles from the VisIt repository

The Remote Profiles tab can be used to install pre-defined host profiles from the VisIt repository. The advantage to
using the VisIt repository is that it may have additional host profiles defined after a particular release of VisIt was
released. To do so, click on the Remote Profiles vertical tab in the middle of the Host Profiles window. The top
section of the tab allows you to choose the remote location (currently, only VisIt’s repository is available).

(Figure 1.328)

378 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.327: The Host Profile Configuration Window

1.13. Client Server 379

VisIt User Manual Documentation, Release 3.1

Fig. 1.328: Remote Profiles tab

380 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

If you click the Update button, the list of host profiles available from the remote location will be displayed. (Figure
1.329)

Fig. 1.329: Remote Profiles tab with updated content

Scroll through the list, clicking on the arrow next to a location to view the profiles available for that location, then
highlight a profile and click the Import button. (Figure 1.330) The selected host profile will now show up in the hosts
list in the left pane.

It is important to save your settings before exiting VisIt in order to save the newly imported host profiles for future
sessions.

Engine launch options window

The engine launch options window, shown in (Figure 1.331), is used to pick a launch profile to use when there are
multiple launch profiles for a host or if there are any parallel launch profiles. When there is a single serial host profile
or no host profiles, the window is not activated and VisIt launches a serial compute engine. The window’s primary
purpose is to select a launch profile and set some parallel options such as the number of processors. This window is
provided as a convenience so host profiles do not have to be modified each time you want to launch a parallel engine
to run with a different number of processors.

The engine launch options window has a list of launch profiles from which to choose. The active profile for the host is
selected by default though another profile can be used instead. Once a launch profile is selected, the parallel options
such as the number of processors/nodes, processor count, can be changed to fine-tune how the compute engine is
launched. After making any changes, click the window’s OK button to launch the compute engine. Clicking the
Cancel button prevents the compute engine from being launched.

1.13. Client Server 381

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.330: Remote Profiles tab with host selected for import

382 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.331: Engine launch options window

Setting the number of processors

The number of processors determines how many processors are used by VisIt’s compute engine. Generally, a higher
number of processors yields higher performance but it depends on the host platform and the database being visualized.
The Num procs text field initially contains the number of processors used in the active host profile but you can change
it by typing a new number of processors. The number of processors can also be incremented or decremented by
clicking the up/down buttons next to the text field.

Setting batch queue options

Many compute environments schedule parallel jobs in batch queues. The engine launch options window provides a
few controls that are useful for batch queue systems. The first option is the number of nodes which determines the
number of smaller portions of the computer that are allocated to a particular task. Typically the number of processors
is evenly divisible by the number of nodes but the window allows you to specify the number of nodes such that not
all processors within a node need be active. You can set the number of nodes, by typing a new number into the Num
nodes text field or you can increment or decrement the number by clicking on the arrow buttons to the right of the
text field. The second option is the bank which is a large collection of nodes from which nodes can be allocated. To
change the bank, you can type a new bank name into the Bank text field. The final option that the window allows to
be changed is the time limit. The time limit is an important piece of information to set because it can help to determine
when the compute engine is scheduled to run. A smaller time limit can increase the likelihood that a task will be
scheduled to run sooner than a longer running task. You can change the time limit by typing a new number of minutes
into the Time limit text field.

1.13. Client Server 383

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Setting the machine file

Some compute environments use machine files, text files that contain the names of the nodes to use for executing a
parallel job, when running a parallel job. If you are running VisIt in such an environment, the engine launch options
window provides a text field called Machine file. The Machine file text field allows you to enter the name of a new
machine file if you want to override which machine file is used for the selected host profile.

1.14 Compute Engines

VisIt can have many compute engines running at the same time. Much of the time the compute engines are those that
are installed with VisIt but on occasion, simulation codes may be instrumented to act as VisIt compute engines capable
of performing visualization operations on simulation data as it is created. When a simulation is used as a VisIt compute
engine, VisIt can access data directly from the simulation without the need to translate data into another format or write
it out to disk. When simulations are instrumented to become VisIt compute engines, they have all of the capabilities of
a standard VisIt compute engine and more. Specifically, simulations can accept additional simulation-defined control
commands that direct them to perform actions such as writing a restart file. Since simulations offer extra capabilities
over a normal VisIt compute engine, VisIt provides different windows in order to manage them. To manage compute
engines and check on progress, VisIt provides a Compute Engine Window. VisIt provides the Simulation Window
to manage simulations, display their progress, and provide extra controls for the simulations.

1.14.1 Compute Engines Window

You can open the Compute Engines Window, shown in Figure 1.332, by selecting the Compute engines option from
the Main Window’s File menu. The main purpose of the Compute Engines Window is to display the progress of a
compute engine as it completes a task. The window has two status bars. The top status bar indicates the progress of
the overall task. The bottom status bar indicates that compute engine’s progress through the current processing stage.
The window also provides buttons for interrupting and closing compute engines, as well as an Engine Information
Area that indicates how many processors the engine uses and its style of load balancing.

Picking a compute engine

The Compute Engines Window has the concept of an active compute engine. Only the active compute engine’s
progress is displayed in the status bars. The active compute engine is also the engine that is interrupted or closed. To
pick a new active compute engine, choose a compute engine name from the Engine menu. The Engine menu contains
the names of all compute engines that VisIt is running.

Interrupting a compute engine

Some operations in VisIt may take a long time to complete so most computations are broken down into stages. In the
event that you do not want to wait for an operation to complete, or if you realize that you made a mistake, you can
interrupt a compute engine. When you click the Interrupt engine button a signal is sent to the compute engine that
tells it to stop its work. The compute engine handles the interrupt requests after it completes the current stage so there
can be a small delay before the compute engine is interrupted. Any plots being generated when a compute engine is
interrupted are sent into the error state and are listed in red in the Plot list until they are regenerated.

Closing a compute engine

You can close a compute engine when you no longer need it by clicking the Close engine button. The compute engine
is closed only after you click Yes in a confirmation dialog window.

384 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.332: Compute Engines Window

1.14. Compute Engines 385

VisIt User Manual Documentation, Release 3.1

Fig. 1.333: Close compute engine confirmation dialog

Clearing a compute engine’s cache

As the compute engine processes data, it caches calculation results in case they are needed again. This includes meshes
and variables that have been read from databases as well as the results from more complicated calculations involving
expressions and operators. VisIt’s compute engine periodically clears the cache of items that it no longer needs but if
you want to explicitly clear the cache to free up more memory, you can click the Clear cache button in the Compute
Engine Window.

1.14.2 Simulation Window

You can open the Simulation Window, shown in Figure 1.334, by selecting the Simulations option from the Main
Window’s File menu. The main purpose of the Simulation Window is to display the progress of a simulation that
is acting as a VisIt compute engine as it completes its visualization tasks. The Simulation Window also provides
buttons that direct the simulation to perform simulation-defined commands such as saving out a restart dump. The list
of commands depends on the functionality that the simulation exposes to VisIt when instrumented.

The Simulation Window is divided up into two main areas. The top of the window, called the Simulation attributes
area, displays various attributes of the simulation such as its name, when it was started, the name of the computer
where it is running, the number of processors, etc. Below the Simulation attributes area, you will find controls
that are also present in the Compute Engines Window such as the Interrupt button and Clear cache button. The
Disconnect button is specific to the Simulation Window and when you click it, VisIt will detach from the running
simulation, allowing it to continue its calculation. You can reconnect to the simulation later to check on the its progress
or create more visualizations.

Below the Simulation attributes area, you can access Commands, Messages, and Strip Charts. The Commands
tab displays buttons for simulation-defined commands. When a simulation is instrumented to act as a VisIt compute
engine, it publishes a list of commands that it will accept when connected to VisIt. This allows the simulation to provide
hooks that allow the user to tell the simulation to execute certain commands like writing a restart file. Depending on
the complexity of the commands exposed, VisIt could ultimately be used to steer the simulation as well as visualize

386 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.334: Simulation Window

1.14. Compute Engines 387

VisIt User Manual Documentation, Release 3.1

its results. The Messages tab displays messages from the simulation. The Strip Charts tab shows traces of specific
quantities published from the simulation to VisIt.

1.15 Command Window

In this section, we describe the Command Window which provides a convenient interface from the GUI to VisIt’s
Python command-line interface.

1.15.1 VisIt’s Python Command Line via the Command Window

Fig. 1.335: Command Window

388 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

It is possible for VisIt’s GUI and Python Interface to share the same viewer component at runtime. When you invoke
visit at the command line, VisIt’s GUI is launched. When you invoke visit -cli at the command line, VisIt’s CLI
(Python interface) is launched. If you want to use both components simultaneously then you can use VisIt’s Command
Window . The Command Window can be opened by clicking on the Command menu option from the Controls
menu. The Command Window consists of a set of eight tabs in which you can type Python scripts. When you type
a Python script into one of the tabs, you can then click the tab’s Execute button to make VisIt try and interpret your
Python code. If VisIt detects that it has no Python interpreting service available, it will launch the CLI (connected to
the same viewer component) and then tell the CLI to execute your Python code. Note that the Command Window is
just for editing Python scripts. Any output that results from the Python code’s execution will be displayed in the CLI
program window (see Figure 1.335).

Saving the Command Window’s Python scripts

The Command Window is meant to be a sandbox for experimenting with small Python scripts that help you visualize
your data. You will often hit upon small scripts that can be used over and over. The scripts in each of the eight tabs in
the Command Window can be saved for future VisIt sessions if you save your settings. Once you save your settings,
any Python scripts that are present in the Command Window are preserved for future use.

Clearing a Python script from a tab

If a Python script in one of the Command Window’s tabs is no longer useful then you can click that tab’s Clear button
to clear out the contents of the tab so you can begin creating a new script in that tab. If you want VisIt to permanently
delete the script from the tab then you must save your settings after clicking the Clear 3button.

Using the GUI and CLI to design a script

Writing a Python script that performs visualization from scratch can be difficult. The process of setting up a complex
visualization can be simplified by using both the GUI and the CLI at the same time. For example, you can use VisIt’s
GUI to set up the plots that you initially want to visualize and then you can save out a session file that captures that
setup. Next, you can open a text editor and create a new Python script. The first line of your Python script can
use VisIt’s RestoreSession command to restore the session file that you set up with the GUI from within the Python
scripting environment. For more information on functions and objects available in VisIt’s Python interface, see the
VisIt_ Python Interface manual. After using the RestoreSession function to set VisIt situated with all of the right plots,
you can proceed with more advanced Python scripting to alter the view or move slice planes, etc. Once you have
completed your Python script in a text editor, you can pasted it into the Command Window to test it or you can pass
it along to VisIt’s command line movie tools to make a movie.

1.15.2 Macros

VisIt’s Command window contains controls that allow you to record most GUI actions and view Python scripting code
needed to accomplish those actions. The Command window provides 8 conventional tabs that serve as destinations
for recorded Python coding. In addition to those 8 tabs, there is a special tab called Macros that shows the contents of
the visitrc file. If you record Python code to the Macros tab then that Python code is turned into a function that
can be called in response to a button click from a button in the Macros window.

Recording a macro

Here are the steps involved in recording a macro.

1. Open the Command window and choose to Store commands in Macros.

1.15. Command Window 389

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.336: Command Window Macros Tab

390 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

2. Click the Record button

3. Perform any GUI actions that you want to record to a single button click.

4. Click the Stop button in the Command window.

5. Enter the name of a Python function in which to store your set of recorded commands.

Fig. 1.337: Setting the Python funtion name

6. Enter the text for the macro button as it will appear in the Macro window.

Fig. 1.338: Setting the Macro Button text

7. Now, the Macros tab will contain a function for your recorded commands and it will call the RegisterMacro
function from the VisIt Python Interface to associate your Python function with the named button. Note: Re-
membe that you can edit the recorded Python code to suit your needs. You can generalize the code so it can,
for example, operate on the active database instead of a specific database. The state information that you need
to generalize can often be returned by the GetGlobalAttributes(), GetWindowInformation(), or GetMetaData()
functions.

8. Click the Update macros button to make VisIt update the buttons in the Macros window so it will contain your
new button.

9. No further steps need to be taken to save your macro since the macro definitions in the Macros tab of the
Command window will be automatically saved to your visitrc file.

10. Click the new button in the Macros window whenever you want to replay the recorded set of commands.

1.15.3 VisIt Run Commands (RC) File

VisIt supports a run commands or an rc file called the visitrc file which is typically located in ~/.visit. The
visitrc file is a Python source code file that contains Python scripting commands that VisIt executes whenever the
CLI is started either from the shell or from within the GUI through the Command Window.

1.15. Command Window 391

https://visit.llnl.gov
https://en.wikipedia.org/wiki/Run_commands
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.339: The final Macro Button that is produced

The visitrc file is most often used to define Python functions associated with VisIt macros. However, users can
use the file to run whatever Python code they wish during VisIt CLI startup. This could include opening a frequently
used database, defining a set of frequently used expressions, etc. See the Python command-line interface manual for
more information about the commands available in VisIt’s Python interface.

1.16 Preferences

In this chapter, we will discuss how to set and save user preferences. User preferences affect the default values for
plots and operators as well as window properties like the background color. This chapter reveals where those settings
are saved and how to modify them.

1.16.1 How VisIt Uses Preferences

VisIt’s preferences are saved into two levels of XML files that are stored in the user’s home directory and in the global
VisIt installation directory. The global preferences are read first and they allow the system administrator to set global
preferences for all users. After VisIt reads the global preferences, it reads the preferences file for the current user.
These settings include things like the color of the GUI and the initial directory from which to read files. Most of the
attributes that are settable in VisIt can be saved to the preferences files for future VisIt sessions.

1.16.2 Setting Default Values

Fig. 1.340: The make default button

Some windows have a button called Make default that sets the default attributes for the window. This is typically the
case for plot and operator attribute windows. Other windows that have a Make default button include the Annotation,
Lighting, Material Reconstruction Options, Mesh Management Options, Pick, QueryOverTime and Interactors
windows. Setting the attributes with the Apply button sets the attributes for the active plots or operators. Setting the

392 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

default attributes sets the attributes for future plots and operators. When saving the settings using Save Settings from
the Options menu, the default attributes are saved. An example of a Make default button is shown in Figure 1.340.

1.16.3 How to Save Settings

To save preferences in VisIt, select Save settings from the Main window’s Options menu. When VisIt saves the
current settings to the users preferences file they are used to set the initial state the next time the user runs VisIt. VisIt
does not automatically save settings when changes are made to the default attributes for plots, operators, or various
control windows. For windows that only have current attributes (windows without a Make default button), the current
attributes are saved. For windows that have current and default attributes (windows with a Make default button), the
default attributes are saved.

To save the entire state of VisIt, which includes things such as the plots in the window and the operators applied to the
plots for each visualization window, select either Save session or Save session as from the Main window’s File menu.
When using Save session, if a session has already been restored or saved, VisIt will overwrite the existing session
file. If a session has not already been restored or saved, VisIt will bring up a dialog window that will allow the user
to specify the location and name of the session file. When using Save session as VisIt will always bring up a dialog
window that will allow the user to specify the location and name of the session file and prompt the user to confirm
before overwriting an existing session file.

VisIt saves two preference files, the first of which stores preferences for VisIt’s GUI while the second file stores
preferences for VisIt’s state. When running VisIt on UNIX and MacOS X systems, the preference files are called:
guiconfig and config and they are saved in the .visit directory in the users home directory. The Win-
dows version of the .visit directory is %USERPROFILE%\Documents\VisIt, which may be something like:
C:\Users\<your-user-name>\Documents\VisIt.

To run VisIt without reading the saved settings, add -noconfig to the command line when running VisIt. The
-noconfig argument is often useful when running an updated version of VisIt that is incompatible with the saved
settings. VisIt settings are usually compatible between different versions but this is not always the case and some users
have had trouble on occasion when transitioning to a newer version. If VisIt has stability problems when it starts up
after upgrading to a newer version, add the -noconfig option to the command line and save the settings to write
over any older preference files.

1.16.4 Appearance Window

The Appearance window is responsible for setting preferences for the appearance of the GUI windows. The Appear-
ance window shown in Figure 1.341 is brought up by selecting Appearance from the main window’s Options menu.
It can be used to set the GUI colors as well as other attributes such as the style and orientation. In order to change any
of the appearance attributes, the user must first uncheck the Use default system appearance check box.

Changing GUI colors

To change the GUI colors using the Appearance window, click on the color button next to the color to be changed. To
change the background color (the color of the GUI’s windows), click on the GUI background color button and select
a new color from the Popup color menu. To change the foreground color (the color used to draw text), click the GUI
foreground color button and select a new color from the Popup color menu.

VisIt will issue an error message if the colors chosen for both the background and foreground colors are close enough
that they cannot be distinguished so that the user does not accidentally get into a situation where the controls in VisIt’s
GUI become too difficult to read. Some application styles, such as Aqua, do not use the background color so setting
the background has no effect unless an application style like Windows is chosen, which does use the background color.

1.16. Preferences 393

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.341: The appearance window

Changing GUI Style

VisIt’s GUI adapts its look and feel, or application style, to the platform on which it is running. It is also possible to
make the GUI use other application styles, although for the most part they look fairly similar.

To change the style select a new style from the GUI style menu. It is frequently necessary to change the GUI font by
either changing the font description in the GUI font text box or selecting a new font from the font selection window,
which is brought up by clicking on the . . . button to the right of the GUI font text field.

Changing GUI Orientation

By default, VisIt’s Main window appears as a vertical window to the left of the visualization windows. The default
configuration often makes the best use of the display with wide aspect ratio screens. It has become very rare to
encounter screens where the horizontal orientation makes better use of the display, so it is not recommended and will
most likely be deprecated in future versions of VisIt.

1.16.5 Plugin Manager Window

The Plugin Manager window , shown in Figure 1.342, allows the user to see which plugins are available for plots,
operators, and databases. Not all plugins have to be loaded, in fact, many operator plugins are not loaded by default.
The Plugin Manager window allows the user to specify which plugins are loaded when VisIt is started. The Plugin
Manager window is brought up by selecting Plugin Manager from the Main window’s Options menu.

Enabling and Disabling Plugins

All of VisIt’s plots, operators, and database readers are implemented as plugins that are loaded when VisIt first starts
up. Some plugins are not likely to be used by most people so they should not be loaded. The Plugin Manager window
provides a mechanism to turn plugins on and off. The window has three tabs: Plots , Operators , and Databases.
Each tab displays a list of plugins that can be loaded by VisIt. If a plugin is enabled, it has a check by its name.

Plugins can be turned on and off by checking or unchecking the check box next to a plugin’s name. Plugins are loaded
at startup, so enabling or disabling plugins will not take effect unless the preferences are saved and VisIt is restarted.

394 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.342: The plugin manager window

1.16. Preferences 395

VisIt User Manual Documentation, Release 3.1

If plots or operators are disabled, they will not appear in the Add, Operator, PlotAtts and OpAtts menus. Similarly,
disabled databases will not show up in the list of Open file type as menu in the File open window.

1.16.6 Rendering Options Window

The Rendering options window (shown in Figure 1.343) contains controls that set global options that affect how the
plots in the active visualization window are drawn, as well as, look at information related to the performance of the
graphics hardware VisIt is running on. The Rendering options window can be brought up by selecting Rendering
from the Main window’s Preferences menu. The Rendering options window contains three tabs. The Basic tab
contains basic rendering options, the Advanced tab contains advanced rendering options, and the Information tab
contains information about the rendering performance of the graphics hardware VisIt is running on.

Basic Rendering Options

The Antialiasing, and Specular lighting options are covered in the Making It Pretty chapter.

Changing surface representations

Sometimes when visualizing large or complex databases, drawing plots with all of their shaded surfaces can take too
long to be interactive, even for fast graphics hardware. To combat this problem, VisIt provides an option to view all of
the plots in the visualization window as wireframe outlines or point clouds instead of as shaded surfaces (see Figure
1.344). While being less visually informative, plots drawn as wireframe outlines or as clouds of points can still be
useful for visualizations since it is possible to do the setup work like setting the view before switching back to a surface
representation that is more costly to draw. To change the surface representation used to draw plots click on either the
Surfaces, Wireframe or Points radio buttons below the Draw objects as label.

Using display lists

VisIt benefits from the use of hardware accelerated graphics and one of the concepts central to hardware accelerated
graphics is the display list. A display list is a sequence of simple graphics commands that are stored in a computer’s
graphics hardware so the hardware can draw the object described by the display list several times more quickly than it
could if the graphics commands were issued directly. VisIt tries to make maximum use of display lists when necessary
so it can draw plots as fast as possible.

By default, VisIt decides when to and when not to use display lists. Typically, when running VisIt on a local worksta-
tion with plots that result in fewer than a couple million graphics primitives, VisIt does not use display lists because the
cost of creating them is more expensive than just drawing the graphics primitives without display lists. When running
on a Unix version of VisIt on a remote computer and displaying the results back to a workstation using an X-server, it
is almost always advantageous to create display lists for plot geometry. Without display lists, VisIt must transmit the
plot geometry over the network to the X-server every time it renders an image. VisIt can be set to either use or not use
display lists all the time. To change the way VisIt uses display lists click on either the Auto, Always or Never radio
buttons below the Use display lists label.

Stereo images

Stereo images, which are composites of left and right eye images, can convey additional depth information that cannot
be expressed by images that are generated using a single eye point. VisIt provides four forms of stereo images:
red/blue, red/green, interlace, and crystal eyes. A red/blue stereo image (see Figure 1.345) is similar to frames from
early 3D movies in that it appears stereo only when using red/blue stereo glasses. Unfortunately, red/blue stereo images
are not very useful for visualization because colors are lost since most of the color ends up in the magenta range when

396 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.343: The basic rendering options

Fig. 1.344: The different surface representations

1.16. Preferences 397

VisIt User Manual Documentation, Release 3.1

the red and blue color channels are merged. Red/green stereo suffers a similar color loss. Interlaced images alternate
lines in the image with left and right eye views so that squinting makes the image look somewhat 3D. VisIt’s crystal
eyes option requires the use of special virtual reality goggles for images to appear to be 3D but this option is by far
the best since it allows interactive frame rates with images that really appear to stand out from the computer monitor.
VisIt does not use stereo imaging by default since it makes images draw slower because an image must be drawn for
both the left eye and the right eye. To enable stereo images, check the Stereo check box. To change the type of stereo
images generated, click on either the Red/Blue, Interlace, Crystal Eyes or Red/Green radio boxes under the Stereo
check box.

Fig. 1.345: Some various stereo image types

Advanced Rendering Options

The Shadows, and Depth Cueing options are covered in the Making It Pretty chapter.

Scalable rendering

VisIt typically uses graphics hardware on the local computer to very quickly draw plots once they have been generated
by the compute engine. This becomes impractical for very large databases because the amount of memory needed to
store the graphics commands that draw the plots quickly exceeds the amount of memory in the graphics hardware.
Large sets of graphics commands can also degrade performance when they must be shipped over slow networks
from the compute engine to the VisIt’s viewer. VisIt provides a scalable rendering option that can improve both of
these situations by creating the actual plot images, in parallel, on the compute engine, compressing them, and then
transmitting only an image to the viewer where the image can be displayed.

Scalable rendering can be orders of magnitude faster for large databases than VisIt’s conventional image drawing strat-
egy because large databases are typically processed using a parallel compute engine. When using scalable rendering
with a parallel compute engine, VisIt is able to draw small pieces of the plot on each processor in parallel and then
glue the image together before sending it to the viewer to be displayed. Not only has the image likely been created
faster, but the size of the image is usually on the order of a megabyte instead of the tens or hundreds of megabytes
needed to transmit graphics commands, which results in faster transmission of the image to the viewer. The drawback
of scalable rendering is that it is usually not as interactive as graphics hardware because each time the view is changed
or some other change is made to the plots, the image must be resent to the viewer over the network.

VisIt can automatically determine when to stop sending geometry to the viewer in favor of sending scalably rendered
images. The scalable rendering threshold determines when VisIt switches between sending geometry and doing scal-
able rendering. The threshold is based on the number of polygons to be rendered. The scalable rendering threshold
can be changed by entering a new number of polygons into the When polygon count exceeds spin box. The number
is specified in thousands of polygons.

398 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.346: The advanced rendering options

1.16. Preferences 399

VisIt User Manual Documentation, Release 3.1

It is also possible to have VisIt always or never use scalable rendering. To change the scalable rendering mode, click
on either the Auto, Always or Never radio boxes under the Use scalable rendering label.

Rendering Information

Fig. 1.347: The rendering information

Scalable rendering

The scalable rendering indicates if the compute engine used scalable rendering to render the image displayed in the
viewer. The use of scalable rendering is indicated next to the Use Scalable Rendering: label.

400 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Frames per second

The frames per second refers to the number of times that VisIt can draw the plots in the visualization window in the
course of a second. VisIt displays the minimum, average, and maximum frame rates achieved during the last draw
operation, like rotating the image with the mouse. They are displayed next to the Frames per second: label. Some
actions that force a redraw do not cause the information to update. An example of this is resizing the visualization
window. To make VisIt update the frame rate information after each time it draws the plots in the visualization window,
check the Query after each render check box.

Polygon count

The polygon count refers to the number of polygons used to represent the plots in the visualization window. VisIt
displays the polygon count next to the Approximate polygon count: label.

Plot extents

The plot extents are the minimum and maximum locations of the plot in each spatial dimension. The plot extents are
the smallest bounding box that can contain the plots in the visualization window. VisIt displays the plot extents for
each dimension next to the X Extents:, Y Extents: and Z Extents: labels. .

1.16.7 Preferences Window

The Preferences window, shown in Figure 1.348, contains controls that allow setting global options that influence
VisIt’s behavior. The top portion of the window contains a collection of miscellaneous options. This is followed by
collections of options that are grouped by functionality. The groups are contained in the Floating point precision,
Databases, Session files and File panel properties areas.

Copying Plots On First Reference

The Clone windows on first reference option clones all attributes of the active window to a new window when a
window is made active for the first time. To control this behavior check or uncheck the Clone window on first
reference check box.

Posting Windows By Default

When a postable window, such as a plot attributes window is brought up, the window manager is free to show the
window wherever it likes. When using VisIt on a large display where the windows might pop up very far away from
VisIt’s Main window, it is sometimes convenient to make sure that windows that can be posted to the Notepad area
are initially posted to the Notepad area instead of popping up wherever the window manager puts them. To make
postable windows post to the Notepad area by default when they are shown, check the Post windows when shown
check box.

Reading Accurate Cycles and Times From Databases

Many of the file formats that VisIt reads contain a single time state, making accurate cycles and times unavailable in
VisIt’s metadata for all but the open time state. To get accurate times and cycles for these types of files, VisIt would
have to open each file in the database, which can be a costly operation. VisIt does not go to this extra effort unless
Try harder to get accurate cycles/times option is enabled. This option allows VisIt to create meaningful cycle or

1.16. Preferences 401

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.348: The preferences window

402 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

time-based database correlations for groups of single time state databases. Note that databases that are already open
will need to be reopened in order for VisIt to retrieve updated cycles and times.

File Panel Properties

The File panel is a deprecated feature that will be removed in a future release of VisIt. The File panel is enabled by
checking the Show selected files check box. It is not recommended for use.

1.16.8 File Locations

VisIt manages various files associated with its operation. In most cases where VisIt saves or loads data from files,
the user is presented with a file browser dialog and can explicitly choose arbitrary locations on the file system to look
for or store files. However, this is not universally true. The locations and names of some files are prescribed. In this
section we provide some additional details about various file locations and names involved with the operation of VisIt.

Factors Effecting Prescribed File Location and Names

To complicate matters, the prescribed location of these files depends on a few different factors including

• Which platform is running VisIt.

• How VisIt was launched.

• Whether VisIt is running in client/server mode.

The Platform and the User’s Home Directory

Typically, on UNIX and OSX systems, prescribed configuration files are stored in ~/.visit whereas on
Windows systems, they are, by default, in %USERPROFILE%\Documents\VisIt, which may be some-
thing like C:\Users\<user-name>\Documents\VisIt. Furthermore, on Windows, Visit honors the
CSIDL_PERSONAL and CSIDL_MYDOCUMENTS CSIDL environment variables. Depending on the how the system
is configured, these might actually resolve to a networked drive, but most commonly, to the values described previ-
ously. Finally, Windows users can also set the VISITUSERHOME environment variable to point to whatever location
they desire, and VisIt will use that location instead. For the rest of this section, we use the symbol VUSER_HOME as a
way to refer to whatever this location happens to be on whatever platform VisIt is running.

The Launch Method and the Current Working Directory

The launch method effects what VisIt uses as the current working directory or CWD. On Windows and OSX it is most
common to start VisIt by clicking an icon. In these cases, VisIt uses the user’s $HOME or login directory as the current
working directory.

However, when VisIt is started by typing a command-line at a shell terminal prompt, then VisIt uses whatever that
shell’s CWD is at the time of launch.

Client/Server Operation

When running VisIt in client/server mode, the user will need to be aware of what VisIt uses as VUSER_HOME and CWD
on both the client and the server. These cases are pointed out in the descriptions below.

1.16. Preferences 403

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://docs.microsoft.com/en-us/windows/win32/shell/csidl
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://en.wikipedia.org/wiki/Working_directory
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Files in VUSER_HOME

Most of the files associated with VisIt configuration are managed in in VUSER_HOME. When running in client/server,
it is the configuration files on the local client that effect behavior. This means it is always the files on the local machine
and not the remote system that effect behavior. Any configuration files that might also be on the remote server do not
play a role in effecting behavior in client/server mode.

Settings/Preferences File

• Location and file name: VUSER_HOME/config

• Purpose: Holds user settings from Preferences Window plus numerous other settings such as default attributes
for operators and plots, default database read options, default color tables, as well as the enabled/disabled state
of various plot, operator and database plugins.

• Written: When user saves settings.

• Read: On VisIt startup but this can be overridden by the -noconfig command-line startup option.

• Format: ASCII XML

GUI Configuration File

• Location and file name: VUSER_HOME/guiconfig

• Purpose: Holds positions and sizes of various GUI windows. Also holds the list of recently used paths to open
databases.

• Otherwise operates identically to VUSER_HOME/config.

Host Profile Files

• Location and file name(s): VUSER_HOME/hosts/host_<site-name>_<resource-name>.xml
where <site-name> is something like ornl, llnl, anl etc. and <resource-name> is a machine name
such as summit, sierra, theta.

• Purpose: Stores information on how to connect to and launch jobs on a specific compute resource. In many
cases, there are separate sets of host profile files for all the compute resources at a commonly used site such
as LLNL CZ or RZ, ANL, ORNL, etc. Often sites will post VisIt host profile files in places for users to easily
find and install them. Installing them is just a matter of copying them to VUSER_HOME. In addition, updated
profiles can be downloaded and installed automatically by VisIt from the Host Profiles window.

• Written: When user saves settings or when user hits the Export Host button from the Host Profiles window.

• Read: On VisIt startup. All host profiles in VUSER_HOME/hosts/host*.xml are read on VisIt startup but
this can be overridden by -noconfig. Users should be aware of this behavior. If the user passes -noconfig
for the purposes of avoiding the loading of preferences, s/he will also be without any host profiles.

• Format: ASCII XML

VisIt Run Commands (rc) File

• Location and file name: VUSER_HOME/visitrc

• Purpose: Holds Python code to be executed each time VisIt is launched.

404 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://en.wikipedia.org/wiki/XML
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://en.wikipedia.org/wiki/XML
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

• Written: Whenever user hits the Update Macros button in the Command Window.

• Read: On VisIt startup of the CLI.

• Format: Python source code. However, there is no .py file extension in the file name.

Command Window Tabs Script Files

• Location and file name(s): VUSER_HOME/script<K>.py where K is an integer in the range [1. . . 8].

• Purpose: Hold the python code associated with each tab in the Command Window.

• Written: When user saves settings.

• Read: On VisIt startup but this can be overridden by -noconfig.

• Format: Python source code.

Color Table Files

• Location and file name(s): VUSER_HOME/<color-table-name>.ct

• Purpose: Store a single color table for easy sharing with other users.

• Written when the user hits the Export button in the color table window from Controls -> Color table. . . .

• Read: On VisIt startup. All color table files in VUSER_HOME/*.ct are read and loaded into VisIt. However,
this behavior is overridden by -noconfig.

• Format: ASCII XML specifying the colors and color control points for the color table.

Custom Plugin Files

• Location and file name(s): There are separate directories in VUSER_HOME for private, user-specific operator,
database and plot plugins. On UNIX/OSX, these are

– VUSER_HOME/<visit-version>/<visit-arch>/plugins/operators/

– VUSER_HOME/<visit-version>/<visit-arch>/plugins/databases/

– VUSER_HOME/<visit-version>/<visit-arch>/plugins/plots/

where <visit-version> and <visit-arch> are the VisIt version number and VisIt architecture moniker.
On Windows, these diretories are

– VUSER_HOME/operators/

– VUSER_HOME/databases/

– VUSER_HOME/plots/

If the -public command-line option to xml2cmake is used when building a plugin and the user performing
this operation has appropriate permissions, the plugin will instead be installed to the VisIt public installation
directory for all users of that installation. If a previous version of this plugin exists there, it will be overwritten
by this operation.

A single plugin involves a set of related files for the mdserver, engine and those common all VisIt compo-
nents. For example, on UNIX the files for the Silo database plugin are libESiloDatabase_par.so,
libESiloDatabase_ser.so, libISiloDatabase.so, and libMSiloDatabase.so.

• Purpose: Directories to hold custom plugin shared library files.

1.16. Preferences 405

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://en.wikipedia.org/wiki/XML
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

• Written: When the user makes and installs or copies the shared libraries for a custom plugin.

• Read: On VisIt startup, all enabled plugin info files are read. The remaining plugin files are read only when
the plugin is actually used. In client/server mode, it is important to ensure that the same plugin files have been
installed on both the client and the server.

• Format: Binary shared library files in the machine format of the host architecture.

Usage Tracking Files

• Location and file name(s): VUSER_HOME/stateA.B.C.txt where A, B and C form a VisIt version number.

• Purpose: Holds a single ASCII integer indicating the number of times the associated VisIt version has been run.
This is to facilitate suppression of the release notes and help after the first run of a new version of VisIt.

• Written: Each time VisIt is started, the integer value in the associated state tracking file is updated.

• Read: Each time VisIt is started, the value in the associated state tracking file is read.

• Format: ASCII text

Crash Recovery Files

• Location and file name(s): VUSER_HOME/crash_recovery.$pid.session and VUSER_HOME/
crash_recovery.$pid.session.gui where $pid is the process id of the VisIt viewer component.

• Purpose: Hold the most recently saved last good state of VisIt and VisIt’s GUI windows prior to a crash.

• Written: Periodically from VisIt automatically. Disabled if the preference Periodically save a crash
recovery file is unchecked in the Preferences Window. In client/server mode, crash recovery files are
always written on the client.

• Read: When user starts VisIt and answers yes when queried whether to start up from the most recent crash
recovery file or when user explicitly specifies the crash recovery file as an argument to the -sessionfile
command-line startup option.

• Format: ASCII XML, same as any other VisIt session files.

Files In Other Locations

There are several other kinds of files VisIt reads and writes to locations other than VUSER_HOME. These are breifly
described in this section.

Database Files

• Location and file name(s): User uses File → Open. . . to bring up a file browser to select the name and location
of database files.

• Purpose: Database files store the data that VisIt is used to analyze and visualize for scientific insights.

• Written: By data producers, simulation codes or instruments, upstream of VisIt in the scientific analysis work-
flow.

• Read: On demand when user selects File → Open. . . . The -o command-line startup option can be used to
select a database file to open at startup. VisIt uses the file’s extension to decide what type of database the file is
and then select the appropriate plugin to read it.

406 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://en.wikipedia.org/wiki/XML
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
http://visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports

VisIt User Manual Documentation, Release 3.1

• Format: Varies by database type.

VisIt Debug Log (.vlog) Files

• Location and file name(s): The location of these files depends on whether VisIt is being run in client/server
mode. When running client/server, some logs are written on the client and some on the server. On Windows, the
logs on the client are always located in VUSER_HOME but on UNIX/OSX the logs on the client are written to
whatever the CWD was when VisIt was started. If started by clicking on an icon, this is most likely the the user’s
login directory. If started from a command-line, it is whatever the shell’s CWD for that command-line was. On
the server, the logs are written to the user’s login (home) directory. In a typical client/server scenario, the user
gets gui and viewer logs locally in the CWD and mdserver and engine logs on the remote system in their login
(home) directory. In a purely local scenario, all logs are written to the CWD.

On UNIX/OSX, the names of the log files are of the form <letter>.<component-name>.
<mpi-rank-or-$pid>.<debug-level>.vlog where <letter> is one of A through E,
<component-name> is one of gui, mdserver, viewer, engine_ser, engine_par,
<mpi-rank-or-$pid> is the MPI rank for a parallel engine (engine_par) or, optionally if -pid
is given as a command-line startup option) the component’s process id, and <debug-level> is the integer
argument for the -debug command-line startup option. For example the file names are A.mdserver.5.
vlog or C.engine_par.123.2.vlog.

On Windows, the names of the log files are slightly different and are of the form <component-name>.
exe.<$pid>.<debug-level>.vlog or <component-name>.exe.<mpi-rank>.<$pid>.
<debug-level>.vlog for a parellel engine. On Windows, the -pid command-line startup option) is
ignored and <$pid> is always included in the file names.

• Purpose: Capture streaming debugging messages from various VisIt components.

• Written: Continuously by VisIt if -debug L where L is the debug level and is an integer in the range [1..
.5] is given on the command-line that starts VisIt or buffered if a b is given immediately afte the debug level
integer. In addition, on UNIX/OSX VisIt maintains the 5 most recently written logs from the 5 most recent
component executions each beginning with the letters A through E, A being the most recent.

• Format: Various, ad-hoc ASCII, mostly human readable.

Plot and Operator Attribute Files

• Location and file name(s): User is prompted with a file browser to select the name and location of these files.

• Purpose: Hold the settings for a single, specific plot or operator for easy sharing with other users.

• Written: Whenever user hits the Save button in a plot or operator attributes window.

• Read: Whenever user hits the Load button in a plot or operator attributes window.

• Format: ASCII XML.

Session Files

• Location and file name(s): User is prompted with a file browser to select the name and location of these files.

• Purpose: Session files are used to save and restore the entire state of a VisIt session.

• Written: On demand when user selects File → Save session. . .

• Read: On demand when user selects File → Restor session. . . or when the -sessionfile command-line
startup option is used to specify a session file to open at startup.

1.16. Preferences 407

http://visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://en.wikipedia.org/wiki/XML
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

• Format: ASCII XML.

Save Window Files

• Location and file name(s): User uses the File → Set save options. . . to specify the name and location of
subsequent saved window files as well as many other properties of a saved window.

• Purpose: Save the visually relevant aspects of the data displayed in the currently active window usually but not
always to an image file.

• Written: On demand when user selects File → Save Window or hits the Save button in the Set save options
window. In client/server mode, keep in mind that the files are written only on the client.

• Read: Yes, saved images can be read into VisIt like any other database. On demand when user selects File →
Open. . .

• Format: Various, see Set save options window.

Export Database Files

• Location and file name(s): User uses File → Export database. . . to bring up a file browser to select the name
and location of exported database files.

• Purpose: Exported database files are often used to share computed results among users, to convert among
database formats, or to create a new more convenient database to load back into VisIt for further analysis.

• Written: On demand when user selects File → Export database. . . . While VisIt reads over 130 different types
of databases, only about 20 of those types does it write. And some of those output types support only limited
kinds of data. In client/server mode, keep in mind that the files are saved only on the server.

• Read: On demand when user selects File → Open. . .

• Format: Varies by database type.

Save Window vs. Export Database Files

As far as file location are concerned, the key issue for users to keep in mind regarding Save Window and Export
Database operations has to do with client/server operation. In client/server mode, Save Window produces files
always on the client whereas Export Database produces files always on the server.

Apart from file locations, another key issue is understanding when to use Save Window vs. Export Database. In
some circumstances, these operations can be highly similar and confusing to decide which to use.

In general, the Save Window operation is used to save visually relevant aspects of the data most often to an image
file whereas the Export Database operation is to output a wholly new VisIt database file. The cases where these two
operations can get confused is when non-image formats are used by Save Window such as STL, VTK, OBJ, PLY (3D
formats) and Curve or Ultra (2D, xy curve formats) formats. These non-image formats support object and visually
relevant object attributes in 2 and 3 dimensions for input to other high end graphics tools such as for 3D printing or
rendering engines. In particular, these formats typically support aspects of the rendering process such as object colors,
textures, lighting and view. This is the key to what makes a Save Window in these formats different from Export
Database.

408 Chapter 1. VisIt GUI User Manual

https://en.wikipedia.org/wiki/XML
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
http://visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports
http://visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports
http://visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports
https://visit.llnl.gov
https://en.wikipedia.org/wiki/STL_(file_format)
https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/PLY_(file_format)

VisIt User Manual Documentation, Release 3.1

Adjusting Configuration

Probably the easiest way to change VisIt configuration is to start a new VisIt session, make the desired changes through
the GUI and then save settings. Sometimes starting the GUI to just adjust configuration is inconvenient.

Sometimes, users need to temporarily change their configuration either to work around or diagnose an issue. Since the
majority of content in these files is ASCII, it is possible to manually edit files without having to start VisIt.

The user can also move (or rename) files so that VisIt will either find or not find them. For example, a common
trick is to change the name of VUSER_HOME/config to VUSER_HOME/config.orig so that the majority of
settings/preferences are not seen during VisIt startup but other things such as host profiles still work. The most
dramatic variation of this approach is to move the whole VUSER_HOME directory which on UNIX platforms might be
a command like mv ~/.visit ~/.visit.old.

1.17 Help

In this chapter, we will discuss how to use VisIt’s online help. VisIt’s online help consists of release notes, copyright
information, Frequently Asked Questions (FAQ), and the contents of this manual. The release notes help page lists
the complete set of bug fixes and enhancements for the current version of VisIt with links to the release notes for older
versions. The copyright information help page lists VisIt’s copyright agreement. The FAQ help page lists commonly
asked questions and the answers to those questions. Beginning VisIt users should read through the FAQ help page to
find the answers to commonly asked questions. Finally, the contents of this manual are available as online help.

1.17.1 About VisIt

VisIt provides a Splash screen (Figure 1.349) that appears when the tool is launched. The Splash screen has three
purposes: entertainment, displaying startup progress, and telling the user about VisIt. As VisIt launches, the Splash
screen cycles through a handful of images that show some of VisIt’s capabilities and it also tells the user what happens
while VisIt is launching. Once VisIt is launched, you can look at some information about VisIt by selecting the About
option from the Main Window’s Help menu. Choosing that menu option displays the Splash screen which can be
hidden by clicking its Dismiss button.

1.17.2 Help Window

VisIt’s Help Window, shown in Figure 1.350, displays all of VisIt’s online help content. You can open the Help
Window by choosing the Help option from the Main Window’s Help menu. The Help Window has a toolbar
along the top of the window while the rest of the window is divided vertically into two main areas. The left side of
the window is used to select online help pages and it is further divided with tabs for help contents, help index, and
bookmarks. The right side of the window displays the content for the online help pages.

Help Window Toolbar

The Help Window’s toolbar exposes buttons for navigation, changing font size, and adding bookmarks. You can hide
the toolbar by double-clicking on the handle located at the far left of the toolbar. The toolbar can also be moved to
other parts of the Help Window by clicking on its handle and dragging it to the top, sides, or the bottom of the Help
Window.

1.17. Help 409

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

Fig. 1.349: Splash screen

410 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.350: Help window

1.17. Help 411

VisIt User Manual Documentation, Release 3.1

Navigation

The toolbar contains buttons that you can use to cycle forward and backward in the list of visited help pages. The
Back button has an arrow icon that points to the left and the button changes the active help page to the last visited help
page. The Forward button has an arrow icon that points to the right and it switches the help page to the page that was
active before the Back button was clicked. If have not visited any help pages, both of these buttons are disabled. The
toolbar also contains a Home button which has a house icon. The Home button displays the VisIt home page, which
describes VisIt’s features.

Changing font size

The toolbar contains two buttons that allow you to change the font size used to display online help. The Larger font
button is distinguished by a large capital ‘A’ and a small triangle which points up. When the Larger font button is
clicked, the font size is increased and the active help page is redrawn with the larger font. The Smaller font button
looks similar to the Larger font button except that its icon’s triangle points down and its ‘A’ is smaller. The Smaller
font button decreases the font size and immediately redraws the active help page using the new smaller font.

Adding a bookmark

VisIt’s Help Window provides the ability to create and save personal bookmarks. This allows you to easily come back
to frequently-used sections of the online help. The toolbar contains an Add bookmark button that adds the current help
page to the list of bookmarks. The Bookmarks tab in the left part of the Help Window also has this feature.

Selecting a help page

The Help Window has three tabs, shown in Figure 1.351, that allow a help page to be located in different ways. The
first tab is the Contents tab and it lists all of the online help pages and allows them to be grouped into related topics.
The Index tab lists all of the online help pages in an alphabetized list that can be searched for a particular help topic.
The Bookmarks tab shows all bookmarked help pages which can be recalled by clicking on a bookmark.

412 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

1.17. Help 413

VisIt User Manual Documentation, Release 3.1

414 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.351: Help tabs

1.17. Help 415

VisIt User Manual Documentation, Release 3.1

Contents tab

The Contents tab lists all of the online help pages and groups them into related topics which are sometimes organized
in tree format. When items are organized into a tree, an entry in the list of help pages often has a book icon next to it
indicating that the topic contains other help topics. When an item has a book icon, it can be opened by double-clicking
on its title or by clicking the check box to the left of the title. Items that have an icon that looks like a stack of papers
contain the actual help content and clicking on them displays the help page in the right half of the Help Window.

Index tab

The Index tab lists all of the help topics alphabetically in a single searchable list. Help topics can be selected by
clicking on an item in the list or by typing a help topic into the text field above the list. As words are typed into the
text field, the closest match is found in the list of help topics and the topic is displayed in the right half of the Help
Window.

Bookmarks tab

The Bookmarks tab lists all of the help topics that have been bookmarked for further use. To view a page that has
been previously bookmarked, simply click on its title in the bookmark list. To add a bookmark for the current help
page, click the Add button in the Bookmarks tab or in the Help Window’s toolbar. To remove a bookmark, click on
its title in the bookmark list and then click the Remove button.

1.18 Startup Options

You can get help on starting VisIt with the commands

visit -help
visit -fullhelp

For convenience, the output from visit -fullhelp is shown below.

USAGE: visit [options]:

Interface options

-gui Run with the Graphical User Interface (default).
-cli Run with the Command Line Interface.

Movie making options

-movie Run the CLI in a movie making mode. Must be
combined with -sessionfile. Will produce a simple
movie by drawing all the plots in the specified
session for every timestep of the database.

Startup options

-o <filename> Open the specified data file at startup.
-s <filename> Run the specified VisIt script. Note: This

argument only takes effect with -cli or -movie.
-sessionfile <filename> Open the specified session file at startup

Note that this argument only takes effect with

(continues on next page)

416 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

-gui or -movie.
-config <filename> Initialize the viewer at startup using the named

config file. If an absolute path is not given,
the file is assumed to be in the .visit directory.

-noconfig Don't process configuration files at startup.
-launchengine <host> Launch an engine at startup. The <host> parameter

is optional. If it is not specified, the engine
will be launched on the local host. If you wish
to launch an engine on a remote host, specify
the host's name as the <host> parameter.

-nosplash Do not display the splash screen at startup.

Window options

-small Use a smaller desktop area/window size.
-geometry <spec> What portion of the screen to use. This is a

standard X Windows geometry specification. This
option can be used to set the size of images
generated from scripts and movies.

-viewer_geometry <spec> What portion of the screen the viewer windows
will use. This is a standard X Windows geometry
specification. This option overrides the
-geometry option that the GUI passes to the
viewer.

-window_anchor <x,y> The x,y position on the screen where VisIt's GUI
will show its windows (Main window excluded).

-style <style> One of: windows,cde,motif,sgi.
-locale <locale> The locale that you want VisIt to use when displaying

translated menus and controls. VisIt will use the
default locale if the -locale option is not
provided.

-background <color> Background color for GUI.
-foreground <color> Foreground color for GUI.
-nowin Run with viewer windows off-screen (i.e. OSMesa).

This is typically used with the -cli option.
-stereo Enable active stereo, also known as the

page-flipping, or 'CrystalEyes' mode.
-nowindowmetrics Prevents X11 from grabbing and moving a test

widget used in calculating window borders. This
option can be useful if VisIt hangs when
displaying to an Apple X-server.

Version options

-version Do NOT run VisIt. Just print the current version.
-git_version Do NOT run VisIt. Just print the Git version it

was built from.
-beta Run the current beta version.
-v <version> Run a specified version. Specifying 2 digits,

such as X.Y, will run the latest patch release
for that version. Specifying 3 digits, such as
X.Y.Z, will run that specific version.

Other resources for help

(continues on next page)

1.18. Startup Options 417

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

run-time: While running VisIt, look under the "Help" menu.
on-line: https://visit.llnl.gov
email: visit-users@ornl.gov

ADDITIONAL OPTIONS

Parallel launch options

Notes: All of these options are ordinarily obtained from host profiles.
However, the command line options override anything in the profiles.

When parallel arguments are added but the engine is not the
component being launched, -launchengine is implied. Explicitly
add -launchengine to launch a remote parallel engine.

-setupenv Use the VisIt script to set up the environment

for the engine on the compute nodes.
-par Run the parallel version. This option is implied

by any of the other parallel options listed below.
-l <method> Launch in parallel using the given method.
-pl <method> Launch only the engine in parallel as specified.
-la <args> Additional arguments for the parallel launcher.
-sla <args> Additional arguments for the parallel sub-launcher.
-np <# procs> The number of processors to use.
-nn <# nodes> The number of nodes to allocate.
-p <part> Partition to run in.
-n <name> The parallel job name.
-b <bank> Bank from which to draw resources.
-t <time> Maximum job run time.
-machinefile <file> Machine file.
-expedite Makes DPCS give priority scheduling.

-icet In scalable rendering mode, use the IceT parallel
image compositor (default).

-no-icet Do not use the IceT parallel compositor.

Hardware accelerated parallel (scalable) rendering options

Notes: These options should only be used with parallel clusters that
have graphics cards. If you are using a serial version of VisIt, you
are already getting hardware acceleration and these options are not
needed. Furthermore, you must be in scalable rendering mode for VisIt
to utilize a cluster's GPUs. By default, VisIt is configured to
switch into scalable rendering mode when rendering complexity exceeds
a predefined limit.

VisIt can manage the creation and tear down of X servers for you. It
will do this automatically if you specify the -launch-x parameter,
but you can customize the process with the -x-args and -display
parameters, which respect %l and %n format specifiers.

See the VisIt wiki for more information:

http://visitusers.org/index.php?title=Parallel_Hardware_Acceleration
(continues on next page)

418 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

-hw-accel Tells VisIt that it should use graphics cards.
-n-gpus-per-node <int> Number of GPUs per node of the cluster (1).
-launch-x Tell VisIt to manage the X servers
-no-launch-x Let the cluster manager X servers [default]
-display Tells VisIt which display to use.
-x-args '<string>' Extra arguments to X server.

Load balance options

Note: Each time VisIt executes a pipeline the relevant domains for the
execution are assigned to processors. This list of domains is sorted in
increasing global domain number. The options below effect how domains
in this list are assigned to processors. Assuming there are D domains
and P processors...

-lb-block Assign the first D/P domains to processor 0, the

next D/P domains to processor 1, etc.
-lb-stride Assign every Pth domain starting from the first

to processor 0, every Pth domain starting from the
second to processor 1, etc.

-lb-absolute Assign domains by absolute domain number % P. This
guarantees a given domain is always processed
by the same processor but can also lead to poor
balance when only a subset of domains is selected.

-lb-random Randomly assign domains to processors.
-allowdynamic Dedicate one processor to spreading the work

dynamically among the other processors. This mode
has limitations in the types of queries it can
perform. Under development.

-lb-stream Similar to -lb-block, but have the domains travel
down the pipeline one at a time, instead of all
together. Under development.

Database differencing options

Use the '-diff <ldb> <rdb>' option to run VisIt in a database
differencing mode. VisIt will generate expressions to facilitate
visualization and analysis of the difference between the left-database,
<ldb>, and right-database, <rdb>. VisIt will open windows to display
both the left and right databases as well as their difference.

VisIt uses the Cross-Mesh Field Evaluation (CMFE) expression functions
to help generate these differences. A CMFE function creates an instance
of a variable from another (source) mesh on the specified (destination)
mesh. VisIt can use two variants of CMFE expression functions depending
on how similar the source and destination meshes are; connectivity-based
(conn_cmfe) which assumes the underlying mesh(s) for the left and right
databases have identical connectivity and position-based (pos_cmfe) which
does not make this assumption. VisIt will attempt to automatically select
which variant of CMFE expression to use based on some simple heuristics.
For meshes with identical connectivity, conn_cmfe expressions are
preferrable because they are higher performance and do not require VisIt
to perform any interpolation. In fact, the conn_cmfe operation is
perfectly anti-symmetric. That is <ldb> - <rdb> = -(<rdb> - <ldb>).
The same cannot be said for pos_cmfe expressions. However, pos_cmfe

(continues on next page)

1.18. Startup Options 419

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

expressions will attempt to generate useful results regardless of the
similarity of the underlying meshes.

Note that the differences VisIt will compute in this mode are single
precision. This is true regardless of whether the input data is itself
double precision. VisIt will convert double precision to single
precision before processing it. Although this is a result of earlier
visualization-specific design requirements and constraints, the intention
is that eventually double precision will be supported.

Finally, be sure to bring up Controls->Macros in the GUI to find a set
of useful operations specifically tailored to database differencing. Also,
typing 'help()' (including the '()') at the python prompt after starting
'visit -diff' will generate a more detailed help message.

-diff <ldb> <rdb> Indicate you wish to run VisIt in database
differencing mode and specify the two databases
to difference.

Note: All options occurring on the command-line

after the '-diff' option are treated as options
to the differencing script while all options
occurring *before* the '-diff' option are treated
as options to VisIt.

-diffsum <ldb> <rdb> Run only the difference summary method of the
'visit -diff' script, in nowin mode so its fast,
print the results, and immediately exit.

-force_pos_cmfe Force use of position-based CMFE expressions.

Advanced options

-guesshost Try to guess the client host name from one of
the SSH_CLIENT, SSH2_CLIENT, or SSH_CONNECTION
environment variables.

-noloopback Disable use of the 127.0.0.1 loopback device.
-sshtunneling Tunnel all remote connections through ssh. NOTE:

this overrides values set in the host profiles.
-noint Disable interruption capability.
-nopty Run without PTYs.
-verbose Prints status information during pipeline

execution.
-dir <directory> Run a version of VisIt in the specified directory.

The directory argument should specify the
path to a VisIt installation directory.
/bin is automatically appended to this path.

-forceversion <ver> Force the given version. Overrides all
intelligent version selection logic.

-publicpluginsonly Disable all plugins but the default ones.
-compiler <cc> Require version built with the specified compiler.
-objectmode <mode> Require a specific object file mode.
-forceinteractivecli Force the CLI to behave interactively, even if run

with no terminal; similar to python's '-i' flag.
-fullscreen Create the viewer window in full screen mode.

May not be compatible with all window managers.
-viewerdisplay <dpy> Have the viewer use a different display than the

(continues on next page)

420 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

current value of DISPLAY. Can be useful for
power wall displays with a separate console.

-cycleregex <string> A regex-style regular expression to be used
in extracting cycle numbers from file names. It
is best to bracket this string in single
quotes (') to avoid shell interpretation of
special characters such as star (*). The format
of the string begins with an opening '<' character,
followed by the regular expression itself followed
by a closing '>' character, optionally followed by
a space ' ' character and sub-expression reference
to indicate which part of the regular expression is
the cycle number. Default behavior is as if
-cycleregex '<([0-9]+)[^0-9]*\$> \\0'
was specified meaning the last sequence of one
or more digits before the end of the string found
is used as the cycle number. Do a 'man 7 regex'
to get more information on regular expression
syntax.

-ui-bcast-thresholds <int1> <int2>
Two integers controlling behavior of parallel
engine waiting in a broadcast for the next RPC
from the viewer. VisIt used to rely solely upon
MPI_Bcast for this. However, many implementations
of MPI_Bcast use a polling loop that winds up
keeping all processors busy and can make them
unuseable by other processes. This is particularly
bad for SMPs. So, VisIt implemented its own
broadcast using MPI's send/receive methods. <int1>
specifies the number of nanoseconds a processor
sleeps while polling for completion of the
broadcast. Specifying a value of zero (0) for <int1>
results in falling back to older behavior using
MPI's MPI_Bcast. <int1> effectively controls how
'busy' processors will be, polling for completion
of the broadcast. <int2> specifies the number of
seconds all processors should spin, polling as fast
as possible, checking for completion of the
broadcast BEFORE inserting sleeps into their
polling loops. <int2> effectively controls how
many seconds VisIt's server will be maximally
responsive (although also keeping all processors
occupied) before becoming more 'friendly' to
other processes on the same node. The defaults
are <int1> = 50000000 nanoseconds (1/20th of a sec)
and <int2> = 5 seconds meaning VisIt will spin
processors maximally for 5 seconds before inserting
sleeps such that polling happens at the rate of 20
times per second.

-idle-timeout <int> An integer representing the number of minutes an
engine is allowed to idle (e.g. sit there doing no
execution whatsoever, waiting for commands from
the viewer). If this timeout is reached, the engine
will terminate itself. The default is 480 minutes
(8 hours).

-exec-timeout <int> An integer representing the number of minutes an
executing engine is allowed to remain in the

(continues on next page)

1.18. Startup Options 421

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

execution of any single command from the viewer.
If this timeout is reached, the engine will
terminate itself. the default is 30 minutes.
Beware that among other things, this timeout
effects how long orphaned parallel processes will
hang around, tying up parallel compute resources,
following an exit-triggering error condition on
any one process.

Developer options (most for xml2... tools)

-public xml2cmake: force install plugins publicly
-private xml2cmake: force install plugins privately
-clobber Permit xml2... tools to overwrite old files
-noprint Silence debugging output from xml2... tools
-outputtoinputdir Force xml2... tools to write output files to

the directory containing the input XML file
-arch print supported architecture(s) and exit

Debugging options

Note: Debugging options may degrade performance

-debug <level> Run with <level> levels of output logging.
<level> must be between 1 and 5. This will generate
debug logs (called 'vlogs' for ALL components.
Note that debug logs are unbuffered. However, if
you also specify 'b' immediately after the digit
indicating the debug level (e.g. '-debug 3b'), the
logs will be buffered. This can substantially improve
performance when a lot of debug output is generated.
However, also beware that when debug logs are buffered,
there isn't necessarily any guarantee they will contain
the most recent debug output just prior to a crash.

-debug_<compname> <level>
Run specified component with <level> of output
logging. For example, '-debug_mdserver 4' will run
the mdserver with level 4 debugging. Multiple
'-debug_<compname> <level>' args are allowed.

-debug_engine_rank <r>
Restrict debug output to the specified rank.

-debug-processor-stride N
Have only every Nth processor output debug logs.
Prevents overwhelming parallel file systems.

-clobber_vlogs By default, VisIt maintains debug logs from the 5
most recent invocations or restarts of each VisIt
component. They are named something like
A.mdserver.5.vlog, A.engine_ser.5.vlog, etc with
the leading letter (A-E) indicating most to least
recent. The clobber_vlogs flag causes VisIt to remove
all debug logs and begin creating them anew.

-vtk-debug Turn on debugging of VTK objects used in pipelines.
-pid Append process ids to the names of log files.
-timing Save timing data to files.
-withhold-timing-output

Withhold timing output during execution. Prevents
output of timing information from affecting

(continues on next page)

422 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

performance.
-never-output-timings

Never output timings files. This is used when
you want the timer to be enabled (for usage by
developers to measure inner loops), but you
want to avoid blowing memory with the bookkeeping
for each and every timing call.

-timing-processor-stride N
Have only every Nth processor output timing info.
Prevents overwhelming parallel file systems.

-env Print env. variables VisIt will use when run.
-dump (dump_dir) Dump intermediate results from AVT filters,

scalably rendered images, and html pages.
Takes an optional argument that specifies the
directory for -dump output files.

-info-dump (dump_dir)
Dump html pages only.
Takes an optional argument that specifies the
directory for -info-dump output files.

-gdb <args> <comp> Run gdb with <args> on component <comp>.
Default <args> is whitespace.

-break <funcname> Add the specified breakpoint in gdb.
-xterm With -gdb-something, run gdb in an xterm window.
-newconsole Run any VisIt component in a new console window.
-totalview <args> <comp>

Run totalview with <args> on component <comp>.
Default <args> is whitespace.

-valgrind <args> <comp>
Run valgrind with <args> on component <comp>.
Default <args> is --tool=memcheck --error-limit=no
--num-callers=50.

-strace <args> <comp>
Run strace with <args> on component <comp>.
Default <args> is -ttt -T.

In the above, all arguments between the tool name
and the VisIt component name are treated as args
to the tool.

-apitrace <args> <comp>
Run apitrace with <args> on component <comp>.
Default <args> is trace --api gl.

In the above, all arguments between the tool name
and the VisIt component name are treated as args
to the tool.

-debug-malloc <args> <comp>
Run the component with the libMallocDebug library
on MacOS X systems. The libMallocDebug library
lets the MallocDebug application attach to the
instrumented application and retrieve memory
allocation statistics. The -debug-malloc flag
also sets up the environment for the leaks and
heap tools.

Printing heap allocations:
(continues on next page)

1.18. Startup Options 423

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

% visit -debug-malloc gui &
% Get the gui's <pid>
% heap <pid>

Printing memory leaks:
% visit -debug-malloc gui &
% Get the gui's <pid>
% leaks <pid>

Run with MallocDebug:
Perl does not seem to be happy with libMallocDebug
so you can run the GUI like this:
% visit -cli
>>> OpenGUI('-debug-malloc', 'MallocDebug', 'gui')
Connect to the gui with MallocDebug and do your
sampling.

-numrestarts <#> Number of attempts to restart a failed engine.
-quiet Don't print the Running message.
-protocol Print the definitions of the state objects that

comprise the VisIt protocol so they can be compared
against the values on other computers.

1.19 Building

In this chapter, we will discuss how to build visit. The building of VisIt is automated with the build_visit script.
It will build VisIt and all of VisIt’s third party libraries. It can be configured to build VisIt with a minimum of third
party libraries to building VisIt with all of it’s third party libraries. This chapter describes how to build VisIt, starting
with the most simple case and moving then moving to more complex use cases.

1.19.1 Basic Usage

Doing a minimal build

When using build_visit without any arguments it will do a minimal build of VisIt downloading the VisIt source
code by making an anonymous git clone from GitHub and downloading the source code for the third party libraries
from NERSC. It will build a serial version of the code without any of the optional I/O libraries. This will result in only
the file readers that require no external dependencies to be built. Buiding VisIt in this fashion will give you the highest
probability of success.

./build_visit3_0_1

Building with multiple cores

When build_visit is run by default it will build the code using a single core. This may take a half a day or longer.
Modern computers have anywhere from 4 to 80 cores at the time of the writing of this chapter. You can speed up
the build process by specify that build_visit use more cores. If you are using a shared resource you probably
shouldn’t use all the cores in consideration of other users of the system. The following example specifies using 4
cores.

424 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

./build_visit3_0_1 --makeflags -j4

Specifying the third party library install location

When build_visit is run by default it will install the third party libraries in the directory third_party in the
current directory. If you would like to install the libraries in another directory for the purposes of sharing them with
other users of the system, you can have build_visit install them in a different directory. The following example
specifies installing the third party libraries in a another location.

./build_visit3_0_1 --thirdparty-path /usr/gapps/visit/third_party

Building with the HDF5 and Silo libraries

Some of the more common I/O libraries that will result in building a larger number of file readers are HDF5 and Silo.
The following example specifies building HDF5 and Silo.

./build_visit3_0_1 --hdf5 --silo

Building the stable optional libraries

If you are feeling lucky you can have build_visit build all of the optional I/O libraries that have a high probability
of building. The following example specifies building the more reliable of the optional I/O libraries.

./build_visit3_0_1 --optional

Using a VisIt source code tar file

You can also have visit use the prepackaged source code for a specific version of VisIt instead of doing a git download
of the source code. The tar file should be considerably smaller than a git clone. The following example uses the VisIt
source code corresponding to the official 3.0.1 release of VisIt.

./build_visit3_0_1 --optional --tarball visit3.0.1.tar.gz

If build_visit is interrupted

If build_visit is interrupted while it is executing, it is suggested that you remove the directories associated with
the last package it was in the process of building. build_visit always leaves directories intact when it runs to aid
with troubleshooting failures. Likewise, build_visit doesn’t remove existing directories before starting to build
a package. This can sometimes problems when build_visit is interrupted and you restart the build again.

Finishing up

Once you have successfully built VisIt, there are a couple of directions you can go. The first option is to use it in the
location where it was built. The executable can run by executing the following command:

visit/build/bin/visit

if you built using a git clone.

1.19. Building 425

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

visit3.0.1/build/bin/visit

if you built using a tar file.

The second option is to create a distribution file that you can install using visit-install. This can be done by
executing the following command:

cd visit/build
make package

if you built using a git clone.

cd visit3.0.1/build
make package

if you built using a tar file.

1.19.2 Advanced Usage

build_visit comes with many options for features such as building a parallel version, overcoming issues with
OpenGL, a rendering library used by VisIt to render images, and controlling precisely what libraries VisIt is built with.

Building a parallel version

One of powerful capabilities of VisIt is running in parallel on large parallel clusters. VisIt runs in parallel using a
library called MPI, which stands for Message Passing Interface. There are a couple of ways in which you can build a
parallel version of VisIt using MPI. If your system doesn’t already have MPI installed on it, which is typically the case
with a desktop system or small cluster, then you can use MPICH, which is an open source implementation of MPI.
The following example builds a parallel version using MPICH.

./build_visit3_0_1 --mpich

If your system already has MPI installed on it, which is typically the case with a large system at a computer center,
you can set several environment variables that specify the location of the MPI libraries and header files. The following
example uses a system installed MPI library.

env PAR_COMPILER=/usr/packages/mvapich2/bin/mpicc \
PAR_COMPILER_CXX=/usr/packages/mvapich2/bin/mpicxx \
PAR_INCLUDE=-I/usr/packages/mvapich2/include \
PAR_LIBS=-lmpl \

./build_visit3_0_1 --parallel

When running in parallel, the user will typically use scalable rendering for rendering images in parallel. VisIt does
this through the use of the Mesa 3D graphics library. Because of this you will want to include Mesa 3D when building
a parallel version. In the following example we have included building with the Mesa 3D library.

./build_visit3_0_1 --mpich --osmesa

Building with Mesa as the OpenGL implementation

Mesa 3D is also an implementation of OpenGL and it can be used in place of the system OpenGL when building VisIt.
There are a couple of reasons you would want to use Mesa 3D instead of the system OpenGL. The first is when you
don’t have a system OpenGL, which typically occurs when building in a container or on a virtual machine. The second

426 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

is when your system implementation of OpenGL is too old to support VTK. In the following example we use Mesa
3D instead of the system OpenGL.

./build_visit3_0_1 --mesagl

The difference between --mesagl and --osmesa

When you specify --mesaglVTK will be built against Mesa 3D. When you specify --osmesaVTK is built against
the system OpenGL and the Mesa 3D library is substituted at run time for OpenGL when running the parallel engine
to enable scalable rendering. If you specify --mesagl then --osmesa is unnecessary and ignored if specified.

Building on a system without internet access

When you want to build visit on a system without internet access, you can use build_visit to download the third
party libraries and source code to a system that has internet access and then move those files to your machine without
access. The following example downloads the optional libraries, mpich and osmesa.

./build_visit3_0_1 --optional --mpich --osmesa --download-only

Unfortunately, due to the way the code that builds Python is implemented, some Python libraries will not be down-
loaded. Here is the list of commands to download those additional libraries.

wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/Imaging-1.1.7.
→˓tar.gz
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/setuptools-28.0.
→˓0.tar.gz
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/Cython-0.25.2.
→˓tar.gz
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/numpy-1.14.1.zip
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/pyparsing-1.5.2.
→˓tar.gz
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/requests-2.5.1.
→˓tar.gz
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/seedme-python-
→˓client-v1.2.4.zip

It’s possible that the list could change and the above list becomes outdated. In this case you can run build_visit
to just build Python and that will end up downloading all the files you need. The following command builds only
Python.

./build_visit3_0_1 --no-thirdparty --no-visit --python

Different versions of build_visit

When you use a version of build_visit that has a version number in it, for example build_visit3_0_1 then
it builds that tagged version of VisIt. If the version of build_visit was from the develop branch of VisIt, then it
will grab the latest version of VisIt from the devlop branch. If the version of build_visit came from a release
candidate branch, for example the v3.0 branch, then it will grab the latest version of VisIt from that branch.

Troubleshooting build_visit failures

When build_visit runs, it generates a log file with _log added to the name of the script. For example, if you are
running build_visit3_0_1 then the log file will be named build_visit3_0_1_log. The error that caused

1.19. Building 427

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

the failure should be near the end of the log file. When build_visit finishes running, it will leave the directories
that it used to build the packages intact. You can go into the directory of the package that failed and correct the issue
and finish building and installing the package. You can then execute the build_visit command again to have it
continue the build.

1.19.3 Common Build Scenarios

Building VisIt is an involved process and even with build_visit, just determining the correct selection of options
can sometimes be daunting. To help, here are the steps used to build VisIt on a collection of different platforms that
may serve as a starting point for your system.

In each of the scenarios below, the result is a distribution file that can be used with visit-install to install VisIt.
Furthermore, in all these scenarios, build_visit was used to build the third party libraries and the initial config
site file. VisIt was then manually built as outlined by doing an out of source build. The advantage to building VisIt
manually is that you have more control over the build and its easier to troubleshoot failures. The advantage to an out
of source build is that you can easily restart the build simply by deleting the build directory.

Kickit, a RedHat Enterprise Linux 7 system

build_visit was run to generate the third party libraries. In this case all the required and optional libraries build
without problem, so --required --optional could be used. Also, in this case there wasn’t a system MPI
installed so --mpich was specified to use MPICH. The --osmesa flag was also included so that VisIt could do off
screen rendering.

./build_visit3_0_1 --required --optional --mpich --osmesa --no-visit \
--thirdparty-path /usr/gapps/visit/thirdparty_shared/3.0.1 --makeflags -j4

This built the third party libraries and generated a kickit.cmake config site file. The Setup VISITHOME &
VISITARCH variables. section was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /usr/gapps/visit/thirdparty_shared/3.0.1)
SET(VISITARCH linux-x86_64_gcc-4.8)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

VisIt was then manually built with the following steps.

tar zxf visit3.0.1.tar.gz
cp kickit.cmake visit3.0.1/src/config-site
cd visit3.0.1
mkdir build
cd build
/usr/gapps/visit/thirdparty_shared/3.0.1/cmake/3.9.3/linux-x86_64_gcc-4.8/bin/cmake \
../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON \
-DVISIT_ENABLE_XDB:BOOL=ON -DVISIT_PARADIS:BOOL=ON
make -j 4 package

Quartz, a Linux X86_64 TOSS3 cluster

build_visit was run to generate the third party libraries. In this case the system MPI was used, so information
about the system MPI had to be provided with environment variables and the --parallel flag had to be specified.

428 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

In this case, all the required and optional third party libraries build without problem, so --required --optional
could be used. Also, the system OpenGL implementation was outdated and --mesagl had to be included to provide
an OpenGL implementation suitable for VisIt. Lastly, the Uintah library was built to enable building the Uintah reader.

env PAR_COMPILER=/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/bin/mpicc \
PAR_COMPILER_CXX=/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/bin/mpicxx \
PAR_INCLUDE=-I/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/include \
PAR_LIBS=-lmpl \

./build_visit3_0_1 --required --optional --mesagl --uintah --parallel \
--no-visit --thirdparty-path /usr/workspace/wsa/visit/visit/thirdparty_shared/3.0.1/
→˓toss3 \
--makeflags -j16

This built the third party libraries and generated a quartz386.cmake config site file. The Setup VISITHOME
& VISITARCH variables. section was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /usr/gapps/visit/thirdparty_shared/3.0.1)
SET(VISITARCH linux-x86_64_gcc-4.8)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

The Parallel build Setup. section was changed to

##
Parallel Build Setup.
##
VISIT_OPTION_DEFAULT(VISIT_PARALLEL ON TYPE BOOL)
VISIT_OPTION_DEFAULT(VISIT_MPI_CXX_FLAGS -I/usr/tce/packages/mvapich2/mvapich2-2.3-
→˓gcc-4.9.3/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_C_FLAGS -I/usr/tce/packages/mvapich2/mvapich2-2.3-
→˓gcc-4.9.3/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LD_FLAGS "-L/usr/tce/packages/mvapich2/mvapich2-2.3-
→˓gcc-4.9.3/lib -Wl,-rpath=/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/lib"
→˓TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LIBS mpich mpl)
VISIT_OPTION_DEFAULT(VISIT_PARALLEL_RPATH "/usr/tce/packages/mvapich2/mvapich2-2.3-
→˓gcc-4.9.3/lib")

VisIt was then manually built with the following steps.

tar zxf visit3.0.1.tar.gz
cp kickit.cmake visit3.0.1/src/config-site
cd visit3.0.1
mkdir build
cd build
/usr/workspace/wsa/visit/visit/thirdparty_shared/3.0.1/toss3/cmake/3.9.3/linux-x86_64_
→˓gcc-4.9/bin/cmake \
../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON -DVISIT_PARADIS:BOOL=ON
make -j 16 package

Lassen, a Linux Power9 BlueOS cluster

build_visit was run to generate the third party libraries. In this case the system MPI was used, so information
about the system MPI had to be provided with environment variables and the --parallel flag had to be specified.

1.19. Building 429

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

In this case, a few of the optional third party libraries do not build on the system so all the desired optional third party
libraries had to be explicitly listed. Also, the system OpenGL implementation was outdated and --mesagl had to
be included to provide an OpenGL implementation suitable for VisIt. Lastly, the Uintah library was built to enable
building the Uintah reader.

env PAR_COMPILER=/usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release-gcc-4.9.
→˓3/bin/mpicc \
PAR_COMPILER_CXX=/usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release-gcc-4.9.
→˓3/bin/mpicxx \
PAR_INCLUDE=-I/usr/tce/packages/spectrum-mpi/ibm/spectrum-mpi-rolling-release/
→˓include \
./build_visit3_0_1 \
--no-thirdparty --no-visit \
--cmake --python --vtk --qt --qwt \
--adios --adios2 --advio --boost --cfitsio --cgns --conduit \
--gdal --glu --h5part --hdf5 --icet --llvm --mfem \
--mili --moab --mxml --netcdf --openssl --p7zip \
--silo --szip --vtkm --vtkh --xdmf --zlib \
--mesagl --uintah --parallel \
--thirdparty-path /usr/workspace/wsa/visit/visit/thirdparty_shared/3.0.1/blueos \
--makeflags -j16

This built the third party libraries and generated a lassen708.cmake config site file. The Setup VISITHOME
& VISITARCH variables. section was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /usr/workspace/wsa/visit/visit/thirdparty_shared/3.0.1/blueos)
SET(VISITARCH linux-ppc64le_gcc-4.9)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

The Parallel build Setup. section was changed to

##
Parallel Build Setup.
##
VISIT_OPTION_DEFAULT(VISIT_PARALLEL ON TYPE BOOL)
VISIT_OPTION_DEFAULT(VISIT_MPI_CXX_FLAGS -I/usr/tce/packages/spectrum-mpi/ibm/
→˓spectrum-mpi-rolling-release/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_C_FLAGS -I/usr/tce/packages/spectrum-mpi/ibm/
→˓spectrum-mpi-rolling-release/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LD_FLAGS "-L/usr/tce/packages/spectrum-mpi/ibm/
→˓spectrum-mpi-rolling-release/lib -Wl,-rpath=/usr/tce/packages/spectrum-mpi/ibm/
→˓spectrum-mpi-rolling-release/lib" TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LIBS mpi_ibm)
VISIT_OPTION_DEFAULT(VISIT_PARALLEL_RPATH "/usr/tce/packages/spectrum-mpi/ibm/
→˓spectrum-mpi-rolling-release/lib")

VisIt was then manually built with the following steps.

tar zxf visit3.0.1.tar.gz
cp lassen708.cmake visit3.0.1/src/config-site
cd visit3.0.1
mkdir build
cd build
/usr/workspace/wsa/visit/visit/thirdparty_shared/3.0.1/blueos/cmake/3.9.3/linux-
→˓ppc64le_gcc-4.9/bin/cmake \

(continues on next page)

430 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON
make -j 16 package

Cori, a Cray KNL cluster

The system is set up to support the Intel compiler by default so we need to swap out the Intel environment for the GNU
environment.

module swap PrgEnv-intel/6.0.4 PrgEnv-gnu/6.0.4

The Cray compiler wrappers are set up to do static linking, which causes a problem with building parallel hdf5. The
linking can be changed to link dynamically by setting a couple of environment variables.

export XTPE_LINK_TYPE=dynamic
export CRAYPE_LINK_TYPE=dynamic

The linker has a bug that prevents VTK from building, which is fixed with the linker in binutils 2.32. Binutils was then
manually built with the following steps.

wget https://mirrors.ocf.berkeley.edu/gnu/binutils/binutils-2.32.tar.gz
mkdir /project/projectdirs/visit/thirdparty_shared/3.0.1/binutils
tar zxf binutils-2.32.tar.gz
cd binutils-2.32
./configure --prefix=/project/projectdirs/visit/thirdparty_shared/3.0.1/binutils
make
make install

The following lines in build_visit

vopts="${vopts} -DCMAKE_C_FLAGS:STRING=\"${C_OPT_FLAGS}\""
vopts="${vopts} -DCMAKE_CXX_FLAGS:STRING=\"${CXX_OPT_FLAGS}\""

were changed to

vopts="${vopts} -DCMAKE_C_FLAGS:STRING=\"${C_OPT_FLAGS} -B/project/projectdirs/visit/
→˓thirdparty_shared/3.0.1/binutils/bin\""
vopts="${vopts} -DCMAKE_CXX_FLAGS:STRING=\"${CXX_OPT_FLAGS} -B/project/projectdirs/
→˓visit/thirdparty_shared/3.0.1/binutils/bin\""

to build VTK with the linker from binutils 2.32.

build_visit was run to generate the third party libraries. In this case the system MPI was used, so information
about the system MPI had to be provided with environment variables and the --parallel flag had to be specified.
In this case, all the required and optional third party libraries built without problem, so --required --optional
could be used. Also, the system OpenGL implementation was outdated and --mesagl had to be included to provide
an OpenGL implementation suitable for VisIt. Lastly, the Uintah library was built to enable building the Uintah reader.

env PAR_COMPILER=/opt/cray/pe/craype/2.5.15/bin/cc \
PAR_COMPILER_CXX=/opt/cray/pe/craype/2.5.15/bin/CC \
PAR_INCLUDE=-I/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/include \
PAR_LIBS="-L/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/lib -Wl,-rpath=/opt/cray/pe/

→˓mpt/7.7.3/gni/mpich-gnu/7.1/lib -lmpich" \
./build_visit3_0_1 --required --optional --mesagl --uintah --parallel \

(continues on next page)

1.19. Building 431

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

--no-visit --thirdparty-path /project/projectdirs/visit/thirdparty_shared/3.0.1 \
--makeflags -j8

This built the third party libraries and generated a cori08.cmake config site file. The Setup VISITHOME &
VISITARCH variables. section was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /project/projectdirs/visit/thirdparty_shared/3.0.1)
SET(VISITARCH linux-x86_64_gcc-7.3)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

The VISIT_C_FLAGS and VISIT_CXX_FLAGS were changed to

VISIT_OPTION_DEFAULT(VISIT_C_FLAGS " -m64 -fPIC -fvisibility=hidden -B/project/
→˓projectdirs/visit/thirdparty_shared/3.0.1/binutils/bin" TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_CXX_FLAGS " -m64 -fPIC -fvisibility=hidden -B/project/
→˓projectdirs/visit/thirdparty_shared/3.0.1/binutils/bin" TYPE STRING)

The Parallel build Setup. section was changed to

##
Parallel Build Setup.
##
VISIT_OPTION_DEFAULT(VISIT_PARALLEL ON TYPE BOOL)
VISIT_OPTION_DEFAULT(VISIT_MPI_CXX_FLAGS -I/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/
→˓include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_C_FLAGS -I/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/
→˓include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LD_FLAGS "-L/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/
→˓lib -Wl,-rpath=/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/lib" TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LIBS mpich)
VISIT_OPTION_DEFAULT(VISIT_PARALLEL_RPATH "/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/
→˓lib")

VisIt was then manually built with the following steps.

tar zxf visit3.0.1.tar.gz
cp cori08.cmake visit3.0.1/src/config-site
cd visit3.0.1
mkdir build
cd build
/project/projectdirs/visit/thirdparty_shared/3.0.1/cmake/3.9.3/linux-x86_64_gcc-7.3/
→˓bin/cmake \
../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON -DVISIT_PARADIS:BOOL=ON
make -j 8 package

Summit, a Linux Power9 BlueOS cluster

The system is set up to support the IBM XL compiler by default so we need to swap out the XL compiler for the GNU
compiler.

432 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

module swap xl/16.1.1-3 gcc/6.4.0

There was an error building CMake, so we used the system CMake after module loading CMake 3.9.2.

module load cmake/3.9.2

build_visit was run to generate the third party libraries. In this case the system MPI was used, so information
about the system MPI had to be provided with environment variables and the --parallel flag had to be specified.
In this case, a few of the optional third party libraries do not build on the system so all the desired optional third party
libraries had to be explicitly listed. Also, the system OpenGL implementation was outdated and --mesagl had to
be included to provide an OpenGL implementation suitable for VisIt. Lastly, the Uintah library was built to enable
building the Uintah reader.

env PAR_COMPILER=/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-
→˓rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-20190611-
→˓cyaenjgora6now2nusxzkfli4mzjnudx/bin/mpicc \

PAR_COMPILER_CXX=/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/
→˓linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-20190611-
→˓cyaenjgora6now2nusxzkfli4mzjnudx/bin/mpicxx \

PAR_INCLUDE=-I/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/
→˓linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-20190611-
→˓cyaenjgora6now2nusxzkfli4mzjnudx/include \

./build_visit3_0_1 \
--no-thirdparty --no-visit \
--system-cmake --python --vtk --qt --qwt \
--adios --adios2 --advio --boost --cfitsio --cgns --conduit \
--gdal --glu --h5part --hdf5 --icet --llvm --mfem \
--mili --moab --mxml --netcdf --openssl --p7zip \
--silo --szip --xdmf --zlib \
--mesagl --uintah --parallel \
--thirdparty-path /autofs/nccs-svm1_home1/brugger1/visit/thirdparty_shared/3.0.1 \
--makeflags -j8

This built the third party libraries and generated a login1.cmake config site file. The Setup VISITHOME &
VISITARCH variables. section was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /autofs/nccs-svm1_home1/brugger1/visit/thirdparty_shared/3.0.1)
SET(VISITARCH linux-ppc64le_gcc-6.4)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

The Parallel build Setup. section was changed to

##
Parallel Build Setup.
##
VISIT_OPTION_DEFAULT(VISIT_PARALLEL ON TYPE BOOL)
VISIT_OPTION_DEFAULT(VISIT_MPI_CXX_FLAGS -I/autofs/nccs-svm1_sw/summit/.swci/1-
→˓compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-
→˓20190611-cyaenjgora6now2nusxzkfli4mzjnudx/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_C_FLAGS -I/autofs/nccs-svm1_sw/summit/.swci/1-
→˓compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-
→˓20190611-cyaenjgora6now2nusxzkfli4mzjnudx/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LD_FLAGS "-L/autofs/nccs-svm1_sw/summit/.swci/1-
→˓compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-
→˓20190611-cyaenjgora6now2nusxzkfli4mzjnudx/lib -Wl,-rpath=/autofs/nccs-svm1_sw/
→˓summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-
→˓mpi-10.3.0.1-20190611-cyaenjgora6now2nusxzkfli4mzjnudx/lib" TYPE STRING)

(continues on next page)

1.19. Building 433

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

VISIT_OPTION_DEFAULT(VISIT_MPI_LIBS mpi_ibm)
VISIT_OPTION_DEFAULT(VISIT_PARALLEL_RPATH "/autofs/nccs-svm1_sw/summit/.swci/1-
→˓compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-
→˓20190611-cyaenjgora6now2nusxzkfli4mzjnudx/lib")

The compiler didn’t like one of the boost header files, so it was manually patched.

vi /autofs/nccs-svm1_home1/brugger1/visit/thirdparty_shared/3.0.1/boost/1_67_0/linux-
→˓ppc64le_gcc-6.4/include/boost/numeric/interval/detail/ppc_rounding_control.hpp

line 99:
namespace detail {

typedef union {
- ::boost::long_long_type imode;
+ ::boost::ulong_long_type imode;

double dmode;
} rounding_mode_struct;

VisIt was then manually built with the following steps.

tar zxf visit3.0.1.tar.gz
cp login1.cmake visit3.0.1/src/config-site
cd visit3.0.1
mkdir build
cd build
/autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20171006/linux-rhel7-ppc64le/gcc-4.
→˓8.5/cmake-3.9.2-lnpnk356fyio3b6rq5bdhr2djjirtsxk/bin/cmake \
../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON
make -j 8 package

Trinity, a Cray KNL cluster

The system is set up to support the Intel compiler by default so we need to swap out the Intel environment for the GNU
environment.

module swap PrgEnv-intel/6.0.4 PrgEnv-gnu/6.0.4

The Cray compiler wrappers are set up to do static linking, which causes a problem with building parallel hdf5. The
linking can be changed to link dynamically by setting a couple of environment variables.

export XTPE_LINK_TYPE=dynamic
export CRAYPE_LINK_TYPE=dynamic

The linker has a bug that prevents VTK from building, which is fixed with the linker in binutils 2.32. Binutils was then
manually built with the following steps.

wget https://mirrors.ocf.berkeley.edu/gnu/binutils/binutils-2.32.tar.gz
mkdir /usr/projects/views/visit/thirdparty_shared/3.0.1/binutils
tar zxf binutils-2.32.tar.gz
cd binutils-2.32
./configure --prefix=/usr/projects/views/visit/thirdparty_shared/3.0.1/binutils
make
make install

434 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

The following lines in build_visit

vopts="${vopts} -DCMAKE_C_FLAGS:STRING=\"${C_OPT_FLAGS}\""
vopts="${vopts} -DCMAKE_CXX_FLAGS:STRING=\"${CXX_OPT_FLAGS}\""

were changed to

vopts="${vopts} -DCMAKE_C_FLAGS:STRING=\"${C_OPT_FLAGS} -B/usr/projects/views/visit/
→˓thirdparty_shared/3.0.1/binutils/bin\""
vopts="${vopts} -DCMAKE_CXX_FLAGS:STRING=\"${CXX_OPT_FLAGS} -B/usr/projects/views/
→˓visit/thirdparty_shared/3.0.1/binutils/bin\""

to build VTK with the linker from binutils 2.32.

build_visit was run to generate the third party libraries. In this case the system MPI was used, so information
about the system MPI had to be provided with environment variables and the --parallel flag had to be specified.
In this case, all the required and optional third party libraries built without problem, so --required --optional
could be used. Also, the system OpenGL implementation was outdated and --mesagl had to be included to provide
an OpenGL implementation suitable for VisIt.

env PAR_COMPILER=/opt/cray/pe/craype/2.5.16/bin/cc \
PAR_COMPILER_CXX=/opt/cray/pe/craype/2.5.16/bin/CC \
PAR_INCLUDE=-I/opt/cray/pe/mpt/7.7.4/gni/mpich-gnu/7.1/include \
PAR_LIBS="-L/opt/cray/pe/mpt/7.7.4/gni/mpich-gnu/7.1/lib -Wl,-rpath=/opt/cray/pe/

→˓mpt/7.7.4/gni/mpich-gnu/7.1/lib -lmpich" \
./build_visit3_0_1 --required --optional --mesagl --parallel \
--no-visit --thirdparty-path /usr/projects/views/visit/thirdparty_shared/3.0.1 \
--makeflags -j6

This built the third party libraries and generated a tr-fe2.cmake config site file. The Setup VISITHOME &
VISITARCH variables. section was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /usr/projects/views/visit/thirdparty_shared/3.0.1)
SET(VISITARCH linux-x86_64_gcc-8.2)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

The VISIT_C_FLAGS and VISIT_CXX_FLAGS were changed to

VISIT_OPTION_DEFAULT(VISIT_C_FLAGS " -m64 -fPIC -fvisibility=hidden -B/usr/projects/
→˓views/visit/thirdparty_shared/3.0.1/binutils/bin" TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_CXX_FLAGS " -m64 -fPIC -fvisibility=hidden -B/usr/projects/
→˓views/visit/thirdparty_shared/3.0.1/binutils/bin" TYPE STRING)

The Parallel build Setup. section was changed to

##
Parallel Build Setup.
##
VISIT_OPTION_DEFAULT(VISIT_PARALLEL ON TYPE BOOL)
VISIT_OPTION_DEFAULT(VISIT_MPI_CXX_FLAGS -I/opt/cray/pe/mpt/7.7.4/gni/mpich-gnu/7.1/
→˓include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_C_FLAGS -I/opt/cray/pe/mpt/7.7.4/gni/mpich-gnu/7.1/
→˓include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LD_FLAGS "-L/opt/cray/pe/mpt/7.7.4/gni/mpich-gnu/7.1/
→˓lib -Wl,-rpath=/opt/cray/pe/mpt/7.7.4/gni/mpich-gnu/7.1/lib" TYPE STRING)

(continues on next page)

1.19. Building 435

https://visit.llnl.gov

VisIt User Manual Documentation, Release 3.1

(continued from previous page)

VISIT_OPTION_DEFAULT(VISIT_MPI_LIBS mpich)
VISIT_OPTION_DEFAULT(VISIT_PARALLEL_RPATH "/opt/cray/pe/mpt/7.7.4/gni/mpich-gnu/7.1/
→˓lib")

VisIt was then manually built with the following steps.

tar zxf visit3.0.1.tar.gz
cp tr-fe2.cmake visit3.0.1/src/config-site
cd visit3.0.1
mkdir build
cd build
/usr/projects/views/visit/thirdparty_shared/3.0.1/cmake/3.9.3/linux-x86_64_gcc-8.2/
→˓bin/cmake \
../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON -DVISIT_PARADIS:BOOL=ON
make -j 8 package

1.20 Building on Windows

In this chapter, we will discuss how to build visit on Windows.

1.20.1 Prerequisites

VisIt’s Source Code

For a released version

If you want to build a released version of VisIt, you can download a windows installer that contains all that is necessary
from the source code downloads page. Look for the VisIt Windows sources link for the particular version you want.

For the latest development version

If you want to build the latest development version from our repository, you need to obtain source from the visit repo,
and the pre-built third party dependencies from the visit-deps repo on GitHub.

Other Software

1. CMake version 3.8 or greater.

• Don’t use the CMake included with cygwin if you plan on using the pre-built thirdparty libraries.

2. Visual Studio 2017 64-bit

• Needed if you want to use our pre-built thirdparty libraries.

3. NSIS Optional

• For creating an installer for VisIt. NSIS 2 is known to work. NSIS 3 hasn’t been tested.

4. 7zip Optional

• Used to untar testdata files.

436 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov/source
https://github.com/visit-dav/visit
https://github.com/visit-dav/visit-deps
https://cmake.org/download
http://www.nsis.sourceforge.net
http://7-zip.org

VisIt User Manual Documentation, Release 3.1

5. Microsoft MPI. Optional

• For building VisIt’s parallel engine. Redistributable binaries and SDK’s are needed, so download and
install both msmpisdk.msi and msmpisetup.exe.

1.20.2 Configuring With CMake GUI

Run cmake-gui.exe, which will display this window. Figure 1.352

Fig. 1.352: CMake-gui

1.20. Building on Windows 437

https://www.microsoft.com/en-us/download/details.aspx?id=57467

VisIt User Manual Documentation, Release 3.1

Locating Source and Build Directories

Fill in the location of VisIt’s src directory in the Where is the source code: section.

Then tell CMake where you want the build to go by filling in Where to build the binaries. It is best to create a new
build directory somewhere other than inside the src or windowsbuild directories. This is called out-of-source build and
it prevents pollution your src directory.

The Browse buttons come in handy here.

If you are building from a clone of the github repository, it is recommended to do the build in a directory outside the
repo (eg peer to visit) to keep your checkout clean. Figure 1.353

Fig. 1.353: Setting source and build directories

438 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Location of windowsbuild Directory

For a released version of VisIt’s source code, the windowsbuild directory containing the pre-built thirdparty binaries is
located peer to src. CMake generation should locate this directory automatically. Figure 1.354

Fig. 1.354: Directory structure with source from a released version

For developement build cloned or downloaded from the github repositories, in order for CMake to locate the directory
automatically, visit-deps should be peer to visit. Figure 1.355

Fig. 1.355: Expected directory structure with source from GitHub repo

If neither of the above is true for your situation, use the CMake gui to set VISIT_WINDOWS_DIR to the location of
the windowsbuild directory. Figure 1.356

Limiting Plugins

By default, most of the supported database reader plugins are built, which can slow down loading of the solution in
the Visual Studio IDE, and slow down the build. If you want to reduce the number of plugins built, add a CMake var
using the Add Entry Button. If you are producing a version of VisIt that you plan to distribute, you should skip this
step so all database reader plugins are built. Figure 1.357

To limit the database plugins to a specific set of plugins, set the Name: to VISIT_SELECTED_DATABASE_PLUGINS.
The Type: should be STRING. The Value: should be a ‘;’ separated list of database plugins names. Case must match

1.20. Building on Windows 439

VisIt User Manual Documentation, Release 3.1

Fig. 1.356: Setting VISIT_WINDOWS_DIR

440 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.357: Selecting a limited number of database plugins

the name of the folder in /src/databases.

The same procedure applies to plots and operators. The VisIt CMake variables to limit plots and operator plugins are
VISIT_SELECTED_PLOT_PLUGINS and VISIT_SELECTED_OPERATOR_PLUGINS, respectively.

Click OK when finished.

Configuring

Before configuring, you may want to suppress warnings. From the Options menu, choose Warnings. Check the
Developer Warnings and Deprecated Warnings in the Supress Warnings section. Click OK. Figure 1.358

Fig. 1.358: Suppress CMake warnings

In the main CMake Window, click the Configure button.

1.20. Building on Windows 441

VisIt User Manual Documentation, Release 3.1

If the build directory does not exist, you will be prompted to allow its creation.

You will also be prompted to choose a generator. On Windows, this corresponds to the version of Visual Studio for
which you plan to generate a solution and projects.

Currently, only Visual Studio version 2017 64-bit is supported by the prebuilt thirdparty libraries. Choose Visual
Studio 15 2017 Win64 from the dropdown and add host=x64 to use the full 64-bit toolset. Figure 1.359

Fig. 1.359: Choosing the generator

CMakeCache entries will be displayed after the initial configure. All entries at this point will be highlighted reddish
orange – a signal that you may want to modify some of them. Subsequent clicks of the Configure button highlight
only entries that contain errors or entries that are new since the last configure.

You can modify how many entries are seen, and how they are viewed by selecting the: Grouped, and/or Advanced
buttons. Grouped option groups similarly named items, Advanced option shows all the entries. Using both is probably
the easiest to navigate for use with VisIt. Mouse-hover over individual entries (not groups) will generate a brief
description. Figure 1.360

Most of the default settings should be fine, though you may want to change CMAKE_INSTALL_PREFIX from its
default location within the Build directory. If you’ve grouped the entries, click the + button next to CMAKE, find
CMAKE_INSTALL_PREFIX and modify it as desired.

Parallel

If you have an MPI implementation installed (Microsoft’s MPI), you can choose to create a parallel build. Expand the
VISIT section within the CMake gui, then check the box for VISIT_PARALLEL. You will have to scroll to find it.

Click the Configure button again to have CMake check the prerequisites for building parallel VisIt. If the prerequisites
are met then some new cache entries related to MPI will be created. If not, the MPI entries may have to be modified
by hand.

442 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

Fig. 1.360: After first configure

1.20. Building on Windows 443

VisIt User Manual Documentation, Release 3.1

Suppressing Regeneration

The solution file that CMake creates has a project called ZERO_CHECK that is occasionally invoked to regenerate the
projects. This can be highly undesirable during development, since it may be triggered during a build and can cause
numerous projects to be reloaded into the VS IDE, wasting time unnecessarily. To avoid this behavior, you can create
a new CMake cache entry named CMAKE_SUPRESS_REGENERATION, with type BOOL and make sure that it is
checked. If you made this change click Configure again.

You can automate this step in your host.cmake file by adding this line to your host.cmake file:
set(CMAKE_SUPPRESS_REGENERATION TRUE)

Note that setting this flag means that CMake won’t automatically reconfigure from within the VS IDE when changes
are made to the build scripts (CMakeLists.txt) or Cache entries. You will have to manually reconfigure. Once recon-
figured, Visual Studio will notify you the project files have been modified and prompt you to reload.

Generate

The Generate step creates the Visual Studio project and solution files. Make sure any changes made to the cache
entries have been Configured and that no entries remain red, then click the Generate button.

Compile

Open the generated VisIt.sln file with Visual Studio (it may take awhile to load all the project file). Select desired
Configuration and Build solution.

1.21 Building on macOS with masonry

In this chapter, we will discuss how to build VisIt on macOS using masonry. Masonry is a collection of Python scripts
and JSON files that use build_visit, and other system tools, to create a macOS Disk Image File (DMG).

1.21.1 Setup

Masonry Scripts

The masonry scripts are bundled with VisIt’s source code. You will need to download the source code and extract
masonry from visit/src/tools/dev. There are a few options for downloading the source code. If you want
a released version of VisIt then go to the source code downloads page and look for the VisIt sources link. The other
option is to download from the git repository. Once you have the source code, copy visit/src/tools/dev/
masonry to a location of your choosing.

Configuration

1. In the opts directory copy one of the *.json files and rename it as desired. For example: cp mb-3.
1.1-darwin-10.14-x86_64-release.json mb-3.1.2-darwin-10.14-x86_64-release.
json

2. Open the JSON configuration file (see Figure 1.361) created in step 1 and modify or add the following options
as needed:

version: required The version of VisIt you are building.

build_types: required A list of builds for masonry to create.

444 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov/source
https://github.com/visit-dav/visit

VisIt User Manual Documentation, Release 3.1

build_dir: optional The directory to place all of the files generated from the build process. If this option
isn’t specified the build directory will default to build-<json_base> (e.g., build-mb-3.1.2-darwin-10.14-
x86_64-release) in your current working directory.

branch: required The git branch to checkout and build.

arch: required The build architecture (e.g., darwin-x86_64).

cert: optional The Developer ID signing certificate Common Name.

make_nthreads: optional The number of parallel threads to use when building the source code.

skip_checkout: optional if you have to restart masonry and already have the source code checked out you can
skip that step by setting this option to yes.

boost_dir: optional The path to boost if installed on your system. This also triggers the setting of two CMake
options (VISIT_USE_BOOST:BOOL and BOOST_ROOT:PATH).

git: required mode: required - set this option to ssh or https

git_uname: optional - github username

depth: optional - specify an integer value for a shallow clone with a history truncated to the specified number
of commits.

build_visit: required Allows you to set the build_visit options.

cmake_ver: required - the CMake version to use

args: optional - arguments for build_visits

libs: optional - third-party libraries to build

make_flags: optional - Make flags

force_clean: optional Removes all files and directories from your build folder.

c_compiler: optional Specify the C compiler

cxx_compiler: optional Specify the C++ compiler

tarball: optional Specify the path to the source tar file. This option is currently not being used.

build_xdb: optional Set the VISIT_ENABLE_XDB:BOOL option to ON if true.

cmake_extra_args: optional Specify extra arguments for CMake.

config_site: optional Specify a path for the config site file.

platform: optional Specify the platform (osx or linux)

Signing macOS Builds

To code sign your VisIt build, you must be enrolled in the Apple Developer Program and have a valid Developer ID
certificate. Below are simple steps to get started, reference the links for more detailed information.

1. Enroll in the Apple Developer Program, if needed, and create your Developer ID certificates.

2. Install Apple certificates into your keychain

• From Xcode go to the account preferences (Xcode->Preferences->Account) and select the Man-
age Certificates. . . button.

• Click the + to add your certificates (see Figure 1.362).

3. Add the Developer ID signing certificate Common Name to the cert option in the masonry JSON configuration
file.

1.21. Building on macOS with masonry 445

https://developer.apple.com/library/archive/technotes/tn2206/_index.html
https://visit.llnl.gov
https://developer.apple.com/programs/

VisIt User Manual Documentation, Release 3.1

Fig. 1.361: Masonry’s JSON config file

Fig. 1.362: Xcode Manage Certificates Dialog

446 Chapter 1. VisIt GUI User Manual

VisIt User Manual Documentation, Release 3.1

1.21.2 Running Masonry Scripts

bootstrap_visit.py

The bootstrap_visit.py file contains all of the logic to execute the necessary steps for creating the macOS
Disk Image File (DMG). It takes the JSON configuration file as an argument:

python bootstrap_visit.py opts/<file-name>.json

masonry_view_log.py

Once masonry is running, it will produce log files in the _logs directory. To view the logs in HTML format (see
Figure 1.363), run the masonry_view_log.py script. This script takes the log file as an argument:

python masonry_view_log.py _logs/<log-fle>.json

Fig. 1.363: Mansonry Logs in HTML format

1.22 Acknowledgments

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1.22. Acknowledgments 447

VisIt User Manual Documentation, Release 3.1

1.23 Glossary

AAN

Always, Auto, Never Various features in VisIt support an Always, Auto, Never choice. A setting of Never means
to never enable the the feature and a setting of Always means to always enable the feature. A setting of Auto,
which is typically the default, means the allow VisIt to decide when it thinks it is best to enable or disable the
feature.

Integral Curve An integral curve is a curve that begins at a seed location and is tangent at every point in a vector
field. It is computed by numerical integration of the seed location through the vector field.

Node

Point

Vertex These terms refer to the corners or ends of mesh elements.

Node-centered

Pathlines A path rendered by an integrator that uses the vector field that is in-step with the integrator, so that as the
integrator steps through time, it uses data from the vector field at each new time step.

Point-centered These terms refer to a piecewise-linear (one degree of freedom at each of mesh element corner)
interpolation scheme used to define a variable on a mesh. VTK tends to use the point terminology whereas VisIt
tends to use the node terminology.

Parallel task Although developers are working to enhance VisIt to support a variety of fine-grained parallelism meth-
ods (e.g. MC or GPU) and although some portions of VisIt have supported multi-threaded processing for several
years, in the currently available implementations, a parallel task is an MPI (Message Passing Interface) rank.

SIL

Streamlines A path rendered by an integrator that uses the same vector field for the entire integration.

Subset Inclusion Lattice A Subset Inclusion Lattice or SIL is a term used to describe the often complex, graph like
relationships among a variety of subsets defined for a mesh. A SIL describes which subsets and categories of
subsets are contained within other subsets and subset categories. The Subset Window is the part of VisIt GUI
that displays the contents of a SIL and allows the user to browse subsets and subset categories and turn subsets
(and trees of subsets) on and off in visualizations.

SR

SR mode SR is an abbreviation for Scalable Rendering. This is a mode of operation where the VisIt engine performs
scalable, parallel rendering and ships the final rendered image (e.g. pixels) to the viewer. This is in contrast to
standard mode where the engine ships polygons to the viewer to be rendered there.

Zone

Cell These terms refer to the the individual computational elements comprising a mesh.

Zone-centered

Cell-centered These terms refer to a piecewise-constant (single degree of freedom for an entire zone) interpolation
scheme used to define a field variable on a mesh. VTK tends to use the cell terminology whereas VisIt tends to
use the zone terminology.

1.24 Contributing

This is a short contributing guide on the VisIt project’s use of Sphinx for documentation.

448 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
http://www.sphinx-doc.org/en/stable/tutorial.html

VisIt User Manual Documentation, Release 3.1

You can check out the Sphinx manual with:

svn co svn+ssh://<USERNAME>@edison.nersc.gov/project/projectdirs/visit/svn/visit/
→˓trunk/docs/SphynxDocs

If you have Sphinx You can build the html manual locally using the command:

sphinx-build -b html . _build -a

You can then browse the root of the manual by pointing your browser to ./_build/index.html. The -a forces
a re-build of everything. Remove it when you are constantly revising and rebuilding.

Your changes to any files in trunk/docs/SphinxDocswill go live here at approximately 50 minutes passed every
even numbered hour.

1.24.1 Quick Reference

Note that the original source of most of the content here is the OpenOffice document produced with heroic effort
by Brad Whitlock. A conversion tool was used to move most of the content there to Sphinx. As such, most of the
Sphinx usage conventions adopted here were driven by whatever the conversion tool produced. There are numerous
opportunities for adjusting this to make better use of Sphinx as we move forward. These are discussed at the end of
this section.

• A few documents about reStructuredText and Sphinx are useful:

– reStructuredText Primer

– Sphinx Documentation

– reStructuredText Markup Specification

– reStructuredText Reference Documentation

• Sphinx uses blank lines as block separators and 2 or 4 spaces of indentation to guide parsing and interpretation
of content. So, be sure to pay careful attention to blank lines and indentation. They are not there merely for
style. They need to be there for Sphinx to parse and interpret the content correctly.

• Line breaks within reStructuredText inline markup constructs often cause build errors.

• Create headings by a sequence of separator characters immediately underneath and the same length as the
heading. Different types of separator characters define different levels of headings

First Level Heading
===================
This is an example of some text under the heading...

Second Level Heading

This is an example of some text under the heading...

Third Level Heading
~~~~~~~~~~~~~~~~~~~
This is an example of some text under the heading...

Fourth level heading
""""""""""""""""""""
This is an example of some text under the heading...

yields these headings. . .

1.24. Contributing 449

http://www.sphinx-doc.org/en/stable/tutorial.html
http://visit-sphinx-user-manual.readthedocs.io/en/latest/index.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://www.sphinx-doc.org/en/stable/contents.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://docutils.sourceforge.net/rst.html#reference-documentation


VisIt User Manual Documentation, Release 3.1

• If you want to divide sections and subsections across multiple .rst files, you can link them together using the
.. toctree:: directive as is done for example in the section on VisIt Plots

Plots
=====

This chapter explains the concept of a plot and goes into detail
about each of VisIt's different plot types.

.. toctree::
:maxdepth: 1

Working_with_Plots
PlotTypes/index

Note that the files listed in the .. toctree:: block do not include their .rst extensions.

• Wherever possible, keep lines in .rst files to 80 columns or less.

• Avoid contractions such as isn't, can't and you've.

• Avoid hyphenation of words.

• Use VisIt_ or VisIt_'s when referring to VisIt by name.

• Use upper case for all letters in acronyms (MPI, VTK)

• Use case conventions of product names (QuickTime, TotalView, Valgrind).

• Bracket word(s) with two stars (**some words**) for bold.

• Bracket word(s) with one star (*word*) for italics.

• Bracket word(s) with two backticks (``some words``) for literal.

• Bracketed word(s) should not span line breaks.

• Use bold to refer to VisIt Widget names, Operator or Plot names and other named objects part of VisIt’s
interface.

• Use the following terminology when referring to widget names.

450 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

1.24. Contributing 451



VisIt User Manual Documentation, Release 3.1

• Avoid use of bold for other purposes. Instead use italics.

• Use literals for code, commands, arguments, file names, etc.

• Use :term:`glossary term` at least for the first use of a glossary term in a section.

• Use :abbr:`ABR (Long Form)` at least for the first use of an acronym or abbreviation in a section.

• Subscripting, H2O, and superscripting, E = mc2, are supported:

Subscripting, H\ :sub:`2`\ O, and superscripting, E = mc\ :sup:`2`, are supported

Note the use of backslashed spaces so Sphinx treats it all as one word.

• Use .. figure:: and not .. image::, include captions with figures and use :scale: P % to adjust
image size where needed (see more below).

• LaTeX style equations can be included too (see below).

• Spell checking is supported too (see below) but you need to have PyEnchant and sphinx-contrib.spelling in-
stalled.

• Begin a line with .. followed by space for single line comments:

.. this is a single line comment

..
This is a multi-line
comment

• Define anchors ahead of sections or paragraphs you want to cross reference:

.. _my_anchor:

Section Heading
---------------

Note that the leading underscore is not part of the anchor name.

• Make anchor names unique over all pages of documentation by using the convention of prepending heading and
subheading names.

• Link to anchors within this documentation like this one:

Link to anchors *within* this documentation like :ref:`this one <my_anchor>`

• Link to other documents elsewhere online like visitusers.org:

Link to other documents elsewhere online like
`visitusers.org <https://www.visitusers.org/>`_

• Link to numbered figures or tables within this documentation like Fig. 1.364:

Link to *numbered* figures or tables *within* this documentation like
:numref:`Fig. %s <my_figure2>`

• Link to a downloadable file within this documentation like this one:

Link to a downloadable file *within* this documentation like
:download:`this one <../Quantitative/VerdictManual-revA.pdf>`

452 Chapter 1. VisIt GUI User Manual

https://pythonhosted.org/pyenchant/
http://sphinxcontrib-spelling.readthedocs.io/en/latest/index.html
https://www.visitusers.org/


VisIt User Manual Documentation, Release 3.1

• If you are having trouble getting the formatting for a section worked out and the time involved to re-gen the
documentation is too much, you could try an on-line, real-time reStructuredText Renderer to quickly try different
things and see how they work.

1.24.2 More on Images

Try to use PNG formatted images. We plan to use the Sphinx generated documentation both for online HTML and for
printed PDF. So, images sizes cannot be too big or they will slow HTML loads but not so small they are unusable in
PDF.

Some image formats wind up enforcing physical dimensions instead of just pixel dimensions. This can have the
effect of causing a nicely sized image (from pixel dimensions perspective anyways), to either be unusually large or
unusually small in HTML or PDF output. In these cases, you can use the Sphinx :scale: and :width: or
:height: options for a .. figure:: block. Also, be sure to use a .. figure:: directive instead of an ..
image:: directive for embedding images. This is because the .. figure:: directive also supports anchoring for
cross referencing.

Although all images get copied into a common directory during generation, Sphinx takes care of remapping names so
there is no need to worry about collisions in image file names potentially used in different subdirectories within the
source tree.

An ordinary image. . .

.. figure:: images/array_compose_with_bins.png

1.24. Contributing 453

http://rst.ninjs.org


VisIt User Manual Documentation, Release 3.1

Same image with :scale: 50% option

.. figure:: images/array_compose_with_bins.png
:scale: 50%

Same image with an anchor for cross referencing. . .

.. _my_figure:

.. figure:: images/array_compose_with_bins.png
:scale: 50%

which can now be cross referenced using an inline Fig. ?? like so. . .

Which can now be cross referenced using an inline :numref:`Fig. %s <my_figure>`
like so...

Note the anchor has a leading underscore which the reference does not include.

Same image (different anchor though because anchors need to be unique) with a caption.

.. _my_figure2:

.. figure:: images/array_compose_with_bins.png
:scale: 50%

Here is a caption for the figure.

Note that the figure label (e.g. Fig 20.2) will not appear if there is no caption.

454 Chapter 1. VisIt GUI User Manual



VisIt User Manual Documentation, Release 3.1

Fig. 1.364: Here is a caption for the figure.

1.24. Contributing 455



VisIt User Manual Documentation, Release 3.1

1.24.3 Tables

Sphinx supports a variety of mechanisms for defining tables. The conversion tool used to convert this documentation
from its original OpenOffice format converted all tables to the grid style of table which is kinda sorta like ascii art.
Large tables can result in individual lines that span many widths of the editor window. It is cumbersome to deal with
but rich in capabilities. Often, the best answer is to NOT use tables and instead use definition lists as is used in the
documentation on expressions.

1.24.4 Math

We add the Sphinx builtin extension sphinx.ext.mathjax to the extensions variable in conf.py. This
allows Sphinx to use mathjax to do LaTeX like math equations in our documentation. For example, this LaTeX code

:math:`x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}`

produces. . .

𝑥 = −𝑏±
√
𝑏2−4𝑎𝑐
2𝑎

You can find a few examples in Expressions. Search there for :math:. Also, this LaTeX Wiki page has a lot of useful
information on various math symbols available in LaTeX and this wiki book has a lot of guidance on constructing
math equations with LaTeX.

1.24.5 Spell Checking Using Aspell

You can do a pretty good job of spell checking using the Unix/Linux aspell command.

1. Run aspell looking for candidate miss-spelled words.

find . -name '*.rst' -exec cat {} \; | \
grep -v '^ *.. image:\|figure:\|code:\|_' | \
tr '`' '@' | sed -e 's/\(@.*@\)//' | \
aspell -p ./aspell.en.pws list | \
sort | uniq > maybe_bad.out

The find command will find all .rst files. Succeeding grep, tr and sed pipes filter some of the .rst
syntax away. The final pipe through aspell uses the personal word list (also called the personal dictionary)
option, -p ./aspell.en.pws (note: the ./ is critical so don’t ignore it), to specify a file containing a list
of words we allow that aspell would otherwise flag as incorrect. The sort and uniq pipes ensure the result
doesn’t contain duplicates. But, be aware that a given miss-spelling can have multiple occurrences. The whole
process produces a list of candidate miss-spelled words in maybe_bad.out.

2. Examine maybe_bad.out for words that you think are correctly spelled. If you find any, remove them from
maybe_bad.out and add them to the end of aspell.en.pws being careful to update the total word count
in the first line of file where, for example 572 is the word count shown in that line, personal_ws-1.1 en
572 when this was written.

3. To find instances of remaining (miss-spelled words), use the following command.

find . -name '*.rst' -exec grep -wnHFf maybe_bad.out {} \;

4. It may be necessary to iterate through these steps a few times to find and correct all the miss-spellings.

It would be nice to create a make spellcheck target that does much of the above automatically. However, that
involves implementing the above steps as a cmake program and involves more effort than available when this was
implemented.

456 Chapter 1. VisIt GUI User Manual

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#tables
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#definition-lists
https://www.mathjax.org
https://oeis.org/wiki/List_of_LaTeX_mathematical_symbols
https://en.wikibooks.org/wiki/LaTeX/Mathematics
http://aspell.net/man-html/Format-of-the-Personal-and-Replacement-Dictionaries.html#Format-of-the-Personal-Dictionary-1


VisIt User Manual Documentation, Release 3.1

1.24.6 Things To Consider Going Forward

• Decide what to do about compound words such as timestep, time step or time-step. There are many instances to
consider such as keyframe, checkbox, pulldown, submenu, sublauncher, etc.

• Need to populate glossary with more VisIt specific terms such as. . .

• Mixed materials, Species, OnionPeel, Mesh, Viewer, cycle, timestep Client-server, CMFE, Zone-centering,
Node-centering, etc.

• Decide upon and then make consistent the usage of terms like zone/cell/element and node/point/vertex

• We will need to support versions of the manual with each release. RTD can do that. We just need to implement
it.

– If we have tagged content, then those would also represent different versions of the manual.

• All VisIt manuals should probably be hosted at a URL like visit.readthedocs.io and from there users
can find manuals for GUI, CLI Getting Data Into VisIt, etc.

• Change name of docs dir to Sphinx and not Sphynx.

• Add at least another LLNL person to RTD project so we have coverage to fix issues as they come up.

• Additional features of Sphinx to consider adopting. . .

– :guilable: role for referring to GUI widgets.

– :command: role for OS level commands.

– :file: role for referring to file names.

– :menuselection: role for referring to widget paths in GUI menus. Example: Controls → View →
Advanced.

– :kbd: role for specifying a sequence of key strokes.

– .. deprecated:: directive for deprecated functionality

– .. versionadded:: directive for new functionality

– .. versionchanged:: directive for when functionality changed

– .. note::, .. warning:: and/or .. danger:: directives to call attention to the reader.

– .. only:: directives for audience specific (e.g. tagged) content

* Could use to also include developer related content but have it not appear in the user manual output

– .. seealso:: directive for references

– Substitutions for names of products and projects we refer to frequently such as VTK or VisIt (as is used
throughout this section) or for frequently used text such as Viewer Window:

Substitutions for names of products and projects we refer to frequently
such as VTK_ or VisIt_ (as is used throughout this section) or for
frequently used text such as |viswin|.

with the following substitutions defined:

.. _VisIt: https://visit.llnl.gov

.. _VTK: https://www.vtk.org

.. |viswin| replace:: **Viewer Window**

Note that the .. _VisIt: ... substitution is already defined for the whole doctree in the
rst_prolog variable in conf.py.

1.24. Contributing 457

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://www.vtk.org
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

• Possible method for embedding python code to generate and capture images (both of the GUI and visualization
images produced by VisIt) automatically

– With the following pieces. . . .

* VisIt python CLI

* pyscreenshot

* A minor adjustment to VisIt GUI to allow a python CLI instance which used OpenGUI(args...)
to inform the GUI that widgets are to be raised/mapped on state changes.

– We can include python code directly in these .rst documents (prefaced by .. only:: directives to
ensure the code does not actually appear in the generated manual) that does the work and just slurp this
code out of these documents to actually run for automatic image generation.

* Generate and save VisIt visualization images.

* Use diffs on screen captured images to grab and even annotate images of GUI widgets.

import pyscreenshot
import PIL

# The arg (not yet implemented) sets flag in GUI to map windows
# on state changes
OpenGUI(MapWidgetsOnStateChanges=True)
base_gui_image = pyscreenshot.grab()

OpenDatabase('visit_data_path()/silo_hdf5_test_data/globe.silo')
AddPlot("Pseudocolor","dx")
DrawPlots()

# Save VisIt rendered image for manual
SaveWindow('Plots/PlotTypes/Pseudocolor/images/figure15.png')
ClearPlots()

# Change something in PC atts to force it to map
pcatts = PseudocolorAttributes()
pcatts.colorTableName = 'Blue'
SetPlotOptions(pcatts) # Causes widget to map due to state change
pcatts.colorTableName = 'hot'
SetPlotOptions(pcatts) # Causes widget to map due to state change
gui_image = pyscreenshot.grab()

# Save image of VisIt PC Attr window
# - computes diff between gui_image and base_gui_image, bounding box
# - around it and then saves that bounding box from gui_image
diff_bbox = BBoxedDiffImage(gui_image, gui_image_base)
SaveBBoxedImage(gui_image, diff_bbox, 'Plots/PlotTypes/Pseudocolor/images/pcatts_
→˓window.png')

# Make a change to another PC att, capture and save it
pcatts.limitsMode = pcatts.CurrentPlot
SetPlotOptions(pcatts) # Causes widget to map due to state change
gui_image = pyscreenshot.grab()
SaveBBoxedImage(gui_image, diff_bbox, 'Plots/PlotTypes/Pseudocolor/images/pcatts_
→˓limit_mode_window.png')

458 Chapter 1. VisIt GUI User Manual

https://visit.llnl.gov
https://visit.llnl.gov
http://pyscreenshot.readthedocs.io/en/latest/
https://visit.llnl.gov
https://visit.llnl.gov


CHAPTER 2

VisIt Python (CLI) Interface Manual

2.1 Introduction to VisIt

2.1.1 Overview

VisIt is a distributed, parallel, visualization tool for visualizing data defined on two and three-dimensional structured
and unstructured meshes. VisIt’s distributed architecture allows it to leverage both the compute power of a large
parallel computer and the graphics acceleration hardware of a local workstation. Another benefit of the distributed
architecture is that VisIt can visualize the data where it is generated, eliminating the need to move data. VisIt can be
controlled by a Graphical User Interface (GUI) or through the Python scripting language. More information about
VisIt’s Graphical User Interface can be found in the VisIt User’s Manual.

459

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

2.1.2 Manual chapters

This manual is broken down into the following chapters:

Chapter title Chapter description
Introduction to VisIt This chapter.
Python Describes the basic features of the

Python programming language.
Quick Recipes Describes common patterns for scripting

using the VisIt Python Interface.
Functions Describes functions in the VisIt Python

Interface.
Attributes References Describes attributes for setting common

operations, as well as for VisIt’s plugins
CLI Events Describes possible events for callbacks.

2.1.3 Understanding how VisIt works

VisIt visualizes data by creating one or more plots in a visualization window, also known as a vis window. Examples
of plots include Mesh plots, Contour plots and Pseudocolor plots. Plots take as input one or more mesh, material,
scalar, or tensor variables. It is possible to modify the variables by applying one or more operators to the variables
before passing them to a plot. Examples of operators include arithmetic operations or taking slices through the mesh.
It is also possible to restrict the visualization of the data to subsets of the mesh. VisIt provides Python bindings to
all of its plots and operators so they may be controlled through scripting. Each plot or operator plugin provides a
function, which is added to the VisIt namespace, to create the right type of plot or operator attributes. The attribute
object can then be modified by setting its fields and then it can be passed to a general-purpose function to set the plot
or operator attributes. To display a complete list of functions in the VisIt Python Interface, you can type dir() at the
Python prompt. Similarly, to inspect the contents of any object, you can type its name at the Python prompt. VisIt
supports up to 16 visualization windows, also called vis windows. Each vis window is independent of the other vis
windows and VisIt Python functions generally apply only to the currently active vis window. This manual explains how
to use the VisIt Python Interface which is a Python extension module that controls VisIt’s viewer. In that way, the VisIt
Python Interface fulfills the same role as VisIt’s GUI. The difference is that the viewer is totally controlled through
Python scripting, which makes it easy to write scripts to create visualizations and even movies. Since the VisIt module
controls VisIt’s viewer, the Python interpreter currently has no direct mechanism for passing data to the compute
engine (see Figure %s). If you want to write a script that generates simulation data and have that script pass data
to the compute engine, you must pass the data through a file on disk. The VisIt Python Interface comes packaged
in two varieties: the extension module and the Command Line Interface (CLI). The extension module version of the
VisIt Python Interface is imported into a standard Python interpreter using the import directive. VisIt’s command line
interface (CLI) is essentially a Python interpreter where the VisIt Python Interface is built-in. The CLI is provided to
simplify the process of running VisIt Python scripts.

2.1.4 Starting VisIt

You can invoke VisIt’s command line interface from the command line by typing:

visit -cli

VisIt provides a separate Python module if you instead wish to include VisIt functions in an existing Python script. In
that case, you must first import the VisIt module into Python and then call the Launch() function to make VisIt launch
and dynamically load the rest of the VisIt functions into the Python namespace. VisIt adopts this somewhat unusual
approach to module loading since the lightweight “visit” front-end module can be installed as one of your Python’s
site packages yet still dynamically load the real control functions from different versions of VisIt selected by the user.

460 Chapter 2. VisIt Python (CLI) Interface Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 2.1: VisIt’s architecture

2.1. Introduction to VisIt 461

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

If you do not install the visit.so module as a Python site package, you can tell the Python interpreter where it is located
by appending a new path to the sys.path variable. Be sure to substitute the correct path to visit.so on your system.

import sys
sys.path.append("/path/to/visit/<version>/<architecture>/lib/site-packages")

Here is how to import all functions into the global Python namespace:

from visit import *
Launch()

Here is how to import all functions into a “visit” module namespace:

import visit
visit.Launch()

2.1.5 Getting started

VisIt is a tool for visualizing 2D and 3D scientific databases. The first thing to do when running VisIt is select databases
to visualize. To select a database, you must first open the database using the OpenDatabase function. After a window
has an open database, any number of plots and operators can be added. To create a plot, use the AddPlot function.
After adding a plot, call the DrawPlots function to make sure that all of the new plots are drawn.

Example:

OpenDatabase("/usr/local/visit/data/multi_curv3d.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()

To see a list of the available plots and operators when you use the VisIt Python Interface, use the Operator Plugins
and Plot Plugins functions. Each of those functions returns a tuple of strings that contain the names of the currently
loaded plot or operator plugins. Each plot and operator plugin provides a function for creating an attributes object
to set the plot or operator attributes. The name of the function is the name of the plugin in the tuple returned by the
OperatorPlugins or PlotPlugins functions plus the word “Attributes”. For example, the “Pseudocolor” plot provides
a function called PseudocolorAttributes. To set the plot attributes or the operator attributes, first use the attributes
creation function to create an attributes object. Assign the newly created object to a variable name and set the fields
in the object. Each object has its own set of fields. To see the available fields in an object, print the name of the
variable at the Python prompt and press the Enter key. This will print the contents of the object so you can see the
fields contained by the object. After setting the appropriate fields, pass the object to either the SetPlotOptions function
or the SetOperatorAttributes function.

Example:

OpenDatabase("/usr/local/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddOperator("Slice")
p = PseudocolorAttributes()
p.colorTableName = "rainbow"
p.opacity = 0.5
SetPlotOptions(p)
a = SliceAttributes()
a.originType = a.Point
a.normal, a.upAxis = (1,1,1), (-1,1,-1)
SetOperatorOptions(a)
DrawPlots()

462 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

That’s all there is to creating a plot using VisIt’s Python Interface. For more information on creating plots and per-
forming specific actions in VisIt, refer to the documentation for each function later in this manual.

2.2 Python

2.2.1 Overview

Python is a general purpose, interpreted, extensible, object-oriented scripting language that was chosen for VisIt’s
scripting language due to its ease of use and flexibility. VisIt’s Python interface was implemented as Python module
and it allows you to enhance your Python scripts with coding to control VisIt. This chapter explains some of Python’s
syntax so it will be more familiar when you examine the examples found in this document. For more information on
programming in Python, there are a number of good references, including on the Internet at http://www.python.org.

2.2.2 Indentation

One of the most obvious features of Python is its use of indentation for new scopes. You must take special care to
indent all program logic consistently or else the Python interpreter may halt with an error, or worse, not do what you
intended. You must increase indentation levels when you define a function, use an if/elif/else statement, or use any
loop construct.

Note the different levels of indentation:

def example_function(n):
v = 0
if n > 2:
print "n greater than 2."

else:
v = n * n

return v

2.2.3 Comments

Like all good programming languages, Python supports the addition of comments in the code. Comments begin with
a pound character (#) and continue to the end of the line.

# This is a comment
a = 5 * 5

2.2.4 Identifiers

The Python interpreter accepts any identifier that contains letters ’A’-’Z’, ’a’-’z’ and numbers ’0’-’9’ as long as the
identifier does not begin with a number. The Python interpreter is case-sensitive so the identifier “case” would not be
the same identifier as “CASE”. Be sure to case consistently throughout your Python code since the Python interpreter
will instantiate any identifier that it has not seen before and mixing case would cause the interpreter to use multiple
identifiers and cause problems that you might not expect. Identifiers can be used to refer to any type of object since
Python is flexible in its treatment of types.

2.2. Python 463

https://visit.llnl.gov
http://www.python.org


VisIt User Manual Documentation, Release 3.1

2.2.5 Data types

Python supports a wide variety of data types and allows you to define your own data types readily. Most types are
created from a handful of building-block types such as integers, floats, strings, tuples, lists, and dictionaries.

Strings

Python has built-in support for strings and you can create them using single quotes or double quotes. You can even
use both types of quotes so you can create strings that include quotes in case quotes are desired in the output. Strings
are sequence objects and support operations that can break them down into characters.

s = 'using single quotes'
s2 = "using double quotes"
s3 = 'nesting the "spiffy" double quotes'

Tuples

Python supports tuples, which can be thought of as a read-only set of objects. The members of a tuple can be of
different types. Tuples are commonly used to group multiple related items into a single object that can be passed
around more easily. Tuples support a number of operations. You can subscript a tuple like an array to access its
individual members. You can easily determine whether an object is a member of a tuple. You can iterate over a
tuple. There are many more uses for tuples. You can create tuples by enclosing a comma-separated list of objects in
parenthesis.

# Create a tuple
a = (1,2,3,4,5)
print "The first value in a is:", a[0]
# See if 3 is in a using the "in" operator.
print "3 is in a:", 3 in a
# Create another tuple and add it to the first one to create c.
b = (6,7,8,9)
c = a + b
# Iterate over the items in the tuple
for value in c:
print "value is: ", value

Lists

Lists are just like tuples except they are not read-only and they use square brackets [] to enclose the items in the list
instead of using parenthesis.

# Start with an empty list.
L = []
for i in range(10):
# Add i to the list L
L = L + [i]

print L
# Assign a value into element 6
L[5] = 1000
print L

464 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Dictionaries

Dictionaries are Python containers that allow you to store a value that is associated with a key. Dictionaries are
convenient for mapping 1 set to another set since they allow you to perform easy lookups of values. Dictionaries are
declared using curly braces and each item in the dictionary consists of a key: value pair with the key and values being
separated by a colon. To perform a lookup using a dictionary, provide the key whose value you want to look up to the
subscript [] operator.

colors = {"red" : "rouge", "orange" : "orange", \
"yellow" : "jaune", "green" : "vert", "blue" : "bleu"}
# Perform lookups using the keys.
for c in colors.keys():

print "%s in French is: %s" % (c, colors[c])

2.2.6 Control flow

Python, like other general-purpose programming languages provides keywords that implement control flow. Control
flow is an important feature to have in a programming language because it allows complex behavior to be created using
a minimum amount of scripting.

if/elif/else

Python provides if/elif/else for conditional branching. The if statement takes any expression that evaluates to an integer
and it takes the if branch if the integer value is 1 other wise it takes the else branch if it is present.

# Example 1
if condition:

do_something()

# Example 2
if condition:

do_something()
else:

do_something_else()

# Example 3
if condition:

do_domething()
elif conditionn:

do_something_n()
else:

do_something_else()

For loop

Python provides a for loop that allows you to iterate over all items stored in a sequence object (tuples, lists, strings).
The body of the for loop executes once for each item in the sequence object and allows you to specify the name of an
identifier to use in order to reference the current item.

# Iterating through the characters of a string
for c in "characters":

print c

(continues on next page)

2.2. Python 465



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

# Iterating through a tuple
for value in ("VisIt", "is", "coolness", "times", 100):

print value

# Iterating through a list
for value in ["VisIt", "is", "coolness", "times", 100]:

print value

# Iterating through a range of numbers [0,N) created with range(N).
N = 100
for i in range(N):

print i, i*i

While loop

Python provides a while loop that allows you to execute a loop body indefinitely based on some condition. The while
loop can be used for iteration but can also be used to execute more complex types of loops.

token = get_next_token()
while token != "":

do_something(token)
token = get_next_token()

2.2.7 Functions

Python comes with many built-in functions and modules that implement additional functions. Functions can be used
to execute bodies of code that are meant to be re-used. Functions can optionally take arguments and can optionally
return values. Python provides the def keyword, which allows you to define a function. The def keyword is followed
by the name of the function and its arguments, which should appear as a tuple next to the name of the function.

# Define a function with no arguments and no return value.
def my_function():

print "my function prints this..."

# Define a function with arguments and a return value.
def n_to_the_d_power(n, d):

value = 1
if d > 0:

for i in range(d):
value = value * n

elif d < 0:
value = 1. / float(n_to_the_d_power(n, -d))

return value

2.3 Quick Recipes

2.3.1 Overview

This manual contains documentation for over two hundred functions and several dozen extension object types. Learn-
ing to combine the right functions in order to accomplish a visualization task without guidance would involve hours

466 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

of trial and error. To maximize productivity and start creating visualizations using Visit’s Python Interface as fast
as possible, this chapter provides some common patterns, or “quick recipes” that you can combine to quickly create
complex scripts.

2.3.2 How to start

The most important question when developing a script is: “Where do I start?”. You can either use session files that
you used to save the state of your visualization to initialize the plots before you start scripting or you can script every
aspect of plot initialization.

Using session files

VisIt’s session files contain all of the information required to recreate plots that have been set up in previous interactive
VisIt sessions. Since session files contain all of the information about plots, etc., they are natural candidates to make
scripting easier since they can be used to do the hard part of setting up the complex visualization, leaving the bulk
of the script to animate through time or alter the plots in some way. To use session files within a script, use the
RestoreSession function.

# Import a session file from the current working directory.
RestoreSesssion("my_visualization.session", 0)
# Now that VisIt has restored the session, animate through time.
for states in range(TimeSliderGetNStates()):
SetTimeSliderState(state)
SaveWindow()

Getting something on the screen

If you don’t want to use a session file to begin the setup for your visualization then you will have to dive into opening
databases, creating plots, and animating through time. This is where all of hand-crafted scripts begin. The first step in
creating a visualization is opening a database. VisIt provides the OpenDatabase function to open a database. Once a
database has been opened, you can create plots from its variables using the AddPlot function. The AddPlot function
takes a plot plugin name and the name of a variable from the open database. Once you’ve added a plot, it is in the new
state, which means that it has not yet been submitted to the compute engine for processing. To make sure that the plot
gets drawn, call the DrawPlots function.

# Step 1: Open a database
OpenDatabase("/usr/local/visit/data/wave.visit")

# Step 2: Add plots
AddPlot("Pseudocolor", "pressure")
AddPlot("Mesh", "quadmesh")

# Step 3: Draw the plots
DrawPlots()

# Step 4: Animate through time and save images
for states in range(TimeSliderGetNStates()):
SetTimeSliderState(state)
SaveWindow()

2.3. Quick Recipes 467

https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

2.3.3 Saving images

Much of the time, the entire purpose of using VisIt’s Python Interface is to create a script that can save out images
of a time-varying database for the purpose of making movies. Saving images using VisIt’s Python Interface is a
straight-forward process, involving just a few functions.

Setting the output image characteristics

VisIt provides a number of options for saving files, including: format, fileName, and image width and height, to name
a few. These attributes are grouped into the SaveWindowAttributes object. To set the options that VisIt uses to save
files, you must create a SaveWindowAttributes object, change the necessary attributes, and call the SetSaveWindowAt-
tributes function. Note that if you want to create images using a specific image resolution, the best way is to use the
-geometry command line argument with VisIt’s Command Line Interface and tell VisIt to use screen capture. If you
instead require your script to be capable of saving several different image sizes then you can turn off screen capture
and set the image resolution in the SaveWindowAttributes object.

# Save a BMP file at 1024x768 resolution
s = SaveWindowAttributes()
s.format = s.BMP
s.fileName = "mybmpfile"
s.width, s.height = 1024,768
s.screenCapture = 0
SetSaveWindowAttributes(s)

Saving an image

Once you have set the SaveWindowAttributes to your liking, you can call the SaveWindow function to save an image.
The SaveWindow function returns the name of the image that is saved so you can use that for other purposes in your
script.

# Save images of all timesteps and add each image filename to a list.
names = []
for state in range(TimeSliderGetNStates()):
SetTimeSliderState(state)
# Save the image
n = SaveWindow()
names = names + [n]

print names

2.3.4 Working with databases

VisIt allows you to open a wide array of databases both in terms of supported file formats and in terms how databases
treat time. Databases can have a single time state or can have multiple time states. Databases can natively support
multiple time states or sets of single time states files can be grouped into time-varying databases using .visit files or
using virtual databases. Working with databases gets even trickier if you are using VisIt to visualize a database that is
still being generated by a simulation. This section describes how to interact with databases.

Opening a database

Opening a database is a relatively simple operation - most complexities arise in how the database treats time. If you
only want to visualize a single time state or if your database format natively supports multiple timestates per file then
opening a database requires just a single call to the OpenDatabase function.

468 Chapter 2. VisIt Python (CLI) Interface Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

# Open a database at time state 0
OpenDatabase("/usr/local/visit/data/allinone00.pdb")

Opening a database at late time

Opening a database at a later timestate is done just the same as opening a database at time state zero except that you
must specify the time state at which you want to open the database. There are a number of reasons for opening a
database at a later time state. The most common reason for doing so, as opposed to just changing time states later, is
that VisIt uses the metadata from the first opened time state to describe the contents of the database for all timestates
(except for certain file formats that don’t do this, i.e. SAMRAI). This means that the list of variables found for the first
time state that you open is used for all timestates. If your database contains a variable at a later timestate that does not
exist at earlier time states, you must open the database at a later time state to gain access to the transient variable.

# Open a database at a later time state to pick up transient variables
OpenDatabase("/usr/local/visit/data/wave.visit", 17)

Opening a virtual database

VisIt provides two ways for accessing a set of single time-state files as a single time- varying database. The first
method is a .visit file, which is a simple text file that contains the names of each file to be used as a time state in
the time-varying database. The second method uses “virtual databases”, which allow VisIt to exploit the file naming
conventions that are often employed by simulation codes when they create their dumps. In many cases, VisIt can
scan a specified directory and determine which filenames look related. Filenames with close matches are grouped
as individual time states into a virtual database whose name is based on the more abstract pattern used to create the
filenames.

# Opening first file in series wave0000.silo, wave0010.silo, ...
OpenDatabase("/usr/local/visit/data/wave0000.silo")

# Opening a virtual database representing all wave*.silo files.
OpenDatabase("/usr/local/visit/data/wave*.silo database.)

Opening a remote database

VisIt supports running the client on a local computer while also allowing you to process data in parallel on a remote
computer. If you want to access databases on a remote computer using VisIt’s Python Interface, the only difference to
accessing a database on a local computer is that you must specify a host name as part of the database name.

# Opening a file on a remote computer by giving a host name
# Also, open the database to a later time slice (17)
OpenDatabase("thunder:/usr/local/visit/data/wave.visit", 17)

Opening a compute engine

Sometimes it is advantageous to open a compute engine before opening a database. When you tell VisIt to open a
database using the OpenDatabase function, VisIt also launches a compute engine and tells the compute engine to open
the specified database. When the VisIt Python Interface is run with a visible window, the Engine Chooser Window
will present itself so you can select a host profile. If you want to design a script that must specify parallel options, etc
in batch mode where there is no Engine ChooserWindow then you have few options other than to open a compute
engine before opening a database. To open a compute engine, use the OpenComputeEngine function. You can pass

2.3. Quick Recipes 469

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

the name of the host on which to run the compute engine and any arguments that must be used to launch the engine
such as the number of processors.

# Open a remote, parallel compute engine before opening a database
OpenComputeEngine("mcr", ("-np", "4", "-nn", "2"))
OpenDatabase("mcr:/usr/local/visit/data/multi_ucd3d.silo")

2.3.5 Working with plots

Plots are viewable objects, created from a database, that can be displayed in a visualization window. VisIt provides
several types of plots and each plot allows you to view data using different visualization techniques. For example, the
Pseudocolor plot allows you to see the general shape of a simulated object while painting colors on it according to the
values stored in a variable’s scalar field. The most important functions for interacting with plots are covered in this
section.

Creating a plot

The function for adding a plot in VisIt is: AddPlot. The AddPlot function takes the name of a plot type and the name
of a variable that is to be plotted and creates a new plot and adds it to the plot list. The name of the plot to be created
corresponds to the name of one of VisIt’s plot plugins, which can be queried using the PlotPlugins function. The
variable that you pass to the AddPlot function must be a valid variable for the opened database. New plots are not
realized, meaning that they have not been submitted to the compute engine for processing. If you want to force VisIt
to process the new plot you must call the DrawPlots function.

# Names of all available plot plugins
print PlotPlugins()
# Create plots
AddPlot("Pseudocolor", "pressure")
AddPlot("Mesh", "quadmesh")
# Draw the plots
DrawPlots()

Plotting materials

Plotting materials is a common operation in VisIt. The Boundary and FilledBoundary plots enable you to plot material
boundaries and materials, respectively.

# Plot material boundaries
AddPlot("Boundary", "mat1")
# Plot materials
AddPlot("FilledBoundary", "mat1")

Setting plot attributes

Each plot type has an attributes object that controls how the plot generates its data or how it looks in the visualization
window. The attributes object for each plot contains different fields. You can view the individual object fields by
printing the object to the console. Each plot type provides a function that creates a new instance of one of its attribute
objects. The function name is always of the form: plotname + “Attributes”. For example, the attributes object creation
function for the Pseudocolor plot would be: PseudocolorAttributes. To change the attributes for a plot, you create
an attributes object using the appropriate function, set the properties in the returned object, and tell VisIt to use the
new plot attributes by passing the object to the SetPlotOptions function. Note that you should set a plot’s attributes

470 Chapter 2. VisIt Python (CLI) Interface Manual

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

before calling the DrawPlots method to realize the plot since setting a plot’s attributes can cause the compute engine
to recalculate the plot.

# Creating a Pseudocolor plot and setting min/max values.
AddPlot("Pseudocolor", "pressure")
p = PseudocolorAttributes()
# Look in the object
print p
# Set the min/max values
p.min, p.minFlag = 0.0, 1
p.max, p.maxFlag = 10.0, 1
SetPlotOptions(p)

Working with multiple plots

When you work with more than one plot, it is sometimes necessary to set the active plots because some of VisIt’s
functions apply to all of the active plots. The active plot is usually the last plot that was created unless you’ve changed
the list of active plots. Changing which plots are active is useful when you want to delete or hide certain plots or set
their plot attributes independently. When you want to set which plots are active, use the SetActivePlots function. If
you want to list the plots that you’ve created, call the ListPlots function.

# Create more than 1 plot of the same type
AddPlot("Pseudocolor", "pressure")
AddPlot("Pseudocolor", "density")

# List the plots. The second plot should be active.
ListPlots()

# Draw the plots
DrawPlots()

# Hide the first plot
SetActivePlots(0)
HideActivePlots()

# Set both plots' color table to "hot"
p = PseudocolorAttributes()
p.colorTableName = "hot"
SetActivePlots((0,1))
SetPlotOptions(p)

# Show the first plot again.
SetActivePlots(0)
HideActivePlots()

# Delete the second plot
SetActivePlots(1)
DeleteActivePlots()
ListPlots()

Plots in the error state

When VisIt’s compute engine cannot process a plot, the plot is put into the error state. Once a plot is in the error state,
it no longer is displayed in the visualization window. If you are generating a movie, plots entering the error state can
be a serious problem because you most often want all of the plots that you have created to animate through time and

2.3. Quick Recipes 471

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

not disappear in the middle of the animation. You can add extra code to your script to prevent plots from disappearing
(most of the time) due to error conditions by adding a call to the DrawPlots function.

# Save an image and take care of plots that entered the error state.
drawThePlots = 0
for state in range(TimeSliderGetNStates()):
if SetTimeSliderState(state) == 0:
drawThePlots = 1

if drawThePlots == 1:
if DrawPlots() == 0:

print "VisIt could not draw plots for state: %d" % state
else:

drawThePlots = 0
SaveWindow()

2.3.6 Operators

Operators are filters that are applied to database variables before the compute engine uses them to create plots. Opera-
tors can be linked one after the other to form chains of operators that can drastically transform the data before plotting
it.

Adding operators

Adding an operator is similar to adding a plot in that you call a function with the name of the operator to be added.
The list of available operators is returned by the OperatorPlugins function. Any of the names returned in that plugin
can be used to add an operator using the AddOperator function. Operators are added to the active plots by default but
you can also force VisIt to add them to all plots in the plot list.

# Print available operators
print OperatorPlugins()
# Create a plot
AddPlot("Pseudocolor")
# Add an Isovolume operator and a Slice operator
AddOperator("Isovolume")
AddOperator("Slice")
DrawPlots()

Setting operator attributes

Each plot gets its own instance of an operator which means that you can set each plot’s operator attributes indepen-
dently. Like plots, operators use objects to set their attributes. These objects are returned by functions whose names
are of the form: operatorname + “Attributes”. Once you have created an operator attributes object, you can pass it to
the SetOperatorOptions to set the options for an operator. Note that setting the attributes for an operator nearly always
causes the compute engine to recalculate the operator. You can use the power of VisIt’s Python Interface to create
complex operator behavior such as in the following code example, which moves slice planes through a Pseudocolor
plot.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
AddOperator("Slice")
s = SliceAttributes()
s.originType = s.Percent
s.project2d = 0

(continues on next page)

472 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

SetOperatorOptions(s)
DrawPlots()

nSteps = 20
for axis in (0,1,2):
s.axisType = axis
for step in range(nSteps):
t = float(step) / float(nSteps - 1)
s.originPercent = t * 100.
SetOperatorOptions(s)
SaveWindow()

2.3.7 Quantitative operations

This section focuses on some of the operations that allow you to examine your data more quantitatively.

Defining expressions

VisIt allows you to create derived variables using its powerful expressions language. You can plot or query variables
created using expressions just as you would if they were read from a database. VisIt’s Python Interface allows you to
create new scalar, vector, tensor variables using the DefineScalarExpression, DefineVectorExpression, and DefineTen-
sorExpression functions.

# Creating a new expression
OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
DrawPlots()
DefineScalarExpression("newvar", "sin(hardyglobal) + cos(shepardglobal")
ChangeActivePlotsVar("newvar")

Pick

VisIt allows you to pick on cells, nodes, and points within a database and return information for the item of interest. To
that end, VisIt provides several pick functions. Once a pick function has been called, you can call the GetPickOutput
function to get a string that contains the pick information. The information in the string could be used for a multitude
of uses such as building a test suite for a simulation code.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
s = []
# Pick by a node id
PickbyNode(300)
s = s + [GetPickOutput()]
# Pick by a cell id
PickByZone(250)
s = s + [GetPickOutput()]
# Pick on a cell using a 3d point
Pick((-2., 2., 0.))
s = s + [GetPickOutput()]
# Pick on the node closest to (-2,2,0)
NodePick((-2,2,0))

(continues on next page)

2.3. Quick Recipes 473

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

(continued from previous page)

s = s + [GetPickOutput()]
# Print all pick results
print s

Lineout

VisIt allows you to extract data along a line, called a lineout, and plot the data using a Curve plot.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
Lineout((-5,-3), (5,8))
# Specify a number of sample points
Lineout((-5,-4), (5,7))

Query

VisIt can perform a number of different queries based on values calculated about plots or their originating database.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
DrawPlots()
Query("NumNodes")
print "The float value is: %g" % GetQueryOutputValue()
Query("NumNodes")

Finding the min and the max

A common operation in debugging a simulation code is examining the min and max values. Here is a pattern that
allows you to print out the min and the max values and their locations in the database and also see them visually.

# Define a helper function to get the id's of the MinMax query.
def GetMinMaxIds():
Query("MinMax")
import string
s = string.split(GetQueryOutputString(), " ")
retval = []
nextGood = 0
idType = 0
for token in s:
if token == "(zone" or token == "(cell":

idType = 1
nextGood = 1
continue

elif token == "(node":
idType = 0
nextGood = 1
continue

if nextGood == 1:
nextGood = 0
retval = retval + [(idType, int(token))]

return retval

(continues on next page)

474 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

# Set up a plot
OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()

# Do picks on the ids that were returned by MinMax.
for ids in GetMinMaxIds():

idType = ids[0]
id = ids[1]
if idType == 0:
PickByNode(id)

else:
PickByZone(id)

2.3.8 Subsetting

VisIt allows the user to turn off subsets of the visualization using a number of different methods. Databases can
be divided up any number of ways: domains, materials, etc. This section provides some details on how to remove
materials and domains from your visualization.

Turning off domains

VisIt’s Python Interface provides the TurnDomainsOn and TurnDomainsOff functions to make it easy to turn domains
on and off.

OpenDatabase("/usr/local/visit/data/multi_rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Turning off all but the last domain
d = GetDomains()
for dom in d[:-1]:

TurnDomainsOff(dom)
# Turn all domains off
TurnDomainsOff()
# Turn on domains 3,5,7
TurnDomainsOn((d[3], d[5], d[7]))

Turning off materials

VisIt’s Python Interface provides the TurnMaterialsOn and TurnMaterialsOff functions to make it easy to turn materials
on and off.

OpenDatabase("/usr/local/visit/data/multi_rect2d.silo")
AddPlot("FilledBoundary", "mat1")
DrawPlots()
# Print the materials are:
GetMaterials()
# Turn off material 2
TurnMaterialsOff("2")

2.3. Quick Recipes 475

https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

2.3.9 View

Setting up the view in your Python script is one of the most important things you can do to ensure the quality of your
visualization because the view concentrates attention on an object of interest. VisIt provides different methods for
setting the view, depending on the dimensionality of the plots in the visualization window but despite differences in
how the view is set, the general procedure is basically the same.

Setting the 2D view

The 2D view consists of a rectangular window in 2D space and a 2D viewport in the visualization window. The
window in 2D space determines what parts of the visualization you will look at while the viewport determines where
the images will appear in the visualization window. It is not necessary to change the viewport most of the time.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
AddPlot("Mesh", "Mesh2D")
AddPlot("Label", "hgslice")
DrawPlots()
print "The current view is:", GetView2D()
# Get an initialized 2D view object.
v = GetView2D()
v.windowCoords = (-7.67964, -3.21856, 2.66766, 7.87724)
SetView2D(v)

Setting the 3D view

The 3D view is much more complex than the 2D view. For information on the actual meaning of the fields in the
View3DAttributes object, refer to page 214 or the VisIt User Manual. VisIt automatically computes a suitable view
for 3D objects and it is best to initialize new View3DAttributes objects using the GetView3D function so most of the
fields will already be initialized. The best way to get new views to use in a script is to interactively create the plot
and repeatedly call GetView3D() after you finish rotating the plots with the mouse. You can paste the printed view
information into your script and modify it slightly to create sophisticated view transitions.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
AddPlot("Mesh", "Mesh")
DrawPlots()
v = GetView3D()
print "The view is: ", v
v.viewNormal = (-0.571619, 0.405393, 0.713378)
v.viewUp = (0.308049, 0.911853, -0.271346)
SetView3D(v)

Flying around plots

Flying around plots is a commonly requested feature when making movies. Fortunately, this is easy to script. The basic
method used for flying around plots is interpolating the view. VisIt provides a number of functions that can interpolate
View2DAttributes and View3DAttributes objects. The most useful of these functions is the EvalCubicSpline function.
The EvalCubicSpline function uses piece-wise cubic polynomials to smoothly interpolate between a tuple of N like
items. Scripting smooth view changes using EvalCubicSpline is rather like keyframing in that you have a set of views
that are mapped to some distance along the parameterized space [0., 1.]. When the parameterized space is sampled
with some number of samples, VisIt calculates the view for the specified parameter value and returns a smoothly

476 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

interpolated view. One benefit over keyframing, in this case, is that you can use cubic interpolation whereas VisIt’s
keyframing mode currently uses linear interpolation.

# Do a pseudocolor plot of u.
OpenDatabase("/usr/local/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()

# Create the control points for the views.
c0 = View3DAttributes()
c0.viewNormal = (0, 0, 1)
c0.focus = (0, 0, 0)
c0.viewUp = (0, 1, 0)
c0.viewAngle = 30
c0.parallelScale = 17.3205
c0.nearPlane = 17.3205
c0.farPlane = 81.9615
c0.perspective = 1

c1 = View3DAttributes()
c1.viewNormal = (-0.499159, 0.475135, 0.724629)
c1.focus = (0, 0, 0)
c1.viewUp = (0.196284, 0.876524, -0.439521)
c1.viewAngle = 30
c1.parallelScale = 14.0932
c1.nearPlane = 15.276
c1.farPlane = 69.917
c1.perspective = 1

c2 = View3DAttributes()
c2.viewNormal = (-0.522881, 0.831168, -0.189092)
c2.focus = (0, 0, 0)
c2.viewUp = (0.783763, 0.556011, 0.27671)
c2.viewAngle = 30
c2.parallelScale = 11.3107
c2.nearPlane = 14.8914
c2.farPlane = 59.5324
c2.perspective = 1

c3 = View3DAttributes()
c3.viewNormal = (-0.438771, 0.523661, -0.730246)
c3.focus = (0, 0, 0)
c3.viewUp = (-0.0199911, 0.80676, 0.590541)
c3.viewAngle = 30
c3.parallelScale = 8.28257
c3.nearPlane = 3.5905
c3.farPlane = 48.2315
c3.perspective = 1

c4 = View3DAttributes()
c4.viewNormal = (0.286142, -0.342802, -0.894768)
c4.focus = (0, 0, 0)
c4.viewUp = (-0.0382056, 0.928989, -0.36813)
c4.viewAngle = 30
c4.parallelScale = 10.4152
c4.nearPlane = 1.5495
c4.farPlane = 56.1905
c4.perspective = 1

(continues on next page)

2.3. Quick Recipes 477

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

(continued from previous page)

c5 = View3DAttributes()
c5.viewNormal = (0.974296, -0.223599, -0.0274086)
c5.focus = (0, 0, 0)
c5.viewUp = (0.222245, 0.97394, -0.0452541)
c5.viewAngle = 30
c5.parallelScale = 1.1052
c5.nearPlane = 24.1248
c5.farPlane = 58.7658
c5.perspective = 1

c6 = c0

# Create a tuple of camera values and x values. The x values
# determine where in [0,1] the control points occur.
cpts = (c0, c1, c2, c3, c4, c5, c6)
x=[]
for i in range(7):
x = x + [float(i) / float(6.)]

# Animate the view using EvalCubicSpline.
nsteps = 100
for i in range(nsteps):

t = float(i) / float(nsteps - 1)
c = EvalCubicSpline(t, x, cpts)
c.nearPlane = -34.461
c.farPlane = 34.461
SetView3D(c)

2.3.10 Working with annotations

Adding annotations to your visualization improve the quality of the final visualization in that you can refine the colors
that you use, add logos, or highlight features of interest in your plots. This section provides some recipes for creating
annotations using scripting.

Using gradient background colors

VisIt’s default white background is not necessarily the best looking background color for presentations. Adding a
gradient background under your plots is an easy way to add a small professional touch to your visualizations. VisIt
provides a few different styles of gradient background: radial, top to bottom, bottom to top, left to right, and right
to left. The gradient style is set using the gradientBackgroundStyle member of the AnnotationAttributes object. The
before and after results are shown in Figure 2.2.

# Set a blue/black, radial, gradient background.
a = AnnotationAttributes()
a.backgroundMode = a.Gradient
a.gradientBackgroundStyle = a.Radial
a.gradientColor1 = (0,0,255,255) # Blue
a.gradientColor2 = (0,0,0,255) # Black
SetAnnotationAttributes(a)

478 Chapter 2. VisIt Python (CLI) Interface Manual

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 2.2: Before and after image of adding a gradient background.

Adding a banner

Banners are useful for providing titles for a visualization or for marking its content (see Figure 2.3). To add an
“Unclassified” banner to a visualization, use the following bit of Python code:

# Create a text object that we'll use to indicate that our
# visualization is unclassified.
banner = CreateAnnotationObject("Text2D")
banner.text = "Unclassified"
banner.position = (0.37, 0.95)
banner.fontBold = 1
# print the attributes that you can set in the banner object.
print banner

Adding a time slider

Time sliders are important annotations for movies since they convey how much progress an animation has made as
well as how many more frames have yet to be seen. The time slider is also important for showing the simulation time
as the animation progresses so users can get a sense of when in the simulation important events occur. VisIt’s time
slider annotation object is shown in Figure 2.4.

# Add a time slider in the lower left corner
slider = CreateAnnotationObject("TimeSlider")
slider.height = 0.07
# Print the options that are available in the time slider object
print slider

Adding a logo

Adding a logo to a visualization is an important part of project identification for movies and other visualizations
created with VisIt. If you have a logo image file stored in TIFF, JPEG, BMP, or PPM format then you can use it with

2.3. Quick Recipes 479

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 2.3: Adding a banner

Fig. 2.4: Time slider annotation in the lower left corner

480 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

VisIt as an image annotation (see Figure 2.5). Note that this approach can also be used to insert images of graphs,
plots, portraits, diagrams, or any other form of image data into a visualization.

# Incorporate LLNL logo image (llnl.jpeg) as an annotation
image = CreateAnnotationObject("Image")
image.image = "llnl.jpeg"
image.position = (0.02, 0.02)
# Print the other image annotation options
print image

Fig. 2.5: Image annotation used to incorporate LLNL logo

Modifying a legend

VisIt’s plot legends can be customized. To obtain the proper annotation object, you must use the name of the plot,
which is a unique name that identifies the plot. Once you have the plot’s name, you can obtain a reference to its legend
annotation object and start setting properties to modify the legend.

# Open a file and make a plot
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Mesh", "Mesh")
AddPlot("Pseudocolor", "hardyglobal")
DrawPlots()
# Get the legend annotation object for the Pseudocolor plot, the second
# plot in the list (0-indexed).
plotName = GetPlotList().GetPlots(1).plotName
legend = GetAnnotationObject(plotName)
# See if we can scale the legend.
legend.xScale = 3.
legend.yScale = 3.
# the bounding box.
legend.drawBoundingBox = 1
legend.boundingBoxColor = (180,180,180,230)
# Make it horizontal
legend.orientation = legend.HorizontalBottom

(continues on next page)

2.3. Quick Recipes 481

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

(continued from previous page)

# moving the legend
legend.managePosition = 0
legend.position = (0.7,0.15)
# text color
InvertBackgroundColor()
legend.useForegroundForTextColor = 0
legend.textColor = (255, 0, 0, 255)
# number format
legend.numberFormat = "%1.4e"
# the font.
legend.fontFamily = legend.Arial
legend.fontBold = 1
legend.fontItalic = 1
# turning off the labels.
legend.fontItalic = 0
legend.drawLabels = legends.None
legend.drawMinMax = 0
# turning off the title.
legend.drawTitle = 0
# Use user-supplied labels, rather than numeric values.
legend.controlTicks=0
legend.drawLabels = legend.Labels
# suppliedLabels must be strings, only valid when controlTicks is 0
legend.suppliedLabels=("A", "B", "C", "D", "E")
# Print the legend object so you can see the other properties
# that you can set in order to modify the legend.
print(legend)

2.4 Functions

Many functions return an integer where 1 means success and 0 means failure. This behavior is represented by the type
CLI_return_t in an attempt to distinguish it from functions that may utilize the full range of integers.

2.4.1 ActivateDatabase

Synopsis:

ActivateDatabase(argument) -> integer

argument [string] The name of the database to be activated.

return type [CLI_return_t] ActivateDatabase returns 1 on success and 0 on failure.

Description:

The ActivateDatabase function is used to set the active database to a database that has been previously
opened. The ActivateDatabase function only works when you are using it to activate a database that you
have previously opened. You do not need to use this function unless you frequently toggle between more
than one database when making plots or changing time states. While the OpenDatabase function can also
be used to set the active database, the ActivateDatabase function does not have any side effects that would
cause the time state for the new active database to be changed.

Example:

482 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
dbs = ("/usr/gapps/visit/data/wave.visit", "/usr/gapps/visit/data/curv3d.silo")
OpenDatabase(dbs[0], 17)
AddPlot("Pseudocolor", "u")
DrawPlots()
OpenDatabase(dbs[1])
AddPlot("Pseudocolor", "u")
DrawPlots()
# Let's add another plot from the first database.
ActivateDatabase(dbs[0])
AddPlot("Mesh", "quadmesh")
DrawPlots()

2.4.2 AddArgument

Synopsis:

AddArgument(argument)

argument [string] A string object that is added to the viewer’s command line argument list.

Description:

The AddArgument function is used to add extra command line arguments to VisIt’s viewer. This is only
useful when VisIt’s Python interface is imported into a stand-alone Python interpreter because the AddAr-
gument function must be called before the viewer is launched. The AddArgument function has no effect
when used in VisIt’s cli program because the viewer is automatically launched before any commands are
processed.

Example:

import visit
visit.AddArgument("-nowin") # Add the -nowin argument to the viewer.

2.4.3 AddMachineProfile

Synopsis:

AddMachineProfile(MachineProfile) -> integer

MachineProfile : MachineProfile object

Description:

Sets the input machine profile in the HostProfileList, replaces if one already exists Otherwise adds to the
list

2.4.4 AddOperator

Synopsis:

AddOperator(operator) -> integer
AddOperator(operator, all) -> integer

operator [string] The name of the operator to be applied.

2.4. Functions 483



VisIt User Manual Documentation, Release 3.1

all [integer] This is an optional integer argument that applies the operator to all plots if the value of the argument is
not zero.

return type [CLI_return_t] The AddOperator function returns an integer value of 1 for success and 0 for failure.

Description:

The AddOperator function adds a VisIt operator to the active plots. The operator argument is a string
containing the name of the operator to be added to the active plots. The operatore name must be a
valid operator plugin name that is a member of the tuple returned by the OperatorPlugins function. The
all argument is an integer that determines whether or not the operator is applied to all plots. If the all
argument is not provided, the operator is only added to active plots. Once the AddOperator function is
called, the desired operator is added to all active plots unless the all argument is a non-zero value. When
the all argument is a non-zero value, the operator is applied to all plots regardless of whether or not they
are selected. Operator attributes are set through the SetOperatorOptions function.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddPlot("Mesh", "mesh1")
AddOperator("Slice", 1) # Slice both plots
DrawPlots()

2.4.5 AddPlot

Synopsis:

AddPlot(plotType, variableName) -> integer
AddPlot(plotType, variableName, inheritSIL) -> integer
AddPlot(plotType, variableName, inheritSIL, applyOperators) -> integer

plotType [string] The name of a valid plot plugin type.

variableName [string] A valid variable name for the open database.

inheritSIL [integer] An integer flag indicating whether the plot should inherit the active plot’s SIL restriction.

applyOperators [integer] An integer flag indicating whether the operators from the active plot should be applied to
the new plot.

return type [CLI_return_t] The AddPlot function returns an integer value of 1 for success and 0 for failure.

Description:

The AddPlot function creates a new plot of the specified type using a variable from the open database.
The plotType argument is a string that contains the name of a valid plot plugin type which must be a
member of the string tuple that is returned by the PlotPlugins function. The variableName argument is a
string that contains the name of a variable in the open database. After the AddPlot function is called, a
new plot is created and it is made the sole active plot.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Subset", "mat1") # Create a subset plot
DrawPlots()

484 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.4.6 AddWindow

Synopsis:

AddWindow()

Description:

The AddWindow function creates a new visualization window and makes it the active window. This
function can be used to create up to 16 visualization windows. After that, the AddWindow function has
no effect.

Example:

import visit
visit.Launch()
visit.AddWindow() # Create window #2
visit.AddWindow() # Create window #3

2.4.7 AlterDatabaseCorrelation

Synopsis:

AlterDatabaseCorrelation(name, databases, method) -> integer

name [string] The name of the database correlation to be altered.

databases [tuple or list of strings] The databases argument must be a tuple or list of strings containing the fully
qualified database names to be used in the database correlation.

method [integer] The method argument must be an integer in the range [0,3].

Correlation method Value
IndexForIndexCorrelation 0
StretchedIndexCorrelation 1
TimeCorrelation 2
CycleCorrelation 3

return type [CLI_return_t] The AlterDatabaseCorrelation function returns 1 on success and 0 on failure.

Description:

The AlterDatabaseCorrelation method alters an existing database correlation. A database correlation is
a VisIt construct that relates the time states for two or more databases in some way. You would use
the AlterDatabaseCorrelation function if you wanted to change the list of databases used in a database
correlation or if you wanted to change how the databases are related - the correlation method. The name
argument is a string that is the name of the database correlation to be altered. If the name that you pass is
not a valid database correlation then the AlterDatabaseCorrelation function fails. The databases argument
is a list or tuple of string objects containing the fully-qualified (host:/path/filename) names of the databases
to be involved in the database query. The method argument allows you to specify a database correlation
method.

Example:

2.4. Functions 485



VisIt User Manual Documentation, Release 3.1

dbs = ("/usr/gapps/visit/data/wave.visit", "/usr/gapps/visit/data/wave*.silo database
→˓")
OpenDatabase(dbs[0])
AddPlot("Pseudocolor", "pressure")
OpenDatabase(dbs[1])
AddPlot("Pseudocolor", "d")
# VisIt created an index for index database correlation but we
# want a cycle correlation.
AlterDatabaseCorrelation("Correlation01", dbs, 3)

2.4.8 ApplyNamedSelection

Synopsis:

ApplyNamedSelection(name) -> integer

name [string] The name of a named selection. (This should have been previously created with a CreateNamedSelec-
tion call.)

return type [CLI_return_t] The ApplyNamedSelection function returns 1 for success and 0 for failure.

Description:

Named Selections allow you to select a group of elements (or particles). One typically creates a named
selection from a group of elements and then later applies the named selection to another plot (thus reducing
the set of elements displayed to the ones from when the named selection was created).

Example:

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
AddOperator("Clip")
c = ClipAttributes()
c.plane1Origin = (0,0.6,0)
c.plane1Normal = (0,-1,0)
SetOperatorOption(c)
DrawPlots()
CreateNamedSelection("els_above_at_time_0")
SetTimeSliderState(40)
RemoveLastOperator()
ApplyNamedSelection("els_above_at_time_0")

2.4.9 ChangeActivePlotsVar

Synopsis:

ChangeActivePlotsVar(variableName) -> integer

variableName [string] The name of the new plot variable.

return type [CLI_return_t] The ChangeActivePlotsVar function returns an integer value of 1 for success and 0 for
failure.

Description:

486 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

The ChangeActivePlotsVar function changes the plotted variable for the active plots. This is a useful
way to change what is being visualized without having to delete and recreate the current plots. The
variableName argument is a string that contains the name of a variable in the open database.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
SaveWindow()
ChangeActivePlotsVar("v")

2.4.10 CheckForNewStates

Synopsis:

CheckForNewStates(name) -> integer

name [string] The name of a database that has been opened previously.

return type [CLI_return_t] The CheckForNewStates function returns 1 for success and 0 for failure.

Description:

Calculations are often run at the same time as some of the preliminary visualization work is being per-
formed. That said, you might be visualizing the leading time states of a database that is still being created.
If you want to force VisIt to add any new time states that were added since you opened the database, you
can use the CheckForNewStates function. The name argument must contain the name of a database that
has been opened before.

Example:

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
DrawPlots()
SetTimeSliderState(TimeSliderGetNStates() - 1)
# More files appear on disk
CheckForNewStates(db)
SetTimeSliderState(TimeSliderGetNStates() - 1)

2.4.11 ChooseCenterOfRotation

Synopsis:

ChooseCenterOfRotation() -> integer
ChooseCenterOfRotation(screenX, screenY) -> integer

screenX [double] A double that is the X coordinate of the pick point in normalized [0,1] screen space.

screenY [double] A double that is the Y coordinate of the pick point in normalized [0,1] screen space.

return type [CLI_return_t] The ChooseCenterOfRotation function returns 1 if successful and 0 if it fails.

Description:

2.4. Functions 487



VisIt User Manual Documentation, Release 3.1

The ChooseCenterOfRotation function allows you to pick a new center of rotation, which is the point
about which plots are rotated when you interactively rotate plots. The function can either take zero
arguments, in which case you must interactively pick on plots, or it can take two arguments that correspond
to the X and Y coordinates of the desired pick point in normalized screen space. When using the two
argument version of the ChooseCenterOfRotation function, the X and Y values are floating point values
in the range [0,1]. If the ChooseCenterOfRotation function is able to actually pick on plots, yes there
must be plots in the vis window, then the center of rotation is updated and the new value is printed to the
console.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlots("Pseudocolor", "u")
DrawPlots()
# Interactively choose the center of rotation
ChooseCenterOfRotation()
# Choose a center of rotation using normalized screen
# coordinates and print the value.
ResetView()
ChooseCenterOfRotation(0.5, 0.3)
print "The new center of rotation is:", GetView3D().centerOfRotation

2.4.12 ClearAllWindows

Synopsis:

ClearAllWindows() -> integer

return type [CLI_return_t] 1 on success, 0 on failure.

Description:

The ClearWindow function is used to clear out the plots from the active visualization window. The plots
are removed from the visualization window but are left in the plot list so that subsequent calls to the
DrawPlots function regenerate the plots in the plot list. The ClearAllWindows function preforms the
same work as the ClearWindow function except that all windows are cleared of their plots.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()
SetActiveWindow(2) # Make window 2 active
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Subset", "mat1")
DrawPlots()
ClearWindow() # Clear the plots in window 2.
DrawPlots() # Redraw the plots in window 2.
ClearAllWindows() # Clear the plots from all windows.

2.4.13 ClearCache

Synopsis:

488 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

ClearCache(host) -> integer
ClearCache(host, simulation) -> integer

host [string] The name of the computer where the compute engine is running.

simulation [string] The name of the simulation being processed by the compute engine.

return type [CLI_return_t] 1 on success and 0 on failure.

Description:

Sometimes during extended VisIt runs, you might want to periodically clear the compute engine’s network
cache to reduce the amount of memory being used by the compute engine. Clearing the network cache
is also useful when you want to change what the compute engine is working on. For example, you might
process a large database and then decide to process another large database. Clearing the network cache
beforehand will free up more resources for the compute engine so it can more efficiently process the new
database. The host argument is a string object containing the name of the computer on which the compute
engine is running. The simulation argument is optional and only applies to when you want to instruct a
simulation that is acting as a VisIt compute engine to clear its network cache. If you want to tell more
than one compute engine to clear its cache without having to call ClearCache multiple times, you can use
the ClearCacheForAllEngines function.

Example:

#%visit -cli
OpenDatabase("localhost:very_large_database")
# Do a lot of work
ClearCache("localhost")
OpenDatabase(localhost:another_large_database")
# Do more work
OpenDatabase("remotehost:yet_another_database")
# Do more work
ClearCacheForAllEngines()

2.4.14 ClearCacheForAllEngines

Synopsis:

ClearCacheForAllEngines() -> integer

return type [CLI_return_t] 1 on success and 0 on failure.

Description:

Sometimes during extended VisIt runs, you might want to periodically clear the compute engine’s network
cache to reduce the amount of memory being used by the compute engine. Clearing the network cache
is also useful when you want to change what the compute engine is working on. For example, you might
process a large database and then decide to process another large database. Clearing the network cache
beforehand will free up more resources for the compute engine so it can more efficiently process the new
database. The host argument is a string object containing the name of the computer on which the compute
engine is running. The simulation argument is optional and only applies to when you want to instruct a
simulation that is acting as a VisIt compute engine to clear its network cache. If you want to tell more
than one compute engine to clear its cache without having to call ClearCache multiple times, you can use
the ClearCacheForAllEngines function.

Example:

2.4. Functions 489



VisIt User Manual Documentation, Release 3.1

#%visit -cli
OpenDatabase("localhost:very_large_database")
# Do a lot of work
ClearCache("localhost")
OpenDatabase(localhost:another_large_database")
# Do more work
OpenDatabase("remotehost:yet_another_database")
# Do more work
ClearCacheForAllEngines()

2.4.15 ClearMacros

Synopsis:

ClearMacros()

Description:

The ClearMacros function clears out the list of registered macros and sends a message to the gui to clear
the buttons from the Macros window.

Example:

ClearMacros()

2.4.16 ClearPickPoints

Synopsis:

ClearPickPoints()

Description:

The ClearPickPoints function removes pick points from the active visualization window. Pick points are
the letters that are added to the visualization window where the mouse is clicked when the visualization
window is in pick mode.

Example:

#% visit -cli
# Put the visualization window into pick mode using the popup
# menu and add some pick points.
# Clear the pick points.
ClearPickPoints()

2.4.17 ClearReferenceLines

Synopsis:

ClearReferenceLines()

Description:

490 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

The ClearReferenceLines function removes reference lines from the active visualization window. Refer-
ence lines are the lines that are drawn on a plot to show where you have performed lineouts.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
Lineout((-3.0, 2.0), (2.0, 4.0), ("default", "u", "v"))
ClearReferenceLines()

2.4.18 ClearViewKeyframes

Synopsis:

ClearViewKeyframes() -> integer

return type [CLI_return_t] The ClearViewKeyframes function returns 1 on success and 0 on failure.

Description:

The ClearViewKeyframes function clears any view keyframes that may have been set. View keyframes
are used to create complex view behavior such as fly-throughs when VisIt is in keyframing mode.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
k = KeyframeAttributes()
k.enabled, k.nFrames, k.nFramesWasUserSet = 1,10,1
SetKeyframeAttributes(k)
DrawPlots()
SetViewKeyframe()
v1 = GetView3D()
v1.viewNormal = (-0.66609, 0.337227, 0.665283)
v1.viewUp = (0.157431, 0.935425, -0.316537)
SetView3D(v1)
SetTimeSliderState(9)
SetViewKeyframe()
ToggleCameraViewMode()
for i in range(10):
SetTimeSliderState(i)
ClearViewKeyframes()

2.4.19 ClearWindow

Synopsis:

ClearWindow() -> integer

return type [CLI_return_t] 1 on success, 0 on failure.

Description:

The ClearWindow function is used to clear out the plots from the active visualization window. The plots
are removed from the visualization window but are left in the plot list so that subsequent calls to the

2.4. Functions 491



VisIt User Manual Documentation, Release 3.1

DrawPlots function regenerate the plots in the plot list. The ClearAllWindows function preforms the
same work as the ClearWindow function except that all windows are cleared of their plots.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()
SetActiveWindow(2) # Make window 2 active
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Subset", "mat1")
DrawPlots()
ClearWindow() # Clear the plots in window 2.
DrawPlots() # Redraw the plots in window 2.
ClearAllWindows() # Clear the plots from all windows.

2.4.20 CloneWindow

Synopsis:

CloneWindow() -> integer

return type [CLI_return_t] The CloneWindow function returns an integer value of 1 for success and 0 for failure.

Description:

The CloneWindow function tells the viewer to create a new window, based on the active window, that
contains the same plots, annotations, lights, and view as the active window. This function is useful for
when you have a window set up like you want and then want to do the same thing in another window
using a different database. You can first clone the window and then replace the database.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
v = ViewAttributes()
v.camera = (-0.505893, 0.32034, 0.800909)
v.viewUp = (0.1314, 0.946269, -0.295482)
v.parallelScale = 14.5472
v.nearPlane = -34.641
v.farPlane = 34.641
v.perspective = 1
SetView3D() # Set the view
a = AnnotationAttributes()
a.backgroundColor = (0, 0, 255, 255)
SetAnnotationAttributes(a) # Set the annotation properties
CloneWindow() # Create a clone of the active window
DrawPlots() # Make the new window draw its plots

2.4.21 Close

Synopsis:

492 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Close()

Description:

The Close function terminates VisIt’s viewer. This is useful for Python scripts that only need access to
VisIt’s capabilties for a short time before closing VisIt.

Example:

import visit
visit.Launch()
visit.Close() # Close the viewer

2.4.22 CloseComputeEngine

Synopsis:

CloseComputeEngine() -> integer
CloseComputeEngine(hostName) -> integer
CloseComputeEngine(hostName, simulation) -> integer

hostName [string] Optional name of the computer on which the compute engine is running.

simulation [string] Optional name of a simulation.

return type [CLI_return_t] The CloseComputeEngine function returns an integer value of 1 for success and 0 for
failure.

Description:

The CloseComputeEngine function tells the viewer to close the compute engine running a specified host.
The hostName argument is a string that contains the name of the computer where the compute engine
is running. The hostName argument can also be the name “localhost” if you want to close the compute
engine on the local machine without having to specify its name. It is not necessary to provide the host-
Name argument. If the argument is omitted, the first compute engine in the engine list will be closed.
The simulation argument can be provided if you want to close a connection to a simulation that is acting
as a VisIt compute engine. A compute engine can be launched again by creating a plot or by calling the
OpenComputeEngine function.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo") # Launches an engine
AddPlot("Pseudocolor", "u")
DrawPlots()
CloseComputeEngine() # Close the compute engine

2.4.23 CloseDatabase

Synopsis:

CloseDatabase(name) -> integer

name [string] The name of the database to close.

return type [CLI_return_t] The CloseDatabase function returns 1 on success and 0 on failure.

2.4. Functions 493



VisIt User Manual Documentation, Release 3.1

Description:

The CloseDatabase function is used to close a specified database and free all resources that were devoted
to keeping the database open. This function has an effect similar to ClearCache but it does more in
that in addition to clearing the compute engine’s cache, which it only does for the specified database, it
also removes all references to the specified database from tables of cached metadata, etc. Note that the
CloseDatabase function will fail and the database will not be closed if any plots reference the specified
database.

Example:

#% visit -cli
db = "/usr/gapps/visit/data/globe.silo"
OpenDatabase(db)
AddPlot("Pseudocolor", "u")
DrawPlots()
print "This won't work: retval = %d" % CloseDatabase(db)
DeleteAllPlots()
print "Now it works: retval = %d" % CloseDatabase(db)

2.4.24 ColorTableNames

Synopsis:

ColorTableNames() -> tuple

return type [tuple] The ColorTableNames function returns a tuple of strings containing the names of the color tables
that have been defined.

Description:

The ColorTableNames function returns a tuple of strings containing the names of the color tables that
have been defined. This method can be used in case you want to iterate over several color tables.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
for ct in ColorTableNames():
p = PseudocolorAttributes()
p.colorTableName = ct
SetPlotOptions(p)

2.4.25 ConstructDataBinning

Synopsis:

ConstructDataBinning(options) -> integer

options [ConstructDataBinningAttributes object] An object of type ConstructDataBinningAttributes. This object
specifies the options for constructing a data binning.

return type [CLI_return_t] Returns 1 on success, 0 on failure.

Description:

494 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

The ConstructDataBinning function creates a data binning function for the active plot. Data Binnings
place data from a data set into bins and reduce that data. They are used to either be incorporated with
expressions to make new derived quantities or to be directly visualized.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set the construct data binning attributes.
i = ConstructDataBinningAttributes()
i.name = "db1"
i.binningScheme = i.Uniform
i.varnames = ("u", "w")
i.binBoundaries = (-1, 1, -1, 1) # minu, maxu, minw, maxw
i.numSamples = (25, 25)
i.reductionOperator = i.Average
i.varForReductionOperator = "v"
ConstructDataBinning(i)
# Example of binning using spatial coordinates
i.varnames = ("X", "u") # X is added as a placeholder to maintain indexing
i.binType = (1, 0) # 1 = X, 2 = Y, 3 = Z, 0 = variable

2.4.26 CopyAnnotationsToWindow

Synopsis:

CopyAnnotationsToWindow(source, dest) -> integer

source [integer] The index (an integer from 1 to 16) of the source window.

dest [integer] The index (an integer from 1 to 16) of the destination window.

return type [CLI_return_t] 1 for success and 0 for failure.

Description:

The Copy functions copy attributes from one visualization window to another visualization window. The
CopyAnnotationsToWindow function copies the annotations from a source visualization window to a
destination visualization window.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()
SetActiveWindow(2)
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
# Copy window 1's Pseudocolor plot to window 2.
CopyPlotsToWindow(1, 2)
DrawPlots() # Window 2 will have 2 plots
# Spin the plots around in window 2 using the mouse.
CopyViewToWindow(2, 1) # Copy window 2's view to window 1.

2.4. Functions 495



VisIt User Manual Documentation, Release 3.1

2.4.27 CopyLightingToWindow

Synopsis:

CopyLightingToWindow(source, dest) -> integer

source [integer] The index (an integer from 1 to 16) of the source window.

dest [integer] The index (an integer from 1 to 16) of the destination window.

return type [CLI_return_t] 1 for success and 0 for failure.

Description:

The Copy functions copy attributes from one visualization window to another visualization window. The
CopyLightingAttributes function copies lighting.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()
SetActiveWindow(2)
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
# Copy window 1's Pseudocolor plot to window 2.
CopyPlotsToWindow(1, 2)
DrawPlots() # Window 2 will have 2 plots
# Spin the plots around in window 2 using the mouse.
CopyViewToWindow(2, 1) # Copy window 2's view to window 1.

2.4.28 CopyPlotsToWindow

Synopsis:

CopyPlotsToWindow(source, dest) -> integer

source [integer] The index (an integer from 1 to 16) of the source window.

dest [integer] The index (an integer from 1 to 16) of the destination window.

return type [CLI_return_t] 1 for success and 0 for failure.

Description:

The Copy functions copy attributes from one visualization window to another visualization window. The
CopyPlotsToWindow function copies the plots from one visualization window to another visualization
window but does not also force plots to generate so after copying plots with the CopyPlotsToWindow
function, you should also call the DrawPlots function.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()

(continues on next page)

496 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

SetActiveWindow(2)
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
# Copy window 1's Pseudocolor plot to window 2.
CopyPlotsToWindow(1, 2)
DrawPlots() # Window 2 will have 2 plots
# Spin the plots around in window 2 using the mouse.
CopyViewToWindow(2, 1) # Copy window 2's view to window 1.

2.4.29 CopyViewToWindow

Synopsis:

CopyViewToWindow(source, dest) -> integer

source [integer] The index (an integer from 1 to 16) of the source window.

dest [integer] The index (an integer from 1 to 16) of the destination window.

return type [CLI_return_t] The Copy functions return an integer value of 1 for success and 0 for failure.

Description:

The Copy functions copy attributes from one visualization window to another visualization window. The
CopyViewToWindow function copies the view.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()
SetActiveWindow(2)
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
# Copy window 1's Pseudocolor plot to window 2.
CopyPlotsToWindow(1, 2)
DrawPlots() # Window 2 will have 2 plots
# Spin the plots around in window 2 using the mouse.
CopyViewToWindow(2, 1) # Copy window 2's view to window 1.

2.4.30 CreateAnnotationObject

Synopsis:

CreateAnnotationObject(annotType[,annotName,visibleFlag]) -> annotation object

annotType [string] The name of the type of annotation object to create.

2.4. Functions 497



VisIt User Manual Documentation, Release 3.1

Annotation type String
2D text annotation Text2D
3D text annotation Text3D
Time slider annotation TimeSlider
Image annotation Image
Line/arrow annotation Line2D

annotName [string] A user-defined name of the annotation object to create. By default, VisIt creates names like
‘newObject0’, ‘newObject1’, . . . .

visibleFlag [integer] An optional integer to indicate if the annotation object should be created with initial visibility
on or off. Pass 0 for off and non-zero for on. By default, VisIt creates annotation objects with visibility on. If
you wish only to pass the visibleFlag argument, there is no need to also pass the annotName argument.

return type [annotation object] CreateAnnotationObject is a factory function that creates annotation objects of dif-
ferent types. The return value, if a valid annotation type is provided, is an annotation object. If the function
fails, VisItException is raised.

Description:

CreateAnnotationObject is a factory function that creates different kinds of annotation objects. The an-
notType argument is a string containing the name of the type of annotation object to create. Each type of
annotation object has different properties that can be set. Setting the different properties of an Annotation
objects directly modifes annotations in the vis window. Currently there are 5 types of annotation objects:

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit", 17)
AddPlot("Pseudocolor", "pressure")
DrawPlots()
slider = CreateAnnotationObject("TimeSlider")
print slider
slider.startColor = (255,0,0,255)
slider.endColor = (255,255,0,255)

2.4.31 CreateDatabaseCorrelation

Synopsis:

CreateDatabaseCorrelation(name, databases, method) -> integer

name [string] The name of the database correlation to be created.

databases [tuple or list of strings] Tuple or list of strings containing the names of the databases to involve in the
database correlation.

method [integer] An integer in the range [0,3] that determines the correlation method.

Correlation method Value
IndexForIndexCorrelation 0
StretchedIndexCorrelation 1
TimeCorrelation 2
CycleCorrelation 3

return type [CLI_return_t] The CreateDatabaseCorrelation function returns 1 on success and 0 on failure.

498 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Description:

The CreateDatabaseCorrelation function creates a database correlation, which is a VisIt construct that
relates the time states for two or more databases in some way. You would use the CreateDatabaseCorrela-
tion function if you wanted to put plots from more than one time-varying database in the same vis window
and then move them both through time in some synchronized way. The name argument is a string that is
the name of the database correlation to be created. You will use the name of the database correlation to
set the active time slider later so that you can change time states. The databases argument is a list or tuple
of string objects containing the fully-qualified (host:/path/filename) names of the databases to be involved
in the database query. The method argument allows you to specify a database correlation method. Each
database correlation has its own time slider that can be used to set the time state of databases that are part
of a database correlation. Individual time-varying databases have their own trivial database correlation,
consisting of only 1 database. When you call the CreateDatabaseCorrelation function, VisIt creates a new
time slider with the same name as the database correlation and makes it be the active time slider.

Example:

#% visit -cli
dbs = ("/usr/gapps/visit/data/dbA00.pdb",
"/usr/gapps/visit/data/dbB00.pdb")
OpenDatabase(dbs[0])
AddPlot("FilledBoundary", "material(mesh)")
OpenDatabase(dbs[1])
AddPlot("FilledBoundary", "material(mesh)")
DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
# Creating a new database correlation also creates a new time
# slider and makes it be active.
w = GetWindowInformation()
print "Active time slider: %s" % w.timeSliders[w.activeTimeSlider]
# Animate through time using the "common" database correlation's
# time slider.
for i in range(TimeSliderGetNStates()):
SetTimeSliderState(i)

2.4.32 CreateNamedSelection

Synopsis:

CreateNamedSelection(name) -> integer
CreateNamedSelection(name, properties) -> integer

name [string] The name of a named selection.

properties [SelectionProperties object] This optional argument lets you pass a SelectionProperties object containing
the properties that will be used to create the named selection. When this argument is omitted, the named
selection will always be associated with the active plot. You can use this argument to set up more complex
named selections that may be associated with plots or databases.

return type [CLI_return_t] The CreateNamedSelection function returns 1 for success and 0 for failure.

Description:

Named Selections allow you to select a group of elements (or particles). One typically creates a named
selection from a group of elements and then later applies the named selection to another plot (thus reducing
the set of elements displayed to the ones from when the named selection was created).

Example:

2.4. Functions 499



VisIt User Manual Documentation, Release 3.1

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
AddOperator("Clip")
c = ClipAttributes()
c.plane1Origin = (0,0.6,0)
c.plane1Normal = (0,-1,0)
SetOperatorOption(c)
DrawPlots()
CreateNamedSelection("els_above_at_time_0")
SetTimeSliderState(40)
RemoveLastOperator()
ApplyNamedSelection("els_above_at_time_0")

2.4.33 DatabasePlugins

Synopsis:

DatabasePlugins() -> dictionary
DatabasePlugins(host) -> dictionary

host [string] The name of the host for which we want database plugins.

return type [dictionary] The DatabasePlugins functions returns a dictionary.

Description:

The DatabasePlugins function returns a dictionary containing the names of the database plugins for the
specified host. If no host is given, localhost is assumed. The dictionary contains two keys: “host” and
“plugins”.

Example:

#% visit -cli
dbp = DatabasePlugins("localhost")
print dbp["host"]
print dbp["plugins"]

2.4.34 DeIconifyAllWindows

Synopsis:

DeIconifyAllWindows()

Description:

The DeIconifyAllWindows function unhides all of the hidden visualization windows. This function is
usually called after IconifyAllWindows as a way of making all of the hidden visualization windows visi-
ble.

Example:

#% visit -cli
SetWindowLayout(4) # Have 4 windows

(continues on next page)

500 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

IconifyAllWindows()
DeIconifyAllWindows()

2.4.35 DefineArrayExpression

Synopsis:

DefineArrayExpression(variableName, expression) -> integer

variableName [string] The name of the variable to be created.

expression [string] The expression definition as a string.

return type [CLI_return_t] The DefineExpression functions return 1 on success and 0 on failure.

Description:

DefineArrayExpression creates new array variables. Expression variables can be plotted like any other
variable. The variableName argument is a string that contains the name of the new variable. You can pass
the name of an existing expression if you want to provide a new expression definition. The expression
argument is a string that contains the definition of the new variable in terms of math operators and pre-
existing variable names Reference the VisIt User’s Manual if you want more information on creating
expressions, such as expression syntax, or a list of built-in expression functions.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()

2.4.36 DefineCurveExpression

Synopsis:

DefineCurveExpression(variableName, expression) -> integer

variableName [string] The name of the variable to be created.

expression [string] The expression definition as a string.

return type [CLI_return_t] The DefineExpression functions return 1 on success and 0 on failure.

Description:

DefineCurveExpression creates new curve variables. Expression variables can be plotted like any other
variable. The variableName argument is a string that contains the name of the new variable. You can pass
the name of an existing expression if you want to provide a new expression definition. The expression

2.4. Functions 501



VisIt User Manual Documentation, Release 3.1

argument is a string that contains the definition of the new variable in terms of math operators and pre-
existing variable names Reference the VisIt User’s Manual if you want more information on creating
expressions, such as expression syntax, or a list of built-in expression functions.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()

2.4.37 DefineMaterialExpression

Synopsis:

DefineMaterialExpression(variableName, expression) -> integer

variableName [string] The name of the variable to be created.

expression [string] The expression definition as a string.

return type [CLI_return_t] The DefineExpression functions return 1 on success and 0 on failure.

Description:

The DefineMaterialExpression function creates new material variables. Expression variables can be plot-
ted like any other variable. The variableName argument is a string that contains the name of the new
variable. You can pass the name of an existing expression if you want to provide a new expression def-
inition. The expression argument is a string that contains the definition of the new variable in terms
of math operators and pre-existing variable names Reference the VisIt User’s Manual if you want more
information on creating expressions, such as expression syntax, or a list of built-in expression functions.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()

2.4.38 DefineMeshExpression

Synopsis:

DefineMeshExpression(variableName, expression) -> integer

502 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

variableName [string] The name of the variable to be created.

expression [string] The expression definition as a string.

return type [CLI_return_t] The DefineExpression functions return 1 on success and 0 on failure.

Description:

The DefineMeshExpression creates new mesh variables. Expression variables can be plotted like any
other variable. The variableName argument is a string that contains the name of the new variable. You
can pass the name of an existing expression if you want to provide a new expression definition. The
expression argument is a string that contains the definition of the new variable in terms of math operators
and pre-existing variable names Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in expression functions.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()

2.4.39 DefinePythonExpression

Synopsis:

DefinePythonExpression(myvar,args,source)
DefinePythonExpression(myvar,args,source,type)
DefinePythonExpression(myvar,args,file)

myvar [string] The name of the variable to be created.

args [tuple] A tuple (or list) of strings providing the variable names of the arguments to the Python Expression.

source [string] A string containing the source code for a Python Expression Filter .

file [string] A string containing the path to a Python Expression Filter script file.

type [string] An optional string defining the output type of the expression. Default type - ‘scalar’ Avalaible types -
‘scalar’,’vector’,’tensor’,’array’,’curve’ Note - Use only one of the ‘source’ or ‘file’ arguments. If both are used
the ‘source’ argument overrides ‘file’.

Description:

Used to define a Python Filter Expression.

2.4.40 DefineScalarExpression

Synopsis:

DefineScalarExpression(variableName, expression) -> integer

variableName [string] The name of the variable to be created.

2.4. Functions 503



VisIt User Manual Documentation, Release 3.1

expression [string] The expression definition as a string.

return type [CLI_return_t] The DefineExpression functions return 1 on success and 0 on failure.

Description:

The DefineScalarExpression function creates a new scalar variable based on other variables from the open
database. Expression variables can be plotted like any other variable. The variableName argument is a
string that contains the name of the new variable. You can pass the name of an existing expression if
you want to provide a new expression definition. The expression argument is a string that contains the
definition of the new variable in terms of math operators and pre-existing variable names Reference the
VisIt User’s Manual if you want more information on creating expressions, such as expression syntax, or
a list of built-in expression functions.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()

2.4.41 DefineSpeciesExpression

Synopsis:

DefineSpeciesExpression(variableName, expression) -> integer

variableName [string] The name of the variable to be created.

expression [string] The expression definition as a string.

return type [CLI_return_t] The DefineExpression functions return 1 on success and 0 on failure.

Description:

The DefineSpeciesExpression creates new species variables. Expression variables can be plotted like any
other variable. The variableName argument is a string that contains the name of the new variable. You
can pass the name of an existing expression if you want to provide a new expression definition. The
expression argument is a string that contains the definition of the new variable in terms of math operators
and pre-existing variable names Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in expression functions.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")

(continues on next page)

504 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

AddPlot("Vector", "myvec")
DrawPlots()

2.4.42 DefineTensorExpression

Synopsis:

DefineTensorExpression(variableName, expression) -> integer

variableName [string] The name of the variable to be created.

expression [string] The expression definition as a string.

return type [CLI_return_t] The DefineExpression functions return 1 on success and 0 on failure.

Description:

The DefineTensorExpression creates new tensor variables. Expression variables can be plotted like any
other variable. The variableName argument is a string that contains the name of the new variable. You
can pass the name of an existing expression if you want to provide a new expression definition. The
expression argument is a string that contains the definition of the new variable in terms of math operators
and pre-existing variable names Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in expression functions.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()

2.4.43 DefineVectorExpression

Synopsis:

DefineVectorExpression(variableName, expression) -> integer

variableName [string] The name of the variable to be created.

expression [string] The expression definition as a string.

return type [CLI_return_t] The DefineExpression functions return 1 on success and 0 on failure.

Description:

The DefineVectorExpression creates new vector variables Expression variables can be plotted like any
other variable. The variableName argument is a string that contains the name of the new variable. You
can pass the name of an existing expression if you want to provide a new expression definition. The
expression argument is a string that contains the definition of the new variable in terms of math operators

2.4. Functions 505



VisIt User Manual Documentation, Release 3.1

and pre-existing variable names Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in expression functions.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()

2.4.44 DeleteActivePlots

Synopsis:

DeleteActivePlots() -> integer

return type [CLI_return_t] The Delete functions return an integer value of 1 for success and 0 for failure.

Description:

The Delete functions delete plots from the active window’s plot list. The DeleteActivePlots function
deletes all of the active plots from the plot list. There is no way to retrieve a plot once it has been deleted
from the plot list. The active plots are set using the SetActivePlots function. The DeleteAllPlots function
deletes all plots from the active window’s plot list regardless of whether or not they are active.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
AddPlot("Contour", "u")
AddPlot("Mesh", "curvmesh2d")
DrawPlots()
DeleteActivePlots() # Delete the mesh plot
DeleteAllPlots() # Delete the pseudocolor and contour plots.

2.4.45 DeleteAllPlots

Synopsis:

DeleteAllPlots() -> integer

return type [CLI_return_t] The Delete functions return an integer value of 1 for success and 0 for failure.

Description:

The Delete functions delete plots from the active window’s plot list. The DeleteActivePlots function
deletes all of the active plots from the plot list. There is no way to retrieve a plot once it has been deleted
from the plot list. The active plots are set using the SetActivePlots function. The DeleteAllPlots function
deletes all plots from the active window’s plot list regardless of whether or not they are active.

506 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
AddPlot("Contour", "u")
AddPlot("Mesh", "curvmesh2d")
DrawPlots()
DeleteActivePlots() # Delete the mesh plot
DeleteAllPlots() # Delete the pseudocolor and contour plots.

2.4.46 DeleteDatabaseCorrelation

Synopsis:

DeleteDatabaseCorrelation(name) -> integer

name [string] The name of the database correlation to delete.

return type [CLI_return_t] The DeleteDatabaseCorrelation function returns 1 on success and 0 on failure.

Description:

The DeleteDatabaseCorrelation function deletes a specific database correlation and its associated time
slider. If you delete a database correlation whose time slider is being used for the current time slider,
the time slider will be reset to the time slider of the next best suited database correlation. You can use
the DeleteDatabaseCorrelation function to remove database correlations that you no longer need such as
when you choose to examine databases that have nothing to do with your current databases.

Example:

#% visit -cli
dbs = ("dbA00.pdb", "dbB00.pdb")
OpenDatabase(dbs[0])
AddPlot("FilledBoundary", "material(mesh)")
OpenDatabase(dbs[1])
AddPlot("FilledBoundary", "material(mesh)")
DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
SetTimeSliderState(10)
DeleteAllPlots()
DeleteDatabaseCorrelation("common")
CloseDatabase(dbs[0])
CloseDatabase(dbs[1])

2.4.47 DeleteExpression

Synopsis:

DeleteExpression(variableName) -> integer

variableName [string] The name of the expression variable to be deleted.

return type [CLI_return_t] The DeleteExpression function returns 1 on success and 0 on failure.

Description:

2.4. Functions 507



VisIt User Manual Documentation, Release 3.1

The DeleteExpression function deletes the definition of an expression. The variableName argument is a
string containing the name of the variable expression to be deleted. Any plot that uses an expression that
has been deleted will fail to regenerate if its attributes are changed.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
AddPlot("Pseudocolor", "myvar") # Plot the expression variable.
DrawPlots()
DeleteExpression("myvar") # Delete the expression variable myvar.

2.4.48 DeleteNamedSelection

Synopsis:

DeleteNamedSelection(name) -> integer

name [string] The name of a named selection.

return type [CLI_return_t] The DeleteNamedSelection function returns 1 for success and 0 for failure.

Description:

Named Selections allow you to select a group of elements (or particles). One typically creates a named
selection from a group of elements and then later applies the named selection to another plot (thus reducing
the set of elements displayed to the ones from when the named selection was created). If you have created
a named selection that you are no longer interested in, you can delete it with the DeleteNamedSelection
function.

Example:

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
AddOperator("Clip")
c = ClipAttributes()
c.plane1Origin = (0,0.6,0)
c.plane1Normal = (0,-1,0)
SetOperatorOption(c)
DrawPlots()
CreateNamedSelection("els_above_y")
SetTimeSliderState(40)
DeleteNamedSelection("els_above_y")
CreateNamedSelection("els_above_y")

2.4.49 DeletePlotDatabaseKeyframe

Synopsis:

DeletePlotDatabaseKeyframe(plotIndex, frame)

plotIndex [integer] A zero-based integer value corresponding to a plot’s index in the plot list.

frame [integer] A zero-based integer value corresponding to a database keyframe at a particular animation frame.

508 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Description:

The DeletePlotDatabaseKeyframe function removes a database keyframe from a specific plot. A database
keyframe represents the database time state that will be used at a given animation frame when VisIt’s
keyframing mode is enabled. The plotIndex argument is a zero-based integer that is used to identify a plot
in the plot list. The frame argument is a zero-based integer that is used to identify the frame at which a
database keyframe is to be removed for the specified plot.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
k = GetKeyframeAttributes()
k.enabled,k.nFrames,k.nFramesWasUserSet = 1,20,1
SetKeyframeAttributes(k)
AddPlot("Pseudocolor", "pressure")
SetPlotDatabaseState(0, 0, 60)
# Repeat time state 60 for the first few animation frames by adding a
keyframe at frame 3.
SetPlotDatabaseState(0, 3, 60)
SetPlotDatabaseState(0, 19, 0)
DrawPlots()
ListPlots()
# Delete the database keyframe at frame 3.
DeletePlotDatabaseKeyframe(0, 3)
ListPlots()

2.4.50 DeletePlotKeyframe

Synopsis:

DeletePlotKeyframe(plotIndex, frame)

plotIndex [integer] A zero-based integer value corresponding to a plot’s index in the plot list.

frame [integer] A zero-based integer value corresponding to a plot keyframe at a particular animation frame.

Description:

The DeletePlotKeyframe function removes a plot keyframe from a specific plot. A plot keyframe is the
set of plot attributes at a specified frame. Plot keyframes are used to determine what plot attributes will
be used at a given animation frame when VisIt’s keyframing mode is enabled. The plotIndex argument
is a zero-based integer that is used to identify a plot in the plot list. The frame argument is a zero-based
integer that is used to identify the frame at which a keyframe is to be removed.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
k = GetKeyframeAttributes()
k.enabled,k.nFrames,k.nFramesWasUserSet = 1,20,1
SetKeyframeAttributes(k)
AddPlot("Pseudocolor", "pressure")
# Set up plot keyframes so the Pseudocolor plot's min will change
# over time.
p0 = PseudocolorAttributes()
p0.minFlag,p0.min = 1,0.0
p1 = PseudocolorAttributes()

(continues on next page)

2.4. Functions 509



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

p1.minFlag,p1.min = 1, 0.5
SetPlotOptions(p0)
SetTimeSliderState(19)
SetPlotOptions(p1)
SetTimeSliderState(0)
DrawPlots()
ListPlots()
# Iterate over all animation frames and wrap around to the first one.
for i in list(range(TimeSliderGetNStates())) + [0]:
SetTimeSliderState(i)
# Delete the plot keyframe at frame 19 so the min won't
# change anymore.
DeletePlotKeyframe(19)
ListPlots()
SetTimeSliderState(10)

2.4.51 DeleteViewKeyframe

Synopsis:

DeleteViewKeyframe(frame)

frame [integer] A zero-based integer value corresponding to a view keyframe at a particular animation frame.

Description:

The DeleteViewKeyframe function removes a view keyframe at a specified frame. View keyframes are
used to determine what view will be used at a given animation frame when VisIt’s keyframing mode is
enabled. The frame argument is a zero-based integer that is used to identify the frame at which a keyframe
is to be removed.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
k = KeyframeAttributes()
k.enabled, k.nFrames, k.nFramesWasUserSet = 1,10,1
SetKeyframeAttributes(k)
AddPlot("Pseudocolor", "u")
DrawPlots()
# Set some view keyframes
SetViewKeyframe()
v1 = GetView3D()
v1.viewNormal = (-0.66609, 0.337227, 0.665283)
v1.viewUp = (0.157431, 0.935425, -0.316537)
SetView3D(v1)
SetTimeSliderState(9)
SetViewKeyframe()
ToggleCameraViewMode()
# Iterate over the animation frames to watch the view change.
for i in list(range(10)) + [0]:
SetTimeSliderState(i)
# Delete the last view keyframe, which is on frame 9.
DeleteViewKeyframe(9)
# Iterate over the animation frames again. The view should stay
# the same.

(continues on next page)

510 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

for i in range(10):
SetTimeSliderState(i)

2.4.52 DeleteWindow

Synopsis:

DeleteWindow() -> integer

return type [CLI_return_t] The DeleteWindow function returns an integer value of 1 for success and 0 for failure.

Description:

The DeleteWindow function deletes the active visualization window and makes the visualization window
with the smallest window index the new active window. This function has no effect when there is only
one remaining visualization window.

Example:

#% visit -cli
DeleteWindow() # Does nothing since there is only one window
AddWindow()
DeleteWindow() # Deletes the new window.

2.4.53 DemoteOperator

Synopsis:

DemoteOperator(opIndex) -> integer
DemoteOperator(opIndex, applyToAllPlots) -> integer

opIndex [integer] A zero-based integer corresponding to the operator that should be demoted.

applyToAllPlots [integer] An integer flag that causes all plots in the plot list to be affected when it is non-zero.

return type [CLI_return_t] DemoteOperator returns 1 on success and 0 on failure.

Description:

The DemoteOperator function moves an operator closer to the database in the visualization pipeline. This
allows you to change the order of operators that have been applied to a plot without having to remove
them from the plot. For example, consider moving a Slice to before a Reflect operator when it had been
the other way around. Changing the order of operators can result in vastly different results for a plot. The
opposite function is PromoteOperator.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
AddOperator("Slice")
s = SliceAttributes()
s.project2d = 0
s.originPoint = (0,5,0)
s.originType=s.Point

(continues on next page)

2.4. Functions 511



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

s.normal = (0,1,0)
s.upAxis = (-1,0,0)
SetOperatorOptions(s)
AddOperator("Reflect")
DrawPlots()
# Now reflect before slicing. We'll only get 1 slice plane
# instead of 2.
DemoteOperator(1)
DrawPlots()

2.4.54 DisableRedraw

Synopsis:

DisableRedraw()

Description:

The DisableRedraw function prevents the active visualization window from ever redrawing itself. This is
a useful function to call when performing many operations that would cause unnecessary redraws in the
visualization window. The effects of this function are undone by calling the RedrawWindow function.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Contour", "u")
AddPlot("Pseudocolor", "w")
DrawPlots()
DisableRedraw()
AddOperator("Slice")
# Set the slice operator attributes
# Redraw now that thw operator attributes are set. This will
# prevent 1 redraw.
RedrawWindow()

2.4.55 DrawPlots

Synopsis:

DrawPlots() -> integer

return type [CLI_return_t] The DrawPlots function returns an integer value of 1 for success and 0 for failure.

Description:

The DrawPlots function forces all new plots in the plot list to be drawn. Plots are added and then their
attributes are modified. Finally, the DrawPlots function is called to make sure all of the new plots draw
themselves in the visualization window. This function has no effect if all of the plots in the plot list are
already drawn.

Example:

512 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots() # Draw the new pseudocolor plot.

2.4.56 EnableTool

Synopsis:

EnableTool(toolIndex, activeFlag)

toolIndex [integer] This is an integer that corresponds to an interactive tool. (Plane tool = 0, Line tool = 1, Plane tool
= 2, Box tool = 3, Sphere tool = 4, Axis Restriction tool = 5)

activeFlag [integer] An integer value of 1 enables the tool while a value of 0 disables the tool.

return [CLI_return_t] The EnableToole function returns 1 on success and 0 on failure.

Description:

The EnableTool function is used to set the enabled state of an interactive tool in the active visualization
window. The toolIndex argument is an integer index that corresponds to a certain tool. The activeFlag
argument is an integer value (0 or 1) that indicates whether to turn the tool on or off.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
EnableTool(0, 1) # Turn on the line tool.
EnableTool(1,1) # Turn on the plane tool.
EnableTool(2,1) # Turn on the sphere tool.
EnableTool(2,0) # Turn off the sphere tool.

2.4.57 EvalCubic

Synopsis:

EvalCubic(t, c0, c1, c2, c3) -> f(t)

t [double] A floating point number in the range [0., 1.] that represents the distance from c0 to c3.

c0 [arithmetic expression object] The first control point. f(0) = c0. Any object that can be used in an arithmetic
expression can be passed for c0.

c1 [arithmetic expression object] The second control point. Any object that can be used in an arithmetic expression
can be passed for c1.

c2 [arithmetic expression object] The third control point. Any object that can be used in an arithmetic expression can
be passed for c2.

c3 [arithmetic expression object] The last control point. f(1) = c3. Any object that can be used in an arithmetic
expression can be passed for c3.

return [double] The EvalCubic function returns the interpolated value for t taking into account the control points that
were passed in.

2.4. Functions 513



VisIt User Manual Documentation, Release 3.1

Description:

The EvalCubic function takes in four objects and blends them using a cubic polynomial and returns the
blended value.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
v0 = GetView3D()
# rotate the plots
v1 = GetView3D()
# rotate the plots again.
v2 = GetView3D()
# rotate the plots one last time.
v3 = GetView3D()
# Fly around the plots using the views that have been specified.
nSteps = 100
for i in range(nSteps):
t = float(i) / float(nSteps - 1)
newView = EvalCubic(t, v0, v1, v2, v3)
SetView3D(newView)

2.4.58 EvalCubicSpline

Synopsis:

EvalCubicSpline(t, weights, values) -> f(t)

t [double] A floating point number in the range [0., 1.] that represents the distance from the first control point to the
last control point.

weights [tuple of doubles] A tuple of N floating point values in the range [0., 1.] that represent how far along in
parameterized space, the values will be located.

values [tuple of arithmetic expression object] A tuple of N objects to be blended. Any objects that can be used in
arithmetic expressions can be passed in.

return [double] The EvalCubicSpline function returns the interpolated value for t considering the objects that were
passed in.

Description: The EvalCubicSpline function takes in N objects to be blended and blends them using piece-wise cubic
polynomials and returns the blended value.

2.4.59 EvalLinear

Synopsis:

EvalLinear(t, value1, value2) -> f(t)

t [double] A floating point value in the range [0., 1.] that represents the distance between the first and last control
point in parameterized space.

value1 [arithmetic expression object] Any object that can be used in an arithmetic expression. f(0) = value1.

value2 [arithmetic expression object] Any object that can be used in an arithmetic expression. f(1) = value2.

514 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

return [double] The EvalLinear function returns an interpolated value for t based on the objects that were passed in.

Description: The EvalLinear function linearly interpolates between two values and returns the result.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
c0 = GetView3D()
c1 = GetView3D()
c1.viewNormal = (-0.499159, 0.475135, 0.724629)
c1.viewUp = (0.196284, 0.876524, -0.439521)
nSteps = 100
for i in range(nSteps):
t = float(i) / float(nSteps - 1)
v = EvalLinear(t, c0, c1)
SetView3D(v)

2.4.60 EvalQuadratic

Synopsis:

EvalQuadratic(t, c0, c1, c2) -> f(t)

t [double] A floating point number in the range [0., 1.] that represents the distance from c0 to c3.

c0 [arithmetic expression object] The first control point. f(0) = c0. Any object that can be used in an arithmetic
expression can be passed for c0.

c1 [arithmetic expression object] The second control point. Any object that can be used in an arithmetic expression
can be passed for c1.

c2 [arithmetic expression object] The last control point. f(1) = c2. Any object that can be used in an arithmetic
expression can be passed for c2.

return [double] The EvalQuadratic function returns the interpolated value for t taking into account the control points
that were passed in.

Description: The EvalQuadratic function takes in four objects and blends them using a cubic polynomial and returns
the blended value.

Example:

% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
v0 = GetView3D()
# rotate the plots
v1 = GetView3D()
# rotate the plots one last time.
v2 = GetView3D()
# Fly around the plots using the views that have been specified.
nSteps = 100
for i in range(nSteps):
t = float(i) / float(nSteps - 1)

(continues on next page)

2.4. Functions 515



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

newView = EvalQuadratic(t, v0, v1, v2)
SetView3D(newView)

2.4.61 ExecuteMacro

Synopsis:

ExecuteMacro(name) -> value

name [string] The name of the macro to execute.

return type [value] The ExecuteMacro function returns the value returned from the user’s macro function.

Description:

The ExecuteMacro function lets you call a macro function that was previously registered using the Reg-
isterMacro method. Once macros are registered with a name, this function can be called whenever the
macro function associated with that name needs to be called. The VisIt gui uses this function to tell the
Python interface when macros need to be executed in response to user button clicks.

Example:

def SetupMyPlots():
OpenDatabase('noise.silo')
AddPlot('Pseudocolor', 'hardyglobal')
DrawPlots()
RegisterMacro('Setup My Plots', SetupMyPlots)
ExecuteMacro('Setup My Plots')

2.4.62 ExportDatabase

Synopsis:

ExportDatabase(e) -> integer
ExportDatabase(e, o) -> integer

e [ExportDBAttributes object] An object of type ExportDBAttributes. This object specifies the options for exporting
the database.

o [dictionary] A dictionary containing a key/value mapping to set options needed by the database exporter. The default
values can be obtained in the appropriate format using GetExportOptions(‘plugin’).

return type [CLI_return_t] Returns 1 on success, 0 on failure.

Description:

The ExportDatabase function exports the active plot for the current window to a file. The format of the
file, name, and variables to be saved are specified using the ExportDBAttributes argument. Note that this
functionality is distinct from the geometric formats of SaveWindow, such as STL. SaveWindow can only
save surfaces (triangle meshes), while ExportDatabase can export an entire three dimensional data set.

Example:

516 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set the export database attributes.
e = ExportDBAttributes()
e.db_type = "Silo"
e.variables = ("u", "v")
e.filename = "test_ex_db"
ExportDatabase(e)

2.4.63 Expressions

Synopsis:

Expressions() -> tuple of expression tuples

return type [tuple of expression tuples] The Expressions function returns a tuple of tuples that contain two strings
that give the expression name and definition.

Description:

The Expressions function returns a tuple of tuples that contain two strings that give the expression name
and definition. This function is useful for listing the available expressions or for iterating through a list of
expressions in order to create plots.

Example:

#% visit -cli
SetWindowLayout(4)
DefineScalarExpression("sin_u", "sin(u)")
DefineScalarExpression("cos_u", "cos(u)")
DefineScalarExpression("neg_u", "-u")
DefineScalarExpression("bob", "sin_u + cos_u")
for i in range(1,5):
SetActiveWindow(i)
OpenDatabase("/usr/gapps/visit/data/globe.silo")
exprName = Expressions()[i-1][0]
AddPlot("Pseudocolor", exprName)
DrawPlots()

2.4.64 GetActiveContinuousColorTable

Synopsis:

GetActiveContinuousColorTable() -> string

return type [string] Both functions return a string object containing the name of a color table.

Description:

A color table is a set of color values that are used as the colors for plots. VisIt supports two flavors of
color table: continuous and discrete. A continuous color table is defined by a small set of color control
points and the colors specified by the color control points are interpolated smoothly to fill in any gaps.
Continuous color tables are used for plots that need to be colored smoothly by a variable (e.g. Pseudocolor
plot). A discrete color table is a set of color control points that are used to color distinct regions of a plot

2.4. Functions 517



VisIt User Manual Documentation, Release 3.1

(e.g. Subset plot). VisIt supports the notion of default continuous and default discrete color tables so plots
can just use the “default” color table. This lets you change the color table used by many plots by just
changing the “default” color table. The GetActiveContinuousColorTable function returns the name of the
default continuous color table. The GetActiveDiscreteColorTable function returns the name of the default
discrete color table.

Example:

#% visit -cli
print "Default continuous color table: %s" % GetActiveContinuousColorTable()
print "Default discrete color table: %s" % GetActiveDiscreteColorTable()

2.4.65 GetActiveDiscreteColorTable

Synopsis:

GetActiveDiscreteColorTable() -> string

return type [string] Both functions return a string object containing the name of a color table.

Description:

A color table is a set of color values that are used as the colors for plots. VisIt supports two flavors of
color table: continuous and discrete. A continuous color table is defined by a small set of color control
points and the colors specified by the color control points are interpolated smoothly to fill in any gaps.
Continuous color tables are used for plots that need to be colored smoothly by a variable (e.g. Pseudocolor
plot). A discrete color table is a set of color control points that are used to color distinct regions of a plot
(e.g. Subset plot). VisIt supports the notion of default continuous and default discrete color tables so plots
can just use the “default” color table. This lets you change the color table used by many plots by just
changing the “default” color table. The GetActiveContinuousColorTable function returns the name of the
default continuous color table. The GetActiveDiscreteColorTable function returns the name of the default
discrete color table.

Example:

#% visit -cli
print "Default continuous color table: %s" % \
GetActiveContinuousColorTable()
print "Default discrete color table: %s" % \
GetActiveDiscreteColorTable()

2.4.66 GetActiveTimeSlider

Synopsis:

GetActiveTimeSlider() -> string

return type [string] The GetActiveTimeSlider function returns a string containing the name of the active time slider.

Description:

VisIt can support having multiple time sliders when you have opened more than one time-varying
database. You can then use each time slider to independently change time states for each database or
you can use a database correlation to change time states for all databases simultaneously. Every time-
varying database has a database correlation and every database correlation has its own time slider. If

518 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

you want to query to determine which time slider is currently the active time slider, you can use the
GetActiveTimeSlider function.

Example:

#% visit -cli
OpenDatabase("dbA00.pdb")
AddPlot("FilledBoundary", "material(mesh)")
OpenDatabase("dbB00.pdb")
AddPlot("FilledBoundary", "materials(mesh)")
print "Active time slider: %s" % GetActiveTimeSlider()
CreateDatabaseCorrelation("common", ("dbA00.pdb", "dbB00.pdb"), 2)
print "Active time slider: %s" % GetActiveTimeSlider()

2.4.67 GetAnimationAttributes

Synopsis:

GetAnimationAttributes() -> AnimationAttributes object

return type [AnimationAttributes object] The GetAnimationAttributes function returns an AnimationAttributes ob-
ject.

Description:

This function returns the current animation attributes, which contain the animation mode, increment, and
playback speed.

Example:

a = GetAnimationAttributes()
print a

2.4.68 GetAnimationTimeout

Synopsis:

GetAnimationTimeout() -> integer

return type [CLI_return_t] The GetAnimationTimeout function returns an integer that contains the time interval,
measured in milliseconds, between the rendering of animation frames.

Description:

The GetAnimationTimeout returns an integer that contains the time interval, measured in milliseconds,
between the rendering of animation frames.

Example:

#% visit -cli
print "Animation timeout = %d" % GetAnimationTimeout()

2.4.69 GetAnnotationAttributes

Synopsis:

2.4. Functions 519



VisIt User Manual Documentation, Release 3.1

GetAnnotationAttributes() -> AnnotationAttributes object

return type [AnnotationAttributes object] The GetAnnotationAttributes function returns an AnnotationAttributes ob-
ject that contains the annotation settings for the active visualization window.

Description:

The GetAnnotationAttributes function returns an AnnotationAttributes object that contains the annotation
settings for the active visualization window. It is often useful to retrieve the annotation settings and modify
them to suit the visualization.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
a = GetAnnotationAttributes()
print a
a.backgroundMode = a.BACKGROUNDMODE_GRADIENT
a.gradientColor1 = (0, 0, 255)
SetAnnotationAttributes(a)

2.4.70 GetAnnotationObject

Synopsis:

GetAnnotationObject(objectName) -> Annotation object

objectName [string] The name of the annotation object as returned by GetAnnotationObjectNames.

return type [Annotation object] GetAnnotationObject returns a reference to an annotation object that was created
using the CreateAnnotationObject function, or a legend object created when a plot is added.

Description:

GetAnnotationObject returns a reference to an annotation object that was created using the CreateAnno-
tationObject function. The string argument specifies the name of the desired annotation object. It must
be one of the names returned by GetAnnotationObjectNames. This function is not currently necessary
unless the annotation object that you used to create an annotation has gone out of scope and you need to
create another reference to the object to set its properties.

GetAnnotationObject can also return a reference to a legend, which is automatically created when a plot
is added. It is associated with the name of the plot. While the plot’s name can be seen in the list obtained
from GetAnnotationObjectNames, it is better to get the plot’s name from the PlotList, especially when
multiple plots are present.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Mesh", "quadmesh")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
a = CreateAnnotationObject("TimeSlider")
GetAnnotationObjectNames()
["Plot0000", "Plot0001", "TimeSlider1"]

(continues on next page)

520 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

ref = GetAnnotationObject("TimeSlider1")
print ref
# Get the name of the Pseudocolor plot for legend retrieval.
# It is the second plot in the plot list (which is 0-indexed)
plotName = GetPlotList().GetPlots(1).plotName
legend = GetAnnotationObject(plotName)

2.4.71 GetAnnotationObjectNames

Synopsis:

GetAnnotationObjectNames() -> tuple of strings

return type [tuple of strings] GetAnnotationObjectNames returns a tuple of strings of the names of all annotation
objects defined for the currently active window.

Example:

names = GetAnnotationObjectNames()
names
["plot0000", "Line2D1", "TimeSlider1"]

2.4.72 GetCallbackArgumentCount

Synopsis:

GetCallbackArgumentCount(callbackName) -> integer

callbackName [string] The name of a callback function. This name is a member of the tuple returned by GetCall-
backNames().

return type [CLI_return_t] The GetCallbackArgumentCount function returns the number of arguments associated
with a particular callback function.

Example:

cbName = 'OpenDatabaseRPC'
count = GetCallbackArgumentCount(cbName)
print 'The number of arguments for %s is: %d' % (cbName, count)

2.4.73 GetCallbackNames

Synopsis:

GetCallbackNames() -> tuple of string objects

return type [tuple of string objects] GetCallbackNames returns a tuple containing the names of valid callback func-
tion identifiers for use in RegisterCallback().

Description:

The GetCallbackNames function returns a tuple containing the names of valid callback function identifiers
for use in RegisterCallback().

2.4. Functions 521



VisIt User Manual Documentation, Release 3.1

Example:

import visit
print visit.GetCallbackNames()

2.4.74 GetDatabaseNStates

Synopsis:

GetDatabaseNStates() -> integer

return type [CLI_return_t] Returns the number of time states in the active database or 0 if there is no active database.

Description:

GetDatabaseNStates returns the number of time states in the active database, which is not the same as
the number of states in the active time slider. Time sliders can have different lengths due to database
correlations and keyframing. Use this function when you need the actual number of time states in the
active database.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave*.silo database")
print "Number of time states: %d" % GetDatabaseNStates()

2.4.75 GetDebugLevel

Synopsis:

GetDebugLevel() -> integer

return type [CLI_return_t] The GetDebugLevel function returns the debug level of the VisIt module.

Description:

The GetDebugLevel and SetDebugLevel functions are used when debugging VisIt Python scripts. The
GetDebugLevel function can be used in Python scripts to alter the behavior of the script. For instance, the
debug level can be used to selectively print values to the console.

Example:

#% visit -cli -debug 2
print "VisIt's debug level is: %d" % GetDebugLevel()

2.4.76 GetDefaultFileOpenOptions

Synopsis:

GetDefaultFileOpenOptions(pluginName) -> dictionary

pluginName [string] The name of a plugin.

return type [dictionary] Returns a dictionary containing the options.

Description:

522 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

GetDefaultFileOpenOptions returns the current options used to open new files when a specific plugin is
triggered.

Example:

#% visit -cli
OpenMDServer()
opts = GetDefaultFileOpenOptions("VASP")
opts["Allow multiple timesteps"] = 1
SetDefaultFileOpenOptions("VASP", opts)
OpenDatabase("CHGCAR")

2.4.77 GetDomains

Synopsis:

GetDomains() -> tuple of strings

return type [tuple of strings] GetDomains returns a tuple of strings.

Description:

GetDomains returns a tuple containing the names of all of the domain subsets for a plot that was created
using a database with multiple domains. This function can be used in specialized logic that iterates over
domains to turn them on or off in some programmed way.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_ucd3d.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
doms = GetDomains()
print doms
# Turn off all but the last domain, one after the other.
for d in doms[:-1]:
TurnDomainsOff(d)

2.4.78 GetEngineList

Synopsis:

GetEngineList() -> tuple of strings
GetEngineList(flag) -> tuple of tuples of strings

flag [integer] If flag is a non-zero integer then the function returns a tuple of tuples with information about simulations.

return type [tuple of strings] GetEngineList returns a tuple of strings that contain the names of the computers on
which compute engines are running. If flag is a non-zero integer argument then the function returns a tuple of
tuples where each tuple is of length 2. Element 0 contains the names of the computers where the engines are
running. Element 1 contains the names of the simulations being run.

Description:

The GetEngineList function returns a tuple of strings containing the names of the computers on which
compute engines are running. This function can be useful if engines are going to be closed and opened

2.4. Functions 523



VisIt User Manual Documentation, Release 3.1

explicitly in the Python script. The contents of the tuple can be used to help determine which compute
engines should be closed or they can be used to determine if a compute engine was successfully launched.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
OpenDatabase("mcr:/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
DrawPlots()
for name in GetEngineList():
print "VisIt has a compute engine running on %s" % name
CloseComputeEngine(GetEngineList()[1])

2.4.79 GetEngineProperties

Synopsis:

GetEngineProperties() -> EngineProperties object
GetEngineProperties(engine) -> EngineProperties object
GetEngineProperties(engine, sim) -> EngineProperties object

engine When engine is passed and it matches one of the computer names returned from GetEngineList() then the
EngineProperties object for that engine is returned.

sim When both engine and sim arguments are passed, then the EngineProperties object for the simulation is returned.

return type [EngineProperties object] The EngineProperties object for the specified compute engine/sim.

Description:

GetEngineProperties returns an EngineProperties object containing the properties for the specified com-
pute engine/sim. The EngineProperties let you discover information such as number of processors, etc for
a compute engine/sim.

Example:

#% visit -cli
db = "/usr/gapps/visit/data/globe.silo"
OpenDatabase(db)
props = GetEngineProperties(GetEngineList()[0])

2.4.80 GetGlobalAttributes

Synopsis:

GetGlobalAttributes() -> GlobalAttributes object

return type [GlobalAttributes object] Returns a GlobalAttributes object that has been initialized.

Description:

The GetGlobalAttributes function returns a GlobalAttributes object that has been initialized with the cur-
rent state of the viewer proxy’s GlobalAttributes object. The GlobalAttributes object contains read-only
information about the list of sources, the list of windows, and various flags that can be queried.

Example:

524 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
g = GetGlobalAttributes()
print g

2.4.81 GetGlobalLineoutAttributes

Synopsis:

GetGlobalLineoutAttributes() -> GlobalLineoutAttributes object

return type [GlobalLineoutAttributes object] Returns an initialized GlobalLineoutAttributes object.

Description:

The GetGlobalLineoutAttributes function returns an initialized GlobalLineoutAttributes object. The
GlobalLineoutAttributes, as suggested by its name, contains global properties that apply to all lineouts.
You can use the GlobalLineoutAttributes object to turn on lineout sampling, specify the destination win-
dow, etc. for curve plots created as a result of performing lineouts. Once you make changes to the object
by setting its properties, use the SetGlobalLineoutAttributes function to make VisIt use the modified
global lineout attributes.

Example:

#% visit -cli
SetWindowLayout(4)
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
g = GetGlobalLineoutAttributes()
print g
g.samplingOn = 1
g.windowId = 4
g.createWindow = 0
g.numSamples = 100
SetGlobalLineoutAttributes(g)
Lineout((-3,2),(3,3),("default"))

2.4.82 GetInteractorAttributes

Synopsis:

GetInteractorAttributes() -> InteractorAttributes object

return type [InteractorAttributes object] Returns an initialized InteractorAttributes object.

Description:

The GetInteractorAttributes function returns an initialized InteractorAttributes object. The InteractorAt-
tributes object can be used to set certain interactor properties. Interactors, can be thought of as how
mouse clicks and movements are translated into actions in the vis window. To set the interactor attributes,
first get the interactor attributes using the GetInteractorAttributes function. Once you’ve set the object’s
properties, call the SetInteractorAttributes function to make VisIt use the new interactor attributes.

2.4. Functions 525



VisIt User Manual Documentation, Release 3.1

Example:

#% visit -cli
ia = GetInteractorAttributes()
print ia
ia.showGuidelines = 0
SetInteractorAttributes(ia)

2.4.83 GetKeyframeAttributes

Synopsis:

GetKeyframeAttributes() -> KeyframeAttributes object

return type [KeyframeAttributes object] GetKeyframeAttributes returns an initialized KeyframeAttributes object.

Description:

Use the GetKeyframeAttributes function when you want to examine a KeyframeAttributes object so you
can determine VisIt’s state when it is in keyframing mode. The KeyframeAttributes object allows you
to see whether VisIt is in keyframing mode and, if so, how many animation frames are in the current
keyframe animation.

Example:

#% visit -cli
k = GetKeyframeAttributes()
print k
k.enabled,k.nFrames,k.nFramesWasUserSet = 1, 100, 1
SetKeyframeAttributes(k)

2.4.84 GetLastError

Synopsis:

GetLastError() -> string

return type [string] GetLastError returns a string containing the last error message that VisIt issued.

Description:

The GetLastError function returns a string containing the last error message that VisIt issued.

Example:

#% visit -cli
OpenDatabase("/this/database/does/not/exist")
print "VisIt Error: %s" % GetLastError()

2.4.85 GetLight

Synopsis:

GetLight(index) -> LightAttributes object

526 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

index [integer] A zero-based integer index into the light list. Index can be in the range [0,7].

return type [LightAttributes object] GetLight returns a LightAttributes object.

Description:

The GetLight function returns a LightAttributes object containing the attributes for a specific light. You
can use the LightAttributes object that GetLight returns to set light properties and then you can pass the
object to SetLight to make VisIt use the light properties that you’ve set.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "w")
p = PseudocolorAttributes()
p.colorTableName = "xray"
SetPlotOptions(p)
DrawPlots()
InvertBackgroundColor()
light = GetLight(0)
print light
light.enabledFlag = 1
light.direction = (0,-1,0)
light.color = (255,0,0,255)
SetLight(0, light)
light.color,light.direction = (0,255,0,255), (-1,0,0)
SetLight(1, light)

2.4.86 GetLocalHostName

Synopsis:

GetLocalHostName() -> string

return type [string] Both functions return a string.

Description:

The GetLocalHostName function returns a string that contains the name of the local computer.

Example:

#% visit -cli
print "Local machine name is: %s" % GetLocalHostName()
print "My username: %s" % GetLocalUserName()

2.4.87 GetLocalUserName

Synopsis:

GetLocalUserName() -> string

return type [string] Both functions return a string.

Description:

The GetLocalUserName function returns a string containing the name of the user running VisIt.

2.4. Functions 527



VisIt User Manual Documentation, Release 3.1

Example:

#% visit -cli
print "Local machine name is: %s" % GetLocalHostName()
print "My username: %s" % GetLocalUserName()

2.4.88 GetMachineProfile

Synopsis:

GetMachineProfile(hostname) -> MachineProfile object

hostname : string

return type [MachineProfile object] MachineProfile for hostname.

Description:

Gets the MachineProfile for a given hostname

2.4.89 GetMachineProfileNames

Synopsis:

GetMachineProfileNames() -> [hostname1, hostname2, ...]

return type [list of strings] A list of MachineProfile hostnames

Description:

Returns a list of hostnames that can be used to get a specific MachineProfile

2.4.90 GetMaterialAttributes

Synopsis:

GetMaterialAttributes() -> MaterialAttributes object

return type [MaterialAttributes object] Returns a MaterialAttributes object.

Description:

The GetMaterialAttributes function returns a MaterialAttributes object that contains VisIt’s current ma-
terial interface reconstruction settings. You can set properties on the MaterialAttributes object and then
pass it to SetMaterialAttributes to make VisIt use the new material attributes that you’ve specified:

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
p = PseudocolorAttributes()
p.min,p.minFlag = 4.0, 1
p.max,p.maxFlag = 13.0, 1
SetPlotOptions(p)
DrawPlots()

(continues on next page)

528 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

# Tell VisIt to always do material interface reconstruction.
m = GetMaterialAttributes()
m.forceMIR = 1
SetMaterialAttributes(m)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()

2.4.91 GetMaterials

Synopsis:

GetMaterials() -> tuple of strings

return type [tuple of strings] The GetMaterials function returns a tuple of strings.

Description:

The GetMaterials function returns a tuple of strings containing the names of the available materials for the
current plot’s database. Note that the active plot’s database must have materials for this function to return
a tuple that has any string objects in it. Also, you must have at least one plot. You can use the materials
returned by the GetMaterials function for a variety of purposes including turning materials on or off.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
DrawPlots()
mats = GetMaterials()
for m in mats[:-1]:
TurnMaterialOff(m)

2.4.92 GetMeshManagementAttributes

Synopsis:

GetMeshManagementAttributes() -> MeshmanagementAttributes object

return type [MeshmanagementAttributes object] Returns a MeshmanagementAttributes object.

Description:

The GetMeshmanagementAttributes function returns a MeshmanagementAttributes object that contains
VisIt’s current mesh discretization settings. You can set properties on the MeshManagementAttributes
object and then pass it to SetMeshManagementAttributes to make VisIt use the new material attributes
that you’ve specified:

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/csg.silo")
AddPlot("Mesh", "csgmesh")
DrawPlots()
# Tell VisIt to always do material interface reconstruction.

(continues on next page)

2.4. Functions 529



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

mma = GetMeshManagementAttributes()
mma.discretizationTolernace = (0.01, 0.025)
SetMeshManagementAttributes(mma)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()

2.4.93 GetMetaData

Synopsis:

GetMetaData(db) -> avtDatabaseMetaData object
GetMetaData(db, ts) -> avtDatabaseMetaData object

db [string] The name of the database for which to return metadata.

ts [integer] An optional integer indicating the time state at which to open the database.

return type [avtDatabaseMetaData object] The GetMetaData function returns an avtDatabaseMetaData object.

Description:

VisIt relies on metadata to populate its variable menus and make important decisions. Metadata can be
used to create complex scripts whose behavior adapts based on the contents of the database.

Example:

md = GetMetaData('noise.silo')
for i in xrange(md.GetNumScalars()):
AddPlot('Pseudocolor', md.GetScalars(i).name)
DrawPlots()

2.4.94 GetNumPlots

Synopsis:

GetNumPlots() -> integer

return type [CLI_return_t] Returns the number of plots in the active window.

Description:

The GetNumPlots function returns the number of plots in the active window.

Example:

#% visit -cli
print "Number of plots", GetNumPlots()
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
print "Number of plots", GetNumPlots()
AddPlot("Mesh", "curvmesh2d")
DrawPlots()
print "Number of plots", GetNumPlots()

530 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.4.95 GetOperatorOptions

Synopsis:

GetOperatorOptions(index) -> operator attributes object

index [integer] The integer index of the operator within the plot’s list of operators.

return type [operator attributes object] The GetOperatorOptions function returns an operator attributes object.

Description:

This function is provided to make it easy to probe the current attributes for a specific operator on the active
plot.

Example:

AddPlot('Pseudocolor', 'temperature')
AddOperator('Transform')
AddOperator('Transform')
t = GetOperatorOptions(1)
print 'Attributes for the 2nd Transform operator:', t

2.4.96 GetPickAttributes

Synopsis:

GetPickAttributes() -> PickAttributes object

return type [PickAttributes object] GetPickAttributes returns a PickAttributes object.

Description:

The GetPickAttributes object returns the pick settings that VisIt is currently using when it performs picks.
These settings mainly determine which pick information is displayed when pick results are printed out but
they can also be used to select auxiliary variables and generate time curves. You can examing the settings
and you can set properties on the returned object. Once you’ve changed pick settings by setting properties
on the object, you can pass the altered object to the SetPickAttributes function to force VisIt to use the
new pick settings.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/ireg")
DrawPlots()
p = GetPickAttributes()
print p
p.variables = ("default", "mesh/a", "mesh/mixvar")
SetPickAttributes(p)
# Now do some interactive picks and you'll see pick information
# for more than 1 variable.
p.doTimeCurve = 1
SetPickAttributes(p)
# Now do some interactive picks and you'll get time-curves in
# a new window.

2.4. Functions 531



VisIt User Manual Documentation, Release 3.1

2.4.97 GetPickOutput

Synopsis:

GetPickOutput() -> string

return type [string] GetPickOutput returns a string containing the output from the last pick.

Description:

The GetPickOutput returns a string object that contains the output from the last pick.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
ZonePick(coord=(0.4, 0.6, 0), vars=("default", "u", "v"))
s = GetPickOutput()
print s

2.4.98 GetPickOutputObject

Synopsis:

GetPickOutputObject() -> dictionary

return type [dictionary] GetPickOutputObject returns a dictionary produced by the last pick.

Description:

GetPickOutputObject returns a dictionary object containing output from the last pick.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
ZonePick(coord=(0.4, 0.6, 0), vars=("default", "u", "v"))
o = GetPickOutputObject()
print o

2.4.99 GetPipelineCachingMode

Synopsis:

GetPipelineCachingMode() -> integer

return type [CLI_return_t] The GetPipelineCachingMode function returns 1 if pipelines are being cached and 0
otherwise.

Description:

The GetPipelineCachingMode function returns whether or not pipelines are being cached in the viewer.
For animations of long time sequences, it is often useful to turn off pipeline caching so the viewer does
not run out of memory.

532 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Example:

#%visit -cli
offon = ("off", "on")
print "Pipeline caching is %s" % offon[GetPipelineCachingMode()]

2.4.100 GetPlotInformation

Synopsis:

GetPlotInformation() -> dictionary

return type [dictionary] GetPlotInformation returns a dictionary.

Description:

The GetPlotInformation function returns information about the active plot. For example, a Curve plot will
return the xy pairs that comprise the curve. The tuple is arranged <x1, y1, x2, y2, . . . , xn, yn>.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
Lineout((0, 0), (1, 1))
SetActiveWindow(2)
info = GetPlotInformation()
lineout = info["Curve"]
print "The first lineout point is: [%g, %g] " % lineout[0], lineout[1]

2.4.101 GetPlotList

Synopsis:

GetPlotList() -> PlotList object

return type [PlotList object] The GetPlotList function returns a PlotList object.

Description:

The GetPlotList function returns a copy of the plot list that gets exchanged between VisIt’s viewer and its
clients. The plot list object contains the list of plots, along with the databases, and any operators that are
applied to each plot. Changing this object has NO EFFECT but it can be useful when writing complex
functions that need to know about the plots and operators that exist within a visualization window

Example:

# Copy plots (without operators to window 2)
pL = GetPlotList()
AddWindow()
for i in xrange(pL.GetNumPlots()):
AddPlot(PlotPlugins()[pL.GetPlots(i).plotType], pL.GetPlots(i).plotVar)
DrawPlots()

2.4. Functions 533



VisIt User Manual Documentation, Release 3.1

2.4.102 GetPlotOptions

Synopsis:

GetPlotOptions() -> plot attributes object

return type [plot attributes object] The GetPlotOptions function returns a plot attributes object whose type varies
depending the selected plots.

Description:

This function is provided to make it easy to probe the current attributes for the selected plot.

Example:

pc = GetPlotOptions()
pc.legend = 0
SetPlotOptions(pc)

2.4.103 GetPreferredFileFormats

Synopsis:

GetPreferredFileFormats() -> tuple of strings

return type [tuple of strings] The GetPreferredFileFormats returns the current list of preferred plugins.

Description:

The GetPreferredFileFormats method is a way to get the list of file format reader plugins which are tried
before any others. These IDs are full IDs, not just names, and are tried in order.

Example:

GetPreferredFileFormats()
# returns ('Silo_1.0',)

2.4.104 GetQueryOutputObject

Synopsis:

GetQueryOutputObject() -> dictionary or value

return type [dictionary or value] GetQueryOutputObject returns an xml string produced by the last query.

Description:

Both the GetQueryOutputString and GetQueryOutputValue functions return information about the last
query to be executed but the type of information returns differs. GetQueryOutputString returns a string
containing the output of the last query. GetQueryOutputValue returns a single number or tuple of numbers,
depending on the nature of the last query to be executed. GetQueryOutputXML and GetQueryOutputOb-
ject expose more complex query output.

Example:

534 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
Query("MinMax")
print GetQueryOutputString()
print "The min is: %g and the max is: %g" % GetQueryOutputValue()

2.4.105 GetQueryOutputString

Synopsis:

GetQueryOutputString() -> string

return type [string] GetQueryOutputString returns a string.

Description:

Both the GetQueryOutputString and GetQueryOutputValue functions return information about the last
query to be executed but the type of information returns differs. GetQueryOutputString returns a string
containing the output of the last query. GetQueryOutputValue returns a single number or tuple of numbers,
depending on the nature of the last query to be executed. GetQueryOutputXML and GetQueryOutputOb-
ject expose more complex query output.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
Query("MinMax")
print GetQueryOutputString()
print "The min is: %g and the max is: %g" % GetQueryOutputValue()

2.4.106 GetQueryOutputValue

Synopsis:

GetQueryOutputValue() -> double, tuple of doubles

return type [double, tuple of doubles] GetQueryOutputValue returns a single double precision number or a tuple of
double precision numbers.

Description:

Both the GetQueryOutputString and GetQueryOutputValue functions return information about the last
query to be executed but the type of information returns differs. GetQueryOutputString returns a string
containing the output of the last query. GetQueryOutputValue returns a single number or tuple of numbers,
depending on the nature of the last query to be executed. GetQueryOutputXML and GetQueryOutputOb-
ject expose more complex query output.

Example:

2.4. Functions 535



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
Query("MinMax")
print GetQueryOutputString()
print "The min is: %g and the max is: %g" % GetQueryOutputValue()

2.4.107 GetQueryOutputXML

Synopsis:

GetQueryOutputXML() -> string

return type [string] GetQueryOutputXML returns an xml string produced by the last query.

Description:

Both the GetQueryOutputString and GetQueryOutputValue functions return information about the last
query to be executed but the type of information returns differs. GetQueryOutputString returns a string
containing the output of the last query. GetQueryOutputValue returns a single number or tuple of numbers,
depending on the nature of the last query to be executed. GetQueryOutputXML and GetQueryOutputOb-
ject expose more complex query output.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
Query("MinMax")
print GetQueryOutputString()
print "The min is: %g and the max is: %g" % GetQueryOutputValue()

2.4.108 GetQueryOverTimeAttributes

Synopsis:

GetQueryOverTimeAttributes() -> QueryOverTimeAttributes object

return type [QueryOverTimeAttributes object] GetQueryOverTimeAttributes returns a QueryOverTimeAttributes
object.

Description:

The GetQueryOverTimeAttributes function returns a QueryOverTimeAttributes object containing the set-
tings that VisIt currently uses for query over time. You can use the returned object to change those
settings by first setting object properties and then by passing the modified object to the SetQueryOver-
TimeAttributes function.

Example:

#% visit -cli
SetWindowLayout(4)
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")

(continues on next page)

536 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

AddPlot("Pseudocolor", "mesh/mixvar")
DrawPlots()
qot = GetQueryOverTimeAttributes()
print qot
# Make queries over time go to window 4.
qot.createWindow,q.windowId = 0, 4
SetQueryOverTimeAttributes(qot)
QueryOverTime("Min")
# Make queries over time only use half of the number of time states.
endTime = GetDatabaseNStates() / 2
QueryOverTime("Min", end_time=endTime)
ResetView()

2.4.109 GetQueryParameters

Synopsis:

GetQueryParameters(name) -> dictionary

return type [dictionary] A python dictionary.

Description:

The GetQueryParameters function returns a Python dictionary containing the default parameters for the
named query, or None if the query does not accept additional parameters. The returned dictionary (if any)
can then be modified if necessary and passed back as an argument to the Query function.

Example:

#% visit -cli
minMaxInput = GetQueryParameters("MinMax")
minMaxInput["use_actual_data"] = 1
Query("MinMax", minMaxInput)
xrayInput = GetQueryParameters("XRay Image")
xrayInput["origin"]=(0.5, 2.5, 0.)
xrayInput["image_size"]=(300,300)
xrayInput["vars"]=("p", "d")
Query("XRay Image", xrayInput)

2.4.110 GetRenderingAttributes

Synopsis:

GetRenderingAttributes() -> RenderingAttributes object

return type [RenderingAttributes object] Returns a RenderingAttributes object.

Description:

The GetRenderingAttributes function returns a RenderingAttributes object that contains the rendering
settings that VisIt currently uses. The RenderingAttributes object contains information related to render-
ing such as whether or not specular highlights or shadows are enabled. The RenderingAttributes object
also contains information scalable rendering such as whether or not it is currently in use and the scalable
rendering threshold.

Example:

2.4. Functions 537



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Surface", "hgslice")
DrawPlots()
v = GetView3D()
v.viewNormal = (-0.215934, -0.454611, 0.864119)
v.viewUp = (0.973938, -0.163188, 0.157523)
v.imageZoom = 1.64765
SetView3D(v)
light = GetLight(0)
light.direction = (0,1,-1)
SetLight(0, light)
r = GetRenderingAttributes()
r.scalableActivationMode = r.Always
r.doShadowing = 1
SetRenderingAttributes(r)

2.4.111 GetSaveWindowAttributes

Synopsis:

GetSaveWindowAttributes() -> SaveWindowAttributes object

return type [SaveWindowAttributes object] This function returns a VisIt SaveWindowAttributes object that contains
the attributes used in saving windows.

Description:

The GetSaveWindowAttributes function returns a SaveWindowAttributes object that is a structure con-
taining several fields which determine how windows are saved to files. The object that us returned can be
modified and used to set the save window attributes.

Example:

#% visit -cli
s = GetSaveWindowAttributes()
print s
s.width = 600
s.height = 600
s.format = s.RGB
print s

2.4.112 GetSelection

Synopsis:

GetSelection(name) -> SelectionProperties object

name [string] The name of the selection whose properties we want to retrieve.

return type [SelectionProperties object] The GetSelection function returns a SelectionProperties object.

Description:

Named selections have properties that describe how the selection is defined. This function lets you query
those selection properties.

538 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Example:

CreateNamedSelection('selection1')
s = GetSelection('selection1')
s.selectionType = s.CumulativeQuerySelection
s.histogramType = s.HistogramMatches
s.combineRule = s.CombineOr
s.variables = ('temperature',)
s.variableMins = (2.9,)
s.variableMaxs = (3.1,)
UpdateNamedSelection('selection1', s)

2.4.113 GetSelectionList

Synopsis:

GetSelectionList() -> SelectionList object

return type [SelectionList object] The GetSelectionList function returns a SelectionList object.

Description:

VisIt maintains a list of named selections, which are sets of cells that are used to restrict the cells pro-
cessed by other plots. This function returns a list of the selections that VisIt knows about, including their
properties.

Example:

s = GetSelectionList()

2.4.114 GetSelectionSummary

Synopsis:

GetSelectionSummary(name) -> SelectionSummary object

name [string] The name of the selection whose summary we want to retrieve.

return type [SelectionSummary object] The GetSelectionSummary function returns a SelectionSummary object.

Description:

Named selections have both properties, which describe how the selection is defined, and a summary that
desribes the data that was processed while creating the selection. The selection summary object contains
some statistics about the selection such as how many cells it contains and histograms of the various
variables that were used in creating the selection.

Example:

print GetSelectionSummary('selection1')

2.4.115 GetTimeSliders

Synopsis:

2.4. Functions 539



VisIt User Manual Documentation, Release 3.1

GetTimeSliders() -> tuple of strings

return type [tuple of strings] GetTimeSliders returns a tuple of strings.

Description:

The GetTimeSliders function returns a tuple of strings containing the names of each of the available
time sliders. The list of time sliders contains the names of any open time-varying database, all database
correlations, and the keyframing time slider if VisIt is in keyframing mode.

Example:

#% visit -cli
path = "/usr/gapps/visit/data/"
dbs = (path + "/dbA00.pdb", path + "dbB00.pdb", path + "dbC00.pdb")
for db in dbs:
OpenDatabase(db)
AddPlot("FilledBoundary", "material(mesh)")
DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
print "The list of time sliders is: ", GetTimeSliders()

2.4.116 GetUltraScript

Synopsis:

GetUltraScript() -> string

return type [string] The GetUltraScript function returns a filename.

Description:

Return the name of the file in use by the LoadUltra function. Normal users do not need to use this function.

2.4.117 GetView2D

Synopsis:

GetView2D() -> View2DAttributes object

return type [View2DAttributes object] Object that represents the 2D view information.

Description:

The GetView functions return ViewAttributes objects which describe the current camera location. The
GetView2D function should be called if the active visualization window contains 2D plots.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Change the view interactively using the mouse.
v0 = GetView3D()
# Change the view again using the mouse
v1 = GetView3D()

(continues on next page)

540 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

print v0
for i in range(0,20):
t = float(i) / 19.
v2 = (1. - t) * v1 + t * v0
SetView3D(v2) # Animate the view back to the first view.

2.4.118 GetView3D

Synopsis:

GetView3D() -> View3DAttributes object

return type [View3DAttributes object] Object that represents the 3D view information.

Description:

The GetView functions return ViewAttributes objects which describe the current camera location. The
GetView3D function should be called to get the view if the active visualization window contains 3D
plots.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Change the view interactively using the mouse.
v0 = GetView3D()
# Change the view again using the mouse
v1 = GetView3D()
print v0
for i in range(0,20):
t = float(i) / 19.
v2 = (1. - t) * v1 + t * v0
SetView3D(v2) # Animate the view back to the first view.

2.4.119 GetViewAxisArray

Synopsis:

GetViewAxisArray() -> ViewAxisArrayAttributes object

return type [ViewAxisArrayAttributes object] Object that represents the AxisArray view information.

Description:

The GetView functions return ViewAttributes objects which describe the current camera location. The
GetViewAxisArray function should be called if the active visualization window contains axis-array plots.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()

(continues on next page)

2.4. Functions 541



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

# Change the view interactively using the mouse.
v0 = GetView3D()
# Change the view again using the mouse
v1 = GetView3D()
print v0
for i in range(0,20):
t = float(i) / 19.
v2 = (1. - t) * v1 + t * v0
SetView3D(v2) # Animate the view back to the first view.

2.4.120 GetViewCurve

Synopsis:

GetViewCurve() -> ViewCurveAttributes object

return type [ViewCurveAttributes object] Object that represents the curve view information.

Description:

The GetView functions return ViewAttributes objects which describe the current camera location. The
GetViewCurve function should be called if the active visualization window contains 1D curve plots.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Change the view interactively using the mouse.
v0 = GetView3D()
# Change the view again using the mouse
v1 = GetView3D()
print v0
for i in range(0,20):
t = float(i) / 19.
v2 = (1. - t) * v1 + t * v0
SetView3D(v2) # Animate the view back to the first view.

2.4.121 GetWindowInformation

Synopsis:

GetWindowInformation() -> WindowInformation object

return type [WindowInformation object] The GetWindowInformation object returns a WindowInformation object.

Description:

The GetWindowInformation object returns a WindowInformation object that contains information about
the active visualization window. The WindowInformation object contains the name of the active source,
the active time slider index, the list of available time sliders and their current states, as well as certain
window flags that determine whether a window’s view is locked, etc. Use the WindowInformation object
if you need to query any of these types of information in your script to influence how it behaves.

Example:

542 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

path = "/usr/gapps/visit/data/"
dbs = (path + "dbA00.pdb", path + "dbB00.pdb", path + "dbC00.pdb")
for db in dbs:
OpenDatabase(db)
AddPlot("FilledBoundary", "material(mesh)")
DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
# Get the list of available time sliders.
tsList = GetWindowInformation().timeSliders
# Iterate through "time" on each time slider.
for ts in tsList:
SetActiveTimeSlider(ts)
for state in range(TimeSliderGetNStates()):
SetTimeSliderState(state)
# Print the window information to examine the other attributes
# that are available.
GetWindowInformation()

2.4.122 HideActivePlots

Synopsis:

HideActivePlots() -> integer

return type [CLI_return_t] The HideActivePlots function returns an integer value of 1 for success and 0 for failure.

Description:

The HideActivePlots function tells the viewer to hide the active plots in the active visualization window.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddPlot("Mesh", "mesh1")
DrawPlots()
SetActivePlots(0)
HideActivePlots()
AddPlot("FilledBoundary", "mat1")
DrawPlots()

2.4.123 HideToolbars

Synopsis:

HideToolbars() -> integer
HideToolbars(allWindows) -> integer

allWindows [integer] An optional integer value that tells VisIt to hide the toolbars for all windows when it is non-zero.

return type [CLI_return_t] The HideToolbars function returns 1 on success and 0 on failure.

Description:

The HideToolbars function tells VisIt to hide the toolbars for the active visualization window or for all
visualization windows when the optional allWindows argument is provided and is set to a non-zero value.

2.4. Functions 543



VisIt User Manual Documentation, Release 3.1

Example:

#% visit -cli
SetWindowLayout(4)
HideToolbars()
ShowToolbars()
# Hide the toolbars for all windows.
HideToolbars(1)

2.4.124 IconifyAllWindows

Synopsis:

IconifyAllWindows()

Description:

The IconifyAllWindows function minimizes all of the hidden visualization windows to get them out of
the way.

Example:

#% visit -cli
SetWindowLayout(4) # Have 4 windows
IconifyAllWindows()
DeIconifyAllWindows()

2.4.125 InitializeNamedSelectionVariables

Synopsis:

InitializeNamedSelectionVariables(name) -> integer

name [string] The name of the named selection to initialize.

return type [CLI_return_t] The InitializeNamedSelectionVariables function returns 1 on success and 0 on failure.

Description:

Complex thresholds are often defined using the Parallel Coordinates plot or the Threshold operator. This
function can copy variable ranges from compatible plots and operators into the specified named selection’s
properties. This can be useful when setting up Cumulative Query selections.

Example:

InitializeNamedSelectionVariables('selection1')

2.4.126 InvertBackgroundColor

Synopsis:

InvertBackgroundColor()

Description:

544 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

The InvertBackgroundColor function swaps the background and foreground colors in the active visualiza-
tion window. This function is a cheap alternative to setting the foreground and background colors though
the AnnotationAttributes in that it is a simple no-argument function call. It is not adequate to set new col-
ors for the background and foreground, but in the event where the two colors can be exchanged favorably,
it is a good function to use. An example of when this function is used is after the creation of a Volume
plot.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Volume", "u")
DrawPlots()
InvertBackgroundColor()

2.4.127 Launch

Synopsis:

Launch() -> integer
Launch(program) -> integer

program [string] The complete path as a string to the top level ‘visit’ script.

return type [CLI_return_t] The Launch functions return 1 for success and 0 for failure

Description:

The Launch function is used to launch VisIt’s viewer when the VisIt module is imported into a stand-
alone Python interpreter. The Launch function has no effect when a viewer already exists. The difference
between Launch and LaunchNowin is that LaunchNowin prevents the viewer from ever creating onscreen
visualization windows. The LaunchNowin function is primarily used in Python scripts that want to gen-
erate visualizations using VisIt without the use of a display such as when generating movies.

Example:

import visit
import visit
visit.AddArgument("-nowin")
visit.Launch()

2.4.128 LaunchNowin

Synopsis:

LaunchNowin() -> integer
LaunchNowin(program) -> integer

program [string] The complete path as a string to the top level ‘visit’ script.

return type [CLI_return_t] The LaunchNowin functions return 1 for success and 0 for failure

Description:

The Launch function is used to launch VisIt’s viewer when the VisIt module is imported into a stand-
alone Python interpreter. The Launch function has no effect when a viewer already exists. The difference
between Launch and LaunchNowin is that LaunchNowin prevents the viewer from ever creating onscreen

2.4. Functions 545



VisIt User Manual Documentation, Release 3.1

visualization windows. The LaunchNowin function is primarily used in Python scripts that want to gen-
erate visualizations using VisIt without the use of a display such as when generating movies.

Example:

import visit
visit.AddArgument("-geometry")
visit.AddArgument("1024x1024")
visit.LaunchNowin()

2.4.129 Lineout

Synopsis:

Lineout(start, end) -> integer
Lineout(start, end, variables) -> integer
Lineout(start, end, samples) -> integer
Lineout(start, end, variables, samples) -> integer
Lineout(keywordarg1=arg1, keywrdarg2=arg2,...,keywordargn=argn ) -> integer

start [tuple of doubles] A 2 or 3 item tuple containing the coordinates of the starting point. keyword arg - start_point

end [tuple of doubles] A 2 or 3 item tuple containing the coordinates of the end point. keyword arg - end_point

variables [tuple of strings] A tuple of strings containing the names of the variables for which lineouts should be
created. keyword arg - vars

samples [integer] An integer value containing the number of sample points along the lineout. keyword arg -
num_samples keyword arg - use_sampling

return type [CLI_return_t] The Lineout function returns 1 on success and 0 on failure.

Description:

The Lineout function extracts data along a given line segment and creates curves from it in a new visu-
alization window. The start argument is a tuple of numbers that make up the coordinate of the lineout’s
starting location. The end argument is a tuple of numbers that make up the coordinate of the lineout’s end-
ing location. The optional variables argument is a tuple of strings that contain the variables that should
be sampled to create lineouts. The optional samples argument is used to determine the number of sample
points that should be taken along the specified line. If the samples argument is not provided then VisIt will
sample the mesh where it intersects the specified line instead of using the number of samples to compute
a list of points to sample.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "ascii")
DrawPlots()
Lineout((0.2,0.2), (0.8,1.2))
Lineout((0.2,1.2), (0.8,0.2), ("default", "d", "u"))
Lineout((0.6, 0.1), (0.6, 1.2), 100)
Lineout(start_point=(0.6, 0.1), end_point=(0.6, 1.2), use_sampling=1, num_samples=100)

2.4.130 ListDomains

Synopsis:

546 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

ListDomains()

Description:

ListDomains prints a list of the domains for the active plots, which indicates which domains are on and
off. The list functions are used mostly to print the results of restricting the SIL.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
ListMaterials() # List the materials in the SIL restriction

2.4.131 ListMaterials

Synopsis:

ListMaterials()

Description:

ListMaterials prints a list of the materials for the active plots, which indicates which materials are on and
off. The list functions are used mostly to print the results of restricting the SIL.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
ListMaterials() # List the materials in the SIL restriction

2.4.132 ListPlots

Synopsis:

ListPlots() -> string
ListPlots(stringOnly) -> string

return type [string] The ListPlots function returns a string containing a representation of the. plot list.

Description:

Sometimes it is difficult to remember the order of the plots in the active visualization window’s plot list.
The ListPlots function prints the contents of the plot list to the output console and returns that string as
well.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "u")

(continues on next page)

2.4. Functions 547



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

AddPlot("Contour", "d")
DrawPlots()
ListPlots()

2.4.133 LoadAttribute

Synopsis:

LoadAttribute(filename, object)

filename [string] The name of the XML file to load the attribute from or save the attribute to.

object The object to load or save.

Description:

The LoadAttribute and SaveAttribute methods save a single attribute, such as a current plot or operator
python object, to a standalone XML file. Note that LoadAttribute requires that the target attribute already
be created by other means; it fills, but does not create, the attribute.

Example:

#% visit -cli
a = MeshPlotAttributes()
SaveAttribute('mesh.xml', a)
b = MeshPlotAttributes()
LoadAttribute('mesh.xml', b)

2.4.134 LoadNamedSelection

Synopsis:

LoadNamedSelection(name) -> integer
LoadNamedSelection(name, engineName) -> integer
LoadNamedSelection(name, engineName, simName) -> integer

name [string] The name of a named selection.

engineName [string] (optional) The name of the engine where the selection was saved.

simName [string] (optional) The name of the simulation that saved the selection.

return type [CLI_return_t] The LoadNamedSelection function returns 1 for success and 0 for failure.

Description:

Named Selections allow you to select a group of elements (or particles). One typically creates a named
selection from a group of elements and then later applies the named selection to another plot (thus reducing
the set of elements displayed to the ones from when the named selection was created). Named selections
only last for the current session. However, if you find a named selection that is particularly interesting,
you can save it to a file for use in later sessions. You would use LoadNamedSelection to do the loading.

Example:

548 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
LoadNamedSelection("selection_from_previous_session")
ApplyNamedSelection("selection_from_previous_session")

2.4.135 LoadUltra

Synopsis:

LoadUltra()

Description:

LoadUltra launches the Ultra command parser, allowing you to enter Ultra commands and have VisIt
process them. A new command prompt is presented, and only Ultra commands will be allowed until
‘end’ or ‘quit’ is entered, at which time, you will be returned to VisIt’s cli prompt. For information on
currently supported commands, type ‘help’ at the Ultra prompt Please note that filenames/paths must be
surrounded by quotes, unlike with Ultra.

Example:

#% visit -cli
>>> LoadUltra()
U-> rd "../../data/distribution.ultra"
U-> select 1
U-> end
>>>

2.4.136 LocalNameSpace

Synopsis:

LocalNameSpace()

Description:

The LocalNameSpace function tells the VisIt module to add plugin functions to the global namespace
when the VisIt module is imported into a stand-alone Python interpreter. This is the default behavior
when using VisIt’s cli program.

Example:

import visit
visit.LocalNameSpace()
visit.Launch()

2.4.137 LongFileName

Synopsis:

LongFileName(filename) -> string

2.4. Functions 549



VisIt User Manual Documentation, Release 3.1

filename [string] A string object containing the short filename to expand.

return type [string] The LongFileName function returns a string. This function returns the input argument unless
you are on the Windows platform.

Description:

On Windows, filenames can have two different sizes: traditional 8.3 format, and long format. The long
format, which lets you name files whatever you want, is implemented using the traditional 8.3 format un-
der the covers. Sometimes filenames are given to VisIt in the traditional 8.3 format and must be expanded
to long format before it is possible to open them. If you ever find that you need to do this conversion, such
as when you process command line arguments, then you can use the LongFileName function to return the
longer filename.

2.4.138 MoveAndResizeWindow

Synopsis:

MoveAndResizeWindow(win, x, y, w, h) -> integer

win [integer] The integer id of the window to be moved [1..16].

x [integer] The new integer x location for the window being moved.

y [integer] The new integer y location for the window being moved.

w [integer] The new integer width for the window being moved.

h [integer] The new integer height for the window being moved.

return type [CLI_return_t] MoveAndResizeWindow returns 1 on success and 0 on failure.

Description:

MoveAndResizeWindow moves and resizes a visualization window.

Example:

#% visit -cli
MoveAndResizeWindow(1, 100, 100, 300, 600)

2.4.139 MovePlotDatabaseKeyframe

Synopsis:

MovePlotDatabaseKeyframe(index, oldFrame, newFrame)

index [integer] An integer representing the index of the plot in the plot list.

oldFrame [integer] An integer that is thhe old animation frame where the keyframe is located.

newFrame [integer] An integer that is the new animation frame where the keyframe will be moved.

Description:

MovePlotDatabaseKeyframe moves a database keyframe for a specified plot to a new animation frame,
which changes the list of database time states that are used for each animation frame when VisIt is in
keyframing mode.

Example:

550 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
AddPlot("Pseudocolor", "pressure")
SetPlotFrameRange(0, 0, nFrames-1)
SetPlotDatabaseKeyframe(0, 0, 70)
SetPlotDatabaseKeyframe(0, nFrames/2, 35)
SetPlotDatabaseKeyframe(0, nFrames-1, 0)
DrawPlots()
for state in list(range(TimeSliderGetNStates())) + [0]:
SetTimeSliderState(state)
MovePlotDatabaseKeyframe(0, nFrames/2, nFrames/4)
for state in list(range(TimeSliderGetNStates())) + [0]:
SetTimeSliderState(state)

2.4.140 MovePlotKeyframe

Synopsis:

MovePlotKeyframe(index, oldFrame, newFrame)

index [integer] An integer representing the index of the plof in the plot list.

oldFrame [integer] An integer that is the old animation frame where the keyframe is located.

newFrame [integer] An integer that is the new animation frame where the keyframe will be moved.

Description:

MovePlotKeyframe moves a keyframe for a specified plot to a new animation frame, which changes the
plot attributes that are used for each animation frame when VisIt is in keyframing mode.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Contour", "hgslice")
DrawPlots()
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
SetKeyframeAttributes(k)
SetPlotFrameRange(0, 0, nFrames-1)
c = ContourAttributes()
c.contourNLevels = 5
SetPlotOptions(c)
SetTimeSliderState(nFrames/2)
c.contourNLevels = 10
SetPlotOptions(c)
c.contourLevels = 25
SetTimeSliderState(nFrames-1)
SetPlotOptions(c)
for state in range(TimeSliderGetNStates()):
SetTimeSliderState(state)
SaveWindow()

(continues on next page)

2.4. Functions 551



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

temp = nFrames-2
MovePlotKeyframe(0, nFrames/2, temp)
MovePlotKeyframe(0, nFrames-1, nFrames/2)
MovePlotKeyframe(0, temp, nFrames-1)
for state in range(TimeSliderGetNStates()):
SetTimeSliderState(state)
SaveWindow()

2.4.141 MovePlotOrderTowardFirst

Synopsis:

MovePlotOrderTowardFirst(index) -> integer

index [integer] The integer index of the plot that will be moved within the plot list.

return type [CLI_return_t] The MovePlotOrderTowardFirst function returns 1 on success and 0 on failure.

Description:

This function shifts the specified plot one slot towards the start of the plot list.

Example:

MovePlotOrderTowardFirst(2)

2.4.142 MovePlotOrderTowardLast

Synopsis:

MovePlotOrderTowardLast(index) -> integer

index [integer] The integer index of the plot that will be moved within the plot list.

return type [CLI_return_t] The MovePlotOrderTowardLast function returns 1 on success and 0 on failure.

Description:

This function shifts the specified plot one slot towards the end of the plot list.

Example:

MovePlotOrderTowardLast(0)

2.4.143 MoveViewKeyframe

Synopsis:

MoveViewKeyframe(oldFrame, newFrame) -> integer

oldFrame [integer] An integer that is the old animation frame where the keyframe is located.

newFrame [integer] An integer that is the new animation frame where the keyframe will be moved.

return type [CLI_return_t] MoveViewKeyframe returns 1 on success and 0 on failure.

552 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Description:

MoveViewKeyframe moves a view keyframe to a new animation frame, which changes the view that is
used for each animation frame when VisIt is in keyframing mode.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Contour", "hardyglobal")
DrawPlots()
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
SetKeyframeAttributes(k)
SetViewKeyframe()
SetTimeSliderState(nFrames/2)
v = GetView3d()
v.viewNormal = (-0.616518, 0.676972, 0.402014)
v.viewUp = (0.49808, 0.730785, -0.466764)
SetViewKeyframe()
SetTimeSliderState(0)
# Move the view keyframe to the last animation frame.
MoveViewKeyframe(nFrames/2, nFrames-1)

2.4.144 MoveWindow

Synopsis:

MoveWindow(win, x, y) -> integer

win [integer] The integer id of the window to be moved [1..16].

x [integer] The new integer x location for the window being moved.

y [integer] The new integer y location for the window being moved.

return type [CLI_return_t] MoveWindow returns 1 on success and 0 on failure.

Description:

MoveWindow moves a visualization window.

Example:

#% visit -cli
MoveWindow(1, 100, 100)

2.4.145 NodePick

Synopsis:

NodePick(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary

coord [tuple] A tuple of doubles containing the spatial coordinate (x, y, z).

x [integer] An integer containing the screen X location (in pixels) offset from the left side of the visualization window.

y [integer] An integer containing the screen Y location (in pixels) offset from the bottom of the visualization window.

2.4. Functions 553



VisIt User Manual Documentation, Release 3.1

vars (optional) [tuple] A tuple of strings with the variable names for which to return results. Default is the currently
plotted variable.

do_time (optional) [integer] An integer indicating whether to do a time pick. 1 -> do a time pick, 0 (default) -> do
not do a time pick.

start_time (optional) [integer] An integer with the starting frame index. Default is 0.

end_time (optional) [integer] An integer with the ending frame index. Default is num_timestates-1.

stride (optional) [integer] An integer with the stride for advancing in time. Default is 1.

preserve_coord (optional) [integer] An integer indicating whether to pick an element or a coordinate. 0 -> used
picked element (default), 1-> used picked coordinate. Note: enabling this option may substantially slow down
the speed with which the query can be performed.

curve_plot_type (optional) [integer] An integer indicating whether the output should be on a single axis or with
multiple axes. 0 -> single Y axis (default), 1 -> multiple Y Axes.

return type [dictionary] NodePick returns a python dictionary of the pick results, unless do_time is specified, then a
time curve is created in a new window.

Description:

The NodePick function prints pick information for the node closest to the specified point. The point can
be specified as a 2D or 3D point in world space or it can be specified as a pixel location in screen space.
If the point is specified as a pixel location then VisIt finds the node closest to a ray that is projected into
the mesh. Once the nodal pick has been calculated, you can use the GetPickOutput function to retrieve
the printed pick output as a string which can be used for other purposes.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
# Perform node pick in screen space
pick_out = NodePick(x=200,y=200)
# Perform node pick in world space.
pick_out = NodePick(coord=(-5.0, 5.0, 0))

2.4.146 NumColorTableNames

Synopsis:

NumColorTableNames() -> integer

return type [CLI_return_t] The NumColorTableNames function return an integer.

Description:

The NumColorTableNames function returns the number of color tables that have been defined.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
p = PseudocolorAttributes()
p.colorTableName = "default"

(continues on next page)

554 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

SetPlotOptions(p)
DrawPlots()
print "There are %d color tables." % NumColorTableNames()
for ct in ColorTableNames():
SetActiveContinuousColorTable(ct)
SaveWindow()

2.4.147 NumOperatorPlugins

Synopsis:

NumOperatorPlugins() -> integer

return type [CLI_return_t] The NumOperatorPlugins function returns an integer.

Description:

The NumOperatorPlugins function returns the number of available operator plugins.

Example:

#% visit -cli
print "The number of operator plugins is: ", NumOperatorPlugins()
print "The names of the plugins are: ", OperatorPlugins()

2.4.148 NumPlotPlugins

Synopsis:

NumPlotPlugins() -> integer

return type [CLI_return_t] The NumPlotPlugins function returns an integer.

Description:

The NumPlotPlugins function returns the number of available plot plugins.

Example:

#% visit -cli
print "The number of plot plugins is: ", NumPlotPlugins()
print "The names of the plugins are: ", PlotPlugins()

2.4.149 OpenComputeEngine

Synopsis:

OpenComputeEngine() -> integer
OpenComputeEngine(hostName) -> integer
OpenComputeEngine(hostName, simulation) -> integer
OpenComputeEngine(hostName, args) -> integer
OpenComputeEngine(MachineProfile) -> integer

hostName [string] The name of the computer on which to start the engine.

2.4. Functions 555



VisIt User Manual Documentation, Release 3.1

args [tuple] Optional tuple of command line arguments for the engine. Alternative arguments - MachineProfile object
to load with OpenComputeEngine call

return type [CLI_return_t] The OpenComputeEngine function returns an integer value of 1 for success and 0 for
failure.

Description:

The OpenComputeEngine function is used to explicitly open a compute engine with certain properties.
When a compute engine is opened implicitly, the viewer relies on sets of attributes called host profiles.
Host profiles determine how compute engines are launched. This allows compute engines to be easily
launched in parallel. Since the VisIt Python Interface does not expose VisIt’s host profiles, it provides
the OpenComputeEngine function to allow users to launch compute engines. The OpenComputeEngine
function must be called before opening a database in order to prevent any latent host profiles from taking
precedence.

Example:

#% visit -cli
# Launch parallel compute engine remotely.
args = ("-np", "16", "-nn", "4")
OpenComputeEngine("thunder", args)
OpenDatabase("thunder:/usr/gapps/visit/data/multi_ucd3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()

2.4.150 OpenDatabase

Synopsis:

OpenDatabase(databaseName) -> integer
OpenDatabase(databaseName, timeIndex) -> integer
OpenDatabase(databaseName, timeIndex, dbPluginName) -> integer

databaseName [string] The name of the database to open.

timeIndex [integer] This is an optional integer argument indicating the time index at which to open the database. If
it is not specified, a time index of zero is assumed.

dbPluginIndex [string] An optional string containing the name of the plugin to use. Note that this string must
also include the plugin’s version number (with few exceptions, almost all plugins’ version numbers are 1.0).
Note also that you must capitalize the spelling identically to what the plugin’s GetName() method returns. For
example, “XYZ_1.0” is the string you would use for the XYZ plugin.

return type [CLI_return_t] The OpenDatabase function returns an integer value of 1 for success and 0 for failure.

Description:

The OpenDatabase function is one of the most important functions in the VisIt Python Interface because
it opens a database so it can be plotted. The databaseName argument is a string containing the full name
of the database to be opened. The database name is of the form: computer:/path/filename. The computer
part of the filename can be omitted if the database to be opened resides on the local computer.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
OpenDatabase("mcr:/usr/gapps/visit/data/multi_ucd3d.silo")

(continues on next page)

556 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

OpenDatabase("file.visit")
OpenDatabase("file.visit", 4)
OpenDatabase("mcr:/usr/gapps/visit/data/multi_ucd3d.silo",0,"Silo_1.0")

2.4.151 OpenMDServer

Synopsis:

OpenMDServer() -> integer
OpenMDServer(host) -> integer
OpenMDServer(host, args) -> integer
OpenMDServer(MachineProfile) -> integer

host [string] The optional host argument determines the host on which the metadata server is to be launched. If this
argument is not provided, “localhost” is assumed.

args [tuple] A tuple of strings containing command line flags for the metadata server.

Argument Description
-debug # The -debug argument allows you to specify a debug level.
-dir visitdir The -dir argument allows you to specify where VisIt is.

MachineProfile [MachineProfile object] MachineProfile object to load with OpenMDServer call

return type [CLI_return_t] The OpenMDServer function returns 1 on success and 0 on failure.

Description:

The OpenMDServer explicitly launches a metadata server on a specified host. This allows you to provide
command line options that influence how the metadata server will run. range [1,5] that VisIt uses to
write debug logs to disk. located on a remote computer. This allows you to successfully connect to a
remote computer in the absence of host profiles. It also allows you to debug VisIt in distributed mode.
-fallback_format <format> The -fallback_format argument allows you to specify the database plugin that
will be used to open files if all other guessing failed. This is useful when the files that you want to open do
not have file extensions. -assume_format <format> The -assume_format argument allows you to specify
the database plugin that will be used FIRST when attempting to open files. This is useful when the files
that you want to open have a file extension which may match multiple file format readers.

Example:

-assume_format PDB
% visit -cli
args = ("-dir", "/my/private/visit/version/", "-assume_format", "PDB", "-debug", "4")
# Open a metadata server before the call to OpenDatabase so we
# can launch it how we want.
OpenMDServer("thunder", args)
OpenDatabase("thunder:/usr/gapps/visit/data/allinone00.pdb")
# Open a metadata server on localhost too.
OpenMDServer()

2.4.152 OperatorPlugins

Synopsis:

2.4. Functions 557



VisIt User Manual Documentation, Release 3.1

OperatorPlugins() -> tuple of strings

return type [tuple of strings] The OperatorPlugins function returns a tuple of strings.

Description:

The OperatorPlugins function returns a tuple of strings that contain the names of the loaded operator
plugins. This can be useful for the creation of scripts that alter their behavior based on the available
operator plugins.

Example:

#% visit -cli
for plugin in OperatorPlugins():
print "The %s operator plugin is loaded." % plugin

2.4.153 OverlayDatabase

Synopsis:

OverlayDatabase(databaseName) -> integer
OverlayDatabase(databaseName, state) -> integer

databaseName [string] The name of the new plot database.

state The time state at which to open the database.

return type [CLI_return_t] The OverlayDatabase function returns an integer value of 1 for success and 0 for failure.

Description:

VisIt has the concept of overlaying plots which, in the nutshell, means that the entire plot list is copied
and a new set of plots with exactly the same attributes but a different database is appended to the plot list
of the active window. The OverlayDatabase function allows the VisIt Python Interface to overlay plots.
OverlayDatabase takes a single string argument which contains the name of the database. After calling
the OverlayDatabase function, the plot list is larger and contains plots of the specified overlay database.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
OverlayDatabase("riptide:/usr/gapps/visit/data/curv3d.silo")

2.4.154 PickByGlobalNode

Synopsis:

PickByGlobalNode(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary

element [integer] An integer with the global node id.

vars (optional) [tuple] A tuple of strings with the variable names for which to return results. Default is the currently
plotted variable.

do_time (optional) [integer] An integer indicating whether to do a time pick. 1 -> do a time pick, 0 (default) -> do
not do a time pick.

558 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

start_time (optional) [integer] An integer with the starting frame index. Default is 0.

end_time (optional) [integer] An integer with the ending frame index. Default is num_timestates-1.

stride (optional) [integer] An integer with the stride for advancing in time. Default is 1.

preserve_coord (optional) [integer] An integer indicating whether to pick an element or a coordinate. 0 -> used
picked element (default), 1-> used picked coordinate. Note: enabling this option may substantially slow down
the speed with which the query can be performed.

curve_plot_type (optional) [integer] An integer indicating whether the output should be on a single axis or with
multiple axes. 0 -> single Y axis (default), 1 -> multiple Y Axes.

return type [dictionary] PickByGlobalNode returns a python dictionary of pick results.

Description:

The PickByGlobalNode function tells VisIt to perform pick using a specific global node index for the
entire problem. Some meshes are broken up into smaller “domains” and then these smaller domains can
employ a global indexing scheme to make it appear as though the mesh was still one large mesh. Not
all meshes that have been decomposed into domains provide sufficient information to allow global node
indexing. You can use the GetPickOutput function to retrieve a string containing the pick information
once you’ve called PickByGlobalNode.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/global_node.silo")
AddPlot("Pseudocolor", "dist")
DrawPlots()
# Pick on global node 236827
pick_out = PickByGlobalNode(element=246827)
# examine output
print 'value of dist at global node 246827: %g' % pick_out['dist']
print 'local domain/node: %d/%d' % (pick_out['domain_id'], pick_out['node_id'])
# get last pick output as string
print 'Last pick = ', GetPickOutput()

2.4.155 PickByGlobalZone

Synopsis:

PickByGlobalZone(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary

element [integer] An integer with the global zone id.

vars (optional) [tuple] A tuple of strings with the variable names for which to return results. Default is the currently
plotted variable.

do_time (optional) [integer] An integer indicating whether to do a time pick. 1 -> do a time pick, 0 (default) -> do
not do a time pick.

start_time (optional) [integer] An integer with the starting frame index. Default is 0.

end_time (optional) [integer] An integer with the ending frame index. Default is num_timestates-1.

stride (optional) [integer] An integer with the stride for advancing in time. Default is 1.

preserve_coord (optional) [integer] An integer indicating whether to pick an element or a coordinate. 0 -> used
picked element (default), 1-> used picked coordinate. Note: enabling this option may substantially slow down
the speed with which the query can be performed.

2.4. Functions 559



VisIt User Manual Documentation, Release 3.1

curve_plot_type (optional) [integer] An integer indicating whether the output should be on a single axis or with
multiple axes. 0 -> single Y axis (default), 1 -> multiple Y Axes.

return type [dictionary] PickByGlobalZone returns a python dictionary of pick results.

Description:

The PickByGlobalZone function tells VisIt to perform pick using a specific global cell index for the entire
problem. Some meshes are broken up into smaller “domains” and then these smaller domains can employ
a global indexing scheme to make it appear as though the mesh was still one large mesh. Not all meshes
that have been decomposed into domains provide sufficient information to allow global cell indexing. You
can use the GetPickOutput function to retrieve a string containing the pick information once you’ve called
PickByGlobalZone.

Example:

OpenDatabase("/usr/gapps/visit/data/global_node.silo")
AddPlot("Pseudocolor", "p")
DrawPlots()
# Pick on global zone 237394
pick_out = PickByGlobalZone(element=237394)
# examine output
print 'value of p at global zone 237394: %g' % pick_out['p']
print 'local domain/zone: %d/%d' % (pick_out['domain_id'], pick_out['zone_id'])
# get last pick output as string
print 'Last pick = ', GetPickOutput()

2.4.156 PickByNode

Synopsis:

PickByNode(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary

domain [integer] An integer with the domain id.

element [integer] An integer with the node id.

vars (optional) [tuple] A tuple of strings with the variable names for which to return results. Default is the currently
plotted variable.

do_time (optional) [integer] An integer indicating whether to do a time pick. 1 -> do a time pick, 0 (default) -> do
not do a time pick.

start_time (optional) [integer] An integer with the starting frame index. Default is 0.

end_time (optional) [integer] An integer with the ending frame index. Default is num_timestates-1.

stride (optional) [integer] An integer with the stride for advancing in time. Default is 1.

preserve_coord (optional) [integer] An integer indicating whether to pick an element or a coordinate. 0 -> used
picked element (default), 1-> used picked coordinate. Note: enabling this option may substantially slow down
the speed with which the query can be performed.

curve_plot_type (optional) [integer] An integer indicating whether the output should be on a single axis or with
multiple axes. 0 -> single Y axis (default), 1 -> multiple Y Axes. Currently, this is only available when
performing a pick range.

return type [dictionary] PickByNode returns a python dictionary of the pick results, unless do_time is specified, then
a time curve is created in a new window. If the picked variable is zone centered, the variable values are grouped
according to incident zone ids.

560 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Description:

The PickByNode function tells VisIt to perform pick using a specific node index in a given domain. Other
pick by node variants first determine the node that is closest to some user-specified 3D point but the
PickByNode functions cuts out this step and allows you to directly pick on the node of your choice. You
can use the GetPickOutput function to retrieve a string containing the pick information once you’ve called
PickByNode.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_curv2d.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Pick on node 200 in the first domain.
pick_out = PickByNode(element=200, domain=1)
# examine output
print 'value of u at node 200: %g' % pick_out['u']
# Pick on node 100 in domain 5 and return information for two additional
variables.
pick_out = PickByNode(domain=5, element=100, vars=("u", "v", "d"))
# examine output
print 'incident zones for node 100: ', pick_out['incident_zones']
print 'value of d at incident zone %d: %g' % (pick_out['incident_zones'][0], pick_out[
→˓'d'][str(pick_out['incident_zones'][0])])
# print results formatted as string
print "Last pick = ", GetPickOutput()

2.4.157 PickByNodeLabel

Synopsis:

PickByNodeLabel(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary

element_label [string] An string with the label of the node to pick.

vars (optional) [tuple] A tuple of strings with the variable names for which to return results. Default is the currently
plotted variable.

do_time (optional) [integer] An integer indicating whether to do a time pick. 1 -> do a time pick, 0 (default) -> do
not do a time pick.

start_time (optional) [integer] An integer with the starting frame index. Default is 0.

end_time (optional) [integer] An integer with the ending frame index. Default is num_timestates-1.

stride (optional) [integer] An integer with the stride for advancing in time. Default is 1.

preserve_coord (optional) [integer] An integer indicating whether to pick an element or a coordinate. 0 -> used
picked element (default), 1-> used picked coordinate. Note: enabling this option may substantially slow down
the speed with which the query can be performed.

curve_plot_type (optional) [integer] An integer indicating whether the output should be on a single axis or with
multiple axes. 0 -> single Y axis (default), 1 -> multiple Y Axes.

return type [dictionary] PickByNodeLabel returns a python dictionary of the pick results, unless do_time is specified,
then a time curve is created in a new window. If the picked variable is node centered, the variable values are
grouped according to incident node ids.

Description:

2.4. Functions 561



VisIt User Manual Documentation, Release 3.1

The PickByNodeLabel function tells VisIt to perform pick using a specific cell label. Other pick by zone
variants first determine the cell that contains some user-specified 3D point but the PickByZone functions
cuts out this step and allows you to directly pick on the cell of your choice. You can use the GetPickOutput
function to retrieve a string containing the pick information once you’ve called PickByZone.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_curv2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Pick on node labeled "node 4".
pick_out = PickByNodeLabel(element_label="node 4")
# Pick on cell labeled "node 4" using a python dictionary.
opts = {}
opts["element_label"] ="node 4"
pick_out = PickByNodeLabel(opts)
# examine output
print 'value of d at "node 4": %g' % pick_out['d']
# Pick on node labeled "node 12" return information for two additional
variables.
pick_out = PickByNodeLabel(element_label="node 12", vars=("d", "u", "v"))
# examine output
print 'incident nodes for "node 12": ', pick_out['incident_nodes']
print 'values of u at incident node %d: %g' % (pick_out['incident_nodes'][0], pick_
→˓out['u'][str(pick_out['incident_zones'][0])])
# print results formatted as string
print "Last pick = ", GetPickOutput()

2.4.158 PickByZone

Synopsis:

PickByZone(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary

domain [integer] An integer with the domain id.

element [integer] An integer with the zone id.

vars (optional) [tuple] A tuple of strings with the variable names for which to return results. Default is the currently
plotted variable.

do_time (optional) [integer] An integer indicating whether to do a time pick. 1 -> do a time pick, 0 (default) -> do
not do a time pick.

start_time (optional) [integer] An integer with the starting frame index. Default is 0.

end_time (optional) [integer] An integer with the ending frame index. Default is num_timestates-1.

stride (optional) [integer] An integer with the stride for advancing in time. Default is 1.

preserve_coord (optional) [integer] An integer indicating whether to pick an element or a coordinate. 0 -> used
picked element (default), 1-> used picked coordinate. Note: enabling this option may substantially slow down
the speed with which the query can be performed.

curve_plot_type (optional) [integer] An integer indicating whether the output should be on a single axis or with
multiple axes. 0 -> single Y axis (default), 1 -> multiple Y Axes. Currently, this is only available when
performing a pick range.

562 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

return type [dictionary] PickByZone returns a python dictionary of the pick results, unless do_time is specified, then
a time curve is created in a new window. If the picked variable is node centered, the variable values are grouped
according to incident node ids.

Description:

The PickByZone function tells VisIt to perform pick using a specific cell index in a given domain. Other
pick by zone variants first determine the cell that contains some user-specified 3D point but the PickBy-
Zone functions cuts out this step and allows you to directly pick on the cell of your choice. You can
use the GetPickOutput function to retrieve a string containing the pick information once you’ve called
PickByZone.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_curv2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Pick on cell 200 in the second domain.
pick_out = PickByZone(element=200, domain=2)
# examine output
print 'value of d at zone 200: %g' % pick_out['d']
# Pick on cell 100 in domain 5 and return information for two additional
variables.
pick_out = PickByZone(element=100, domain=5, vars=("d", "u", "v"))
# examine output
print 'incident nodes for zone 100: ', pick_out['incident_nodes']
print 'values of u at incident zone %d: %g' % (pick_out['incident_nodes'][0], pick_
→˓out['u'][str(pick_out['incident_zones'][0])])
# print results formatted as string
print "Last pick = ", GetPickOutput()

2.4.159 PickByZoneLabel

Synopsis:

PickByZoneLabel(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary

element_label [string] An string with the label of the zone to pick.

vars (optional) [tuple] A tuple of strings with the variable names for which to return results. Default is the currently
plotted variable.

do_time (optional) [integer] An integer indicating whether to do a time pick. 1 -> do a time pick, 0 (default) -> do
not do a time pick.

start_time (optional) [integer] An integer with the starting frame index. Default is 0.

end_time (optional) [integer] An integer with the ending frame index. Default is num_timestates-1.

stride (optional) [integer] An integer with the stride for advancing in time. Default is 1.

preserve_coord (optional) [integer] An integer indicating whether to pick an element or a coordinate. 0 -> used
picked element (default), 1-> used picked coordinate. Note: enabling this option may substantially slow down
the speed with which the query can be performed.

curve_plot_type (optional) [integer] An integer indicating whether the output should be on a single axis or with
multiple axes. 0 -> single Y axis (default), 1 -> multiple Y Axes.

2.4. Functions 563



VisIt User Manual Documentation, Release 3.1

return type [dictionary] PickByZoneLabel returns a python dictionary of the pick results, unless do_time is specified,
then a time curve is created in a new window. If the picked variable is node centered, the variable values are
grouped according to incident node ids.

Description:

The PickByZoneLabel function tells VisIt to perform pick using a specific cell label. Other pick by zone
variants first determine the cell that contains some user-specified 3D point but the PickByZone functions
cuts out this step and allows you to directly pick on the cell of your choice. You can use the GetPickOutput
function to retrieve a string containing the pick information once you’ve called PickByZone.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_curv2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Pick on cell labeled "brick 4".
pick_out = PickByZoneLabel(element_label="brick 4")
# Pick on cell labeled "brick 4" using a python dictionary.
opts = {}
opts["element_label"] ="brick 4"
pick_out = PickByZoneLabel(opts)
# examine output
print 'value of d at "brick 4": %g' % pick_out['d']
# Pick on cell labeled "shell 12" return information for two additional
variables.
pick_out = PickByZoneLabel(element_label="shell 12", vars=("d", "u", "v"))
# examine output
print 'incident nodes for "shell 12": ', pick_out['incident_nodes']
print 'values of u at incident zone %d: %g' % (pick_out['incident_nodes'][0], pick_
→˓out['u'][str(pick_out['incident_zones'][0])])
# print results formatted as string
print "Last pick = ", GetPickOutput()

2.4.160 PlotPlugins

Synopsis:

PlotPlugins() -> tuple of strings

return type [tuple of strings] The PlotPlugins function returns a tuple of strings.

Description:

The PlotPlugins function returns a tuple of strings that contain the names of the loaded plot plugins. This
can be useful for the creation of scripts that alter their behavior based on the available plot plugins.

Example:

#% visit -cli
for plugin in PluginPlugins():
print "The %s plot plugin is loaded." % plugin

2.4.161 PointPick

Synopsis:

564 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

PointPick(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary

coord [tuple] A tuple of doubles containing the spatial coordinate (x, y, z).

x [integer] An integer containing the screen X location (in pixels) offset from the left side of the visualization window.

y [integer] An integer containing the screen Y location (in pixels) offset from the bottom of the visualization window.

vars (optional) [tuple] A tuple of strings with the variable names for which to return results. Default is the currently
plotted variable.

do_time (optional) [integer] An integer indicating whether to do a time pick. 1 -> do a time pick, 0 (default) -> do
not do a time pick.

start_time (optional) [integer] An integer with the starting frame index. Default is 0.

end_time (optional) [integer] An integer with the ending frame index. Default is num_timestates-1.

stride (optional) [integer] An integer with the stride for advancing in time. Default is 1.

preserve_coord (optional) [integer] An integer indicating whether to pick an element or a coordinate. 0 -> used
picked element (default), 1-> used picked coordinate. Note: enabling this option may substantially slow down
the speed with which the query can be performed.

curve_plot_type (optional) [integer] An integer indicating whether the output should be on a single axis or with
multiple axes. 0 -> single Y axis (default), 1 -> multiple Y Axes.

return type [dictionary] PointPick returns a python dictionary of the pick results, unless do_time is specified, then a
time curve is created in a new window.

Description:

The PointPick function prints pick information for the node closest to the specified point. The point can
be specified as a 2D or 3D point in world space or it can be specified as a pixel location in screen space.
If the point is specified as a pixel location then VisIt finds the node closest to a ray that is projected into
the mesh. Once the nodal pick has been calculated, you can use the GetPickOutput function to retrieve
the printed pick output as a string which can be used for other purposes.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
# Perform node pick in screen space
pick_out = PointPick(x=200,y=200)
# Perform node pick in world space.
pick_out = PointPick(coord=(-5.0, 5.0, 0))

2.4.162 PrintWindow

Synopsis:

PrintWindow() -> integer

return type [CLI_return_t] The PrintWindow function returns an integer value of 1 for success and 0 for failure.

Description:

The PrintWindow function tells the viewer to print the image in the active visualization window using the
current printer settings.

2.4. Functions 565



VisIt User Manual Documentation, Release 3.1

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
AddPlot("Contour", "u")
DrawPlots()
PrintWindow()

2.4.163 PromoteOperator

Synopsis:

PromoteOperator(opIndex) -> integer
PromoteOperator(opIndex, applyToAllPlots) -> integer

opIndex [integer] A zero-based integer corresponding to the operator that should be promoted.

applyToAllPlots [integer] An integer flag that causes all plots in the plot list to be affected when it is non-zero.

return type [CLI_return_t] PromoteOperator returns 1 on success and 0 on failure.

Description:

The PromoteOperator function moves an operator closer to the end of the visualization pipeline. This
allows you to change the order of operators that have been applied to a plot without having to remove
them from the plot. For example, consider moving a Slice to after a Reflect operator when it had been the
other way around. Changing the order of operators can result in vastly different results for a plot. The
opposite function is DemoteOperator.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
AddOperator("Slice")
s = SliceAttributes()
s.project2d = 0
s.originPoint = (0,5,0)
s.originType=s.Point
s.normal = (0,1,0)
s.upAxis = (-1,0,0)
SetOperatorOptions(s)
AddOperator("Reflect")
DrawPlots()
# Now slice after reflect. We'll only get 1 slice plane instead of 2.
PromoteOperator(0)
DrawPlots()

2.4.164 PythonQuery

Synopsis:

PythonQuery(source='python filter source ...') -> integer
PythonQuery(file='path/to/python_filter_script.py') -> integer

source [string] A string containing the source code for a Python Query Filter .

566 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

file [string] A string containing the path to a Python Query Filter script file. Note - Use only one of the ‘source’ or
‘file’ arguments. If both are used the ‘source’ argument overrides ‘file’.

return type [CLI_return_t] The PythonQuery function returns 1 on success and 0 on failure.

Description:

Used to execute a Python Filter Query.

2.4.165 Queries

Synopsis:

Queries() -> tuple of strings

return type [tuple of strings] The Queries function returns a tuple of strings.

Description:

The Queries function returns a tuple of strings that contain the names of all of VisIt’s supported queries.

Example:

#% visit -cli
print "supported queries: ", Queries()

2.4.166 QueriesOverTime

Synopsis:

QueriesOverTime() -> tuple of strings

return type [tuple of strings] Returns a tuple of strings.

Description:

The QueriesOverTime function returns a tuple of strings that contains the names of all of the VisIt queries
that can be executed over time.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allineone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
DrawPlots()
# Execute each of the queries over time on the plots.
for q in QueriesOverTime():
QueryOverTime(q)
You can control timestates used in the query via start_time,
end_time, and stride as follows:
QueryOverTime("Volume", start_time=5, end_time=250, stride=5)
(Defaults used if not specified are 0, nStates, 1)

2.4.167 Query

Synopsis:

2.4. Functions 567



VisIt User Manual Documentation, Release 3.1

Query(name) -> string
Query(name, dict) -> string
Query(name, namedarg1=arg1, namedarg2=arg2, ...) -> string
Query(name) -> double, tuple of double
Query(name, dict) -> double, tuple of double
Query(name, namedarg1=arg1, namedarg2=arg2, ...) -> double, tuple of double
Query(name) -> dictionary
Query(name, dict) -> dictionary
Query(name, namedarg1=arg1, namedarg2=arg2, ...) -> dictionary

name [string] The name of the query to execute.

dict [dictionary] An optional dictionary containing additional query arguments. namedarg1, namedarg2,. . . An op-
tional list of named arguments supplying additional query parameters.

return type [see SetQueryOutputToXXX() functions] The Query function returns either a String (default), Value(s),
or Object. The return type can be customized via calls to SetQueryOutputToXXX(), where ‘XXX’ is ‘String’,
‘Value’, or ‘Object’. For more information on these return types, see ‘GetQueryOutput’.

Description:

The Query function is used to execute any of VisIt’s predefined queries. The list of queries can be found
in theVisIt User’s Manual in the Quantitative Analysis chapter. You can get also get a list of queries using
‘Queries’ function. Since queries can take a wide array of arguments, the Query function takes either a
python dictorary or a list of named arguments specific to the given query. To obtain the possible options
for a given query, use the GetQueryParameters(name) function. If the query accepts additional arguments
beyond its name, this function will return a python dictionary containing the needed variables and their
default values. This can be modified and passed back to the Query method, or named arguments can be
used instead.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
Query("Volume")
Query("MinMax")
Query("MinMax", use_actual_data=1)
hohlraumArgs = GetQueryParameters("Hohlraum Flux")
hohlraumArgs["ray_center"]=(0.5,0.5,0)
hohlraumArgs["vars"]=("a1", "e1")
Query("Hohlraum Flux", hohlraumArgs)

2.4.168 QueryOverTime

Synopsis:

QueryOverTime(name) -> integer
QueryOverTime(name, dict) -> integer
QueryOverTime(name, namedarg1=val1, namedarg2=val2, ...) -> integer

name [string] The name of the query to execute.

dict [dictionary] An optional dictionary containing additional query arguments. namedarg1, namedarg2, . . . An
optional list of named arguments supplying additional query parameters.

return type [CLI_return_t] The QueryOverTime function returns 1 on success and 0 on failure.

568 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Description:

The QueryOverTime function is used to execute any of VisIt’s predefined queries. The list of queries can
be found in the VisIt User’s Manual in the Quantitative Analysis chapter. You can get also get a list of
queries that can be executed over time using ‘QueriesOverTime’ function. Since queries can take a wide
array of arguments, the Query function takes either a python dictorary or a list of named arguments specific
to the given query. To obtain the possible options for a given query, use the GetQueryParameters(name)
function. If the query accepts additional arguments beyond its name, this function will return a python
dictionary containing the needed variables and their default values. This can be modified and passed back
to the QueryOverTime method, or named arguments can be used instead.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
for q in QueriesOverTime():
QueryOverTime(q)
ResetView()

2.4.169 ReOpenDatabase

Synopsis:

ReOpenDatabase(databaseName) -> integer

databaseName [string] The name of the database to open.

return type [CLI_return_t] The ReOpenDatabase function returns an integer value of 1 for success and 0 for failure.

Description:

The ReOpenDatabase function reopens a database that has been opened previously with the OpenDatabase
function. The ReOpenDatabase function is primarily used for regenerating plots whose database has been
rewritten on disk. ReOpenDatabase allows VisIt to access new variables and new time states that have
been added since the database was opened using the OpenDatabase function. Note that ReOpenDatabase
is expensive since it causes all plots that use the specified database to be regenerated. If you want to
ensure that a time-varying database has all of its time states as they are being created by a simulation,
try the CheckForNewStates function instead. The databaseName argument is a string containing the full
name of the database to be opened. The database name is of the form: host:/path/filename. The host part
of the filename can be omitted if the database to be reopened resides on the local computer.

Example:

#% visit -cli
OpenDatabase("edge:/usr/gapps/visit/data/wave*.silo database")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
last = TimeSliderGetNStates()
for state in range(last):
SetTimeSliderState(state)
SaveWindow()
ReOpenDatabase("edge:/usr/gapps/visit/data/wave*.silo database")
for state in range(last, TimeSliderGetNStates()):
SetTimeSliderState(state)
SaveWindow()

2.4. Functions 569



VisIt User Manual Documentation, Release 3.1

2.4.170 ReadHostProfilesFromDirectory

Synopsis:

ReadHostProfilesFromDirectory(directory, clear) -> integer

directory [string] The name of the directory that contains the host profile XML files.

clear [integer] An integer flag indicating whether the host profile list should cleared first.

return type [CLI_return_t] The ReadHostProfilesFromDirectory function returns an integer value of 1 for success
and 0 for failure.

Description:

The ReadHostProfilesFromDirectory provides a way to tell VisIt to load host profiles from the XML files
in a specified directory. This is needed because the machine profile for host profiles contains client/server
options that sometimes cannot be specified via the VisIt command line.

Example:

ReadHostProfilesFromDirectory("/usr/gapps/visit/2.8.2/linux-x86_64/resources/hosts/
→˓llnl", 1)

2.4.171 RecenterView

Synopsis:

RecenterView() -> integer

return type [CLI_return_t] The RecenterView function returns 1 on success and 0 on failure.

Description:

After adding plots to a visualization window or applying operators to those plots, it is sometimes necessary
to recenter the view. When the view is recentered, the orientation does not change but the view is shifted
to make better use of the screen.

Example:

OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
RecenterView()

2.4.172 RedoView

Synopsis:

RedoView() -> integer

return type [CLI_return_t] The RedoView function returns 1 on success and 0 on failure.

Description:

570 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

When the view changes in the visualization window, it puts the old view on a stack of views. VisIt
provides the UndoView function that lets you undo view changes. The RedoView function re-applies any
views that have been undone by the UndoView function.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Subset", "mat1")
DrawPlots()
v = GetView2D()
v.windowCoords = (-2.3,2.4,0.2,4.9)
SetView2D(v)
UndoView()
RedoView()

2.4.173 RedrawWindow

Synopsis:

RedrawWindow() -> integer

return type [CLI_return_t] The RedrawWindow function returns 1 on success and 0 on failure.

Description:

The RedrawWindow function allows a visualization window to redraw itself and then forces the window
to redraw. This function does the opposite of the DisableRedraw function and is used to recover from it.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Contour", "u")
AddPlot("Pseudocolor", "w")
DrawPlots()
DisableRedraw()
AddOperator("Slice")
# Set the slice operator attributes
# Redraw now that the operator attributes are set. This will
# prevent 1 redraw.
RedrawWindow()

2.4.174 RegisterCallback

Synopsis:

RegisterCallback(callbackname, callback) --> integer

callbackname [string] A string object designating the callback that we’re installing. Allowable values are returned
by the GetCallbackNames() function.

callback [python function] A Python function, typically with one argument by which VisIt passes the object that
caused the callback to be called.

return type [CLI_return_t] RegisterCallback returns 1 on success.

2.4. Functions 571



VisIt User Manual Documentation, Release 3.1

Description:

The RegisterCallback function is used to associate a user-defined callback function with the updating of
a state object or execution of a particular rpc

Example:

import visit
def print_sliceatts(atts):
print "SLICEATTS=", atts
visit.RegisterCallback("SliceAttributes", print_sliceatts)

2.4.175 RegisterMacro

Synopsis:

RegisterMacro(name, callable)

name [string] The name of the macro.

callable [python function] A Python function that will be associated with the macro name.

Description:

The RegisterMacro function lets you associate a Python function with a name so when VisIt’s gui calls
down into Python to execute a macro, it ends up executing the registered Python function. Macros let
users define complex new behaviors using Python functions yet still call them simply by clicking a button
within VisIt’s gui. When a new macro function is registered, a message is sent to the gui that adds the
known macros as buttons in the Macros window.

Example:

def SetupMyPlots():
OpenDatabase('noise.silo')
AddPlot('Pseudocolor', 'hardyglobal')
DrawPlots()
RegisterMacro('Setup My Plots', SetupMyPlots)

2.4.176 RemoveAllOperators

Synopsis:

RemoveAllOperators() -> integer
RemoveAllOperators(all) -> integer

all [integer] An optional integer argument that tells the function to ignore the active plots and use all plots in the plot
list if the value of the argument is non-zero.

return type [CLI_return_t] All functions return an integer value of 1 for success and 0 for failure.

Description:

The RemoveAllOperators function removes all operators from the active plots in the active visualization
window. If the all argument is provided and contains a non-zero value, all plots in the active visualization
window are affected. If the value is zero or if the argument is not provided, only the active plots are
affected.

Example:

572 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddOperator("Threshold")
AddOperator("Slice")
AddOperator("SphereSlice")
DrawPlots()
RemoveLastOperator() # Remove SphereSlice
RemoveOperator(0) # Remove Threshold
RemoveAllOperators() # Remove the rest of the operators

2.4.177 RemoveLastOperator

Synopsis:

RemoveLastOperator() -> integer
RemoveLastOperator(all) -> integer

all [integer] An optional integer argument that tells the function to ignore the active plots and use all plots in the plot
list if the value of the argument is non-zero.

return type [CLI_return_t] All functions return an integer value of 1 for success and 0 for failure.

Description:

The RemoveLastOperator function removes the operator that was last applied to the active plots. If the
all argument is provided and contains a non-zero value, all plots in the active visualization window are
affected. If the value is zero or if the argument is not provided, only the active plots are affected.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddOperator("Threshold")
AddOperator("Slice")
AddOperator("SphereSlice")
DrawPlots()
RemoveLastOperator() # Remove SphereSlice
RemoveOperator(0) # Remove Threshold
RemoveAllOperators() # Remove the rest of the operators

2.4.178 RemoveMachineProfile

Synopsis:

RemoveMachineProfile(hostname) -> integer

hostname : string

Description:

Removes machine profile with hostname from HostProfileList

2.4. Functions 573



VisIt User Manual Documentation, Release 3.1

2.4.179 RemoveOperator

Synopsis:

RemoveOperator(index) -> integer
RemoveOperator(index, all) -> integer

all [integer] An optional integer argument that tells the function to ignore the active plots and use all plots in the plot
list if the value of the argument is non-zero.

index [integer] The zero-based integer index into a plot’s operator list that specifies which operator is to be deleted.

return type [CLI_return_t] All functions return an integer value of 1 for success and 0 for failure.

Description:

The RemoveOperator functions allow operators to be removed from plots. If the all argument is provided
and contains a non-zero value, all plots in the active visualization window are affected. If the value is zero
or if the argument is not provided, only the active plots are affected.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddOperator("Threshold")
AddOperator("Slice")
AddOperator("SphereSlice")
DrawPlots()
RemoveLastOperator() # Remove SphereSlice
RemoveOperator(0) # Remove Threshold
RemoveAllOperators() # Remove the rest of the operators

2.4.180 RemovePicks

Synopsis:

RemovePicks()

Description:

The RemovePicks function removes a list of pick points from the active visualization window. Pick points
are the letters that are added to the visualization window where the mouse is clicked when the visualization
window is in pick mode.

Example:

#% visit -cli
# Put the visualization window into pick mode using the popup
# menu and add some pick points (let's say A -> G).
# Clear the pick points.
RemovePicks('A, B, D')

2.4.181 RenamePickLabel

Synopsis:

574 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

RenamePickLabel(oldLabel, newLabel) -> integer

oldLabel [string] A string that is the old pick label to replace. (e.g. ‘A’, ‘B’).

newLabel [string] A string that is the new label to display in place of the old label.

return type [CLI_return_t] The RenamePickLabel function returns 1 on success and 0 on failure.

Description:

The RenamePickLabel function can be used to replace an automatically generated pick label such as ‘A’
with a user-defined string.

Example:

RenamePickLabel('A', 'Point of interest')

2.4.182 ReplaceDatabase

Synopsis:

ReplaceDatabase(databaseName) -> integer
ReplaceDatabase(databaseName, timeState) -> integer

databaseName [string] The name of the new database.

timeState [integer] A zero-based integer containing the time state that should be made active once the database has
been replaced.

return type [CLI_return_t] The ReplaceDatabase function returns an integer value of 1 for success and 0 for failure.

Description:

The ReplaceDatabase function replaces the database in the current plots with a new database. This is one
way of switching timesteps if no “.visit” file was ever created. If two databases have the same variable
name then replace is usually a success. In the case where the new database does not have the desired
variable, the plot with the variable not contained in the new database does not get regenerated with the
new database.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo)
AddPlot("Pseudocolor", "u")
DrawPlots()
ReplaceDatabase("/usr/gapps/visit/data/curv3d.silo")
SaveWindow()
# Replace with a time-varying database and change the time
# state to 17.
ReplaceDatabase("/usr/gapps/visit/data/wave.visit", 17)

2.4.183 ResetLineoutColor

Synopsis:

ResetLineoutColor() -> integer

return type [CLI_return_t] ResetLineoutColor returns 1 on success and 0 on failure.

2.4. Functions 575



VisIt User Manual Documentation, Release 3.1

Description:

Lineouts on VisIt cause reference lines to be drawn over the plot where the lineout was being extracted.
Each reference line uses a different color in a discrete color table. Once the colors in the discrete color
table are used up, the reference lines start using the color from the start of the discrete color table and so
on. ResetLineoutColor forces reference lines to start using the color at the start of the discrete color table
again thus resetting the lineout color.

2.4.184 ResetOperatorOptions

Synopsis:

ResetOperatorOptions(operatorType) -> integer
ResetOperatorOptions(operatorType, all) -> integer

operatorType [string] The name of a valid operator type.

all [integer] An optional integer argument that tells the function to reset the operator options for all plots regardless
of whether or not they are active.

return type [CLI_return_t] The ResetOperatorOptions function returns an integer value of 1 for success and 0 for
failure.

Description:

The ResetOperatorOptions function resets the operator attributes of the specified operator type for the
active plots back to the default values. The operatorType argument is a string containing the name of the
type of operator whose attributes are to be reset. The all argument is an optional flag that tells the function
to reset the operator attributes for the indicated operator in all plots regardless of whether the plots are
active. When non-zero values are passed for the all argument, all plots are reset. When the all argument
is zero or not provided, only the operators on active plots are modified.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddOperator("Slice")
a = SliceAttributes()
a.normal,a.upAxis = (0,0,1),(0,1,0)
SetOperatorOptions(a)
ResetOperatorOptions("Slice")

2.4.185 ResetPickLetter

Synopsis:

ResetPickLetter() -> integer

return type [CLI_return_t] ResetPickLetter returns 1 on success and 0 on failure.

Description:

The ResetPickLetter function resets the pick marker back to “A” so that the next pick will use “A” as the
pick letter and then “B” and so on.

576 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.4.186 ResetPlotOptions

Synopsis:

ResetPlotOptions(plotType) -> integer

plotType [string] The name of the plot type.

return type [CLI_return_t] The ResetPlotOptions function returns an integer value of 1 for success and 0 for failure.

Description:

The ResetPlotOptions function resets the plot attributes of the specified plot type for the active plots back
to the default values. The plotType argument is a string containing the name of the type of plot whose
attributes are to be reset.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
p = PseudocolorAttributes()
p.colorTableName = "calewhite"
p.minFlag,p.maxFlag = 1,1
p.min,p.max = -5.0, 8.0
SetPlotOptions(p)
ResetPlotOptions("Pseudocolor")

2.4.187 ResetView

Synopsis:

ResetView() -> integer

return type [CLI_return_t] The ResetView function returns 1 on success and 0 on failure.

Description:

The ResetView function resets the camera to the initial view.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Mesh", "curvmesh3d")
v = ViewAttributes()
v.camera = (-0.45396, 0.401908, 0.79523)
v.focus = (0, 2.5, 15)
v.viewUp = (0.109387, 0.910879, -0.397913)
v.viewAngle = 30
v.setScale = 1
v.parallelScale = 16.0078
v.nearPlane = -32.0156
v.farPlane = 32.0156
v.perspective = 1
SetView3D(v) # Set the 3D view
DrawPlots()
ResetView()

2.4. Functions 577



VisIt User Manual Documentation, Release 3.1

2.4.188 ResizeWindow

Synopsis:

ResizeWindow(win, w, h) -> integer

win [integer] The integer id of the window to be moved [1..16].

w [integer] The new integer width for the window.

h [integer] The new integer height for the window.

return type [CLI_return_t] ResizeWindow returns 1 on success and 0 on failure.

Description:

ResizeWindow resizes a visualization window.

Example:

#% visit -cli
ResizeWindow(1, 300, 600)

2.4.189 RestoreSession

Synopsis:

RestoreSession(filename, visitDir) -> integer

filename [string] The name of the session file to restore.

visitDir [integer] An integer flag that indicates whether the filename to be restored is located in the user’s VisIt
directory. If the flag is set to 1 then the session file is assumed to be located in the user’s VisIt directory
otherwise the filename must contain an absolute path.

return type [CLI_return_t] RestoreSession returns 1 on success and 0 on failure.

Description:

The RestoreSession function is important for setting up complex visualizations because you can design a
VisIt session file, which is an XML file that describes exactly how plots are set up, using the VisIt GUI
and then use that same session file in the CLI to generate movies in batch. The RestoreSession function
takes 2 arguments. The first argument specifies the filename that contains the VisIt session to be restored.
The second argument determines whether the session file is assumed to be in the user’s VisIt directory. If
the visitDir argument is set to 0 then the filename argument must contain the absolute path to the session
file.

Example:

#% visit -cli
# Restore my session file for a time-varying database from
# my .visit directory.
RestoreSessionFile("visit.session", 1)
for state in range(TimeSliderGetNStates()):
SetTimeSliderState(state)
SaveWindow()

578 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.4.190 RestoreSessionWithDifferentSources

Synopsis:

RestoreSessionWithDifferentSources(filename, visitDir, mapping) -> integer

filename [string] The name of the session file to restore.

visitDir [integer] An integer flag that indicates whether the filename to be restored is located in the user’s VisIt
directory. If the flag is set to 1 then the session file is assumed to be located in the user’s VisIt directory
otherwise the filename must contain an absolute path.

mapping [tuple] A tuple of strings representing the maping from sources as specified in the original session file to
new sources. Sources in the original session file are numbered starting from 0. So, this tuple of strings simply
contains the new names for each of the sources, in order.

return type [CLI_return_t] RestoreSession returns 1 on success and 0 on failure.

Description:

The RestoreSession function is important for setting up complex visualizations because you can design a
VisIt session file, which is an XML file that describes exactly how plots are set up, using the VisIt GUI
and then use that same session file in the CLI to generate movies in batch. The RestoreSession function
takes 2 arguments. The first argument specifies the filename that contains the VisIt session to be restored.
The second argument determines whether the session file is assumed to be in the user’s VisIt directory. If
the visitDir argument is set to 0 then the filename argument must contain the absolute path to the session
file.

Example:

#% visit -cli
# Restore my session file for a time-varying database from
# my .visit directory.
RestoreSessionFile("visit.session", 1)
for state in range(TimeSliderGetNStates()):
SetTimeSliderState(state)
SaveWindow()

2.4.191 SaveAttribute

Synopsis:

SaveAttribute(filename, object)

filename [string] The name of the XML file to load the attribute from or save the attribute to.

object The object to load or save.

Description:

The LoadAttribute and SaveAttribute methods save a single attribute, such as a current plot or operator
python object, to a standalone XML file. Note that LoadAttribute requires that the target attribute already
be created by other means; it fills, but does not create, the attribute.

Example:

#% visit -cli
a = MeshPlotAttributes()

(continues on next page)

2.4. Functions 579



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

SaveAttribute('mesh.xml', a)
b = MeshPlotAttributes()
LoadAttribute('mesh.xml', b)

2.4.192 SaveNamedSelection

Synopsis:

SaveNamedSelection(name) -> integer

name [string] The name of a named selection.

return type [CLI_return_t] The SaveNamedSelection function returns 1 for success and 0 for failure.

Description:

Named Selections allow you to select a group of elements (or particles). One typically creates a named
selection from a group of elements and then later applies the named selection to another plot (thus reducing
the set of elements displayed to the ones from when the named selection was created). Named selections
only last for the current session. If you create a named selection that you want to use over and over, you
can save it to a file with the SaveNamedSelection function.

Example:

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
AddOperator("Clip")
c = ClipAttributes()
c.plane1Origin = (0,0.6,0)
c.plane1Normal = (0,-1,0)
SetOperatorOption(c)
DrawPlots()
CreateNamedSelection("els_above_at_time_0")
SaveNamedSelection("els_above_at_time_0")

2.4.193 SaveSession

Synopsis:

SaveSession(filename) -> integer

filename [string] The filename argument is the filename that is used to save the session file. The filename is relative
to the current working directory.

return type [CLI_return_t] The SaveSession function returns 1 on success and 0 on failure.

Description:

The SaveSession function tells VisIt to save an XML session file that describes everything about the
current visualization. Session files are very useful for creating movies and also as shortcuts for setting up
complex visualizations.

Example:

580 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
# Set up a keyframe animation of view and save a session file of it.
k = GetKeyframeAttributes()
k.enabled,k.nFrames,k.nFramesWasUserSet = 1,20,1
SetKeyframeAttributes(k)
AddPlot("Surface", "hgslice")
DrawPlots()
v = GetView3D()
v.viewNormal = (0.40823, -0.826468, 0.387684)
v.viewUp, v.imageZoom = (-0.261942, 0.300775, 0.917017), 1.60684
SetView3D(v)
SetViewKeyframe()
SetTimeSliderState(TimeSliderGetNStates() - 1)
v.viewNormal = (-0.291901, -0.435608, 0.851492)
v.viewUp = (0.516969, 0.677156, 0.523644)
SetView3D(v)
SetViewKeyframe()
ToggleCameraViewMode()
SaveSession("~/.visit/keyframe.session")

2.4.194 SaveWindow

Synopsis:

SaveWindow() -> string

return type [string] The SaveWindow function returns a string containing the name of the file that was saved.

Description:

The SaveWindow function saves the contents of the active visualization window. The format of the saved
window is dictated by the SaveWindowAttributes which can be set using the SetSaveWindowAttributes
function. The contents of the active visualization window can be saved as TIFF, JPEG, RGB, PPM, PNG
images or they can be saved as curve, Alias Wavefront Obj, or VTK geometry files.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set the save window attributes.
s = SaveWindowAttributes()
s.fileName = "test"
s.format = s.JPEG
s.progressive = 1
s.fileName = "test"
SetSaveWindowAttributes(s)
name = SaveWindow()
print "name = %s" % name

2.4.195 SendSimulationCommand

Synopsis:

2.4. Functions 581



VisIt User Manual Documentation, Release 3.1

SendSimulationCommand(host, simulation, command)
SendSimulationCommand(host, simulation, command, argument)

host [string] The name of the computer where the simulation is running.

simulation [string] The name of the simulation being processed at the specified host.

command [string] A string that is the command to send to the simulation.

argument An argument to the command.

Description:

The SendSimulationCommand method tells the viewer to send a command to a simulation that is running
on the specified host. The host argument is a string that contains the name of the computer where the
simulation is running. The simulation argument is a string that contains the name of the simulation to
send the command to.

2.4.196 SetActiveContinuousColorTable

Synopsis:

SetActiveContinuousColorTable(name) -> integer

name [string] The name of the color table to use for the active color table. The name must be present in the tuple
returned by the ColorTableNames function.

return type [CLI_return_t] Both functions return 1 on success and 0 on failure.

Description:

VisIt supports two flavors of color tables: continuous and discrete. Both types of color tables have the
same underlying representation but each type of color table is used a slightly different way. Continuous
color tables are made of a small number of color control points and the gaps in the color table between
two color control points are filled by interpolating the colors of the color control points. Discrete color
tables do not use any kind of interpolation and like continuous color tables, they are made up of control
points. The color control points in a discrete color table repeat infinitely such that if we have 4 color
control points: A, B, C, D then the pattern of repetition is: ABCDABCDABCD. . . Discrete color tables
are mainly used for plots that have a discrete set of items to display (e.g. Subset plot). Continuous color
tables are used in plots that display a continuous range of values (e.g. Pseudocolor).

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Contour", "hgslice")
DrawPlots()
SetActiveDiscreteColorTable("levels")

2.4.197 SetActiveDiscreteColorTable

Synopsis:

SetActiveDiscreteColorTable(name) -> integer

name [string] The name of the color table to use for the active color table. The name must be present in the tuple
returned by the ColorTableNames function.

582 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

return type [CLI_return_t] Both functions return 1 on success and 0 on failure.

Description:

VisIt supports two flavors of color tables: continuous and discrete. Both types of color tables have the
same underlying representation but each type of color table is used a slightly different way. Continuous
color tables are made of a small number of color control points and the gaps in the color table between
two color control points are filled by interpolating the colors of the color control points. Discrete color
tables do not use any kind of interpolation and like continuous color tables, they are made up of control
points. The color control points in a discrete color table repeat infinitely such that if we have 4 color
control points: A, B, C, D then the pattern of repetition is: ABCDABCDABCD. . . Discrete color tables
are mainly used for plots that have a discrete set of items to display (e.g. Subset plot). Continuous color
tables are used in plots that display a continuous range of values (e.g. Pseudocolor).

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Contour", "hgslice")
DrawPlots()
SetActiveDiscreteColorTable("levels")

2.4.198 SetActivePlots

Synopsis:

SetActivePlots(plots) -> integer

plots [tuple of integers] A tuple of integer plot indices starting at zero. A single integer is also accepted

return type [CLI_return_t] The SetActivePlots function returns an integer value of 1 for success and 0 for failure.

Description:

Any time VisIt sets the attributes for a plot, it only sets the attributes for plots which are active. The
SetActivePlots function must be called to set the active plots. The function takes one argument which is a
tuple of integer plot indices that start at zero. If only one plot is being selected, the plots argument can be
an integer instead of a tuple.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Subset", "mat1")
AddPlot("Mesh", "mesh1")
AddPlot("Contour", "u")
DrawPlots()
SetActivePlots((0,1,2)) # Make all plots active
SetActivePlots(0) # Make only the Subset plot active

2.4.199 SetActiveTimeSlider

Synopsis:

SetActiveTimeSlider(tsName) -> integer

tsName [string] The name of the time slider that should be made active.

2.4. Functions 583



VisIt User Manual Documentation, Release 3.1

return type [CLI_return_t] SetActiveTimeSlider returns 1 on success and 0 on failure.

Description:

Sets the active time slider, which is the time slider that is used to change time states.

Example:

#% visit -cli
path = "/usr/gapps/visit/data/"
dbs = (path + "dbA00.pdb", path + "dbB00.pdb", path + "dbC00.pdb")
for db in dbs:
OpenDatabase(db)
AddPlot("FilledBoundary", "material(mesh)")
DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
tsNames = GetWindowInformation().timeSliders
for ts in tsNames:
SetActiveTimeSlider(ts)
for state in list(range(TimeSliderGetNStates())) + [0]:
SetTimeSliderState(state)

2.4.200 SetActiveWindow

Synopsis:

SetActiveWindow(windowIndex) -> integer
SetActiveWindow(windowIndex, raiseWindow) -> integer

windowIndex [integer] An integer window index starting at 1.

raiseWindow [integer] This is an optional integer argument that raises and activates the window if set to 1. If omitted,
the default behavior is to raise and activate the window.

return type [CLI_return_t] The SetActiveWindow function returns an integer value of 1 for success and 0 for failure.

Description:

Most of the functions in the VisIt Python Interface operate on the contents of the active window. If there is
more than one window, it is very important to be able to set the active window. To set the active window,
use the SetActiveWindow function. The SetActiveWindow function takes a single integer argument which
is the index of the new active window. The new window index must be an integer greater than zero and
less than or equal to the number of open windows.

Example:

#% visit -cli
SetWindowLayout(2)
SetActiveWindow(2)
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
DrawPlots()

2.4.201 SetAnimationTimeout

Synopsis:

584 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

SetAnimationTimeout(milliseconds) -> integer

return type [CLI_return_t] The SetAnimationTimeout function returns 1 for success and 0 for failure.

Description:

The SetAnimationTimeout function sets the animation timeout which is a value that governs how fast
animations play. The timeout is specified in milliseconds and has a default value of 1 millisecond. Larger
timeout values decrease the speed at which animations play.

Example:

#%visit -cli
# Play a new frame every 5 seconds.
SetAnimationTimeout(5000)
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
# Click the play button in the toolbar

2.4.202 SetAnnotationAttributes

Synopsis:

SetAnnotationAttributes(atts) -> integer

atts [AnnotationAttributes object] An AnnotationAttributes object containing the annotation settings.

return type [CLI_return_t] Both functions return 1 on success and 0 on failure.

Description:

The annotation settings control what bits of text are drawn in the visualization window. Among the anno-
tations are the plot legends, database information, user information, plot axes, triad, and the background
style and colors. Setting the annotation attributes is important for producing quality visualizations. The
annotation settings are stored in AnnotationAttributes objects. To set the annotation attributes, first cre-
ate an AnnotationAttributes object using the AnnotationAttributes function and then pass the object to
the SetAnnotationAttributes function. To set the default annotation attributes, also pass the object to the
SetDefaultAnnotationAttributes function.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
a = AnnotationAttributes()
a.gradientBackgroundStyle = a.GRADIENTSTYLE_RADIAL
a.gradientColor1 = (0,255,255)
a.gradientColor2 = (0,0,0)
a.backgroundMode = a.BACKGROUNDMODE_GRADIENT
SetAnnotationAttributes(a)

2.4.203 SetBackendType

Synopsis:

2.4. Functions 585



VisIt User Manual Documentation, Release 3.1

SetBackendType(name) -> integer

name [string] VTK, VTKM.

return type [CLI_return_t] Both functions return 1 on success and 0 on failure.

Description:

The compute back end determines the compute library that is used for processing plots in VisIt. The
default is VTK, which supports all VisIt operations. VTKm can be used too but it only supports a fraction
of VisIt’s functionality. Filters that support VTKm will use those libraries when their compute back end
is selected using this function.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
SetBackendType("VTKm")
AddPlot("Contour", "radial")
DrawPlots()

2.4.204 SetCenterOfRotation

Synopsis:

SetCenterOfRotation(x,y,z) -> integer

x [double] A double that is the x component of the center of rotation.

y [double] A double that is the y component of the center of rotation.

z [double] A double that is the z component of the center of rotation.

return type [CLI_return_t] The SetCenterOfRotation function returns 1 on success and 0 on failure.

Description:

The SetCenterOfRotation function sets the center of rotation for plots in a 3D visualization window. The
center of rotation, is the point about which plots are rotated when you interactively spin the plots using
the mouse. It is useful to set the center of rotation if you’ve zoomed in on any 3D plots so in the event
that you rotate the plots, the point of interest remains fixed on the screen.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddPlot("Mesh", "mesh1")
DrawPlots()
v = GetView3D()
v.viewNormal = (-0.409139, 0.631025, 0.6591)
v.viewUp = (0.320232, 0.775678, -0.543851)
v.imageZoom = 4.8006
SetCenterOfRotation(-4.755280, 6.545080, 5.877850)
# Rotate the plots interactively.

586 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.4.205 SetColorTexturingEnabled

Synopsis:

SetColorTexturingEnabled(enabled) -> integer

enabled [integer] A integer value. Non-zero values enable color texturing and zero disables it.

return type [CLI_return_t] The SetColorTexturingEnabled function returns 1 on success and 0 on failure.

Description:

Node-centered variables are drawn on plots such as the Pseudocolor plot such that the nodal value looks
interpolated throughout the zone. This can be done by interpolating colors, which can produce some colors
that do not appear in a color table. Alternatively, the nodal values can be mapped to a texture coordinate
in a 1D texture and those values can be interpolated, with colors being selected after interpolating the
texture coordinate. This method always uses colors that are defined in the color table.

Example:

SetColorTexturingEnabled(1)

2.4.206 SetCreateMeshQualityExpressions

Synopsis:

SetCreateMeshQualityExpressions(val) -> integer

val [integer] Either a zero (false) or non-zero (true) integer value to indicate ifMesh Quality expressions should be
automatically created when a database is opened.

return type [CLI_return_t] The SetCreateMeshQualityExpressions function returns 1 on success and 0 on failure.

Description:

The SetCreateMeshQualityExpressions function sets a boolean in the global attributes indicating whether
or not Mesh Quality expressions should be automatically created. The default behavior is for the expres-
sions to be created, which may slow down VisIt’s performance if there is an extraordinary large number
of meshes. Turning this feature off tells VisIt to skip automatic creation of the Mesh Quality expressions.

Example:

#% visit -cli
SetCreateMeshQualityExpressions(1) # turn this feature on
SetCreateMeshQualityExpressions(0) # turn this feature off

2.4.207 SetCreateTimeDerivativeExpressions

Synopsis:

SetCreateTimeDerivativeExpressions(val) -> integer

val [integer] Either a zero (false) or non-zero (true) integer value to indicate if Time Derivative expressions should be
automatically created when a database is opened.

return type [CLI_return_t] The SetCreateTimeDerivativeExpressions function returns 1 on success and 0 on failure.

Description:

2.4. Functions 587



VisIt User Manual Documentation, Release 3.1

The SetCreateTimeDerivativeExpressions function sets a boolean in the global attributes indicating
whether or not Time Derivative expressions should be automatically created. The default behavior is
for the expressions to be created, which may slow down VisIt’s performance if there is an extraordinary
large number of variables. Turning this feature off tells VisIt to skip automatic creation of the Time
Derivative expressions.

Example:

#% visit -cli
SetCreateTimeDerivativeExpressions(1) # turn this feature on
SetCreateTimeDerivativeExpressions(0) # turn this feature off

2.4.208 SetCreateVectorMagnitudeExpressions

Synopsis:

SetCreateVectorMagnitudeExpressions(val) -> integer

val [integer] Either a zero (false) or non-zero (true) integer value to indicate if Vector magnitude expressions should
be automatically created when a database is opened.

return type [CLI_return_t] The SetCreateVectorMagnitudeExpressions function returns 1 on success and 0 on fail-
ure.

Description:

The SetCreateVectorMagnitudeExpressions function sets a boolean in the global attributes indicating
whether or not vector magnitude expressions should be automatically created. The default behavior is
for the expressions to be created, which may slow down VisIt’s performance if there is an extraordinary
large number of vector variables. Turning this feature off tells VisIt to skip automatic creation of the
vector magnitude expressions.

Example:

#% visit -cli
SetCreateVectorMagnitudeExpressions(1) # turn this feature on
SetCreateVectorMagnitudeExpressions(0) # turn this feature off

2.4.209 SetDatabaseCorrelationOptions

Synopsis:

SetDatabaseCorrelationOptions(method, whenToCreate) -> integer

method [integer] An integer that tells VisIt what default method to use when automatically creating a database corre-
lation. The value must be in the range [0,3].

method Description
0 IndexForIndexCorrelation
1 StretchedIndexCorrelation
2 TimeCorrelation
3 CycleCorrelation

whenToCreate [integer] An integer that tells VisIt when to automatically create database correlations.

588 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

whenToCreate Description
0 Always create database correlation
1 Never create database correlation
2 Create database correlation only if the new time-varying database has

return type [CLI_return_t] SetDatabaseCorrelationOptions returns 1 on success and 0 on failure.

Description:

VisIt provides functions to explicitly create and alter database correlations but there are also a number of
occasions where VisIt can automatically create a database correlation. The SetDatabaseCorrelationOp-
tions function allows you to tell VisIt the default correlation method to use when automatically creating a
new database correlation and it also allows you to tell VisIt when database correlations can be automati-
cally created. the same length as another time-varying database already being used in a plot.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/dbA00.pdb")
AddPlot("FilledBoundary", "material(mesh)")
DrawPlots()
# Always create a stretched index correlation.
SetDatabaseCorrelationOptions(1, 0)
OpenDatabase("/usr/gapps/visit/data/dbB00.pdb")
AddPlot("FilledBoundary", "material(mesh)")
# The AddPlot caused a database correlation to be created.
DrawPlots()
wi = GetWindowInformation()
print "Active time slider: " % wi.timeSliders[wi.activeTimeSlider]
# This will set time for both databases since the database correlation is
the active time slider.
SetTimeSliderState(5)

2.4.210 SetDebugLevel

Synopsis:

SetDebugLevel(level)

level [string] A string ‘1’, ‘2’, ‘3’, ‘4’, ‘5’ with an optional ‘b’ suffix to indicate whether the output should be buffered.
A value of ‘1’ is a low debug level, which should be used to produce little output while a value of 5 should
produce a lot of debug output.

Description:

The GetDebugLevel and SetDebugLevel functions are used when debugging VisIt Python scripts. The
SetDebugLevel function sets the debug level for VisIt’s viewer thus it must be called before a Launch
method. The debug level determines how much detail is written to VisIt’s execution logs when it executes.

Example:

#% visit -cli -debug 2
print "VisIt's debug level is: %d" % GetDebugLevel()

2.4. Functions 589



VisIt User Manual Documentation, Release 3.1

2.4.211 SetDefaultAnnotationAttributes

Synopsis:

SetDefaultAnnotationAttributes(atts) -> integer

atts [AnnotationAttributes object] An AnnotationAttributes object containing the annotation settings.

return type [CLI_return_t] Both functions return 1 on success and 0 on failure.

Description:

The annotation settings control what bits of text are drawn in the visualization window. Among the anno-
tations are the plot legends, database information, user information, plot axes, triad, and the background
style and colors. Setting the annotation attributes is important for producing quality visualizations. The
annotation settings are stored in AnnotationAttributes objects. To set the annotation attributes, first cre-
ate an AnnotationAttributes object using the AnnotationAttributes function and then pass the object to
the SetAnnotationAttributes function. To set the default annotation attributes, also pass the object to the
SetDefaultAnnotationAttributes function.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
a = AnnotationAttributes()
a.gradientBackgroundStyle = a.GRADIENTSTYLE_RADIAL
a.gradientColor1 = (0,255,255)
a.gradientColor2 = (0,0,0)
a.backgroundMode = a.BACKGROUNDMODE_GRADIENT
SetAnnotationAttributes(a)

2.4.212 SetDefaultFileOpenOptions

Synopsis:

SetDefaultFileOpenOptions(pluginName, options) -> integer

pluginName [string] The name of a plugin.

options [dictionary] A dictionary containing the new default options for that plugin.

return type [CLI_return_t] The SetDefaultFileOpenOptions function returns 1 on success and 0 on failure.

Description:

SetDefaultFileOpenOptions sets the current options used to open new files when a specific plugin is
triggered.

Example:

#% visit -cli
OpenMDServer()
opts = GetDefaultFileOpenOptions("VASP")
opts["Allow multiple timesteps"] = 1
SetDefaultFileOpenOptions("VASP", opts)
OpenDatabase("CHGCAR")

590 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.4.213 SetDefaultInteractorAttributes

Synopsis:

SetDefaultInteractorAttributes(atts) -> integer

atts [InteractorAttributes object] An InteractorAttributes object that contains the new interactor attributes that you
want to use.

return type [CLI_return_t] SetInteractorAttributes returns 1 on success and 0 on failure.

Description:

The SetInteractorAttributes function is used to set certain interactor properties. Interactors, can be thought
of as how mouse clicks and movements are translated into actions in the vis window. To set the interactor
attributes, first get the interactor attributes using the GetInteractorAttributes function. Once you’ve set the
object’s properties, call the SetInteractorAttributes function to make VisIt use the new interactor attributes.
The SetDefaultInteractorAttributes function sets the default interactor attributes, which are used for new
visualization windows. The default interactor attributes can also be saved to the VisIt configuration file to
ensure that future VisIt sessions have the right default interactor attributes.

Example:

#% visit -cli
ia = GetInteractorAttributes()
print ia
ia.showGuidelines = 0
SetInteractorAttributes(ia)

2.4.214 SetDefaultMaterialAttributes

Synopsis:

SetDefaultMaterialAttributes(atts) -> integer

atts [MaterialAttributes object] A MaterialAttributes object containing the new settings.

return type [CLI_return_t] Both functions return 1 on success and 0 on failure.

Description:

The SetMaterialAttributes function takes a MaterialAttributes object and makes VisIt use the material
settings that it contains. You use the SetMaterialAttributes function when you want to change how VisIt
performs material interface reconstruction. The SetDefaultMaterialAttributes function sets the default
material attributes, which are saved to the config file and are also used by new visualization windows.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
p = PseudocolorAttributes()
p.min,p.minFlag = 4.0, 1
p.max,p.maxFlag = 13.0, 1
SetPlotOptions(p)
DrawPlots()
# Tell VisIt to always do material interface reconstruction.
m = GetMaterialAttributes()

(continues on next page)

2.4. Functions 591



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

m.forceMIR = 1
SetMaterialAttributes(m)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()

2.4.215 SetDefaultMeshManagementAttributes

Synopsis:

SetMeshManagementAttributes() -> MeshmanagementAttributes object

return type [MeshmanagementAttributes object] Returns a MeshmanagementAttributes object.

Description:

The GetMeshmanagementAttributes function returns a MeshmanagementAttributes object that contains
VisIt’s current mesh discretization settings. You can set properties on the MeshManagementAttributes
object and then pass it to SetMeshManagementAttributes to make VisIt use the new material attributes
that you’ve specified:

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/csg.silo")
AddPlot("Mesh", "csgmesh")
DrawPlots()
# Tell VisIt to always do material interface reconstruction.
mma = GetMeshManagementAttributes()
mma.discretizationTolernace = (0.01, 0.025)
SetMeshManagementAttributes(mma)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()

2.4.216 SetDefaultOperatorOptions

Synopsis:

SetDefaultOperatorOptions(atts) -> integer

atts [operator attributes object] Any type of operator attributes object.

return type [CLI_return_t] All functions return an integer value of 1 for success and 0 for failure.

Description:

Each operator in VisIt has a group of attributes that controls the operator. To set the attributes for an
operator, first create an operator attributes object. This is done by calling a function which is the name
of the operator plus the word “Attributes”. For example, a Slice operator’s operator attributes object is
created and returned by the SliceAttributes function. Assign the new operator attributes object into a
variable and set its fields. After setting the desired fields in the operator attributes object, pass the object
to the SetOperatorOptions function. The SetOperatorOptions function determines the type of operator
to which the operator attributes object applies and sets the attributes for that operator type. To set the
default plot attributes, use the SetDefaultOperatorOptions function. Setting the default attributes ensures

592 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

that all future instances of a certain operator are initialized with the new default values. Note that there
is no SetOperatorOptions(atts, all) variant of this call. To set operator options for all plots that have a an
instance of the associated operator, you must first make all plots active with SetActivePlots() and then use
the SetOperatorOptions(atts) variant.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddPlot("Mesh", "mesh1")
AddOperator("Slice", 1) # Add the operator to both plots
a = SliceAttributes()
a.normal, a.upAxis = (0,0,1), (0,1,0)
# Only set the attributes for the active plot.
SetOperatorOptions(a)
DrawPlots()

2.4.217 SetDefaultPickAttributes

Synopsis:

SetDefaultPickAttributes(atts) -> integer

atts [PickAttributes object] A PickAttributes object containing the new pick settings.

return type [CLI_return_t] All functions return 1 on success and 0 on failure.

Description:

The SetPickAttributes function changes the pick attributes that are used when VisIt picks on plots. The
pick attributes allow you to format your pick output in various ways and also allows you to select auxiliary
pick variables.

Example:

OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
ZonePick(coord=(-5,5,0))
p = GetPickAttributes()
p.showTimeStep = 0
p.showMeshName = 0
p.showZoneId = 0
SetPickAttributes(p)
ZonePick(coord=(0,5,0))

2.4.218 SetDefaultPlotOptions

Synopsis:

SetDefaultPlotOptions(atts) -> integer

atts [plot attributes object] Any type of plot attributes object.

return type [CLI_return_t] All functions return an integer value of 1 for success and 0 for failure.

2.4. Functions 593



VisIt User Manual Documentation, Release 3.1

Description:

Each plot in VisIt has a group of attributes that controls the appearance of the plot. To set the attributes
for a plot, first create a plot attributes object. This is done by calling a function which is the name of
the plot plus the word “Attributes”. For example, a Pseudocolor plot’s plotattributes object is created and
returned by the PseudocolorAttributes function. Assign the new plot attributes object into a variable and
set its fields. After setting the desired fields in the plot attributes object, pass the object to the SetPlo-
tOptions function. The SetPlotOptions function determines the type of plot to which the plot attributes
object applies and sets the attributes for that plot type. To set the default plot attributes, use the SetDe-
faultPlotOptions function. Setting the default attributes ensures that all future instances of a certain plot
are initialized with the new default values.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
p = PseudocolorAttributes()
p.colorTableName = "calewhite"
p.minFlag,p.maxFlag = 1,1
p.min,p.max = -5.0, 8.0
SetPlotOptions(p)
DrawPlots()

2.4.219 SetGlobalLineoutAttributes

Synopsis:

SetGlobalLineoutAttributes(atts) -> integer

atts [GlobalLineoutAttributes object] A GlobalLineoutAttributes object that contains the new settings.

return type [CLI_return_t] The SetGlobalLineoutAttributes function returns 1 on success and 0 on failure.

Description:

The SetGlobalLineoutAttributes function allows you to set global lineout options that are used in the
creation of all lineouts. You can, for example, specify the destination window and the number of sample
points for lineouts.

Example:

#% visit -cli
SetWindowLayout(4)
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
gla = GetGlobalLineoutAttributes()
gla.createWindow = 0
gla.windowId = 4
gla.samplingOn = 1
gla.numSamples = 150
SetGlobalLineoutAttributes(gla)
Lineout((-5,-8), (-3.5, 8))

594 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.4.220 SetInteractorAttributes

Synopsis:

SetInteractorAttributes(atts) -> integer

atts [InteractorAttributes object] An InteractorAttributes object that contains the new interactor attributes that you
want to use.

return type [CLI_return_t] SetInteractorAttributes returns 1 on success and 0 on failure.

Description:

The SetInteractorAttributes function is used to set certain interactor properties. Interactors, can be thought
of as how mouse clicks and movements are translated into actions in the vis window. To set the interactor
attributes, first get the interactor attributes using the GetInteractorAttributes function. Once you’ve set the
object’s properties, call the SetInteractorAttributes function to make VisIt use the new interactor attributes.
The SetDefaultInteractorAttributes function sets the default interactor attributes, which are used for new
visualization windows. The default interactor attributes can also be saved to the VisIt configuration file to
ensure that future VisIt sessions have the right default interactor attributes.

Example:

#% visit -cli
ia = GetInteractorAttributes()
print ia
ia.showGuidelines = 0
SetInteractorAttributes(ia)

2.4.221 SetKeyframeAttributes

Synopsis:

SetKeyframeAttributes(kfAtts) -> integer

kfAtts [KeyframeAttributes object] A KeyframeAttributes object that contains the new keyframing attributes to use.

return type [CLI_return_t] SetKeyframeAttributes returns 1 on success and 0 on failure.

Description:

Use the SetKeyframeAttributes function when you want to change VisIt’s keyframing settings. You must
pass a KeyframeAttributes object, which you can create using the GetKeyframeAttributes function. The
KeyframeAttributes object must contain the keyframing settings that you want VisIt to use. For example,
you would use the SetKeyframeAttributes function if you wanted to turn on keyframing mode and set the
number of animation frames.

Example:

#% visit -cli
k = GetKeyframeAttributes()
print k
k.enabled,k.nFrames,k.nFramesWasUserSet = 1, 100, 1
SetKeyframeAttributes(k)

2.4. Functions 595



VisIt User Manual Documentation, Release 3.1

2.4.222 SetLight

Synopsis:

SetLight(index, light) -> integer

index [integer] A zero-based integer index into the light list. Index can be in the range [0,7].

light [LightAttributes object] A LightAttributes object containing the properties to use for the specified light.

return type [CLI_return_t] SetLight returns 1 on success and 0 on failure.

Description:

The SetLight function sets the attributes for a specific light.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "w")
p = PseudocolorAttributes()
p.colorTableName = "xray"
SetPlotOptions(p)
DrawPlots()
InvertBackgroundColor()
light = GetLight(0)
print light
light.enabledFlag = 1
light.direction = (0,-1,0)
light.color = (255,0,0,255)
SetLight(0, light)
light.color,light.direction = (0,255,0,255), (-1,0,0)
SetLight(1, light)

2.4.223 SetMachineProfile

Synopsis:

SetMachineProfile(MachineProfile) -> integer

MachineProfile [MachineProfile object] A MachineProfile object containing the new settings.

Description:

Sets the input machine profile in the HostProfileList, replaces if one already exists Otherwise adds to the
list

2.4.224 SetMaterialAttributes

Synopsis:

SetMaterialAttributes(atts) -> integer

atts [MaterialAttributes object] A MaterialAttributes object containing the new settings.

return type [CLI_return_t] Both functions return 1 on success and 0 on failure.

Description:

596 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

The SetMaterialAttributes function takes a MaterialAttributes object and makes VisIt use the material
settings that it contains. You use the SetMaterialAttributes function when you want to change how VisIt
performs material interface reconstruction. The SetDefaultMaterialAttributes function sets the default
material attributes, which are saved to the config file and are also used by new visualization windows.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
p = PseudocolorAttributes()
p.min,p.minFlag = 4.0, 1
p.max,p.maxFlag = 13.0, 1
SetPlotOptions(p)
DrawPlots()
# Tell VisIt to always do material interface reconstruction.
m = GetMaterialAttributes()
m.forceMIR = 1
SetMaterialAttributes(m)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()

2.4.225 SetMeshManagementAttributes

Synopsis:

GetMeshManagementAttributes() -> MeshmanagementAttributes object

return type [MeshmanagementAttributes object] Returns a MeshmanagementAttributes object.

Description:

The GetMeshmanagementAttributes function returns a MeshmanagementAttributes object that contains
VisIt’s current mesh discretization settings. You can set properties on the MeshManagementAttributes
object and then pass it to SetMeshManagementAttributes to make VisIt use the new material attributes
that you’ve specified:

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/csg.silo")
AddPlot("Mesh", "csgmesh")
DrawPlots()
# Tell VisIt to always do material interface reconstruction.
mma = GetMeshManagementAttributes()
mma.discretizationTolernace = (0.01, 0.025)
SetMeshManagementAttributes(mma)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()

2.4.226 SetNamedSelectionAutoApply

Synopsis:

2.4. Functions 597



VisIt User Manual Documentation, Release 3.1

SetNamedSelectionAutoApply(flag) -> integer

flag [integer] An integer flag. Non-zero values turn on selection auto apply mode.

return type [CLI_return_t] The SetNamedSelectionAutoApply function returns 1 on success and 0 on failure.

Description:

Named selections are often associated with plots for their data source. When those plots update, their
named selections can be updated, which in turn will update any plots that use the named selection. When
this mode is enabled, changes to a named selection’s originating plot will cause the selection to be updated
automatically.

Example:

SetNamedSelectionAutoApply(1)

2.4.227 SetOperatorOptions

Synopsis:

SetOperatorOptions(atts) -> integer
SetOperatorOptions(atts, operatorIndex) -> integer
SetOperatorOptions(atts, operatorIndex, all) -> integer

atts [operator attributes object] Any type of operator attributes object.

operatorIndex [integer] An optional zero-based integer that serves as an index into the active plot’s operator list. Use
this argument if you want to set the operator attributes for a plot that has multiple instances of the same type
of operator. For example, if the active plot had a Transform operator followed by a Slice operator followed by
another Transform operator and you wanted to adjust the attributes of the second Transform operator, you would
pass an operatorIndex value of 2.

all [integer] An optional integer argument that tells the function to apply theoperator attributes to all plots containing
the specified operator if the value of the argument is non-zero.

return type [CLI_return_t] All functions return an integer value of 1 for success and 0 for failure.

Description:

Each operator in VisIt has a group of attributes that controls the operator. To set the attributes for an
operator, first create an operator attributes object. This is done by calling a function which is the name
of the operator plus the word “Attributes”. For example, a Slice operator’s operator attributes object is
created and returned by the SliceAttributes function. Assign the new operator attributes object into a
variable and set its fields. After setting the desired fields in the operator attributes object, pass the object
to the SetOperatorOptions function. The SetOperatorOptions function determines the type of operator
to which the operator attributes object applies and sets the attributes for that operator type. To set the
default plot attributes, use the SetDefaultOperatorOptions function. Setting the default attributes ensures
that all future instances of a certain operator are initialized with the new default values. Note that there
is no SetOperatorOptions(atts, all) variant of this call. To set operator options for all plots that have a an
instance of the associated operator, you must first make all plots active with SetActivePlots() and then use
the SetOperatorOptions(atts) variant.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")

(continues on next page)

598 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

AddPlot("Pseudocolor", "u")
AddPlot("Mesh", "mesh1")
AddOperator("Slice", 1) # Add the operator to both plots
a = SliceAttributes()
a.normal, a.upAxis = (0,0,1), (0,1,0)
# Only set the attributes for the active plot.
SetOperatorOptions(a)
DrawPlots()

2.4.228 SetPickAttributes

Synopsis:

SetPickAttributes(atts) -> integer

atts [PickAttributes object] A PickAttributes object containing the new pick settings.

return type [CLI_return_t] All functions return 1 on success and 0 on failure.

Description:

The SetPickAttributes function changes the pick attributes that are used when VisIt picks on plots. The
pick attributes allow you to format your pick output in various ways and also allows you to select auxiliary
pick variables.

Example:

OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
ZonePick(coord=(-5,5,0))
p = GetPickAttributes()
p.showTimeStep = 0
p.showMeshName = 0
p.showZoneId = 0
SetPickAttributes(p)
ZonePick(coord=(0,5,0))

2.4.229 SetPipelineCachingMode

Synopsis:

SetPipelineCachingMode(mode) -> integer

return type [CLI_return_t] The SetPipelineCachingMode function returns 1 for success and 0 for failure.

Description:

The SetPipelineCachingMode function turns pipeline caching on or off in the viewer. When pipeline
caching is enabled, animation timesteps are cached for fast playback. This can be a disadvantage for large
databases or for plots with many timesteps because it increases memory consumption. In those cases, it
is often useful to disable pipeline caching so the viewer does not use as much memory. When the viewer
does not cache pipelines, each plot for a timestep must be recalculated each time the timestep is visited.

Example:

2.4. Functions 599



VisIt User Manual Documentation, Release 3.1

#% visit -cli
SetPipelineCachingMode(0) # Disable caching
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
AddPlot("Mesh", "quadmesh")
DrawPlots()
for state in range(TimeSliderGetNStates()):
SetTimeSliderState(state)

2.4.230 SetPlotDatabaseState

Synopsis:

SetPlotDatabaseState(index, frame, state)

index [integer] A zero-based integer index that is the plot’s location in the plot list.

frame [integer] A zero-based integer index representing the animation frame for which we’re going to add a database
keyframe.

state [integer] A zero-based integer index representing the database time state that we’re going to use at the specified
animation frame.

Description:

The SetPlotDatabaseState function is used when VisIt is in keyframing mode to add a database keyframe
for a specific plot. VisIt uses database keyframes to determine which database state is to be used for a
given animation frame. Database keyframes can be used to stop “database time” while “animation time”
continues forward and they can also be used to make “database time” go in reverse, etc.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
SetKeyframeAttributes(k)
AddPlot("Pseudocolor", "pressure")
AddPlot("Mesh", "quadmesh")
DrawPlots()
# Make "database time" for the Pseudocolor plot go in reverse
SetPlotDatabaseState(0, 0, 70)
SetPlotDatabaseState(0, nFrames-1, 0)
# Animate through the animation frames since the "Keyframe animation"
time slider is active.
for state in range(TimeSliderGetNStates()):
SetTimeSliderState(state)

2.4.231 SetPlotDescription

Synopsis:

SetPlotDescription(index, description) -> integer

index [integer] The integer index of the plot within the plot list.

600 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

description [list] A new description srting that will be shown in the plot list so the plot can be identified readily.

return type [CLI_return_t] The SetPlotDescription function returns 1 on success and 0 on failure.

Description:

Managing many related plots can be a complex task. This function lets users provide meaningful descrip-
tions for each plot so they can more easily be identified in the plot list.

Example:

SetPlotDescription(0, 'Mesh for reflected pressure plot')

2.4.232 SetPlotFollowsTime

Synopsis:

SetPlotFollowsTime(val) -> integer

val [integer] An optional integer flag indicating whether the plot should follow the time slider. The default behavior
is for the plot to follow the time slider.

return type [CLI_return_t] The function returns 1 on success and 0 on failure.

Description:

SetPlotFollowsTime can let you set whether the active plot follows the time slider.

Example:

SetPlotFollowsTime()

2.4.233 SetPlotFrameRange

Synopsis:

SetPlotFrameRange(index, start, end)

index [integer] A zero-based integer representing an index into the plot list.

start [integer] A zero-based integer representing the animation frame where the plot first appears in the visualization.

end [integer] A zero-based integer representing the animation frame where the plot disappears from the visualization.

Description:

The SetPlotFrameRange function sets the start and end frames for a plot when VisIt is in keyframing
mode. Outside of this frame range, the plot does not appear in the visualization. By default, plots are
valid over the entire range of animation frames when they are first created. Frame ranges allow you to
construct complex animations where plots appear and disappear dynamically.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
SetKeyframeAttributes(k)

(continues on next page)

2.4. Functions 601



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

AddPlot("Pseudocolor", "pressure")
AddPlot("Mesh", "quadmesh")
DrawPlots()
# Make the Pseudocolor plot take up the first half of the animation frames
before it disappears.
SetPlotFrameRange(0, 0, nFrames/2-1)
# Make the Mesh plot take up the second half of the animation frames.
SetPlotFrameRange(1, nFrames/2, nFrames-1)
for state in range(TimeSliderGetNStates())
SetTimeSliderState(state)
SaveWindow()

2.4.234 SetPlotOptions

Synopsis:

SetPlotOptions(atts) -> integer

atts [plot attributes object] Any type of plot attributes object.

return type [CLI_return_t] All functions return an integer value of 1 for success and 0 for failure.

Description:

Each plot in VisIt has a group of attributes that controls the appearance of the plot. To set the attributes
for a plot, first create a plot attributes object. This is done by calling a function which is the name of
the plot plus the word “Attributes”. For example, a Pseudocolor plot’s plotattributes object is created and
returned by the PseudocolorAttributes function. Assign the new plot attributes object into a variable and
set its fields. After setting the desired fields in the plot attributes object, pass the object to the SetPlo-
tOptions function. The SetPlotOptions function determines the type of plot to which the plot attributes
object applies and sets the attributes for that plot type. To set the default plot attributes, use the SetDe-
faultPlotOptions function. Setting the default attributes ensures that all future instances of a certain plot
are initialized with the new default values.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
p = PseudocolorAttributes()
p.colorTableName = "calewhite"
p.minFlag,p.maxFlag = 1,1
p.min,p.max = -5.0, 8.0
SetPlotOptions(p)
DrawPlots()

2.4.235 SetPlotOrderToFirst

Synopsis:

SetPlotOrderToFirst(index) -> integer

index [integer] The integer index of the plot within the plot list.

return type [CLI_return_t] The SetPlotOrderToFirst function returns 1 on success and 0 on failure.

602 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Description:

Move the i’th plot in the plot list to the start of the plot list.

Example:

AddPlot('Mesh', 'mesh')
AddPlot('Pseudocolor', 'pressure')
# Make the Pseudocolor plot first in the plot list
SetPlotOrderToFirst(1)

2.4.236 SetPlotOrderToLast

Synopsis:

SetPlotOrderToLast(index) -> integer

index [integer] The integer index of the plot within the plot list.

return type [CLI_return_t] The SetPlotOrderToLast function returns 1 on success and 0 on failure.

Description:

Move the i’th plot in the plot list to the end of the plot list.

Example:

AddPlot('Mesh', 'mesh')
AddPlot('Pseudocolor', 'pressure')
# Make the Mesh plot last in the plot list
SetPlotOrderToLast(0)

2.4.237 SetPlotSILRestriction

Synopsis:

SetPlotSILRestriction(silr) -> integer
SetPlotSILRestriction(silr, all) -> integer

silr [SIL restriction object] A SIL restriction object.

all An optional argument that tells the function if the SIL restriction should be applied to all plots in the plot list.

return type [CLI_return_t] The SetPlotSILRestriction function returns an integer value of 1 for success and 0 for
failure.

Description:

VisIt allows the user to select subsets of databases. The description of the subset is called a Subset
Inclusion Lattice Restriction, or SIL restriction. The SIL restriction allows databases to be subselected in
several different ways. The VisIt Python Interface provides the SetPlotSILRestriction function to allow
Python scripts to turn off portions of the plotted database. The SetPlotSILRestriction function accepts a
SILRestriction object that contains the SIL restriction for the active plots. The optional all argument is
an integer that tells the function to apply the SIL restriction to all plots when the value of the argument is
non-zero. If the all argument is not supplied, then the SIL restriction is only applied to the active plots.

Example:

2.4. Functions 603



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_curv2d.silo")
AddPlot("Subset", "mat1")
silr = SILRestriction()
silr.TurnOffSet(silr.SetsInCategory('mat1')[1])
SetPlotSILRestriction(silr)
DrawPlots()

2.4.238 SetPrecisionType

Synopsis:

SetPrecisionType(typeAsInt)
SetPrecisionType(typeAsString)

typeAsInt [double] Precision type specified as an integer. 0 = float 1 = native 2 = double

typeAsString [string] Precision type specified as a string. Options are ‘float’, ‘native’, and ‘double’.

Description:

The SetPrecisionType function sets the floating point pecision used by VisIt’s pipeline. The function
accepts a single argument either an integer or string representing the precision desired. 0 = “float”, 1 =
“native”, 2 = “double”

Example:

SetPrecisionType("double")
SetPrecisionType(2)

2.4.239 SetPreferredFileFormats

Synopsis:

SetPreferredFileFormats(pluginIDs) -> integer

pluginIDs [tuple] A tuple of plugin IDs to be attempted first when opening files.

return type [CLI_return_t] The SetPreferredFileFormats method does not return a value.

Description:

The SetPreferredFileFormats method is a way to set the list of file format reader plugins which are tried
before any others. These IDs must be full IDs, not just names, and are tried in order.

Example:

SetPreferredFileFormats('Silo_1.0')
SetPreferredFileFormats(('Silo_1.0','PDB_1.0'))

2.4.240 SetPrinterAttributes

Synopsis:

604 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

SetPrinterAttributes(atts)

atts [PrinterAttributes object] A PrinterAttributes object.

Description:

The SetPrinterAttributes function sets the printer attributes. VisIt uses the printer attributes to determine
how the active visualization window should be printed. The function accepts a single argument which is
a PrinterAttributes object containing the printer attributes to use for future printing. VisIt allows images
to be printed to a network printer or to a PostScript file that can be printed later by other applications.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Surface", "v")
DrawPlots()
# Make it print to a file.
p = PrinterAttributes()
p.outputToFile = 1
p.outputToFileName = "printfile"
SetPrinterAttributes(p)
PrintWindow()

2.4.241 SetQueryFloatFormat

Synopsis:

SetQueryFloatFormat(format_string)

format_string [string] A string object that provides a printf style floating point format.

Description:

The SetQueryFloatFormat method sets a printf style format string that isused by VisIt’s querys to produce
textual output.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set floating point format string.
SetQueryFloatFormat("%.1f")
Query("MinMax")
# Set format back to default "%g".
SetQueryFloatFormat("%g")
Query("MinMax")

2.4.242 SetQueryOutputToObject

Synopsis:

SetQueryOutputToObject()

2.4. Functions 605



VisIt User Manual Documentation, Release 3.1

Description:

SetQueryOutputToObject changes the return type of future Queries to the ‘object’ or Python dictio-
nary form. This is the same object that would be returned by calling ‘GetQueryOutputObject()’ af-
ter a Query call. All other output modes are still available after the Query call (eg GetQueryOutput-
Value(),GetQueryOutputObject(), GetQueryOutputString()).

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set query output type.
SetQueryOutputToObject()
query_output = Query("MinMax")
print query_output

2.4.243 SetQueryOutputToString

Synopsis:

SetQueryOutputToString()

Description:

SetQueryOutputToString changes the return type of future Queries to the ‘string’ form. This is the same
as what would be returned by calling ‘GetQueryOutputString’ after a Query call. All other output modes
are still available after the Query call (eg GetQueryOutputValue(), GetQueryOutputObject(), GetQuery-
OutputString()).

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set query output type.
SetQueryOutputToString()
query_output = Query("MinMax")
print query_output
'
d -- Min = 0.0235702 (zone 434 at coord <0.483333, 0.483333>)
d -- Max = 0.948976 (zone 1170 at coord <0.0166667, 1.31667>)
'

2.4.244 SetQueryOutputToValue

Synopsis:

SetQueryOutputToValue()

Description:

SetQueryOutputToValue changes the return type of future Queries to the ‘value’ form. This is the same as
what would be returned by calling ‘GetQueryOutputValue()’ after a Query call. All other output modes

606 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

are still available after the Query call (eg GetQueryOutputValue(), GetQueryOutputObject(), GetQuery-
OutputString()).

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set query output type.
SetQueryOutputToValue()
query_output = Query("MinMax")
print query_output
(0.02357020415365696, 0.9489759802818298)

2.4.245 SetQueryOverTimeAttributes

Synopsis:

SetQueryOverTimeAttributes(atts) -> integer

atts [QueryOverTimeAttributes object] A QueryOverTimeAttributes object containing the new settings to use for
queries over time.

return type [CLI_return_t] All functions return 1 on success and 0 on failure.

Description:

The SetQueryOverTimeAttributes function changes the settings that VisIt uses for query over time. The
SetDefaultQueryOverTimeAttributes function changes the settings that new visualization windows inherit
for doing query over time. Finally, the ResetQueryOverTimeAttributes function forces VisIt to use the
stored default query over time attributes instead of the previous settings.

Example:

#% visit -cli
SetWindowLayout(4)
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
DrawPlots()
qot = GetQueryOverTimeAttributes()
# Make queries over time go to window 4.
qot.createWindow,q.windowId = 0, 4
SetQueryOverTimeAttributes(qot)
QueryOverTime("Min")
# Make queries over time only use half of the number of time states.
qot.endTimeFlag,qot.endTime = 1, GetDatabaseNStates() / 2
SetQueryOverTimeAttributes(qot)
QueryOverTime("Min")
ResetView()

2.4.246 SetRemoveDuplicateNodes

Synopsis:

SetRemoveDuplicateNodes(val) -> integer

2.4. Functions 607



VisIt User Manual Documentation, Release 3.1

val [integer] Either a zero (false) or non-zero (true) integer value to indicate if duplicate nodes in fully disconnected
unstructured grids should be automatically removed by visit.

return type [CLI_return_t] The SetRemoveDuplicateNodes function returns 1 on success and 0 on failure.

Description:

The SetRemoveDuplicateNodes function sets a boolean in the global attributes indicating whether or not
duplicate nodes in fully disconnected unstructured grids should be automatically removed. The default
behavior is for the original grid to be left as read, which may slow down VisIt’s performance for extraor-
dinary large meshes. Turning this feature off tells VisIt to remove the duplicate nodes after the mesh is
read, but before further processing in VisIt.

Example:

#% visit -cli
SetRemoveDuplicateNodes(1) # turn this feature on
SetRemoveDuplicateNodes(0) # turn this feature off

2.4.247 SetRenderingAttributes

Synopsis:

SetRenderingAttributes(atts) -> integer

atts [RenderingAttributes object] A RenderingAttributes object that contains the rendering attributes that we want to
make VisIt use.

return type [CLI_return_t] The SetRenderingAttributes function returns 1 on success and 0 on failure.

Description:

The SetRenderingAttributes makes VisIt use the rendering attributes stored in the specified RenderingAt-
tributes object. The RenderingAttributes object stores rendering attributes such as: scalable rendering
options, shadows, specular highlights, display lists, etc.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Surface", "hgslice")
DrawPlots()
v = GetView2D()
v.viewNormal = (-0.215934, -0.454611, 0.864119)
v.viewUp = (0.973938, -0.163188, 0.157523)
v.imageZoom = 1.64765
SetView3D(v)
light = GetLight(0)
light.direction = (0,1,-1)
SetLight(0, light)
r = GetRenderingAttributes()
print r
r.scalableActivationMode = r.Always
r.doShadowing = 1
SetRenderingAttributes(r)

608 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.4.248 SetSaveWindowAttributes

Synopsis:

SetSaveWindowAttributes(atts)

atts [SaveWindowAttributes object] A SaveWindowAttributes object.

Description:

The SetSaveWindowAttributes function sets the format and filename that are used to save windows when
the SaveWindow function is called. The contents of the active visualization window can be saved as TIFF,
JPEG, RGB, PPM, PNG images or they can be saved as curve, Alias Wavefront Obj, or VTK geometry
files. To set the SaveWindowAttributes, create a SaveWindowAttributes object using the SaveWindowAt-
tributes function and assign it into a variable. Set the fields in the object and pass it to the SetSaveWin-
dowAttributes function.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set the save window attributes
s = SaveWindowAttributes()
s.fileName = "test"
s.format = s.JPEG
s.progressive = 1
s.fileName = "test"
SetSaveWindowAttributes(s)
# Save the window
SaveWindow()

2.4.249 SetTimeSliderState

Synopsis:

SetTimeSliderState(state) -> integer

state [integer] A zero-based integer containing the time state that we want to make active.

return type [CLI_return_t] The SetTimeSliderState function returns 1 on success and 0 on failure.

Description:

The SetTimeSliderState function sets the time state for the active time slider. This is the function to use if
you want to animate through time or change the current keyframe frame.

Example:

#% visit -cli
path = "/usr/gapps/visit/data/"
dbs = (path + "dbA00.pdb", path + "dbB00.pdb", path + "dbC00.pdb")
for db in dbs:
OpenDatabase(db)
AddPlot("FilledBoundary", "material(mesh)")
DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)

(continues on next page)

2.4. Functions 609



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

tsNames = GetWindowInformation().timeSliders
for ts in tsNames:
SetActiveTimeSlider(ts)
for state in list(range(TimeSliderGetNStates())) + [0]:
SetTimeSliderState(state)

2.4.250 SetTreatAllDBsAsTimeVarying

Synopsis:

SetTreatAllDBsAsTimeVarying(val) -> integer

val [integer] Either a zero (false) or non-zero (true) integer value to indicate if all databases should be treated as time
varying (true) or not (false).

return type [CLI_return_t] The SetTreatAllDBsAsTimeVarying function returns 1 on success and 0 on failure.

Description:

The SetTreatAllDBsAsTimeVarying function sets a boolean in the global attributes indicating if all
databases should be treated as time varying or not. Ordinarily, VisIt tries to minimize file I/O and database
interaction by avoiding re-reading metadata that is ‘time-invariant’ and, therefore, assumed to be the same
in a database from one time step to the next. However, sometimes, portions of the metadata, such as the
list of variable names and/or number of domains, does in fact vary. In this case, VisIt can actually fail
to acknowledge the existence of new variables in the file. Turning this feature on forces VisIt to re-read
metadata each time the time-state is changed.

Example:

#% visit -cli
SetTreatAllDBsAsTimeVarying(1) # turn this feature on
SetTreatAllDBsAsTimeVarying(0) # turn this feature off

2.4.251 SetTryHarderCyclesTimes

Synopsis:

SetTryHarderCyclesTimes(val) -> integer

val [integer] Either a zero (false) or non-zero (true) integer value to indicate if VisIt read cycle/time information for
all timestates when opening a database.

return type [CLI_return_t] The SetTryHarderCyclesTimes function returns 1 on success and 0 on failure.

Description:

For certain classes of databases, obtaining cycle/time information for all time states in the database is an
expensive operation, requiring each file to be opened and queried. The cost of the operation gets worse
the more time states there are in the database. Ordinarily, VisIt does not bother to query each time state
for precise cycle/time information. In fact, often VisIt can guess this information from the filename(s)
comprising the databse. However, turning this feature on will force VisIt to obtain accurate cycle/time
information for all time states by opening and querying all file(s) in the database.

Example:

610 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
SetTryHarderCyclesTimes(1) # Turn this feature on
SetTryHarderCyclesTimes(0) # Turn this feature off

2.4.252 SetUltraScript

Synopsis:

SetUltraScript(filename) -> integer

filename [string] The name of the file to be used as the ultra script when LoadUltra is called.

return type [CLI_return_t] The SetUltraScript function returns 1.

Description:

Set the path to the script to be used by the LoadUltra command. Normal users do not need to use this
function.

2.4.253 SetView2D

Synopsis:

SetView2D(View2DAttributes) -> integer

view [ViewAttributes object] A ViewAttributes object containing the view.

return type [CLI_return_t] All functions returns 1 on success and 0 on failure.

Description:

The view is a crucial part of a visualization since it determines which parts of the database are exam-
ined. The VisIt Python Interface provides four functions for setting the view: SetView2D, SetView3D,
SetViewCurve, and SetViewAxisArray. If the visualization window contains 2D plots, use the SetView2D
function. To set the view, first create the appropriate ViewAttributes object and set the object’s fields to
set a new view. After setting the fields, pass the object to the matching SetView function. A common use
of the SetView functions is to animate the view to produce simple animations where the camera appears
to fly around the plots in the visualization window.

Example:

% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "v")
DrawPlots()
va = GetView3D()
va.RotateAxis(1,30.0) # rotate around the y axis 30 degrees.
SetView3D(va)
v0 = GetView3D()
v1 = GetView3D()
v1.camera,v1.viewUp = (1,1,1),(-1,1,-1)
v1.parallelScale = 10.
for i in range(0,20):
t = float(i) / 19.
v2 = (1. - t) * v0 + t * v1
SetView3D(v2) # Animate the view.

2.4. Functions 611



VisIt User Manual Documentation, Release 3.1

2.4.254 SetView3D

Synopsis:

SetView3D(View3DAttributes) -> integer

view [ViewAttributes object] A ViewAttributes object containing the view.

return type [CLI_return_t] All functions returns 1 on success and 0 on failure.

Description:

The view is a crucial part of a visualization since it determines which parts of the database are exam-
ined. The VisIt Python Interface provides four functions for setting the view: SetView2D, SetView3D,
SetViewCurve, and SetViewAxisArray. Use the SetView3D function when the visualization window con-
tains 3D plots. To set the view, first create the appropriate ViewAttributes object and set the object’s
fields to set a new view. After setting the fields, pass the object to the matching SetView function. A
common use of the SetView functions is to animate the view to produce simple animations where the
camera appears to fly around the plots in the visualization window. A View3D object also supports the
RotateAxis(int axis, double deg) method which mimics the ‘rotx’, ‘roty’ and ‘rotz’ view commands in the
GUI.

Example:

% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "v")
DrawPlots()
va = GetView3D()
va.RotateAxis(1,30.0) # rotate around the y axis 30 degrees.
SetView3D(va)
v0 = GetView3D()
v1 = GetView3D()
v1.camera,v1.viewUp = (1,1,1),(-1,1,-1)
v1.parallelScale = 10.
for i in range(0,20):
t = float(i) / 19.
v2 = (1. - t) * v0 + t * v1
SetView3D(v2) # Animate the view.

2.4.255 SetViewAxisArray

Synopsis:

SetViewAxisArray(ViewAxisArrayAttributes) -> integer

view [ViewAttributes object] A ViewAttributes object containing the view.

return type [CLI_return_t] All functions returns 1 on success and 0 on failure.

Description:

The view is a crucial part of a visualization since it determines which parts of the database are exam-
ined. The VisIt Python Interface provides four functions for setting the view: SetView2D, SetView3D,
SetViewCurve, and SetViewAxisArray. To set the view, first create the appropriate ViewAttributes ob-
ject and set the object’s fields to set a new view. After setting the fields, pass the object to the matching
SetView function. A common use of the SetView functions is to animate the view to produce simple
animations where the camera appears to fly around the plots in the visualization window.

612 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Example:

% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "v")
DrawPlots()
va = GetView3D()
va.RotateAxis(1,30.0) # rotate around the y axis 30 degrees.
SetView3D(va)
v0 = GetView3D()
v1 = GetView3D()
v1.camera,v1.viewUp = (1,1,1),(-1,1,-1)
v1.parallelScale = 10.
for i in range(0,20):
t = float(i) / 19.
v2 = (1. - t) * v0 + t * v1
SetView3D(v2) # Animate the view.

2.4.256 SetViewCurve

Synopsis:

SetViewCurve(ViewCurveAttributes) -> integer

view [ViewAttributes object] A ViewAttributes object containing the view.

return type [CLI_return_t] All functions returns 1 on success and 0 on failure.

Description:

The view is a crucial part of a visualization since it determines which parts of the database are exam-
ined. The VisIt Python Interface provides four functions for setting the view: SetView2D, SetView3D,
SetViewCurve, and SetViewAxisArray. To set the view, first create the appropriate ViewAttributes ob-
ject and set the object’s fields to set a new view. After setting the fields, pass the object to the matching
SetView function. A common use of the SetView functions is to animate the view to produce simple
animations where the camera appears to fly around the plots in the visualization window.

Example:

% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "v")
DrawPlots()
va = GetView3D()
va.RotateAxis(1,30.0) # rotate around the y axis 30 degrees.
SetView3D(va)
v0 = GetView3D()
v1 = GetView3D()
v1.camera,v1.viewUp = (1,1,1),(-1,1,-1)
v1.parallelScale = 10.
for i in range(0,20):
t = float(i) / 19.
v2 = (1. - t) * v0 + t * v1
SetView3D(v2) # Animate the view.

2.4. Functions 613



VisIt User Manual Documentation, Release 3.1

2.4.257 SetViewExtentsType

Synopsis:

SetViewExtentsType(type) -> integer

type [integer] An integer or a string. Options are 0, 1 and ‘original’, ‘actual’, respectively.

return type [CLI_return_t] SetViewExtentsType returns 1 on success and 0 on failure.

Description:

VisIt can use a plot’s spatial extents in two ways when computing the view. The first way of using the
extents is to use the “original” extents, which are the spatial extents before any modifications, such as
subset selection, have been made to the plot. This ensures that the view will remain relatively constant for
a plot. Alternatively, you can use the “actual” extents, which are the spatial extents of the pieces of the
plot that remain after operations such as subset selection.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
SetViewExtentsType("actual")
AddPlot("FilledBoundary", "mat1")
DrawPlots()
v = GetView3D()
v.viewNormal = (-0.618945, 0.450655, 0.643286)
v.viewUp = (0.276106, 0.891586, -0.358943)
SetView3D(v)
mats = GetMaterials()
nmats = len(mats):
# Turn off all but the last material in sequence and watch
# the view update each time.
for i in range(nmats-1):
index = nmats-1-i
TurnMaterialsOff(mats[index])
SaveWindow()
SetViewExtentsType("original")

2.4.258 SetViewKeyframe

Synopsis:

SetViewKeyframe() -> integer

return type [CLI_return_t] The SetViewKeyframe function returns 1 on success and 0 on failure.

Description:

The SetViewKeyframe function adds a view keyframe when VisIt is in keyframing mode. View keyframes
are used to set the view at crucial points during an animation. Frames that lie between view keyframes
have an interpolated view that is based on the view keyframes. You can use the SetViewKeyframe function
to create complex camera animations that allow you to fly around (or through) your visualization.

Example:

614 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Contour", "hardyglobal")
DrawPlots()
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
SetKeyframeAttributes(k)
SetPlotFrameRange(0, 0, nFrames-1)
SetViewKeyframe()
SetTimeSliderState(10)
v = GetView3D()
v.viewNormal = (-0.721721, 0.40829, 0.558944)
v.viewUp = (0.294696, 0.911913, -0.285604)
SetView3D(v)
SetViewKeyframe()
SetTimeSliderState(nFrames-1)
v.viewNormal = (-0.74872, 0.423588, -0.509894)
v.viewUp = (0.369095, 0.905328, 0.210117)
SetView3D()
SetViewKeyframe()
ToggleCameraViewMode()
for state in range(TimeSliderGetNStates()):
SetTimeSliderState(state)
SaveWindow()

2.4.259 SetWindowArea

Synopsis:

SetWindowArea(x, y, width, height) -> integer

x [integer] An integer that is the left X coordinate in screen pixels.

y [integer] An integer that is the top Y coordinate in screen pixels.

width [integer] An integer that is the width of the window area in pixels.

height [integer] An integer that is the height of the window area in pixels.

return type [CLI_return_t] The SetWindowArea function returns 1 on success and 0 on failure.

Description:

The SetWindowArea method sets the area of the screen that can be used by VisIt’s visualization windows.
This is useful for making sure windows are a certain size when running a Python script.

Example:

import visit
visit.Launch()
visit.SetWindowArea(0, 0, 600, 600)
visit.SetWindowLayout(4)

2.4.260 SetWindowLayout

Synopsis:

2.4. Functions 615



VisIt User Manual Documentation, Release 3.1

SetWindowLayout(layout) -> integer

layout [integer] An integer that specifies the window layout. (1,2,4,8,9,16 are valid)

return type [CLI_return_t] The SetWindowLayout function returns an integer value of 1 for success and 0 for failure.

Description:

VisIt’s visualization windows can be arranged in various tiled patterns that allow VisIt to make good use of
the screen while displaying several visualization windows. The window layout determines how windows
are shown on the screen. The SetWindowLayout function sets the window layout. The layout argument
is an integer value equal to 1,2,4,8,9, or 16.

Example:

#% visit -cli
SetWindowLayout(2) # switch to 1x2 layout
SetWindowLayout(4) # switch to 2x2 layout
SetWindowLayout(8) # switch to 2x4 layout

2.4.261 SetWindowMode

Synopsis:

SetWindowMode(mode) -> integer

mode [string] A string containing the new mode. Options are ‘navigate’, ‘zoom’, ‘lineout’, ‘pick’, ‘zone pick’, ‘node
pick’, ‘spreadsheet pick’.

return type [CLI_return_t] The SetWindowMode function returns 1 on success and 0 on failure.

Description:

VisIt’s visualization windows have various window modes that alter their behavior. Most of the time a
visualization window is in “navigate” mode which changes the view when the mouse is moved in the
window. The “zoom” mode allows a zoom rectangle to be drawn in the window for changing the view.
The “pick” mode retrieves information about the plots when the mouse is clicked in the window. The
“lineout” mode allows the user to draw lines which produce curve plots.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
SetWindowMode("zoom")
# Draw a rectangle in the visualization window to zoom the plots

2.4.262 ShowAllWindows

Synopsis:

ShowAllWindows() -> integer

return type [CLI_return_t] The ShowAllWindows function returns 1 on success and 0 on failure.

Description:

616 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

The ShowAllWindows function tells VisIt’s viewer to show all of its visualization windows. The com-
mand line interface calls ShowAllWindows before giving control to any user-supplied script to ensure that
the visualization windows appear as expected. Call the ShowAllWindows function when using the VisIt
module inside another Python interpreter so the visualization windows are made visible.

Example:

% python
import visit
visit.Launch()
visit.ShowAllWindows()

2.4.263 ShowToolbars

Synopsis:

ShowToolbars() -> integer
ShowToolbars(allWindows) -> integer

allWindows [integer] An integer value that tells VisIt to show the toolbars for all windows when it is non-zero.

return type [CLI_return_t] The ShowToolbars function returns 1 on success and 0 on failure.

Description:

The ShowToolbars function tells VisIt to show the toolbars for the active visualization window or for all
visualization windows when the optional allWindows argument is provided and is set to a non-zero value.

Example:

#% visit -cli
SetWindowLayout(4)
HideToolbars(1)
ShowToolbars()
# Show the toolbars for all windows.
ShowToolbars(1)

2.4.264 Source

Synopsis:

Source(filename)

Description:

The Source function reads in the contents of a text file and interprets it with the Python interpreter. This is
a simple mechanism that allows simple scripts to be included in larger scripts. The Source function takes
a single string argument that contains the name of the script to execute.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# include another script that does some animation.
Source("Animate.py")

2.4. Functions 617



VisIt User Manual Documentation, Release 3.1

2.4.265 SuppressMessages

Synopsis:

SuppressMessages(level) -> integer

level [integer] An integer value of 1,2,3 or 4

return type [CLI_return_t] The SuppressMessages function returns the previous suppression level on success and 0
on failure.

Description:

The SuppressMessage function sets the supression level for status messages generated by VisIt. A value
of 1 suppresses all types of messages. A value of 2 suppresses Warnings and Messages but does NOT
suppress Errors. A value of 3 suppresses Messages but does not suppress Warnings or Errors. A value of
4 does not suppress any messages. The default setting is 4.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Turn off Warning and Message messages.
SuppressMessages(2)
SaveWindow()

2.4.266 SuppressQueryOutputOff

Synopsis:

SuppressQueryOutputOff() -> integer

return type [CLI_return_t] The SuppressQueryOutput function returns 1 on success and 0 on failure.

Description:

The SuppressQueryOutput function tells VisIt to turn on/off the automatic printing of query output. Query
output will still be available via GetQueryOutputString and GetQueryOutputValue.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Turn off automatic printing of Query output.
SuppressQueryOutputOn()
Query("MinMax")
print "The min is: %g and the max is: %g" % GetQueryOutputValue()
# Turn on automatic printing of Query output.
SuppressQueryOutputOff()
Query("MinMax")

618 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.4.267 SuppressQueryOutputOn

Synopsis:

SuppressQueryOutputOn() -> integer

return type [CLI_return_t] The SuppressQueryOutput function returns 1 on success and 0 on failure.

Description:

The SuppressQueryOutput function tells VisIt to turn on/off the automatic printing of query output. Query
output will still be available via GetQueryOutputString and GetQueryOutputValue.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Turn off automatic printing of Query output.
SuppressQueryOutputOn()
Query("MinMax")
print "The min is: %g and the max is: %g" % GetQueryOutputValue()
# Turn on automatic printing of Query output.
SuppressQueryOutputOff()
Query("MinMax")

2.4.268 TimeSliderGetNStates

Synopsis:

TimeSliderGetNStates() -> integer

return type [CLI_return_t] Returns an integer containing the number of time states for the current time slider.

Description:

The TimeSliderGetNStates function returns the number of time states for the active time slider. Remember
that the length of the time slider does not have to be equal to the number of time states in a time-varying
database because of database correlations and keyframing. If you want to iterate through time, use this
function to determine the number of iterations that are required to reach the end of the active time slider.

Example:

OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
for state in range(TimeSliderGetNStates()):
SetTimeSliderState(state)
SaveWindow()

2.4.269 TimeSliderNextState

Synopsis:

TimeSliderNextState() -> integer

2.4. Functions 619



VisIt User Manual Documentation, Release 3.1

return type [CLI_return_t] The TimeSliderNextState function returns 1 on success and 0 on failure.

Description:

The TimeSliderNextState function advances the active time slider to the next time slider state.

Example:

# Assume that files are being written to the disk.
% visit -cli
OpenDatabase("dynamic*.silo database")
AddPlot("Pseudocolor", "var")
AddPlot("Mesh", "mesh")
DrawPlots()
SetTimeSliderState(TimeSliderGetNStates() - 1)
while 1:
SaveWindow()
TimeSliderPreviousState()

2.4.270 TimeSliderPreviousState

Synopsis:

TimeSliderPreviousState() -> integer

return type [CLI_return_t] The TimeSliderPreviousState function returns 1 on success and 0 on failure.

Description:

The TimeSliderPreviousState function moves the active time slider to the previous time slider state.

Example:

# Assume that files are being written to the disk.
% visit -cli
OpenDatabase("dynamic*.silo database")
AddPlot("Pseudocolor", "var")
AddPlot("Mesh", "mesh")
DrawPlots()
while 1:
TimeSliderNextState()
SaveWindow()

2.4.271 TimeSliderSetState

Synopsis:

TimeSliderSetState(state) -> integer

state [integer] A zero-based integer containing the time state that we want to make active.

return type [CLI_return_t] The TimeSliderSetState function returns 1 on success and 0 on failure.

Description:

The TimeSliderSetState function sets the time state for the active time slider. This is the function to use if
you want to animate through time or change the current keyframe frame.

Example:

620 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
path = "/usr/gapps/visit/data/"
dbs = (path + "dbA00.pdb", path + "dbB00.pdb", path + "dbC00.pdb")
for db in dbs:
OpenDatabase(db)
AddPlot("FilledBoundary", "material(mesh)")
DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
tsNames = GetWindowInformation().timeSliders
for ts in tsNames:
SetActiveTimeSlider(ts)
for state in list(range(TimeSliderGetNStates())) + [0]:
TimeSliderSetState(state)

2.4.272 ToggleBoundingBoxMode

Synopsis:

ToggleBoundingBoxMode() -> integer

return type [CLI_return_t] All functions return 1 on success and 0 on failure.

Description:

The visualization window has various modes that affect its behavior and the VisIt Python Interface pro-
vides a few functions to toggle some of those modes. The ToggleBoundingBoxMode function toggles
bounding box mode on and off. When the visualization window is in bounding box mode, any plots it
contains are hidden while the view is being changed so the window redraws faster.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
after the mouse release.
# Turn off spin mode.
ToggleSpinMode()

2.4.273 ToggleCameraViewMode

Synopsis:

ToggleCameraViewMode() -> integer

return type [CLI_return_t] All functions return 1 on success and 0 on failure.

Description:

The visualization window has various modes that affect its behavior and the VisIt Python Interface pro-
vides a few functions to toggle some of those modes. The ToggleCameraViewMode function toggles
camera view mode on and off. When the visualization window is in camera view mode, the view is
updated using any view keyframes that have been defined when VisIt is in keyframing mode.

2.4. Functions 621



VisIt User Manual Documentation, Release 3.1

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
after the mouse release.
# Turn off spin mode.
ToggleSpinMode()

2.4.274 ToggleFullFrameMode

Synopsis:

ToggleFullFrameMode() -> integer

return type [CLI_return_t] All functions return 1 on success and 0 on failure.

Description:

The visualization window has various modes that affect its behavior and the VisIt Python Interface pro-
vides a few functions to toggle some of those modes. The ToggleFullFrameMode function toggles full-
frame mode on and off. When the visualization window is in fullframe mode, the viewport is stretched
non-uniformly so that it covers most of the visualization window. While not maintaining a 1:1 aspect
ratio, it does make better use of the visualization window.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
after the mouse release.
# Turn off spin mode.
ToggleSpinMode()

2.4.275 ToggleLockTime

Synopsis:

ToggleLockTime() -> integer

return type [CLI_return_t] All functions return 1 on success and 0 on failure.

Description:

The visualization window has various modes that affect its behavior and the VisIt Python Interface pro-
vides a few functions to toggle some of those modes. The ToggleLockTime function turns time locking
on and off in a visualization window. When time locking is on in a visualization window, VisIt creates a
database correlation that works for the databases in all visualization windows that are time-locked. When

622 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

you change the time state using the time slider for the the afore-mentioned database correlation, it has the
effect of updating time in all time-locked visualization windows.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
after the mouse release.
# Turn off spin mode.
ToggleSpinMode()

2.4.276 ToggleLockTools

Synopsis:

ToggleBoundingBoxMode() -> integer
ToggleCameraViewMode() -> integer
ToggleFullFrameMode() -> integer
ToggleLockTime() -> integer
ToggleLockViewMode() -> integer
ToggleMaintainViewMode() -> integer
ToggleSpinMode() -> integer

return type [CLI_return_t] All functions return 1 on success and 0 on failure.

Description:

The visualization window has various modes that affect its behavior and the VisIt Python Interface pro-
vides a few functions to toggle some of those modes. The ToggleBoundingBoxMode function toggles
bounding box mode on and off. When the visualization window is in bounding box mode, any plots it
contains are hidden while the view is being changed so the window redraws faster. The ToggleCam-
eraViewMode function toggles camera view mode on and off. When the visualization window is in
camera view mode, the view is updated using any view keyframes that have been defined when VisIt
is in keyframing mode. The ToggleFullFrameMode function toggles fullframe mode on and off. When
the visualization window is in fullframe mode, the viewport is stretched non-uniformly so that it covers
most of the visualization window. While not maintaining a 1:1 aspect ratio, it does make better use of
the visualization window. The ToggleLockTime function turns time locking on and off in a visualization
window. When time locking is on in a visualization window, VisIt creates a database correlation that
works for the databases in all visualization windows that are time-locked. When you change the time
state using the time slider for the the afore-mentioned database correlation, it has the effect of updating
time in all time-locked visualization windows. The ToggleLockViewMode function turns lock view mode
on and off. When windows are in lock view mode, each view change is broadcast to other windows that
are also in lock view mode. This allows windows containing similar plots to be compared easily. The
ToggleMaintainViewMode function forces the view, that was in effect when the mode was toggled to be
used for all subsequent time states. The ToggleSpinMode function turns spin mode on and off. When
the visualization window is in spin mode, it continues to spin along the axis of rotation when the view is
changed interactively.

Example:

2.4. Functions 623



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
after the mouse release.
# Turn off spin mode.
ToggleSpinMode()

2.4.277 ToggleLockViewMode

Synopsis:

ToggleLockViewMode() -> integer

return type [CLI_return_t] All functions return 1 on success and 0 on failure.

Description:

The visualization window has various modes that affect its behavior and the VisIt Python Interface pro-
vides a few functions to toggle some of those modes. The ToggleLockViewMode function turns lock view
mode on and off. When windows are in lock view mode, each view change is broadcast to other windows
that are also in lock view mode. This allows windows containing similar plots to be compared easily.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
after the mouse release.
# Turn off spin mode.
ToggleSpinMode()

2.4.278 ToggleMaintainViewMode

Synopsis:

ToggleMaintainViewMode() -> integer

return type [CLI_return_t] All functions return 1 on success and 0 on failure.

Description:

The visualization window has various modes that affect its behavior and the VisIt Python Interface pro-
vides a few functions to toggle some of those modes. The ToggleMaintainViewMode functions forces the
view that was in effect when the mode was toggled to be used for all subsequent time states.

Example:

624 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
after the mouse release.
# Turn off spin mode.
ToggleSpinMode()

2.4.279 ToggleSpinMode

Synopsis:

ToggleSpinMode() -> integer

return type [CLI_return_t] All functions return 1 on success and 0 on failure.

Description:

The visualization window has various modes that affect its behavior and the VisIt Python Interface pro-
vides a few functions to toggle some of those modes. The ToggleSpinMode function turns spin mode on
and off. When the visualization window is in spin mode, it continues to spin along the axis of rotation
when the view is changed interactively.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
after the mouse release.
# Turn off spin mode.
ToggleSpinMode()

2.4.280 TurnDomainsOff

Synopsis:

TurnDomainsOff() -> integer
TurnDomainsOff(set_name) -> integer
TurnDomainsOff(tuple_set_name) -> integer

set_name [string] The name of the set to modify.

tuple_set_name [tuple of strings] A tuple of strings for the sets to modify.

return type [CLI_return_t] The Turn functions return an integer with a value of 1 for success or 0 for failure.

Description:

The Turn functions are provided to simplify the removal of material or domain subsets. Instead of creating
a SILRestriction object, you can use the Turn functions to turn materials or domains on or off. The

2.4. Functions 625



VisIt User Manual Documentation, Release 3.1

TurnDomainsOff function turns domains off. All of the Turn functions have three possible argument lists.
When you do not provide any arguments, the function applies to all subsets in the SIL so if you called
the TurnDomainsOff function with no arguments, all domains would be turned off. All functions can also
take a string argument, which is the name of the set to modify. For example, you could turn off domain
0 by calling the TurnDomainsOff with a single argument of “domain0” (or the appropriate set name). All
of the Turn functions can also be used to modify more than one set if you provide a tuple of set names.
After you use the Turn functions to change the SIL restriction, you might want to call the ListMaterials or
ListDomains functions to make sure that the SIL restriction was actually modified.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
TurnMaterialsOff(("1", "2")) # Turn off materials 1 and 2
TurnMaterialsOn() # Turn on all materials

2.4.281 TurnDomainsOn

Synopsis:

TurnDomainsOn() -> integer
TurnDomainsOn(set_name) -> integer
TurnDomainsOn(tuple_set_name) -> integer

set_name [string] The name of the set to modify.

tuple_set_name [tuple of strings] A tuple of strings for the sets to modify.

return type [CLI_return_t] The Turn functions return an integer with a value of 1 for success or 0 for failure.

Description:

The Turn functions are provided to simplify the removal of material or domain subsets. Instead of creating
a SILRestriction object, you can use the Turn functions to turn materials or domains on or off. The
TurnDomainsOn function turns domains on. All of the Turn functions have three possible argument lists.
When you do not provide any arguments, the function applies to all subsets in the SIL so if you called
the TurnDomainsOn function with no arguments, all domains would be turned on. All functions can also
take a string argument, which is the name of the set to modify. For example, you could turn on domain
0 by calling the TurnDomainsOn with a single argument of “domain0” (or the appropriate set name). All
of the Turn functions can also be used to modify more than one set if you provide a tuple of set names.
After you use the Turn functions to change the SIL restriction, you might want to call the ListMaterials or
ListDomains functions to make sure that the SIL restriction was actually modified.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
TurnMaterialsOff(("1", "2")) # Turn off materials 1 and 2
TurnMaterialsOn() # Turn on all materials

626 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.4.282 TurnMaterialsOff

Synopsis:

TurnMaterialsOff() -> integer
TurnMaterialsOff(set_name) -> integer
TurnMaterialsOff(tuple_set_name) -> integer

set_name [string] The name of the set to modify.

tuple_set_name [tuple of strings] A tuple of strings for the sets to modify.

return type [CLI_return_t] The Turn functions return an integer with a value of 1 for success or 0 for failure.

Description:

The Turn functions are provided to simplify the removal of material or domain subsets. Instead of creating
a SILRestriction object, you can use the Turn functions to turn materials or domains on or off. The
TurnMaterialsOff function turns materials off. All of the Turn functions have three possible argument
lists. When you do not provide any arguments, the function applies to all subsets in the SIL so if you
called the TurnMaterialsOff function with no arguments, all materials would be turned off. All functions
can also take a string argument, which is the name of the set to modify. For example, you could turn
off material 0 by calling TurnMaterialsOff with a single argument of “material0” (or the appropriate set
name). All of the Turn functions can also be used to modify more than one set if you provide a tuple
of set names. After you use the Turn functions to change the SIL restriction, you might want to call the
ListMaterials or ListDomains functions to make sure that the SIL restriction was actually modified.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
TurnMaterialsOff(("1", "2")) # Turn off materials 1 and 2
TurnMaterialsOn() # Turn on all materials

2.4.283 TurnMaterialsOn

Synopsis:

TurnMaterialsOn() -> integer
TurnMaterialsOn(string) -> integer
TurnMaterialsOn(tuple of strings) -> integer

set_name [string] The name of the set to modify.

tuple_set_name [tuple of strings] A tuple of strings for the sets to modify.

return type [CLI_return_t] The Turn functions return an integer with a value of 1 for success or 0 for failure.

Description:

The Turn functions are provided to simplify the removal of material or domain subsets. Instead of creating
a SILRestriction object, you can use the Turn functions to turn materials or domains on or off. The
TurnMaterialsOn function turns materials on. All of the Turn functions have three possible argument
lists. When you do not provide any arguments, the function applies to all subsets in the SIL so if you
called the TurnMaterialsOn function with no arguments, all materials would be turned off. All functions
can also take a string argument, which is the name of the set to modify. For example, you could turn on

2.4. Functions 627



VisIt User Manual Documentation, Release 3.1

material 0 by calling the TurnMaterialsOn with a single argument of “material0” (or the appropriate set
name). All of the Turn functions can also be used to modify more than one set if you provide a tuple
of set names. After you use the Turn functions to change the SIL restriction, you might want to call the
ListMaterials or ListDomains functions to make sure that the SIL restriction was actually modified.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
TurnMaterialsOff(("1", "2")) # Turn off materials 1 and 2
TurnMaterialsOn() # Turn on all materials

2.4.284 UndoView

Synopsis:

UndoView()

Description:

When the view changes in the visualization window, it puts the old view on a stack of views. The Un-
doView function restores the view on top of the stack and removes it. This allows the user to undo up to
ten view changes.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Subset", "mat1")
DrawPlots()
v = GetView2D()
v.windowCoords = (-2.3,2.4,0.2,4.9)
SetView2D(v)
UndoView()

2.4.285 UpdateNamedSelection

Synopsis:

UpdateNamedSelection(name) -> integer
UpdateNamedSelection(name, properties) -> integer

name [string] The name of the selection to update.

properties [SelectionProperties object] An optional SelectionProperties object that contains the selection properties
to use when reevaluating the selection.

return type [CLI_return_t] The UpdateNamedSelection function returns 1 on success and 0 on failure.

Description:

This function causes VisIt to reevaluate a named selection using new selection properties. If no selection
properties are provided then the selection will be reevaluated using data for the plot that was associated

628 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

with the selection when it was created. This is useful if you want to change a plot in several ways before
causing its associated named selection to update using the changes.

Example:

s = GetSelection('selection1')
s.selectionType = s.CumulativeQuerySelection
s.histogramType = s.HistogramMatches
s.combineRule = s.CombineOr
s.variables = ('temperature',)
s.variableMins = (2.9,)
s.variableMaxs = (3.1,)
UpdateNamedSelection('selection1', s)

2.4.286 Version

Synopsis:

Version() -> string

return type [string] The Version function return a string that represents VisIt’s version.

Description:

The Version function returns a string that represents VisIt’s version. The version string can be used in
Python scripts to make sure that the VisIt module is a certain version before processing the rest of the
Python script.

Example:

#% visit -cli
print "We are running VisIt version %s" % Version()

2.4.287 WriteConfigFile

Synopsis:

WriteConfigFile()

Description:

The viewer maintains internal settings which determine the default values for objects like plots and op-
erators. The viewer can save out the default values so they can be used in future VisIt sessions. The
WriteConfig function tells the viewer to write out the settings to the VisIt configuration file.

Example:

#% visit -cli
p = PseudocolorAttributes()
p.minFlag, p.min = 1, 5.0
p.maxFlag, p.max = 1, 20.0
SetDefaultPlotOptions(p)
# Save the new default Pseudocolor settings to the config file.
WriteConfig()

2.4. Functions 629



VisIt User Manual Documentation, Release 3.1

2.4.288 WriteScript

Example:

f = open('script.py', 'wt')
WriteScript(f)
f.close()

2.4.289 ZonePick

Synopsis:

ZonePick(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary

coord [tuple] A tuple of doubles containing the spatial coordinate (x, y, z).

x [integer] An integer containing the screen X location (in pixels) offset from the left side of the visualization window.

y [integer] An integer containing the screen Y location (in pixels) offset from the bottom of the visualization window.

vars (optional) [tuple] A tuple of strings with the variable names for which to return results. Default is the currently
plotted variable.

do_time (optional) [integer] An integer indicating whether to do a time pick. 1 -> do a time pick, 0 (default) -> do
not do a time pick.

start_time (optional) [integer] An integer with the starting frame index. Default is 0.

end_time (optional) [integer] An integer with the ending frame index. Default is num_timestates-1.

stride (optional) [integer] An integer with the stride for advancing in time. Default is 1.

preserve_coord (optional) [integer] An integer indicating whether to pick an element or a coordinate. 0 -> used
picked element (default), 1-> used picked coordinate. Note: enabling this option may substantially slow down
the speed with which the query can be performed.

curve_plot_type (optional) [integer] An integer indicating whether the output should be on a single axis or with
multiple axes. 0 -> single Y axis (default), 1 -> multiple Y Axes.

return type [dictionary] ZonePick returns a python dictionary of the pick results, unless do_time is specified, then a
time curve is created in a new window. If the picked variable is node centered, the variable values are grouped
according to incident node ids.

Description:

The ZonePick function prints pick information for the cell (a.k.a zone) that contains the specified point.
The point can be specified as a 2D or 3D point in world space or it can be specified as a pixel location
in screen space. If the point is specified as a pixel location then VisIt finds the zone that contains the
intersection of a cell and a ray that is projected into the mesh. Once the zonal pick has been calculated,
you can use the GetPickOutput function to retrieve the printed pick output as a string which can be used
for other purposes.

Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
# Perform zone pick in screen space
pick_out = ZonePick(x=200,y=200)

(continues on next page)

630 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

# Perform zone pick in world space.
pick_out = ZonePick(coord = (-5.0, 5.0, 0))

2.5 Attribute Reference

This chapter shows all the attributes that can be set to control the behavior of VisIt. The attributes themselves are not
documented, but their names are usually quite explanatory. When a member of an attribute can take values from a
given list of options, the default option is printed first in italic followed by a comma separated list of the other available
options.

The listing is ordered in alphabetical ordering of the name of the attribute set. For each set the function that will
provide you with these attributes is printed in italic.

Many functions return an integer where 1 means success and 0 means failure. This behavior is represented by the type
CLI_return_t in an attempt to distinguish it from functions that may utilize the full range of integers. | |

2.5.1 AMRStitchCell: AMRStitchCellAttributes()

Attribute Default/Allowed Values
CreateCellsOfType DualGridAndStitchCells, DualGrid, StitchCells

2.5.2 Animation: AnimationAttributes()

Attribute Default/Allowed Values
animationMode StopMode, ReversePlayMode, PlayMode
pipelineCachingMode 0
frameIncrement 1
timeout 1
playbackMode PlayOnce, Looping, Swing

2.5. Attribute Reference 631



VisIt User Manual Documentation, Release 3.1

2.5.3 Annotation: AnnotationAttributes()

Attribute Default/Allowed Values
axes2D.visible 1
axes2D.autoSetTicks 1
axes2D.autoSetScaling 1
axes2D.lineWidth 0
axes2D.tickLocation Outside, Inside, Both
axes2D.tickAxes BottomLeft, Off, Bottom, Left, All
axes2D.xAxis.title.visible 1
axes2D.xAxis.title.font.font Courier, Arial, Times
axes2D.xAxis.title.font.scale 1
axes2D.xAxis.title.font.useForegroundColor 1
axes2D.xAxis.title.font.color (0, 0, 0, 255)
axes2D.xAxis.title.font.bold 1
axes2D.xAxis.title.font.italic 1
axes2D.xAxis.title.userTitle 0
axes2D.xAxis.title.userUnits 0
axes2D.xAxis.title.title “X-Axis”
axes2D.xAxis.title.units “”
axes2D.xAxis.label.visible 1
axes2D.xAxis.label.font.font Courier, Arial, Times
axes2D.xAxis.label.font.scale 1
axes2D.xAxis.label.font.useForegroundColor 1
axes2D.xAxis.label.font.color (0, 0, 0, 255)
axes2D.xAxis.label.font.bold 1
axes2D.xAxis.label.font.italic 1
axes2D.xAxis.label.scaling 0
axes2D.xAxis.tickMarks.visible 1
axes2D.xAxis.tickMarks.majorMinimum 0
axes2D.xAxis.tickMarks.majorMaximum 1
axes2D.xAxis.tickMarks.minorSpacing 0.02
axes2D.xAxis.tickMarks.majorSpacing 0.2
axes2D.xAxis.grid 0
axes2D.yAxis.title.visible 1
axes2D.yAxis.title.font.font Courier, Arial, Times
axes2D.yAxis.title.font.scale 1
axes2D.yAxis.title.font.useForegroundColor 1
axes2D.yAxis.title.font.color (0, 0, 0, 255)
axes2D.yAxis.title.font.bold 1
axes2D.yAxis.title.font.italic 1
axes2D.yAxis.title.userTitle 0
axes2D.yAxis.title.userUnits 0
axes2D.yAxis.title.title “Y-Axis”
axes2D.yAxis.title.units “”

Continued on next page

632 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.1 – continued from previous page
axes2D.yAxis.label.visible 1
axes2D.yAxis.label.font.font Courier, Arial, Times
axes2D.yAxis.label.font.scale 1
axes2D.yAxis.label.font.useForegroundColor 1
axes2D.yAxis.label.font.color (0, 0, 0, 255)
axes2D.yAxis.label.font.bold 1
axes2D.yAxis.label.font.italic 1
axes2D.yAxis.label.scaling 0
axes2D.yAxis.tickMarks.visible 1
axes2D.yAxis.tickMarks.majorMinimum 0
axes2D.yAxis.tickMarks.majorMaximum 1
axes2D.yAxis.tickMarks.minorSpacing 0.02
axes2D.yAxis.tickMarks.majorSpacing 0.2
axes2D.yAxis.grid 0
axes3D.visible 1
axes3D.autoSetTicks 1
axes3D.autoSetScaling 1
axes3D.lineWidth 0
axes3D.tickLocation Inside, Outside, Both
axes3D.axesType ClosestTriad, FurthestTriad, OutsideEdges, StaticTriad, StaticEdges
axes3D.triadFlag 1
axes3D.bboxFlag 1
axes3D.xAxis.title.visible 1
axes3D.xAxis.title.font.font Arial, Courier, Times
axes3D.xAxis.title.font.scale 1
axes3D.xAxis.title.font.useForegroundColor 1
axes3D.xAxis.title.font.color (0, 0, 0, 255)
axes3D.xAxis.title.font.bold 0
axes3D.xAxis.title.font.italic 0
axes3D.xAxis.title.userTitle 0
axes3D.xAxis.title.userUnits 0
axes3D.xAxis.title.title “X-Axis”
axes3D.xAxis.title.units “”
axes3D.xAxis.label.visible 1
axes3D.xAxis.label.font.font Arial, Courier, Times
axes3D.xAxis.label.font.scale 1
axes3D.xAxis.label.font.useForegroundColor 1
axes3D.xAxis.label.font.color (0, 0, 0, 255)
axes3D.xAxis.label.font.bold 0
axes3D.xAxis.label.font.italic 0
axes3D.xAxis.label.scaling 0
axes3D.xAxis.tickMarks.visible 1
axes3D.xAxis.tickMarks.majorMinimum 0
axes3D.xAxis.tickMarks.majorMaximum 1
axes3D.xAxis.tickMarks.minorSpacing 0.02
axes3D.xAxis.tickMarks.majorSpacing 0.2
axes3D.xAxis.grid 0
axes3D.yAxis.title.visible 1
axes3D.yAxis.title.font.font Arial, Courier, Times
axes3D.yAxis.title.font.scale 1

Continued on next page

2.5. Attribute Reference 633



VisIt User Manual Documentation, Release 3.1

Table 2.1 – continued from previous page
axes3D.yAxis.title.font.useForegroundColor 1
axes3D.yAxis.title.font.color (0, 0, 0, 255)
axes3D.yAxis.title.font.bold 0
axes3D.yAxis.title.font.italic 0
axes3D.yAxis.title.userTitle 0
axes3D.yAxis.title.userUnits 0
axes3D.yAxis.title.title “Y-Axis”
axes3D.yAxis.title.units “”
axes3D.yAxis.label.visible 1
axes3D.yAxis.label.font.font Arial, Courier, Times
axes3D.yAxis.label.font.scale 1
axes3D.yAxis.label.font.useForegroundColor 1
axes3D.yAxis.label.font.color (0, 0, 0, 255)
axes3D.yAxis.label.font.bold 0
axes3D.yAxis.label.font.italic 0
axes3D.yAxis.label.scaling 0
axes3D.yAxis.tickMarks.visible 1
axes3D.yAxis.tickMarks.majorMinimum 0
axes3D.yAxis.tickMarks.majorMaximum 1
axes3D.yAxis.tickMarks.minorSpacing 0.02
axes3D.yAxis.tickMarks.majorSpacing 0.2
axes3D.yAxis.grid 0
axes3D.zAxis.title.visible 1
axes3D.zAxis.title.font.font Arial, Courier, Times
axes3D.zAxis.title.font.scale 1
axes3D.zAxis.title.font.useForegroundColor 1
axes3D.zAxis.title.font.color (0, 0, 0, 255)
axes3D.zAxis.title.font.bold 0
axes3D.zAxis.title.font.italic 0
axes3D.zAxis.title.userTitle 0
axes3D.zAxis.title.userUnits 0
axes3D.zAxis.title.title “Z-Axis”
axes3D.zAxis.title.units “”
axes3D.zAxis.label.visible 1
axes3D.zAxis.label.font.font Arial, Courier, Times
axes3D.zAxis.label.font.scale 1
axes3D.zAxis.label.font.useForegroundColor 1
axes3D.zAxis.label.font.color (0, 0, 0, 255)
axes3D.zAxis.label.font.bold 0
axes3D.zAxis.label.font.italic 0
axes3D.zAxis.label.scaling 0
axes3D.zAxis.tickMarks.visible 1
axes3D.zAxis.tickMarks.majorMinimum 0
axes3D.zAxis.tickMarks.majorMaximum 1
axes3D.zAxis.tickMarks.minorSpacing 0.02
axes3D.zAxis.tickMarks.majorSpacing 0.2
axes3D.zAxis.grid 0
axes3D.setBBoxLocation 0
axes3D.bboxLocation (0, 1, 0, 1, 0, 1)
axes3D.triadColor (0, 0, 0)

Continued on next page

634 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.1 – continued from previous page
axes3D.triadLineWidth 1
axes3D.triadFont 0
axes3D.triadBold 1
axes3D.triadItalic 1
axes3D.triadSetManually 0
userInfoFlag 1
userInfoFont.font Arial, Courier, Times
userInfoFont.scale 1
userInfoFont.useForegroundColor 1
userInfoFont.color (0, 0, 0, 255)
userInfoFont.bold 0
userInfoFont.italic 0
databaseInfoFlag 1
timeInfoFlag 1
databaseInfoFont.font Arial, Courier, Times
databaseInfoFont.scale 1
databaseInfoFont.useForegroundColor 1
databaseInfoFont.color (0, 0, 0, 255)
databaseInfoFont.bold 0
databaseInfoFont.italic 0
databaseInfoExpansionMode File, Directory, Full, Smart, SmartDirectory
databaseInfoTimeScale 1
databaseInfoTimeOffset 0
legendInfoFlag 1
backgroundColor (255, 255, 255, 255)
foregroundColor (0, 0, 0, 255)
gradientBackgroundStyle Radial, TopToBottom, BottomToTop, LeftToRight, RightToLeft
gradientColor1 (0, 0, 255, 255)
gradientColor2 (0, 0, 0, 255)
backgroundMode Solid, Gradient, Image, ImageSphere
backgroundImage “”
imageRepeatX 1
imageRepeatY 1
axesArray.visible 1
axesArray.ticksVisible 1
axesArray.autoSetTicks 1
axesArray.autoSetScaling 1
axesArray.lineWidth 0
axesArray.axes.title.visible 1
axesArray.axes.title.font.font Arial, Courier, Times
axesArray.axes.title.font.scale 1
axesArray.axes.title.font.useForegroundColor 1
axesArray.axes.title.font.color (0, 0, 0, 255)
axesArray.axes.title.font.bold 0
axesArray.axes.title.font.italic 0
axesArray.axes.title.userTitle 0
axesArray.axes.title.userUnits 0
axesArray.axes.title.title “”
axesArray.axes.title.units “”
axesArray.axes.label.visible 1

Continued on next page

2.5. Attribute Reference 635



VisIt User Manual Documentation, Release 3.1

Table 2.1 – continued from previous page
axesArray.axes.label.font.font Arial, Courier, Times
axesArray.axes.label.font.scale 1
axesArray.axes.label.font.useForegroundColor 1
axesArray.axes.label.font.color (0, 0, 0, 255)
axesArray.axes.label.font.bold 0
axesArray.axes.label.font.italic 0
axesArray.axes.label.scaling 0
axesArray.axes.tickMarks.visible 1
axesArray.axes.tickMarks.majorMinimum 0
axesArray.axes.tickMarks.majorMaximum 1
axesArray.axes.tickMarks.minorSpacing 0.02
axesArray.axes.tickMarks.majorSpacing 0.2
axesArray.axes.grid 0

2.5.4 Axis: AxisAttributes()

636 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
title.visible 1
title.font.font Arial, Courier, Times
title.font.scale 1
title.font.useForegroundColor 1
title.font.color (0, 0, 0, 255)
title.font.bold 0
title.font.italic 0
title.userTitle 0
title.userUnits 0
title.title “”
title.units “”
label.visible 1
label.font.font Arial, Courier, Times
label.font.scale 1
label.font.useForegroundColor 1
label.font.color (0, 0, 0, 255)
label.font.bold 0
label.font.italic 0
label.scaling 0
tickMarks.visible 1
tickMarks.majorMinimum 0
tickMarks.majorMaximum 1
tickMarks.minorSpacing 0.02
tickMarks.majorSpacing 0.2
grid 0

2.5.5 AxisAlignedSlice4D: AxisAlignedSlice4DAttributes()

Attribute Default/Allowed Values
I ()
J ()
K ()
L ()

2.5. Attribute Reference 637



VisIt User Manual Documentation, Release 3.1

2.5.6 Boundary: BoundaryAttributes()

Attribute Default/Allowed Values
colorType ColorByMultipleColors, ColorBySingleColor, ColorByColorTable
colorTableName “Default”
invertColorTable 0
legendFlag 1
lineWidth 0
singleColor (0, 0, 0, 255)
boundaryNames ()
opacity 1
wireframe 0
smoothingLevel 0

2.5.7 BoundaryOp: BoundaryOpAttributes()

Attribute Default/Allowed Values
smoothingLevel 0

2.5.8 Box: BoxAttributes()

638 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
amount Some, All
minx 0
maxx 1
miny 0
maxy 1
minz 0
maxz 1
inverse 0

2.5.9 CartographicProjection: CartographicProjectionAttributes()

Attribute Default/Allowed Values
projectionID aitoff, eck4, eqdc, hammer, laea, lcc, merc, mill, moll, ortho, wink2
centralMeridian 0

2.5.10 Clip: ClipAttributes()

2.5. Attribute Reference 639



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
quality Fast, Accurate
funcType Plane, Sphere
plane1Status 1
plane2Status 0
plane3Status 0
plane1Origin (0, 0, 0)
plane2Origin (0, 0, 0)
plane3Origin (0, 0, 0)
plane1Normal (1, 0, 0)
plane2Normal (0, 1, 0)
plane3Normal (0, 0, 1)
planeInverse 0
planeToolControlledClipPlane Plane1, None, Plane2, Plane3
center (0, 0, 0)
radius 1
sphereInverse 0

2.5.11 Cone: ConeAttributes()

Attribute Default/Allowed Values
angle 45
origin (0, 0, 0)
normal (0, 0, 1)
representation Flattened, ThreeD, R_Theta
upAxis (0, 1, 0)
cutByLength 0
length 1

2.5.12 ConnectedComponents: ConnectedComponentsAttributes()

640 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
EnableGhostNeighborsOptimization 1

2.5.13 ConstructDataBinning: ConstructDataBinningAttributes()

Attribute Default/Allowed Values
name “”
varnames ()
binType ()
binBoundaries ()
reductionOperator Average, Minimum, Maximum, StandardDeviation, Variance, Sum, Count,

RMS, PDF
varForReductionOp-
erator

“”

undefinedValue 0
binningScheme Uniform, Unknown
numBins ()
overTime 0
timeStart 0
timeEnd 1
timeStride 1
outOfBoundsBehav-
ior

Clamp, Discard

2.5.14 Contour: ContourAttributes()

Attribute Default/Allowed Values
defaultPalette.GetControlPoints(0).colors (255, 0, 0, 255)
defaultPalette.GetControlPoints(0).position 0

Continued on next page

2.5. Attribute Reference 641



VisIt User Manual Documentation, Release 3.1

Table 2.2 – continued from previous page
defaultPalette.GetControlPoints(1).colors (0, 255, 0, 255)
defaultPalette.GetControlPoints(1).position 0.034
defaultPalette.GetControlPoints(2).colors (0, 0, 255, 255)
defaultPalette.GetControlPoints(2).position 0.069
defaultPalette.GetControlPoints(3).colors (0, 255, 255, 255)
defaultPalette.GetControlPoints(3).position 0.103
defaultPalette.GetControlPoints(4).colors (255, 0, 255, 255)
defaultPalette.GetControlPoints(4).position 0.138
defaultPalette.GetControlPoints(5).colors (255, 255, 0, 255)
defaultPalette.GetControlPoints(5).position 0.172
defaultPalette.GetControlPoints(6).colors (255, 135, 0, 255)
defaultPalette.GetControlPoints(6).position 0.207
defaultPalette.GetControlPoints(7).colors (255, 0, 135, 255)
defaultPalette.GetControlPoints(7).position 0.241
defaultPalette.GetControlPoints(8).colors (168, 168, 168, 255)
defaultPalette.GetControlPoints(8).position 0.276
defaultPalette.GetControlPoints(9).colors (255, 68, 68, 255)
defaultPalette.GetControlPoints(9).position 0.31
defaultPalette.GetControlPoints(10).colors (99, 255, 99, 255)
defaultPalette.GetControlPoints(10).position 0.345
defaultPalette.GetControlPoints(11).colors (99, 99, 255, 255)
defaultPalette.GetControlPoints(11).position 0.379
defaultPalette.GetControlPoints(12).colors (40, 165, 165, 255)
defaultPalette.GetControlPoints(12).position 0.414
defaultPalette.GetControlPoints(13).colors (255, 99, 255, 255)
defaultPalette.GetControlPoints(13).position 0.448
defaultPalette.GetControlPoints(14).colors (255, 255, 99, 255)
defaultPalette.GetControlPoints(14).position 0.483
defaultPalette.GetControlPoints(15).colors (255, 170, 99, 255)
defaultPalette.GetControlPoints(15).position 0.517
defaultPalette.GetControlPoints(16).colors (170, 79, 255, 255)
defaultPalette.GetControlPoints(16).position 0.552
defaultPalette.GetControlPoints(17).colors (150, 0, 0, 255)
defaultPalette.GetControlPoints(17).position 0.586
defaultPalette.GetControlPoints(18).colors (0, 150, 0, 255)
defaultPalette.GetControlPoints(18).position 0.621
defaultPalette.GetControlPoints(19).colors (0, 0, 150, 255)
defaultPalette.GetControlPoints(19).position 0.655
defaultPalette.GetControlPoints(20).colors (0, 109, 109, 255)
defaultPalette.GetControlPoints(20).position 0.69
defaultPalette.GetControlPoints(21).colors (150, 0, 150, 255)
defaultPalette.GetControlPoints(21).position 0.724
defaultPalette.GetControlPoints(22).colors (150, 150, 0, 255)
defaultPalette.GetControlPoints(22).position 0.759
defaultPalette.GetControlPoints(23).colors (150, 84, 0, 255)
defaultPalette.GetControlPoints(23).position 0.793
defaultPalette.GetControlPoints(24).colors (160, 0, 79, 255)
defaultPalette.GetControlPoints(24).position 0.828
defaultPalette.GetControlPoints(25).colors (255, 104, 28, 255)
defaultPalette.GetControlPoints(25).position 0.862

Continued on next page

642 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.2 – continued from previous page
defaultPalette.GetControlPoints(26).colors (0, 170, 81, 255)
defaultPalette.GetControlPoints(26).position 0.897
defaultPalette.GetControlPoints(27).colors (68, 255, 124, 255)
defaultPalette.GetControlPoints(27).position 0.931
defaultPalette.GetControlPoints(28).colors (0, 130, 255, 255)
defaultPalette.GetControlPoints(28).position 0.966
defaultPalette.GetControlPoints(29).colors (130, 0, 255, 255)
defaultPalette.GetControlPoints(29).position 1
defaultPalette.smoothing None, Linear, CubicSpline
defaultPalette.equalSpacingFlag 1
defaultPalette.discreteFlag 1
defaultPalette.categoryName “Standard”
changedColors ()
colorType ColorByMultipleColors, ColorBySingleColor, ColorByColorTable
colorTableName “Default”
invertColorTable 0
legendFlag 1
lineWidth 0
singleColor (255, 0, 0, 255)

SetMultiColor(0, (255, 0, 0, 255))
SetMultiColor(1, (0, 255, 0, 255))
SetMultiColor(2, (0, 0, 255, 255))
SetMultiColor(3, (0, 255, 255, 255))
SetMultiColor(4, (255, 0, 255, 255))
SetMultiColor(5, (255, 255, 0, 255))
SetMultiColor(6, (255, 135, 0, 255))
SetMultiColor(7, (255, 0, 135, 255))
SetMultiColor(8, (168, 168, 168, 255))
SetMultiColor(9, (255, 68, 68, 255))

contourNLevels 10
contourValue ()
contourPercent ()
contourMethod Level, Value, Percent
minFlag 0
maxFlag 0
min 0
max 1
scaling Linear, Log
wireframe 0

2.5. Attribute Reference 643



VisIt User Manual Documentation, Release 3.1

2.5.15 CoordSwap: CoordSwapAttributes()

Attribute Default/Allowed Values
newCoord1 Coord1, Coord2, Coord3
newCoord2 Coord2, Coord1, Coord3
newCoord3 Coord3, Coord1, Coord2

2.5.16 CreateBonds: CreateBondsAttributes()

Attribute Default/Allowed Values
elementVariable “element”
atomicNumber1 (1, -1)
atomicNumber2 (-1, -1)
minDist (0.4, 0.4)
maxDist (1.2, 1.9)
maxBondsClamp 10
addPeriodicBonds 0
useUnitCellVectors 1
periodicInX 1
periodicInY 1
periodicInZ 1
xVector (1, 0, 0)
yVector (0, 1, 0)
zVector (0, 0, 1)

2.5.17 Curve: CurveAttributes()

644 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
showLines 1
lineWidth 0
showPoints 0
symbol Point, TriangleUp, TriangleDown, Square, Circle, Plus, X
pointSize 5
pointFillMode Static, Dynamic
pointStride 1
symbolDensity 50
curveColorSource Cycle, Custom
curveColor (0, 0, 0, 255)
showLegend 1
showLabels 1
designator “”
doBallTimeCue 0
ballTimeCueColor (0, 0, 0, 255)
timeCueBallSize 0.01
doLineTimeCue 0
lineTimeCueColor (0, 0, 0, 255)
lineTimeCueWidth 0
doCropTimeCue 0
timeForTimeCue 0
fillMode NoFill, Solid, HorizontalGradient, VerticalGradient
fillColor1 (255, 0, 0, 255)
fillColor2 (255, 100, 100, 255)
polarToCartesian 0
polarCoordinateOrder R_Theta, Theta_R
angleUnits Radians, Degrees

2.5.18 Cylinder: CylinderAttributes()

Attribute Default/Allowed Values
point1 (0, 0, 0)
point2 (1, 0, 0)
radius 1
inverse 0

2.5. Attribute Reference 645



VisIt User Manual Documentation, Release 3.1

2.5.19 DataBinning: DataBinningAttributes()

Attribute Default/Allowed Values
numDimensions One, Two, Three
dim1BinBasedOn Variable, X, Y, Z
dim1Var “default”
dim1SpecifyRange 0
dim1MinRange 0
dim1MaxRange 1
dim1NumBins 50
dim2BinBasedOn Variable, X, Y, Z
dim2Var “default”
dim2SpecifyRange 0
dim2MinRange 0
dim2MaxRange 1
dim2NumBins 50
dim3BinBasedOn Variable, X, Y, Z
dim3Var “default”
dim3SpecifyRange 0
dim3MinRange 0
dim3MaxRange 1
dim3NumBins 50
outOfBoundsBehavior Clamp, Discard
reductionOperator Average, Minimum, Maximum, StandardDeviation, Variance, Sum,

Count, RMS, PDF
varForReduction “default”
emptyVal 0
outputType OutputOnBins, OutputOnInputMesh
removeEmptyValFrom-
Curve

1

2.5.20 DeferExpression: DeferExpressionAttributes()

Attribute Default/Allowed Values
exprs ()

646 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.5.21 Displace: DisplaceAttributes()

Attribute Default/Allowed Values
factor 1
variable “default”

2.5.22 DualMesh: DualMeshAttributes()

Attribute Default/Allowed Values
mode Auto, NodesToZones, ZonesToNodes

2.5.23 Edge: EdgeAttributes()

Attribute Default/Allowed Values
dummy 1

2.5. Attribute Reference 647



VisIt User Manual Documentation, Release 3.1

2.5.24 Elevate: ElevateAttributes()

Attribute Default/Allowed Values
useXYLimits Auto, Never, Always
limitsMode OriginalData, CurrentPlot
scaling Linear, Log, Skew
skewFactor 1
minFlag 0
min 0
maxFlag 0
max 1
zeroFlag 0
variable “default”

2.5.25 EllipsoidSlice: EllipsoidSliceAttributes()

Attribute Default/Allowed Values
origin (0, 0, 0)
radii (1, 1, 1)
rotationAngle (0, 0, 0)

2.5.26 Explode: ExplodeAttributes()

648 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
explosionType Point, Plane, Cylinder
explosionPoint (0, 0, 0)
planePoint (0, 0, 0)
planeNorm (0, 0, 0)
cylinderPoint1 (0, 0, 0)
cylinderPoint2 (0, 0, 0)
materialExplosionFactor 1
material “”
cylinderRadius 0
explodeMaterialCells 0
cellExplosionFactor 1
explosionPattern Impact, Scatter
explodeAllCells 0
boundaryNames ()

explosions does not contain any ExplodeAttributes objects.

2.5.27 ExportDB: ExportDBAttributes()

Attribute Default/Allowed Values
allTimes 0
dirname “.”
filename “visit_ex_db”
timeStateFormat “_%04d”
db_type “”
db_type_fullname “”
variables ()
writeUsingGroups 0
groupSize 48
opts.types ()
opts.help “”

2.5. Attribute Reference 649



VisIt User Manual Documentation, Release 3.1

2.5.28 ExternalSurface: ExternalSurfaceAttributes()

Attribute Default/Allowed Values
removeGhosts 0
edgesIn2D 1

2.5.29 Extrude: ExtrudeAttributes()

Attribute Default/Allowed Values
axis (0, 0, 1)
byVariable 0
variable “default”
length 1
steps 1
preserveOriginalCellNumbers 1

2.5.30 FFT: FFTAttributes()

Attribute Default/Allowed Values
dummy 0

650 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.5.31 FilledBoundary: FilledBoundaryAttributes()

Attribute Default/Allowed Values
colorType ColorByMultipleColors, ColorBySingleColor, ColorByColorTable
colorTableName “Default”
invertColorTable 0
legendFlag 1
lineWidth 0
singleColor (0, 0, 0, 255)
boundaryNames ()
opacity 1
wireframe 0
drawInternal 0
smoothingLevel 0
cleanZonesOnly 0
mixedColor (255, 255, 255, 255)
pointSize 0.05
pointType Point, Box, Axis, Icosahedron, Octahedron, Tetrahedron, SphereGeometry,

Sphere
pointSizeVarEn-
abled

0

pointSizeVar “default”
pointSizePixels 2

2.5.32 Flux: FluxAttributes()

Attribute Default/Allowed Values
flowField “default”
weight 0
weightField “default”

2.5. Attribute Reference 651



VisIt User Manual Documentation, Release 3.1

2.5.33 Font: FontAttributes()

Attribute Default/Allowed Values
font Arial, Courier, Times
scale 1
useForegroundColor 1
color (0, 0, 0, 255)
bold 0
italic 0

2.5.34 Global: GlobalAttributes()

652 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
sources ()
windows

(1)

activeWindow 0
iconifiedFlag 0
autoUpdateFlag 0
replacePlots 0
applyOperator 1
applySelection 1
applyWindow 0
executing 0
windowLayout 1
makeDefaultConfirm 1
cloneWindowOnFirstRef 0
automaticallyAddOperator 0
tryHarderCyclesTimes 0
treatAllDBsAsTimeVarying 0
createMeshQualityExpressions 1
createTimeDerivativeExpressions 1
createVectorMagnitudeExpressions 1
newPlotsInheritSILRestriction 1
userDirForSessionFiles 0
saveCrashRecoveryFile 1
ignoreExtentsFromDbs 0
expandNewPlots 0
userRestoreSessionFile 0
precisionType Native, Float, Double
backendType VTK, VTKM
removeDuplicateNodes 0

2.5.35 Histogram: HistogramAttributes()

2.5. Attribute Reference 653



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
basedOn ManyZonesForSingleVar, ManyVarsForSingleZone
histogramType Frequency, Weighted, Variable
weightVariable “default”
limitsMode OriginalData, CurrentPlot
minFlag 0
maxFlag 0
min 0
max 1
numBins 32
domain 0
zone 0
useBinWidths 1
outputType Block, Curve
lineWidth 0
color (200, 80, 40, 255)
dataScale Linear, Log, SquareRoot
binScale Linear, Log, SquareRoot
normalizeHistogram 0
computeAsCDF 0

2.5.36 IndexSelect: IndexSelectAttributes()

654 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
maxDim ThreeD, OneD, TwoD
dim TwoD, OneD, ThreeD
xAbsMax -1
xMin 0
xMax -1
xIncr 1
xWrap 0
yAbsMax -1
yMin 0
yMax -1
yIncr 1
yWrap 0
zAbsMax -1
zMin 0
zMax -1
zIncr 1
zWrap 0
useWholeCollection 1
categoryName “Whole”
subsetName “Whole”

2.5.37 IntegralCurve: IntegralCurveAttributes()

Attribute Default/Allowed Values
sourceType SpecifiedPoint, PointList, SpecifiedLine, Circle, SpecifiedPlane, SpecifiedSphere, SpecifiedBox, Selection, FieldData
pointSource (0, 0, 0)
lineStart (0, 0, 0)
lineEnd (1, 0, 0)
planeOrigin (0, 0, 0)
planeNormal (0, 0, 1)
planeUpAxis (0, 1, 0)
radius 1
sphereOrigin (0, 0, 0)
boxExtents (0, 1, 0, 1, 0, 1)
useWholeBox 1
pointList (0, 0, 0, 1, 0, 0, 0, 1, 0)
fieldData ()
sampleDensity0 2
sampleDensity1 2

Continued on next page

2.5. Attribute Reference 655



VisIt User Manual Documentation, Release 3.1

Table 2.3 – continued from previous page
sampleDensity2 2
dataValue TimeAbsolute, Solid, SeedPointID, Speed, Vorticity, ArcLength, TimeRelative, AverageDistanceFromSeed, CorrelationDistance, Difference, Variable
dataVariable “”
integrationDirection Forward, Backward, Both, ForwardDirectionless, BackwardDirectionless, BothDirectionless
maxSteps 1000
terminateByDistance 0
termDistance 10
terminateByTime 0
termTime 10
maxStepLength 0.1
limitMaximumTimestep 0
maxTimeStep 0.1
relTol 0.0001
absTolSizeType FractionOfBBox, Absolute
absTolAbsolute 1e-06
absTolBBox 1e-06
fieldType Default, FlashField, M3DC12DField, M3DC13DField, Nek5000Field, NektarPPField
fieldConstant 1
velocitySource (0, 0, 0)
integrationType DormandPrince, Euler, Leapfrog, AdamsBashforth, RK4, M3DC12DIntegrator
parallelizationAlgorithmType VisItSelects, LoadOnDemand, ParallelStaticDomains, MasterSlave
maxProcessCount 10
maxDomainCacheSize 3
workGroupSize 32
pathlines 0
pathlinesOverrideStartingTimeFlag 0
pathlinesOverrideStartingTime 0
pathlinesPeriod 0
pathlinesCMFE POS_CMFE, CONN_CMFE
displayGeometry Lines, Tubes, Ribbons
cleanupMethod NoCleanup, Merge, Before, After
cleanupThreshold 1e-08
cropBeginFlag 0
cropBegin 0
cropEndFlag 0
cropEnd 0
cropValue Time, Distance, StepNumber
sampleDistance0 10
sampleDistance1 10
sampleDistance2 10
fillInterior 1
randomSamples 0
randomSeed 0
numberOfRandomSamples 1
issueAdvectionWarnings 1
issueBoundaryWarnings 1
issueTerminationWarnings 1
issueStepsizeWarnings 1
issueStiffnessWarnings 1
issueCriticalPointsWarnings 1

Continued on next page

656 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.3 – continued from previous page
criticalPointThreshold 0.001
correlationDistanceAngTol 5
correlationDistanceMinDistAbsolute 1
correlationDistanceMinDistBBox 0.005
correlationDistanceMinDistType FractionOfBBox, Absolute
selection “”

2.5.38 InverseGhostZone: InverseGhostZoneAttributes()

Attribute Default/Allowed Values
requestGhostZones 1
showDuplicated 1
showEnhancedConnectivity 1
showReducedConnectivity 1
showAMRRefined 1
showExterior 1
showNotApplicable 1

2.5.39 Isosurface: IsosurfaceAttributes()

2.5. Attribute Reference 657



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
contourNLevels 10
contourValue ()
contourPercent ()
contourMethod Level, Value, Percent
minFlag 0
min 0
maxFlag 0
max 1
scaling Linear, Log
variable “default”

2.5.40 Isovolume: IsovolumeAttributes()

Attribute Default/Allowed Values
lbound -1e+37
ubound 1e+37
variable “default”

2.5.41 Keyframe: KeyframeAttributes()

Attribute Default/Allowed Values
enabled 0
nFrames 1
nFramesWasUserSet 0

658 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.5.42 LCS: LCSAttributes()

Attribute Default/Allowed Values
sourceType NativeMesh, RegularGrid
Resolution (10, 10, 10)
UseDataSetStart Full, Subset
StartPosition (0, 0, 0)
UseDataSetEnd Full, Subset
EndPosition (1, 1, 1)
integrationDirection Forward, Backward, Both
auxiliaryGrid None, TwoDim, ThreeDim
auxiliaryGridSpacing 0.0001
maxSteps 1000
operationType Lyapunov, IntegrationTime, ArcLength, AverageDistanceFromSeed, EigenValue, EigenVector
cauchyGreenTensor Right, Left
eigenComponent Largest, Smallest, Intermediate, PosShearVector, NegShearVector, PosLambdaShearVector, NegLambdaShearVector
eigenWeight 1
operatorType BaseValue, Gradient
terminationType Time, Distance, Size
terminateBySize 0
termSize 10
terminateByDistance 0
termDistance 10
terminateByTime 0
termTime 10
maxStepLength 0.1
limitMaximumTimestep 0
maxTimeStep 0.1
relTol 0.0001
absTolSizeType FractionOfBBox, Absolute
absTolAbsolute 1e-06
absTolBBox 1e-06
fieldType Default, FlashField, M3DC12DField, M3DC13DField, Nek5000Field, NektarPPField
fieldConstant 1
velocitySource (0, 0, 0)
integrationType DormandPrince, Euler, Leapfrog, AdamsBashforth, RK4, M3DC12DIntegrator
clampLogValues 0
parallelizationAlgorithmType VisItSelects, LoadOnDemand, ParallelStaticDomains, MasterSlave
maxProcessCount 10
maxDomainCacheSize 3
workGroupSize 32
pathlines 0
pathlinesOverrideStartingTimeFlag 0
pathlinesOverrideStartingTime 0
pathlinesPeriod 0
pathlinesCMFE POS_CMFE, CONN_CMFE
thresholdLimit 0.1
radialLimit 0.1

Continued on next page

2.5. Attribute Reference 659



VisIt User Manual Documentation, Release 3.1

Table 2.4 – continued from previous page
boundaryLimit 0.1
seedLimit 10
issueAdvectionWarnings 1
issueBoundaryWarnings 1
issueTerminationWarnings 1
issueStepsizeWarnings 1
issueStiffnessWarnings 1
issueCriticalPointsWarnings 1
criticalPointThreshold 0.001

2.5.43 Label: LabelAttributes()

660 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
legendFlag 1
showNodes 0
showCells 1
restrictNumberOfLabels 1
drawLabelsFacing Front, Back, FrontAndBack
labelDisplayFormat Natural, LogicalIndex, Index
numberOfLabels 200
textFont1.font Arial, Courier, Times
textFont1.scale 4
text-
Font1.useForegroundColor

1

textFont1.color (255, 0, 0, 255)
textFont1.bold 0
textFont1.italic 0
textFont2.font Arial, Courier, Times
textFont2.scale 4
text-
Font2.useForegroundColor

1

textFont2.color (0, 0, 255, 255)
textFont2.bold 0
textFont2.italic 0
horizontalJustification HCenter, Left, Right
verticalJustification VCenter, Top, Bottom
depthTestMode LABEL_DT_AUTO, LABEL_DT_ALWAYS, LA-

BEL_DT_NEVER
formatTemplate “%g”

2.5.44 Lagrangian: LagrangianAttributes()

Attribute Default/Allowed Values
seedPoint (0, 0, 0)
numSteps 1000
XAxisSample Step, Time, ArcLength, Speed, Vorticity, Variable
YAxisSample Step, Time, ArcLength, Speed, Vorticity, Variable
variable “default”

2.5. Attribute Reference 661



VisIt User Manual Documentation, Release 3.1

2.5.45 Light: LightAttributes()

Attribute Default/Allowed Values
enabledFlag 1
type Camera, Ambient, Object
direction (0, 0, -1)
color (255, 255, 255, 255)
brightness 1

2.5.46 LimitCycle: LimitCycleAttributes()

Attribute Default/Allowed Values
sourceType SpecifiedLine, SpecifiedPlane
lineStart (0, 0, 0)
lineEnd (1, 0, 0)
planeOrigin (0, 0, 0)
planeNormal (0, 0, 1)
planeUpAxis (0, 1, 0)
sampleDensity0 2
sampleDensity1 2
dataValue TimeAbsolute, Solid, SeedPointID, Speed, Vorticity, ArcLength, TimeRelative, AverageDistanceFromSeed, CorrelationDistance, Difference, Variable
dataVariable “”
integrationDirection Forward, Backward, Both, ForwardDirectionless, BackwardDirectionless, BothDirectionless
maxSteps 1000
terminateByDistance 0
termDistance 10
terminateByTime 0
termTime 10
maxStepLength 0.1
limitMaximumTimestep 0
maxTimeStep 0.1
relTol 0.0001
absTolSizeType FractionOfBBox, Absolute
absTolAbsolute 1e-06
absTolBBox 1e-06

Continued on next page

662 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.5 – continued from previous page
fieldType Default, FlashField, M3DC12DField, M3DC13DField, Nek5000Field, NektarPPField
fieldConstant 1
velocitySource (0, 0, 0)
integrationType DormandPrince, Euler, Leapfrog, AdamsBashforth, RK4, M3DC12DIntegrator
parallelizationAlgorithmType VisItSelects, LoadOnDemand, ParallelStaticDomains, MasterSlave
maxProcessCount 10
maxDomainCacheSize 3
workGroupSize 32
pathlines 0
pathlinesOverrideStartingTimeFlag 0
pathlinesOverrideStartingTime 0
pathlinesPeriod 0
pathlinesCMFE POS_CMFE, CONN_CMFE
sampleDistance0 10
sampleDistance1 10
sampleDistance2 10
fillInterior 1
randomSamples 0
randomSeed 0
numberOfRandomSamples 1
forceNodeCenteredData 0
cycleTolerance 1e-06
maxIterations 10
showPartialResults 1
showReturnDistances 0
issueAdvectionWarnings 1
issueBoundaryWarnings 1
issueTerminationWarnings 1
issueStepsizeWarnings 1
issueStiffnessWarnings 1
issueCriticalPointsWarnings 1
criticalPointThreshold 0.001
correlationDistanceAngTol 5
correlationDistanceMinDistAbsolute 1
correlationDistanceMinDistBBox 0.005
correlationDistanceMinDistType FractionOfBBox, Absolute

2.5.47 Lineout: LineoutAttributes()

2.5. Attribute Reference 663



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
point1 (0, 0, 0)
point2 (1, 1, 0)
interactive 0
ignoreGlobal 0
samplingOn 0
numberOfSamplePoints 50
reflineLabels 0

2.5.48 Material: MaterialAttributes()

Attribute Default/Allowed Values
smoothing 0
forceMIR 0
cleanZonesOnly 0
needValidConnectivity 0
algorithm EquiZ, EquiT, Isovolume, PLIC, Discrete
iterationEnabled 0
numIterations 5
iterationDamping 0.4
simplifyHeavilyMixedZones 0
maxMaterialsPerZone 3
isoVolumeFraction 0.5
annealingTime 10

2.5.49 Mesh: MeshAttributes()

664 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
legendFlag 1
lineWidth 0
meshColor (0, 0, 0, 255)
meshColorSource Foreground, MeshCustom
opaqueColorSource Background, OpaqueCustom
opaqueMode Auto, On, Off
pointSize 0.05
opaqueColor (255, 255, 255, 255)
smoothingLevel None, Fast, High
pointSizeVarEn-
abled

0

pointSizeVar “default”
pointType Point, Box, Axis, Icosahedron, Octahedron, Tetrahedron, SphereGeometry,

Sphere
showInternal 0
pointSizePixels 2
opacity 1

2.5.50 MeshManagement: MeshManagementAttributes()

Attribute Default/Allowed Values
discretizationTolerance (0.02, 0.025, 0.05)
discretizationToleranceX ()
discretizationToleranceY ()
discretizationToleranceZ ()
discretizationMode Uniform, Adaptive, MultiPass
discretizeBoundaryOnly 0
passNativeCSG 0

2.5.51 Molecule: MoleculeAttributes()

2.5. Attribute Reference 665



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
drawAtomsAs SphereAtoms, NoAtoms, ImposterAtoms
scaleRadiusBy Fixed, Covalent, Atomic, Variable
drawBondsAs CylinderBonds, NoBonds, LineBonds
colorBonds ColorByAtom, SingleColor
bondSingleColor (128, 128, 128, 255)
radiusVariable “default”
radiusScaleFactor 1
radiusFixed 0.3
atomSphereQuality Medium, Low, High, Super
bondCylinderQuality Medium, Low, High, Super
bondRadius 0.12
bondLineWidth 0
elementColorTable “cpk_jmol”
residueTypeColorTable “amino_shapely”
residueSequenceColorTable “Default”
continuousColorTable “Default”
legendFlag 1
minFlag 0
scalarMin 0
maxFlag 0
scalarMax 1

2.5.52 MultiCurve: MultiCurveAttributes()

Attribute Default/Allowed Values
defaultPalette.GetControlPoints(0).colors (255, 0, 0, 255)
defaultPalette.GetControlPoints(0).position 0
defaultPalette.GetControlPoints(1).colors (0, 255, 0, 255)
defaultPalette.GetControlPoints(1).position 0.034
defaultPalette.GetControlPoints(2).colors (0, 0, 255, 255)
defaultPalette.GetControlPoints(2).position 0.069
defaultPalette.GetControlPoints(3).colors (0, 255, 255, 255)
defaultPalette.GetControlPoints(3).position 0.103
defaultPalette.GetControlPoints(4).colors (255, 0, 255, 255)
defaultPalette.GetControlPoints(4).position 0.138
defaultPalette.GetControlPoints(5).colors (255, 255, 0, 255)
defaultPalette.GetControlPoints(5).position 0.172
defaultPalette.GetControlPoints(6).colors (255, 135, 0, 255)
defaultPalette.GetControlPoints(6).position 0.207

Continued on next page

666 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.6 – continued from previous page
defaultPalette.GetControlPoints(7).colors (255, 0, 135, 255)
defaultPalette.GetControlPoints(7).position 0.241
defaultPalette.GetControlPoints(8).colors (168, 168, 168, 255)
defaultPalette.GetControlPoints(8).position 0.276
defaultPalette.GetControlPoints(9).colors (255, 68, 68, 255)
defaultPalette.GetControlPoints(9).position 0.31
defaultPalette.GetControlPoints(10).colors (99, 255, 99, 255)
defaultPalette.GetControlPoints(10).position 0.345
defaultPalette.GetControlPoints(11).colors (99, 99, 255, 255)
defaultPalette.GetControlPoints(11).position 0.379
defaultPalette.GetControlPoints(12).colors (40, 165, 165, 255)
defaultPalette.GetControlPoints(12).position 0.414
defaultPalette.GetControlPoints(13).colors (255, 99, 255, 255)
defaultPalette.GetControlPoints(13).position 0.448
defaultPalette.GetControlPoints(14).colors (255, 255, 99, 255)
defaultPalette.GetControlPoints(14).position 0.483
defaultPalette.GetControlPoints(15).colors (255, 170, 99, 255)
defaultPalette.GetControlPoints(15).position 0.517
defaultPalette.GetControlPoints(16).colors (170, 79, 255, 255)
defaultPalette.GetControlPoints(16).position 0.552
defaultPalette.GetControlPoints(17).colors (150, 0, 0, 255)
defaultPalette.GetControlPoints(17).position 0.586
defaultPalette.GetControlPoints(18).colors (0, 150, 0, 255)
defaultPalette.GetControlPoints(18).position 0.621
defaultPalette.GetControlPoints(19).colors (0, 0, 150, 255)
defaultPalette.GetControlPoints(19).position 0.655
defaultPalette.GetControlPoints(20).colors (0, 109, 109, 255)
defaultPalette.GetControlPoints(20).position 0.69
defaultPalette.GetControlPoints(21).colors (150, 0, 150, 255)
defaultPalette.GetControlPoints(21).position 0.724
defaultPalette.GetControlPoints(22).colors (150, 150, 0, 255)
defaultPalette.GetControlPoints(22).position 0.759
defaultPalette.GetControlPoints(23).colors (150, 84, 0, 255)
defaultPalette.GetControlPoints(23).position 0.793
defaultPalette.GetControlPoints(24).colors (160, 0, 79, 255)
defaultPalette.GetControlPoints(24).position 0.828
defaultPalette.GetControlPoints(25).colors (255, 104, 28, 255)
defaultPalette.GetControlPoints(25).position 0.862
defaultPalette.GetControlPoints(26).colors (0, 170, 81, 255)
defaultPalette.GetControlPoints(26).position 0.897
defaultPalette.GetControlPoints(27).colors (68, 255, 124, 255)
defaultPalette.GetControlPoints(27).position 0.931
defaultPalette.GetControlPoints(28).colors (0, 130, 255, 255)
defaultPalette.GetControlPoints(28).position 0.966
defaultPalette.GetControlPoints(29).colors (130, 0, 255, 255)
defaultPalette.GetControlPoints(29).position 1
defaultPalette.smoothing None, Linear, CubicSpline
defaultPalette.equalSpacingFlag 1
defaultPalette.discreteFlag 1
defaultPalette.categoryName “Standard”

Continued on next page

2.5. Attribute Reference 667



VisIt User Manual Documentation, Release 3.1

Table 2.6 – continued from previous page
changedColors ()
colorType ColorByMultipleColors, ColorBySingleColor
singleColor (255, 0, 0, 255)

SetMultiColor(0, (255, 0, 0, 255))
SetMultiColor(1, (0, 255, 0, 255))
SetMultiColor(2, (0, 0, 255, 255))
SetMultiColor(3, (0, 255, 255, 255))
SetMultiColor(4, (255, 0, 255, 255))
SetMultiColor(5, (255, 255, 0, 255))
SetMultiColor(6, (255, 135, 0, 255))
SetMultiColor(7, (255, 0, 135, 255))
SetMultiColor(8, (168, 168, 168, 255))
SetMultiColor(9, (255, 68, 68, 255))
SetMultiColor(10, (99, 255, 99, 255))
SetMultiColor(11, (99, 99, 255, 255))
SetMultiColor(12, (40, 165, 165, 255))
SetMultiColor(13, (255, 99, 255, 255))
SetMultiColor(14, (255, 255, 99, 255))
SetMultiColor(15, (255, 170, 99, 255))

lineWidth 0
yAxisTitleFormat “%g”
useYAxisTickSpacing 0
yAxisTickSpacing 1
displayMarkers 1
markerScale 1
markerLineWidth 0
markerVariable “default”
displayIds 0
idVariable “default”
legendFlag 1

2.5.53 MultiresControl: MultiresControlAttributes()

Attribute Default/Allowed Values
resolution 0
maxResolution 1
info “”

668 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.5.54 OnionPeel: OnionPeelAttributes()

Attribute Default/Allowed Values
adjacencyType Node, Face
useGlobalId 0
categoryName “Whole”
subsetName “Whole”
index

(0)

logical 0
requestedLayer 0
seedType SeedCell, SeedNode
honorOriginalMesh 1

2.5.55 ParallelCoordinates: ParallelCoordinatesAttributes()

2.5. Attribute Reference 669



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
scalarAxisNames ()
visualAxisNames ()
extentMinima ()
extentMaxima ()
drawLines 1
linesColor (128, 0, 0, 255)
drawContext 1
contextGamma 2
contextNumPartitions 128
contextColor (0, 220, 0, 255)
drawLinesOnlyIfExtentsOn 1
unifyAxisExtents 0
linesNumPartitions 512
focusGamma 4
drawFocusAs BinsOfConstantColor, IndividualLines, BinsColoredByPopulation

2.5.56 PersistentParticles: PersistentParticlesAttributes()

Attribute Default/Allowed Values
startIndex 0
stopIndex 1
stride 1
startPathType Absolute, Relative
stopPathType Absolute, Relative
traceVariableX “default”
traceVariableY “default”
traceVariableZ “default”
connectParticles 0
showPoints 0
indexVariable “default”

670 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.5.57 Poincare: PoincareAttributes()

Attribute Default/Allowed Values
opacityType Explicit, ColorTable
opacity 1
minPunctures 50
maxPunctures 500
puncturePlotType Single, Double
maxSteps 1000
terminateByTime 0
termTime 10
puncturePeriodTolerance 0.01
puncturePlane Poloidal, Toroidal, Arbitrary
sourceType SpecifiedPoint, PointList, SpecifiedLine
pointSource (0, 0, 0)
pointList (0, 0, 0, 1, 0, 0, 0, 1, 0)
lineStart (0, 0, 0)
lineEnd (1, 0, 0)
pointDensity 1
fieldType Default, FlashField, M3DC12DField, M3DC13DField, Nek5000Field, NektarPPField
forceNodeCenteredData 0
fieldConstant 1
velocitySource (0, 0, 0)
integrationType AdamsBashforth, Euler, Leapfrog, DormandPrince, RK4, M3DC12DIntegrator
coordinateSystem Cartesian, Cylindrical
maxStepLength 0.1
limitMaximumTimestep 0
maxTimeStep 0.1
relTol 0.0001
absTolSizeType FractionOfBBox, Absolute
absTolAbsolute 1e-05
absTolBBox 1e-06
analysis Normal, None
maximumToroidalWinding 0
overrideToroidalWinding 0
overridePoloidalWinding 0
windingPairConfidence 0.9
rationalSurfaceFactor 0.1
overlaps Remove, Raw, Merge, Smooth
meshType Curves, Surfaces
numberPlanes 1
singlePlane 0
min 0
max 0
minFlag 0
maxFlag 0
colorType ColorByColorTable, ColorBySingleColor
singleColor (0, 0, 0, 255)

Continued on next page

2.5. Attribute Reference 671



VisIt User Manual Documentation, Release 3.1

Table 2.7 – continued from previous page
colorTableName “Default”
dataValue SafetyFactorQ, Solid, SafetyFactorP, SafetyFactorQ_NotP, SafetyFactorP_NotQ, ToroidalWindings, PoloidalWindingsQ, PoloidalWindingsP, FieldlineOrder, PointOrder, PlaneOrder, WindingGroupOrder, WindingPointOrder, WindingPointOrderModulo
showRationalSurfaces 0
RationalSurfaceMaxIterations 2
showOPoints 0
OPointMaxIterations 2
showXPoints 0
XPointMaxIterations 2
performOLineAnalysis 0
OLineToroidalWinding 1
OLineAxisFileName “”
showChaotic 0
showIslands 0
SummaryFlag 1
verboseFlag 0
show1DPlots 0
showLines 1
showPoints 0
parallelizationAlgorithmType VisItSelects, LoadOnDemand, ParallelStaticDomains, MasterSlave
maxProcessCount 10
maxDomainCacheSize 3
workGroupSize 32
pathlines 0
pathlinesOverrideStartingTimeFlag 0
pathlinesOverrideStartingTime 0
pathlinesPeriod 0
pathlinesCMFE POS_CMFE, CONN_CMFE
issueTerminationWarnings 1
issueStepsizeWarnings 1
issueStiffnessWarnings 1
issueCriticalPointsWarnings 1
criticalPointThreshold 0.001

2.5.58 Printer: PrinterAttributes()

672 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
printerName “”
printProgram “lpr”
documentName “untitled”
creator “”
numCopies 1
portrait 1
printColor 1
outputToFile 0
outputToFileName “untitled”
pageSize 2

2.5.59 Process: ProcessAttributes()

Attribute Default/Allowed Values
pids ()
ppids ()
hosts ()
isParallel 0
memory ()
times ()

2.5.60 Project: ProjectAttributes()

Attribute Default/Allowed Values
projectionType XYCartesian, ZYCartesian, XZCartesian, XRCylindrical, YRCylindrical,

ZRCylindrical
vectorTransform-
Method

AsDirection, None, AsPoint, AsDisplacement

2.5. Attribute Reference 673



VisIt User Manual Documentation, Release 3.1

2.5.61 Pseudocolor: PseudocolorAttributes()

Attribute Default/Allowed Values
scaling Linear, Log, Skew
skewFactor 1
limitsMode OriginalData, CurrentPlot
minFlag 0
min 0
useBelowMinColor 0
belowMinColor (0, 0, 0, 255)
maxFlag 0
max 1
useAboveMaxColor 0
aboveMaxColor (0, 0, 0, 255)
centering Natural, Nodal, Zonal
colorTableName “hot”
invertColorTable 0
opacityType FullyOpaque, ColorTable, Constant, Ramp, VariableRange
opacityVariable “”
opacity 1
opacityVarMin 0
opacityVarMax 1
opacityVarMinFlag 0
opacityVarMaxFlag 0
pointSize 0.05
pointType Point, Box, Axis, Icosahedron, Octahedron, Tetrahedron, SphereGeometry, Sphere
pointSizeVarEnabled 0
pointSizeVar “default”
pointSizePixels 2
lineType Line, Tube, Ribbon
lineWidth 0
tubeResolution 10
tubeRadiusSizeType FractionOfBBox, Absolute
tubeRadiusAbsolute 0.125
tubeRadiusBBox 0.005
tubeRadiusVarEnabled 0
tubeRadiusVar “”
tubeRadiusVarRatio 10
tailStyle None, Spheres, Cones
headStyle None, Spheres, Cones
endPointRadiusSizeType FractionOfBBox, Absolute
endPointRadiusAbsolute 0.125

Continued on next page

674 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.8 – continued from previous page
endPointRadiusBBox 0.05
endPointResolution 10
endPointRatio 5
endPointRadiusVarEnabled 0
endPointRadiusVar “”
endPointRadiusVarRatio 10
renderSurfaces 1
renderWireframe 0
renderPoints 0
smoothingLevel 0
legendFlag 1
lightingFlag 1
wireframeColor (0, 0, 0, 0)
pointColor (0, 0, 0, 0)

2.5.62 RadialResample: RadialResampleAttributes()

Attribute Default/Allowed Values
isFast 0
minTheta 0
maxTheta 90
deltaTheta 5
radius 0.5
deltaRadius 0.05
center (0.5, 0.5, 0.5)
is3D 1
minAzimuth 0
maxAzimuth 180
deltaAzimuth 5

2.5. Attribute Reference 675



VisIt User Manual Documentation, Release 3.1

2.5.63 Reflect: ReflectAttributes()

Attribute Default/Allowed Values
octant PXPYPZ, NXPYPZ, PXNYPZ, NXNYPZ, PXPYNZ, NXPYNZ, PXNYNZ,

NXNYNZ
useXBound-
ary

1

specifiedX 0
useYBound-
ary

1

specifiedY 0
useZBound-
ary

1

specifiedZ 0
reflections (1, 0, 1, 0, 0, 0, 0, 0)
planePoint (0, 0, 0)
planeNormal (0, 0, 0)
reflectType Axis, Plane

2.5.64 Remap: RemapAttributes()

Attribute Default/Allowed Values
useExtents 1
startX 0
endX 1
cellsX 10
startY 0
endY 1
cellsY 10
is3D 1
startZ 0
endZ 1
cellsZ 10
variableType intrinsic, extrinsic

676 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.5.65 Rendering: RenderingAttributes()

Attribute Default/Allowed Values
antialiasing 0
orderComposite 1
depthCompositeThreads 2
depthCompositeBlocking 65536
alphaCompositeThreads 2
alphaCompositeBlocking 65536
depthPeeling 0
occlusionRatio 0
numberOfPeels 16
multiresolutionMode 0
multiresolutionCellSize 0.002
geometryRepresentation Surfaces, Wireframe, Points
stereoRendering 0
stereoType CrystalEyes, RedBlue, Interlaced, RedGreen
notifyForEachRender 0
scalableActivationMode Auto, Never, Always
scalableAutoThreshold 2000000
specularFlag 0
specularCoeff 0.6
specularPower 10
specularColor (255, 255, 255, 255)
doShadowing 0
shadowStrength 0.5
doDepthCueing 0
depthCueingAutomatic 1
startCuePoint (-10, 0, 0)
endCuePoint (10, 0, 0)
compressionActivationMode Never, Always, Auto
colorTexturingFlag 1
compactDomainsActivationMode Never, Always, Auto
compactDomainsAutoThreshold 256
osprayRendering 0
ospraySPP 1
osprayAO 0
osprayShadows 0

2.5. Attribute Reference 677



VisIt User Manual Documentation, Release 3.1

2.5.66 Replicate: ReplicateAttributes()

Attribute Default/Allowed Values
useUnitCellVectors 0
xVector (1, 0, 0)
yVector (0, 1, 0)
zVector (0, 0, 1)
xReplications 1
yReplications 1
zReplications 1
mergeResults 1
replicateUnitCellAtoms 0
shiftPeriodicAtomOrigin 0
newPeriodicOrigin (0, 0, 0)

2.5.67 Resample: ResampleAttributes()

Attribute Default/Allowed Values
useExtents 1
startX 0
endX 1
samplesX 10
startY 0
endY 1
samplesY 10
is3D 1
startZ 0
endZ 1
samplesZ 10
tieResolver random, largest, smallest
tieResolverVariable “default”
defaultValue 0
distributedResample 1
cellCenteredOutput 0

678 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.5.68 Revolve: RevolveAttributes()

Attribute Default/Allowed Values
meshType Auto, XY, RZ, ZR
autoAxis 1
axis (1, 0, 0)
startAngle 0
stopAngle 360
steps 30

2.5.69 SPHResample: SPHResampleAttributes()

Attribute Default/Allowed Values
minX 0
maxX 1
xnum 10
minY 0
maxY 1
ynum 10
minZ 0
maxZ 1
znum 10
tensorSupportVariable “H”
weightVariable “mass”
RK 1

2.5.70 SaveWindow: SaveWindowAttributes()

2.5. Attribute Reference 679



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
outputToCurrentDirectory 1
outputDirectory “.”
fileName “visit”
family 1
format PNG, BMP, CURVE, JPEG, OBJ, POSTSCRIPT, POVRAY, PPM, RGB, STL, TIFF, ULTRA, VTK, PLY, EXR
width 1024
height 1024
screenCapture 0
saveTiled 0
quality 80
progressive 0
binary 0
stereo 0
compression None, PackBits, Jpeg, Deflate, LZW
forceMerge 0
resConstraint ScreenProportions, NoConstraint, EqualWidthHeight
pixelData 1
advancedMultiWindowSave 0
subWindowAtts.win1.position (0, 0)
subWindowAtts.win1.size (128, 128)
subWindowAtts.win1.layer 0
subWindowAtts.win1.transparency 0
subWindowAtts.win1.omitWindow 0
subWindowAtts.win2.position (0, 0)
subWindowAtts.win2.size (128, 128)
subWindowAtts.win2.layer 0
subWindowAtts.win2.transparency 0
subWindowAtts.win2.omitWindow 0
subWindowAtts.win3.position (0, 0)
subWindowAtts.win3.size (128, 128)
subWindowAtts.win3.layer 0
subWindowAtts.win3.transparency 0
subWindowAtts.win3.omitWindow 0
subWindowAtts.win4.position (0, 0)
subWindowAtts.win4.size (128, 128)
subWindowAtts.win4.layer 0
subWindowAtts.win4.transparency 0
subWindowAtts.win4.omitWindow 0
subWindowAtts.win5.position (0, 0)
subWindowAtts.win5.size (128, 128)
subWindowAtts.win5.layer 0
subWindowAtts.win5.transparency 0
subWindowAtts.win5.omitWindow 0
subWindowAtts.win6.position (0, 0)
subWindowAtts.win6.size (128, 128)
subWindowAtts.win6.layer 0
subWindowAtts.win6.transparency 0
subWindowAtts.win6.omitWindow 0
subWindowAtts.win7.position (0, 0)

Continued on next page

680 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.10 – continued from previous page
subWindowAtts.win7.size (128, 128)
subWindowAtts.win7.layer 0
subWindowAtts.win7.transparency 0
subWindowAtts.win7.omitWindow 0
subWindowAtts.win8.position (0, 0)
subWindowAtts.win8.size (128, 128)
subWindowAtts.win8.layer 0
subWindowAtts.win8.transparency 0
subWindowAtts.win8.omitWindow 0
subWindowAtts.win9.position (0, 0)
subWindowAtts.win9.size (128, 128)
subWindowAtts.win9.layer 0
subWindowAtts.win9.transparency 0
subWindowAtts.win9.omitWindow 0
subWindowAtts.win10.position (0, 0)
subWindowAtts.win10.size (128, 128)
subWindowAtts.win10.layer 0
subWindowAtts.win10.transparency 0
subWindowAtts.win10.omitWindow 0
subWindowAtts.win11.position (0, 0)
subWindowAtts.win11.size (128, 128)
subWindowAtts.win11.layer 0
subWindowAtts.win11.transparency 0
subWindowAtts.win11.omitWindow 0
subWindowAtts.win12.position (0, 0)
subWindowAtts.win12.size (128, 128)
subWindowAtts.win12.layer 0
subWindowAtts.win12.transparency 0
subWindowAtts.win12.omitWindow 0
subWindowAtts.win13.position (0, 0)
subWindowAtts.win13.size (128, 128)
subWindowAtts.win13.layer 0
subWindowAtts.win13.transparency 0
subWindowAtts.win13.omitWindow 0
subWindowAtts.win14.position (0, 0)
subWindowAtts.win14.size (128, 128)
subWindowAtts.win14.layer 0
subWindowAtts.win14.transparency 0
subWindowAtts.win14.omitWindow 0
subWindowAtts.win15.position (0, 0)
subWindowAtts.win15.size (128, 128)
subWindowAtts.win15.layer 0
subWindowAtts.win15.transparency 0
subWindowAtts.win15.omitWindow 0
subWindowAtts.win16.position (0, 0)
subWindowAtts.win16.size (128, 128)
subWindowAtts.win16.layer 0
subWindowAtts.win16.transparency 0
subWindowAtts.win16.omitWindow 0
opts.types ()

Continued on next page

2.5. Attribute Reference 681



VisIt User Manual Documentation, Release 3.1

Table 2.10 – continued from previous page
opts.help “”

2.5.71 Scatter: ScatterAttributes()

Attribute Default/Allowed Values
var1 “default”
var1Role Coordinate0, Coordinate1, Coordinate2, Color, None
var1MinFlag 0
var1MaxFlag 0
var1Min 0
var1Max 1
var1Scaling Linear, Log, Skew
var1SkewFactor 1
var2Role Coordinate1, Coordinate0, Coordinate2, Color, None
var2 “default”
var2MinFlag 0
var2MaxFlag 0
var2Min 0
var2Max 1
var2Scaling Linear, Log, Skew
var2SkewFactor 1
var3Role None, Coordinate0, Coordinate1, Coordinate2, Color
var3 “default”
var3MinFlag 0
var3MaxFlag 0
var3Min 0
var3Max 1
var3Scaling Linear, Log, Skew
var3SkewFactor 1
var4Role None, Coordinate0, Coordinate1, Coordinate2, Color
var4 “default”
var4MinFlag 0
var4MaxFlag 0
var4Min 0
var4Max 1
var4Scaling Linear, Log, Skew
var4SkewFactor 1
pointSize 0.05

Continued on next page

682 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.11 – continued from previous page
pointSizePixels 1
pointType Point, Box, Axis, Icosahedron, Octahedron, Tetrahedron, SphereGeometry, Sphere
scaleCube 1
colorType ColorByForegroundColor, ColorBySingleColor, ColorByColorTable
singleColor (255, 0, 0, 255)
colorTableName “Default”
invertColorTable 0
legendFlag 1

2.5.72 Slice: SliceAttributes()

Attribute Default/Allowed Values
originType Intercept, Point, Percent, Zone, Node
originPoint (0, 0, 0)
originIntercept 0
originPercent 0
originZone 0
originNode 0
normal (0, -1, 0)
axisType YAxis, XAxis, ZAxis, Arbitrary, ThetaPhi
upAxis (0, 0, 1)
project2d 1
interactive 1
flip 0
originZoneDomain 0
originNodeDomain 0
meshName “default”
theta 0
phi 0

2.5. Attribute Reference 683



VisIt User Manual Documentation, Release 3.1

2.5.73 SmoothOperator: SmoothOperatorAttributes()

Attribute Default/Allowed Values
numIterations 20
relaxationFactor 0.01
convergence 0
maintainFeatures 1
featureAngle 45
edgeAngle 15
smoothBoundaries 0

2.5.74 SphereSlice: SphereSliceAttributes()

Attribute Default/Allowed Values
origin (0, 0, 0)
radius 1

2.5.75 Spreadsheet: SpreadsheetAttributes()

684 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
subsetName “Whole”
formatString “%1.6f”
useColorTable 0
colorTableName “Default”
showTracerPlane 1
tracerColor (255, 0, 0, 150)
normal Z, X, Y
sliceIndex 0
spreadsheetFont “Courier,12,-1,5,50,0,0,0,0,0”
showPatchOutline 1
showCurrentCellOutline 0
currentPickType 0
currentPickLetter “”
pastPickLetters ()

2.5.76 Stagger: StaggerAttributes()

Attribute Default/Allowed Values
offsetX 0
offsetY 0
offsetZ 0

2.5.77 StatisticalTrends: StatisticalTrendsAttributes()

2.5. Attribute Reference 685



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
startIndex 0
stopIndex 1
stride 1
startTrendType Absolute, Relative
stopTrendType Absolute, Relative
statisticType Mean, Sum, Variance, StandardDeviation, Slope, Residuals
trendAxis Step, Time, Cycle
variableSource Default, OperatorExpression

2.5.78 SubdivideQuads: SubdivideQuadsAttributes()

Attribute Default/Allowed Values
threshold 0.500002
maxSubdivs 4
fanOutPoints 1
doTriangles 0
variable “default”

2.5.79 Subset: SubsetAttributes()

686 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
colorType ColorByMultipleColors, ColorBySingleColor, ColorByColorTable
colorTableName “Default”
invertColorTable 0
legendFlag 1
lineWidth 0
singleColor (0, 0, 0, 255)
subsetNames ()
opacity 1
wireframe 0
drawInternal 0
smoothingLevel 0
pointSize 0.05
pointType Point, Box, Axis, Icosahedron, Octahedron, Tetrahedron, SphereGeometry,

Sphere
pointSizeVarEn-
abled

0

pointSizeVar “default”
pointSizePixels 2

2.5.80 SurfaceNormal: SurfaceNormalAttributes()

Attribute Default/Allowed Values
centering Point, Cell

2.5.81 Tensor: TensorAttributes()

2.5. Attribute Reference 687



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
useStride 0
stride 1
nTensors 400
scale 0.25
scaleByMagnitude 1
autoScale 1
colorByEigenvalues 1
useLegend 1
tensorColor (0, 0, 0, 255)
colorTableName “Default”
invertColorTable 0

2.5.82 ThreeSlice: ThreeSliceAttributes()

Attribute Default/Allowed Values
x 0
y 0
z 0
interactive 1

2.5.83 Threshold: ThresholdAttributes()

688 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
outputMeshType 0
boundsInputType 0
listedVarNames (“default”)
zonePortions ()
lowerBounds ()
upperBounds ()
defaultVarName “default”
defaultVarIsScalar 0
boundsRange ()

2.5.84 Transform: TransformAttributes()

Attribute Default/Allowed Values
doRotate 0
rotateOrigin (0, 0, 0)
rotateAxis (0, 0, 1)
rotateAmount 0
rotateType Deg, Rad
doScale 0
scaleOrigin (0, 0, 0)
scaleX 1
scaleY 1
scaleZ 1
doTranslate 0
translateX 0
translateY 0
translateZ 0
transformType Similarity, Coordinate, Linear
inputCoordSys Cartesian, Cylindrical, Spherical
outputCoordSys Spherical, Cartesian, Cylindrical
continuousPhi 0
m00 1
m01 0
m02 0
m03 0
m10 0
m11 1
m12 0
m13 0

Continued on next page

2.5. Attribute Reference 689



VisIt User Manual Documentation, Release 3.1

Table 2.12 – continued from previous page
m20 0
m21 0
m22 1
m23 0
m30 0
m31 0
m32 0
m33 1
invertLinearTransform 0
vectorTransformMethod AsDirection, None, AsPoint, AsDisplacement
transformVectors 1

2.5.85 TriangulateRegularPoints: TriangulateRegularPointsAttributes()

Attribute Default/Allowed Values
useXGridSpacing 0
xGridSpacing 1
useYGridSpacing 0
yGridSpacing 1

2.5.86 Truecolor: TruecolorAttributes()

Attribute Default/Allowed Values
opacity 1
lightingFlag 1

690 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

2.5.87 Tube: TubeAttributes()

Attribute Default/Allowed Values
scaleByVarFlag 0
tubeRadiusType FractionOfBBox, Absolute
radiusFractionBBox 0.01
radiusAbsolute 1
scaleVariable “default”
fineness 5
capping 0

2.5.88 Vector: VectorAttributes()

2.5. Attribute Reference 691



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
glyphLocation AdaptsToMeshResolution, UniformInSpace
useStride 0
stride 1
nVectors 400
lineWidth 0
scale 0.25
scaleByMagnitude 1
autoScale 1
headSize 0.25
headOn 1
colorByMag 1
useLegend 1
vectorColor (0, 0, 0, 255)
colorTableName “Default”
invertColorTable 0
vectorOrigin Tail, Head, Middle
minFlag 0
maxFlag 0
limitsMode OriginalData, CurrentPlot
min 0
max 1
lineStem Line, Cylinder
geometryQuality Fast, High
stemWidth 0.08
origOnly 1
glyphType Arrow, Ellipsoid
animationStep 0

2.5.89 View: ViewAttributes()

692 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
viewNormal (0, 0, 1)
focus (0, 0, 0)
viewUp (0, 1, 0)
viewAngle 30
setScale 0
parallelScale 1
nearPlane 0.001
farPlane 100
imagePan (0, 0)
imageZoom 1
perspective 1
windowCoords (0, 0, 1, 1)
viewportCoords (0.1, 0.1, 0.9, 0.9)
eyeAngle 2

2.5.90 View2D: View2DAttributes()

Attribute Default/Allowed Values
windowCoords (0, 1, 0, 1)
viewportCoords (0.2, 0.95, 0.15, 0.95)
fullFrameActivationMode Auto, On, Off
fullFrameAutoThreshold 100
xScale LINEAR, LOG
yScale LINEAR, LOG
windowValid 0

2.5.91 View3D: View3DAttributes()

2.5. Attribute Reference 693



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
viewNormal (0, 0, 1)
focus (0, 0, 0)
viewUp (0, 1, 0)
viewAngle 30
parallelScale 0.5
nearPlane -0.5
farPlane 0.5
imagePan (0, 0)
imageZoom 1
perspective 1
eyeAngle 2
centerOfRotationSet 0
centerOfRotation (0, 0, 0)
axis3DScaleFlag 0
axis3DScales (1, 1, 1)
shear (0, 0, 1)
windowValid 0

2.5.92 ViewAxisArray: ViewAxisArrayAttributes()

Attribute Default/Allowed Values
domainCoords (0, 1)
rangeCoords (0, 1)
viewportCoords (0.15, 0.9, 0.1, 0.85)

2.5.93 ViewCurve: ViewCurveAttributes()

694 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Attribute Default/Allowed Values
domainCoords (0, 1)
rangeCoords (0, 1)
viewportCoords (0.2, 0.95, 0.15, 0.95)
domainScale LINEAR, LOG
rangeScale LINEAR, LOG

2.5.94 Volume: VolumeAttributes()

Attribute Default/Allowed Values
osprayShadowsEnabledFlag 0
osprayUseGridAcceleratorFlag 0
osprayPreIntegrationFlag 0
ospraySingleShadeFlag 0
osprayOneSidedLightingFlag 0
osprayAoTransparencyEnabledFlag 0
ospraySpp 1
osprayAoSamples 0
osprayAoDistance 100000
osprayMinContribution 0.001
legendFlag 1
lightingFlag 1
colorControlPoints.GetControlPoints(0).colors (0, 0, 255, 255)
colorControlPoints.GetControlPoints(0).position 0
colorControlPoints.GetControlPoints(1).colors (0, 255, 255, 255)
colorControlPoints.GetControlPoints(1).position 0.25
colorControlPoints.GetControlPoints(2).colors (0, 255, 0, 255)
colorControlPoints.GetControlPoints(2).position 0.5
colorControlPoints.GetControlPoints(3).colors (255, 255, 0, 255)
colorControlPoints.GetControlPoints(3).position 0.75
colorControlPoints.GetControlPoints(4).colors (255, 0, 0, 255)
colorControlPoints.GetControlPoints(4).position 1
colorControlPoints.smoothing Linear, None, CubicSpline
colorControlPoints.equalSpacingFlag 0
colorControlPoints.discreteFlag 0
colorControlPoints.categoryName “”
opacityAttenuation 1
opacityMode FreeformMode, GaussianMode, ColorTableMode

controlPoints does not contain any GaussianControlPoint objects.
resampleFlag 1

Continued on next page

2.5. Attribute Reference 695



VisIt User Manual Documentation, Release 3.1

Table 2.13 – continued from previous page
resampleTarget 1000000
opacityVariable “default”
compactVariable “default”
freeformOpacity (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255)
useColorVarMin 0
colorVarMin 0
useColorVarMax 0
colorVarMax 0
useOpacityVarMin 0
opacityVarMin 0
useOpacityVarMax 0
opacityVarMax 0
smoothData 0
samplesPerRay 500
rendererType Default, RayCasting, RayCastingIntegration, RayCastingSLIVR, RayCastingOSPRay
gradientType SobelOperator, CenteredDifferences
scaling Linear, Log, Skew
skewFactor 1
limitsMode OriginalData, CurrentPlot
sampling Rasterization, KernelBased, Trilinear
rendererSamples 3
lowGradientLightingReduction Lower, Off, Lowest, Low, Medium, High, Higher, Highest
lowGradientLightingClampFlag 0
lowGradientLightingClampValue 1
materialProperties (0.4, 0.75, 0, 15)

2.6 VisIt CLI Events

This chapter shows a table with all events that the VisIt GUI could potentially generate. Different plugins create
different events, so the list will depend on the user configuration. The list in this section is generated from a call to the
GetCallbackNames() function and will therefore list just the events that are applicable to the user that generates this
documentation.

The list is alphabetically ordered. The left column, labeled EventName displays each event or callback name. The
right column, labeled ArgCount displays the result of calling GetCallbackArgumentCount(EventName) for the corre-
sponding event, which returns the number of arguments a callback function for that event should accept. | |

EventName ArgCount
AMRStitchCellAttributes 1
ActivateDatabaseRPC 1

Continued on next page

696 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.14 – continued from previous page
AddAnnotationObjectRPC 2
AddEmbeddedPlotRPC 1
AddInitializedOperatorRPC 1
AddOperatorRPC 2
AddPlotRPC 2
AddWindowRPC 0
AlterDatabaseCorrelationRPC 4
AnimationAttributes 1
AnimationPlayRPC 0
AnimationReversePlayRPC 0
AnimationSetNFramesRPC 1
AnimationStopRPC 0
AnnotationAttributes 1
ApplyNamedSelectionRPC 1
AxisAlignedSlice4DAttributes 1
BoundaryAttributes 1
BoundaryOpAttributes 1
BoxAttributes 1
CartographicProjectionAttributes 1
ChangeActivePlotsVarRPC 1
CheckForNewStatesRPC 1
ChooseCenterOfRotationRPC 2
ClearAllWindowsRPC 0
ClearCacheForAllEnginesRPC 0
ClearCacheRPC 2
ClearPickPointsRPC 0
ClearRefLinesRPC 0
ClearViewKeyframesRPC 0
ClearWindowRPC 1
ClipAttributes 1
CloneWindowRPC 0
CloseComputeEngineRPC 2
CloseDatabaseRPC 1
CloseRPC 0
ColorTableAttributes 1
ConeAttributes 1
ConnectToMetaDataServerRPC 2
ConnectedComponentsAttributes 1
ConstructDataBinningAttributes 1
ConstructDataBinningRPC 0
ContourAttributes 1
CoordSwapAttributes 1
CopyActivePlotsRPC 0
CopyAnnotationsToWindowRPC 2
CopyLightingToWindowRPC 2
CopyPlotsToWindowRPC 2
CopyViewToWindowRPC 2
CreateBondsAttributes 1
CreateDatabaseCorrelationRPC 4
CreateNamedSelectionRPC 1

Continued on next page

2.6. VisIt CLI Events 697



VisIt User Manual Documentation, Release 3.1

Table 2.14 – continued from previous page
CurveAttributes 1
CylinderAttributes 1
DDTConnectRPC 1
DDTFocusRPC 1
DataBinningAttributes 1
DatabaseMetaData 1
DeIconifyAllWindowsRPC 0
DeferExpressionAttributes 1
DeleteActiveAnnotationObjectsRPC 0
DeleteActivePlotsRPC 0
DeleteDatabaseCorrelationRPC 1
DeleteNamedSelectionRPC 1
DeletePlotDatabaseKeyframeRPC 2
DeletePlotKeyframeRPC 2
DeleteViewKeyframeRPC 1
DeleteWindowRPC 0
DemoteOperatorRPC 1
DetachRPC 0
DisableRedrawRPC 0
DisplaceAttributes 1
DrawPlotsRPC 1
DualMeshAttributes 1
EdgeAttributes 1
ElevateAttributes 1
EllipsoidSliceAttributes 1
EnableToolRPC 2
EnableToolbarRPC 2
ExplodeAttributes 1
ExportColorTableRPC 1
ExportDBAttributes 1
ExportDBRPC 0
ExportEntireStateRPC 1
ExportHostProfileRPC 1
ExportRPC 1
ExpressionList 1
ExternalSurfaceAttributes 1
ExtrudeAttributes 1
FFTAttributes 1
FileOpenOptions 1
FilledBoundaryAttributes 1
FluxAttributes 1
GetProcInfoRPC 3
GetQueryParametersRPC 1
GlobalAttributes 1
GlobalLineoutAttributes 1
HideActiveAnnotationObjectsRPC 0
HideActivePlotsRPC 0
HideAllWindowsRPC 0
HideToolbarsForAllWindowsRPC 0
HideToolbarsRPC 0

Continued on next page

698 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.14 – continued from previous page
HistogramAttributes 1
IconifyAllWindowsRPC 0
ImportEntireStateRPC 2
ImportEntireStateWithDifferentSourcesRPC 3
IndexSelectAttributes 1
InitializeNamedSelectionVariablesRPC 1
IntegralCurveAttributes 1
InteractorAttributes 1
InverseGhostZoneAttributes 1
InvertBackgroundRPC 0
IsosurfaceAttributes 1
IsovolumeAttributes 1
KeyframeAttributes 1
LCSAttributes 1
LabelAttributes 1
LagrangianAttributes 1
LimitCycleAttributes 1
LineoutAttributes 1
LoadNamedSelectionRPC 1
LowerActiveAnnotationObjectsRPC 0
MaterialAttributes 1
MenuQuitRPC 1
MeshAttributes 1
MeshManagementAttributes 1
ModelFitAtts 1
MoleculeAttributes 1
MoveAndResizeWindowRPC 5
MovePlotDatabaseKeyframeRPC 3
MovePlotKeyframeRPC 3
MovePlotOrderTowardFirstRPC 1
MovePlotOrderTowardLastRPC 1
MoveViewKeyframeRPC 2
MoveWindowRPC 3
MultiCurveAttributes 1
MultiresControlAttributes 1
OnionPeelAttributes 1
OpenCLIClientRPC 1
OpenClientRPC 3
OpenComputeEngineRPC 2
OpenDatabaseRPC 4
OpenGUIClientRPC 1
OpenMDServerRPC 2
OverlayDatabaseRPC 1
ParallelCoordinatesAttributes 1
PersistentParticlesAttributes 1
PickAttributes 1
PlotDDTVispointVariablesRPC 1
PlotList 1
PoincareAttributes 1
PrintWindowRPC 0

Continued on next page

2.6. VisIt CLI Events 699



VisIt User Manual Documentation, Release 3.1

Table 2.14 – continued from previous page
PrinterAttributes 1
ProcessAttributes 1
ProcessExpressionsRPC 0
ProjectAttributes 1
PromoteOperatorRPC 1
PseudocolorAttributes 1
QueryAttributes 1
QueryOverTimeAttributes 1
QueryRPC 1
RadialResampleAttributes 1
RaiseActiveAnnotationObjectsRPC 0
ReOpenDatabaseRPC 2
ReadHostProfilesFromDirectoryRPC 1
RecenterViewRPC 0
RedoViewRPC 0
RedrawRPC 0
ReflectAttributes 1
ReleaseToDDTRPC 1
RemapAttributes 1
RemoveAllOperatorsRPC 0
RemoveLastOperatorRPC 0
RemoveOperatorRPC 1
RemovePicksRPC 1
RenamePickLabelRPC 1
RenderingAttributes 1
ReplaceDatabaseRPC 2
ReplicateAttributes 1
RequestMetaDataRPC 2
ResampleAttributes 1
ResetAnnotationAttributesRPC 0
ResetAnnotationObjectListRPC 0
ResetInteractorAttributesRPC 0
ResetLightListRPC 0
ResetLineoutColorRPC 0
ResetMaterialAttributesRPC 0
ResetMeshManagementAttributesRPC 0
ResetOperatorOptionsRPC 1
ResetPickAttributesRPC 0
ResetPickLetterRPC 0
ResetPlotOptionsRPC 1
ResetQueryOverTimeAttributesRPC 0
ResetViewRPC 0
ResizeWindowRPC 3
RevolveAttributes 1
SPHResampleAttributes 1
SaveNamedSelectionRPC 1
SaveViewRPC 0
SaveWindowAttributes 1
SaveWindowRPC 0
ScatterAttributes 1

Continued on next page

700 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.14 – continued from previous page
SendSimulationCommandRPC 4
SetActivePlotsRPC 2
SetActiveTimeSliderRPC 1
SetActiveWindowRPC 1
SetAnimationAttributesRPC 0
SetAnnotationAttributesRPC 0
SetAnnotationObjectOptionsRPC 0
SetAppearanceRPC 0
SetBackendTypeRPC 1
SetCenterOfRotationRPC 1
SetCreateMeshQualityExpressionsRPC 1
SetCreateTimeDerivativeExpressionsRPC 1
SetCreateVectorMagnitudeExpressionsRPC 1
SetDefaultAnnotationAttributesRPC 0
SetDefaultAnnotationObjectListRPC 0
SetDefaultFileOpenOptionsRPC 0
SetDefaultInteractorAttributesRPC 0
SetDefaultLightListRPC 0
SetDefaultMaterialAttributesRPC 0
SetDefaultMeshManagementAttributesRPC 0
SetDefaultOperatorOptionsRPC 1
SetDefaultPickAttributesRPC 0
SetDefaultPlotOptionsRPC 1
SetDefaultQueryOverTimeAttributesRPC 0
SetGlobalLineoutAttributesRPC 0
SetInteractorAttributesRPC 0
SetKeyframeAttributesRPC 0
SetLightListRPC 0
SetMaterialAttributesRPC 0
SetMeshManagementAttributesRPC 0
SetNamedSelectionAutoApplyRPC 1
SetOperatorOptionsRPC 1
SetPickAttributesRPC 0
SetPlotDatabaseStateRPC 3
SetPlotDescriptionRPC 1
SetPlotFollowsTimeRPC 0
SetPlotFrameRangeRPC 3
SetPlotOptionsRPC 1
SetPlotOrderToFirstRPC 1
SetPlotOrderToLastRPC 1
SetPlotSILRestrictionRPC 0
SetPrecisionTypeRPC 1
SetQueryFloatFormatRPC 1
SetQueryOverTimeAttributesRPC 0
SetRemoveDuplicateNodesRPC 1
SetRenderingAttributesRPC 0
SetStateLoggingRPC 0
SetSuppressMessagesRPC 1
SetTimeSliderStateRPC 1
SetToolUpdateModeRPC 1

Continued on next page

2.6. VisIt CLI Events 701



VisIt User Manual Documentation, Release 3.1

Table 2.14 – continued from previous page
SetToolbarIconSizeRPC 0
SetTreatAllDBsAsTimeVaryingRPC 1
SetTryHarderCyclesTimesRPC 1
SetView2DRPC 0
SetView3DRPC 0
SetViewAxisArrayRPC 1
SetViewCurveRPC 0
SetViewExtentsTypeRPC 1
SetViewKeyframeRPC 0
SetWindowAreaRPC 1
SetWindowLayoutRPC 1
SetWindowModeRPC 1
ShowAllWindowsRPC 0
ShowToolbarsForAllWindowsRPC 0
ShowToolbarsRPC 0
SliceAttributes 1
SmoothOperatorAttributes 1
SphereSliceAttributes 1
SpreadsheetAttributes 1
StaggerAttributes 1
StartPlotAnimationRPC 1
StatisticalTrendsAttributes 1
StopPlotAnimationRPC 1
SubdivideQuadsAttributes 1
SubsetAttributes 1
SuppressQueryOutputRPC 1
SurfaceNormalAttributes 1
TensorAttributes 1
ThreeSliceAttributes 1
ThresholdAttributes 1
TimeSliderNextStateRPC 0
TimeSliderPreviousStateRPC 0
ToggleAllowPopupRPC 1
ToggleBoundingBoxModeRPC 0
ToggleCameraViewModeRPC 0
ToggleFullFrameRPC 0
ToggleLockTimeRPC 0
ToggleLockToolsRPC 0
ToggleLockViewModeRPC 0
ToggleMaintainViewModeRPC 0
TogglePerspectiveViewRPC 0
ToggleSpinModeRPC 0
TransformAttributes 1
TriangulateRegularPointsAttributes 1
TruecolorAttributes 1
TubeAttributes 1
TurnOffAllLocksRPC 0
UndoViewRPC 0
UpdateColorTableRPC 1
UpdateDBPluginInfoRPC 1

Continued on next page

702 Chapter 2. VisIt Python (CLI) Interface Manual



VisIt User Manual Documentation, Release 3.1

Table 2.14 – continued from previous page
UpdateNamedSelectionRPC 1
VectorAttributes 1
View2DAttributes 1
View3DAttributes 1
ViewCurveAttributes 1
VolumeAttributes 1
WindowInformation 1
WriteConfigFileRPC 0

2.7 Contributing To VisIt CLI Documentation

Note: This procedure is planned for change in the future.

At present, all VisIt Python CLI documentation is actually composed directly as Python strings in the source C++ file
in ../../visitpy/common/MethodDoc.C.

We recognize this isn’t the most convenient way to write documentation and are planning on changing it in the future.
However, it does permit us to have a single source file for documentation which is then used to provide help(func)
at the Python prompt as well as generate the restructured text used here.

In the future, we will swap this arrangement and write documentation in restructured text and then generate the contents
of ../../visitpy/common/MethodDoc.C from the restructured text.

The documentation here is then generated from the MethodDoc.C file using the script ../
sphinx_cli_extractor.py. That script produces attributes.rst, events.rst and functions.
rst files. The other .rst files here are manually managed and can be modified normally as needed.

2.7.1 Steps to update the CLI Manual

1. Modify ../../visitpy/common/MethodDoc.C as needed

2. Build and run the VisIt cli and assure yourself help(<your-new-func-doc>) produces the desired output

3. Run the sphinx_cli_extractor.py tool producing new attributes.rst, events.rst and
functions.rst files. To do so, you may need to use a combination of the PATH and PYTHONPATH envi-
ronment variables to tell the sphinx_cli_extractor.py script where to find the VisIt module, visit in
VisIt’s site-packages and where to find the Python installation that that module is expecting to run with.
In addition, you may need to use the PTHONHOME environment variable to tell VisIt’s visit module where
to find standard Python libraries. For example, to use an installed version of VisIt on my OSX machine, the
command would look like. . .

env PATH=/Applications/VisIt.app/Contents/Resources/2.13.3/darwin-x86_64/bin:/
→˓Applications/VisIt.app/Contents/Resources/bin:$PATH \
PYTHONHOME=/Applications/VisIt.app//Contents/Resources/2.13.3/darwin-x86_64/lib/
→˓python \
PYTHONPATH=/Applications/VisIt.app/Contents/Resources/2.13.3/darwin-x86_64/lib/
→˓site-packages \
./sphinx_cli_extractor.py

2.7. Contributing To VisIt CLI Documentation 703

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Note that the above command would produce CLI documentation for version 2.13.3 of VisIt. Or, to use a
current build of VisIt on which you are working on documentation related to changes you have made to VisIt,
the command would look something like. . .

env PATH=../../build/third_party/python/2.7.14/i386-apple-darwin17_clang/bin:../..
→˓/build/visit/build/bin:$PATH \
PYTHONPATH=../../build/visit/build/lib/site-packages/ \
./sphinx_cli_extractor.py

The whole process only takes a few seconds.

4. Assuming you succesfully run the above command, producing new attributes.rts, events.rst and
functions.rst files, then do a local build of the documentation here and confirm there are no errors in the
build

sphinx-build -b html . _build -a

5. Then open the file, _build/index.html, in your favorite browser to view.

6. Add all the changed files to a commit and push to GitHub

7. The GitHub integration with ReadTheDocs should result in your documentation updates going live a short while
(<15 mins) after it has been merged to develop.

2.8 Acknowledgments

This document is primarily based on the excellent manual put together by Brad Whitlock of Lawrence Livermore in
2005. Several years afterwards, the content from that manual was converted to serve as online help for the command
line interpreter itself. As new routines were added, this online help was updated. In 2010, Jakob van Bethlehem of the
University of Groningen wrote a wonderful script to convert the online help to manual form. In 2011, Hank Childs
of Lawrence Berkeley merged the descriptions from Brad Whitlock’s original manual with the function definitions
produced by Jakob’s conversion of the online help. In 2018, Alister Maguire of Lawrence Livermore wrote a script
for converting this manual to restructuredText format to be used with Sphinx. The result is this manual.

704 Chapter 2. VisIt Python (CLI) Interface Manual

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


CHAPTER 3

VisIt Tutorials

This manual contains a series of hands on tutorials that expose the user to the features in VisIt. The first three tutorials
form a good basis for using VisIt, including the basics of using the Graphical User Interface (GUI), performing data
analysis and using Python to script and automate tasks in VisIt. After that are a series of tutorials that cover advanced
topics in detail.

Here are links to the datasets used in the VisIt Basics, Data Analysis and Scripting tutorials.

• Tarfile: visit_tutorial_data.tar.gz (59.8 MB)

• Zip: visit_tutorial_data.zip (59.8 MB)

Here are links to the data used for Aneurysm (Blood Flow) simulation tutorial, which is also used in one of the
examples in the Scripting tutorial.

• Tarfile: aneurysm_tutorial_data.tar.gz (361 MB)

• Zip: aneurysm_tutorial_data.zip (361 MB)

Here are links to data used for the Potential Flow tutorial.

• Tarfile: potential_flow_tutorial_data.tar.gz (161 MB)

• Zip: potential_flow_tutorial_data.zip (160 MB)

Here are links to data used for the MRI tutorial.

• 7z file: mri_tutorial_data.7z (788KB)

• Tarfile: mri_tutorial_data.tar.gz (1MB)

• Zip: mri_tutorial_data.zip (1MB)

Contents:

705

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
http://portal.nersc.gov/project/visit/cyrush/tutorial_data/visit_tutorial_data.tar.gz
http://portal.nersc.gov/project/visit/cyrush/tutorial_data/visit_tutorial_data.zip
http://portal.nersc.gov/project/visit/cyrush/tutorial_data/aneurysm_tutorial_data.tar.gz
http://portal.nersc.gov/project/visit/cyrush/tutorial_data/aneurysm_tutorial_data.zip
http://portal.nersc.gov/project/visit/cyrush/tutorial_data/potential_flow_tutorial_data.tar.gz
http://portal.nersc.gov/project/visit/cyrush/tutorial_data/potential_flow_tutorial_data.zip
https://github.com/visit-dav/largedata/blob/master/bindata/mri_tutorial_data.7z?raw=true
https://github.com/visit-dav/largedata/blob/master/bindata/mri_tutorial_data.tar.gz?raw=true
https://github.com/visit-dav/largedata/blob/master/bindata/mri_tutorial_data.zip?raw=true


VisIt User Manual Documentation, Release 3.1

3.1 VisIt Basics

3.1.1 Starting VisIt

The way you start VisIt depends on the platform you are on:

• On Windows, double click on the VisIt desktop icon

• On Mac, double click on the VisIt icon where you installed it (generally in the /Applications folder).

• On Unix, invoke: /path/to/visit/bin/visit

– Most people ultimately put /path/to/visit/bin in their $PATH and then just say visit.

3.1.2 What you see

Fig. 3.1: The VisIt graphical user interface and visualization window

• The tall grey window on the left is called the Graphical User Interface, which will be refered to from here on
as the GUI. It is the primary mechanism for driving VisIt.

• The window on the right is called the visualization window. It displays results.

3.1.3 Opening files

The first thing to do is to open files.

1. Go to the GUI and click on the Open icon.

2. This brings up the File open window.

3. Change the Path field to the “tutorial_data” folder.

706 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.2: The File open window

3.1. VisIt Basics 707



VisIt User Manual Documentation, Release 3.1

4. Highlight the file “example.silo” and then click OK.

You’ve opened a file!

Advanced file opening features

1. In the File open window:

• There is a field for Host. That is how you open a file on another system and run in client/server mode.

• There is a Filter. That is provided to subset the file list to only the files VisIt may want.

– Example filter: “*.silo *.vtk”

2. VisIt uses heuristics to determine the file type.

• You can explicitly set the file type by setting the Open file as type: to the appropriate type.

3. You can also open files on the command line. For example, visit -o file.ext opens the file “file.ext”.

3.1.4 Making a plot

1. Click on the Add icon to access various plots. This is located about half way down the Main window.

2. Select Pseudocolor->temp to add a Pseudocolor plot.

3. After adding a plot, you will see a green entry added to the “Plot list”, which is located half way down the GUI.

• This means VisIt will draw this plot after you click Draw.

Fig. 3.3: The plot list with a Pseudocolor plot in it

4. Click Draw.

5. You should see a plot appear in the visualization window.

6. Go to Add->Mesh->Mesh.

708 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

7. Click Draw.

8. You should now see both a Pseudocolor and Mesh plot.

9. Highlight the Pseudocolor plot in the Plot list.

10. Click the Hide/Show button.

• This will hide the Pseudocolor plot. You should now see only the Mesh plot.

11. Highlight the Mesh plot and click Delete.

• You should now have an empty visualization window.

• The Pseudocolor plot should now be selected.

12. Click Hide/Show.

• The Pseudocolor plot should reappear.

3.1.5 Modifying the plot attributes

1. Go to PlotAtts->Pseudocolor. This is located in the menu bar at the top of the Main menu.

2. This brings up the Pseudocolor plot attributes window.

3. Change the Scale from Linear to Log.

4. Click Apply.

• The colors changed.

5. Click Minimum on and change the value to “3”.

6. Click Maximum on and change the value to “4”.

7. Click Apply.

• The colors change again.

8. Change the Opacity mode to Constant.

• Change the opacity slider to 50%.

9. Click Apply.

• You can now see through the plot. Note that you only see the external faces. If you want to see the data from
the whole volume, that will be with the volume plot.

10. Change back the Scale, Limits, and Opacity back to their original settings and click Apply.

11. Dismiss the Pseudocolor plot attributes window.

3.1.6 Applying an operator

1. Click on the Operators button to access various operators. This is located next to the Add button.

2. Select Slicing->Slice to add a Slice operator

• The visualization window will go blank and the Pseudocolor entry in the Plot list will turn green.

• This allows you to change the slice attributes before applying the Slice operator.

• We will apply the operator with the default attributes.

3. Click Draw.

3.1. VisIt Basics 709



VisIt User Manual Documentation, Release 3.1

Fig. 3.4: A Pseudocolor and mesh plot displayed in a visualization window

710 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.5: The Pseudocolor plot attributes window

3.1. VisIt Basics 711



VisIt User Manual Documentation, Release 3.1

• You are now looking at a 2D slice.

4. Go to OpAtts->Slicing->Slice.

5. This brings up the Slice operator attributes window.

Fig. 3.6: The Slice operator attributes window

6. There are many controls for setting the slice plane . . . play with them.

7. Operators can be removed by clicking on an expansion arrow in the Plot list, then clicking on the red X icon
next to an operator.

3.1.7 VisIt interaction modes

There are six basic interaction modes:

1. Navigate

2. Zoom

3. Zone pick

4. Node pick

5. Spreadsheet pick

6. Lineout

The interaction mode is controlled by the toolbar, which is located at the top of the visualization window. The six
interaction modes are all located together on the toolbar, towards the bottom.

712 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.7: The visualization tool bar with the icons for setting the interaction mode

Using navigate mode

You always start in Navigate mode. Navigate mode is indicated by the Navigate icon, represented by a compass, being
indented. It allows you to pan and rotate the data set.

1. Put the cursor in the visualization window.

2. Left click (or single click if you do not have a 3 button mouse) and move the mouse.

3. The data set will pan with the mouse.

• In 3D, the data set rotates.

Using zoom mode

Zoom mode is indicated by the Zoom icon, represented by a magnifying glass, being indented. It allows you to zoom
the image by selecting a rectangular region.

1. Click on the Zoom icon.

2. Go to the visualization window and left click (single click) and HOLD IT DOWN.

3. Move the mouse a bit.

• You should see a rubber band.

4. Lift up the mouse button.

• You should now be zoomed in so that the viewport matches what was previously inside the rubber band.

3.1. VisIt Basics 713



VisIt User Manual Documentation, Release 3.1

Using lineout mode

Lineout mode is indicated by the Lineout icon, represented by a curve plot of red and blue curves, being indented. It
allows the user to create a plot of a scalar variable as a function of distance along a line.

1. First we will reset the view. Click on the Reset view icon, represented by a camera that has a green “X” around
it (The camera is mostly obscured by the X).

• This will reset your view.

2. Click on the Lineout icon.

3. Put the cursor over the data and left click (single click) and HOLD IT DOWN.

4. Move the mouse a bit.

• You should see a single line moving around.

5. Lift up the mouse button.

6. The window layout changes. You now have two windows. The first window is the same, but the second now
contains a “Lineout”, which has temp as a function of distance over the line.

7. On the window that has the curve, find the Delete window icon, represented by a window with a red circle with
a line through it.

8. Click this button.

• The new window will disappear and you should now have only one window.

Using pick mode

Pick mode is indicated by the Zone pick or Node pick icon, represented by a “+” with a small Z or a “+” with a small
N, being indented. It allows the user to query a variable associated with a zone or node.

1. Click on the Zone pick icon.

2. Put the cursor over the data set and left click (single click).

3. This brings up the Pick window.

• The Pick window contains information about the zone (i.e. cell or element) that you just picked in.

Pick can return a lot more information than what it just did if you use the Pick window.

4. Go to the Variables drop down menu and select Scalars/pressure.

5. Turn on Physical Coords under For Nodes.

6. Turn on Domain-Logical Coords under For Zones.

7. Click Apply.

8. Make another pick.

• You get information about pressure, the coordinates of each node, and the logical coordinates for the zone.

3.1.8 Other plots

1. We will experiment with the Contour, Filled Boundary, Label, Vector and Volume plots.

714 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.8: The Pick output window

3.1. VisIt Basics 715



VisIt User Manual Documentation, Release 3.1

3.1.9 Other operators

1. We will experiment with the Clip and Threshold operators.

3.1.10 Saving an image

1. With a current plot, go to File->Save window.

• This saves an image to the filesystem.

On Windows, the default location for saved images is in Documents/VisIt/My images.

3.1.11 Saving a database

VisIt can be part of a larger tool chain.

1. If you do not already have one, make a Pseudocolor plot of temp from the “example.silo” database.

2. Apply the Threshold operator and change the range to be 3->max.

3. Click Draw.

4. Go to File->Export database.

5. This brings up the Export Database window.

Fig. 3.9: The Export Database window

6. Change Export to to VTK.

716 Chapter 3. VisIt Tutorials

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

7. Be sure to set the output directory or the exported file will be written to the working directory (on Windows that
would be the directory where VisIt_ is installed).

8. Click Export.

• The Export options for VTK writer window will pop up at this point. It allows you to specify the options for the
VTK writer. We will use the default options.

9. Click Ok.

• A file named “visit_ex_db.vtk” has been saved to the file system.

3.1.12 Subsetting

1. Delete any plots in your visualization window.

2. Open the file “multi_ucd3d.silo”.

3. Make a Subset plot of “domains(mesh1)”.

• The plot is colored by “domains”, which normally correspond to a simulation’s processors.

4. In the Plot list, find the overlapping transparent black and white ovals (like a Venn diagram) and click on it.

5. This brings up the Subset window.

Fig. 3.10: The Subset window

6. Click on domains in the left most panel.

• This will expand the list of domains in the center panel.

7. Turn off some domains and click Apply.

• You will see some of the domains disappear.

• Subsetting works with any plot type.

3.1. VisIt Basics 717



VisIt User Manual Documentation, Release 3.1

8. Turn all the domains back on.

9. Click on mat1 in the left most panel.

• This will expand the list of materials in the center panel.

10. Turn off materials 1 and 3.

• You will see material 2 only, colored by domain.

This mechanism is used to expose subsetting for materials, domains, AMR levels, and other custom subsettable parts.

3.2 Data Analysis

This section describes two important abstractions in VisIt: Queries and Expressions.

3.2.1 Queries

What are queries

Queries are the mechanism to do data analysis, to pull out a number or curve that describes the data set.

Experiment with queries

1. Go to Controls->Query.

2. This brings up the Query window.

Variable-related

Variable related queries provide information about variables.

1. Change the Display in the Query window to be Variable-related.

2. Go back to the GUI, delete any plots, open up “example.silo”, create a Pseudocolor plot of temp and click Draw.

3. Highlight MinMax and click Query.

• The result will be displayed in the Query results. It will tell you the minimum, maximum and their locations.

4. Apply the Slice operator to your plot.

5. Do another MinMax query.

• It gives you the different results. This is because the Query parameter Actual Data is selected. This means the
answer will be the minimum and maximum constrained to the slice.

6. Change the Query parameter to be Original Data.

7. Do another MinMax query.

• This time the answer will match the result of the first query. It will display the minimum and maximum for what
is in the file, not what is on the screen.

1. Now highlight Variable Sum and click Query.

• This will sum up all of the values in the data set.

2. Now highlight Weighted Variable Sum and click Query.

718 Chapter 3. VisIt Tutorials

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.11: The MinMax query

3.2. Data Analysis 719



VisIt User Manual Documentation, Release 3.1

• This will sum up all of the values, but it will weight by area (since you have a slice).

• For 3D, it will weight by volume.

• For axi-symmetric 2D calculations, it will weight by revolved volume.

3. Note that both queries have options for doing queries over time (grayed out because we don’t have a time varying
data set).

• This is for time varying data and will produce a curve in a separate window.

1. Now highlight Lineout.

• Note that you must have left Project to 2D enabled in the Slice operator for this next one to work correctly.

2. Change the start point to “-5 -5 0” and the end point to “5 5 0”.

3. Click Query.

4. This is a way to get exact lineouts.

5. You can also take 3D lineouts this way.

1. Now highlight Pick.

2. Click Query.

• This will provide information about the zone containing the coordinate “0 0 0”.

3. Change the mode to Pick using coordinate to determine node.

4. Click Query.

• This will provide information about the node nearest the coordinate “0 0 0”.

5. Change the mode to Pick using domain and element Id.

6. Click Query.

• This will provide information about the node or zone in the specied domain.

You can also perform a query using the global element id by selecting Pick using global elememnt Id. This only works
if the file contains global element id information, which this file does not.

Mesh-related

1. Change the Display in the Query window to be Mesh-related.

2. Experiment with the 2D area, SpatialExtents, NumZones, and Zone Center queries.

• For the Zone Center query, you will set the Domain to “0”.

• The domain is used for when you have a parallel file, where the data has been “domain decomposed” for parallel
processing.

ConnectedComponents related

1. If you haven’t already removed the slice operator, do that now, so you have just a Pseudocolor plot of temp.

2. Apply the Isovolume operator. Change the Lower bound of the Isovolume operator attributes to be “4”.

3. You will now see a bunch of blobs in space.

4. Change the Display in the Query window to be ConnectedComponents-related.

720 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

5. Perform the Number of Connected Components query.

• It should tell you that there are 15 components.

6. Apply the Clip operator with the default settings.

7. Perform the Number of Connected Components query again.

• It should now say there are 14 components.

• Operators affect queries.

3.2.2 Queries over Time

What are queries over time

Queries over time perform analysis through time and generate a time-curve.

Experiment with queries over time

Weighted Variable Sum

1. Go to Controls->Query.

2. This brings up the Query window.

3. Go back to the GUI, delete any existing plots, open up “wave.visit”, and make a Pseudocolor plot of pressure.

4. Find and Highlight Weighted Variable Sum and click Do Time Query.

5. Options for changing the Starting timestep, Ending timestep and Stride will be available.

• Note that these are 0-origin timestate indices and not cycles or times.

6. Click Query.

• The result will be displayed in a new Window. By default the x-axis will be cycle and the y-axis will be the
weighted summation of the pressure.

Pick

1. Pick can do multiple-variable time curves.

2. Make Window 2 active, delete the plot, and make Window 1 active again.

3. Find and Highlight Pick in the Query window and click Do Time Query to enable time-curve options.

4. Change the Variables option to add v using the Variables->Scalars dropdown menu.

5. Select Pick using domain and element Id. Leave the defaults for Node Id and Domain Id as “0”.

6. Select Preserve Picked Element Id.

7. Click Query.

• The result will be two curves in a single xy plot.

8. Make Window 2 active, delete the plot, and make Window 1 active again.

9. Change the Multiple-variable Time Curve options to Create Multiple Y-Axes plot.

10. Click Query.

3.2. Data Analysis 721



VisIt User Manual Documentation, Release 3.1

Fig. 3.12: The Weighted Variable Sum query

722 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.13: The output of the Weighted Variable Sum query over time

3.2. Data Analysis 723



VisIt User Manual Documentation, Release 3.1

Fig. 3.14: The Pick query

724 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

• The result will be a Multi-curve plot (multiple axes) in Window 2.

Fig. 3.15: The Pick query output

11. NOTE: Time Pick can also be performed via the mouse by first setting things up on the Time Pick tab in the
Pick window (Controls->Pick).

Changing global options

1. Go to Controls->Query over time options.

2. This brings up the QueryOverTime window.

3. Here you can change the values displayed in the x-axis for all subsequent queries over time.

4. You can also change the window used to display time-curves. By default, the first un-used window becomes the
time-curve window, and all subsequent time-curves are generated in the same window.

3.2. Data Analysis 725



VisIt User Manual Documentation, Release 3.1

Fig. 3.16: The QueryOverTime window

3.2.3 Built-in queries

Built-in queries

3.2.4 Expressions

Expressions in VisIt create new mesh variables from existing ones. These are also known as derived quantities. VisIt’s
expression system supports only derived quantities that create a new mesh variable defined over the entire mesh. Given
a mesh on which a variable named pressure is defined, an example of a very simple expression is “2*pressure”. On
the other hand, suppose one wanted to sum (or integrate) “pressure” over the entire mesh (maybe the mesh represents
some surface area over which a force calculation is desired). Such an operation is not an expression in VisIt because it
does not result in a new variable defined over the entire mesh. In this example, summing pressure over the entire mesh
results in a single, scalar, number, like “25.6”. Such an operation is supported instead by VisIt’s Variable Sum Query.
This tends to be true in general; Expressions define whole mesh variables while Queries define single numerical values
(there are, however, some Queries for which this is not strictly true).

A simple algebraic expression, “2*radial”

1. Open up “noise2d.silo”.

2. Create a Pseudocolor plot of the variable radial.

• Take note of the legend range, “0. . . 28.28”

3. Go to Controls->Expressions.

4. Click on New in the bottom left.

• This will create an expression and give it a default name, “unnamed1”.

5. Rename this expression by typing “radial2” into the Name field

• Take note of the Type of the variable. By default, VisIt assumes the type of the new variable you are creating
is a s scalar mesh variable (e.g. a single numerical value for each node or zone/cell in the mesh). Here, we are

726 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

indeed creating a scalar variable and so there is no need to adjust the Type. However, in some of the examples
that follow, we’ll be creating vector mesh variables and if we don’t specify the correct type, we’ll get an error
message.

6. Place the cursor in the Definition pane of the Expressions dialog.

7. Type the number “2” followed by the C/C++ language symbol for multiplication, “*”.

8. Now, you can either type the name “radial” or you can go to the Insert Variable. . . pulldown menu and find and
select the radial variable there (see picture at right).

Fig. 3.17: Using the Expressions window Insert variable

9. Click Apply.

10. Now, go to the main VisIt GUI Panel to the Variables pulldown.

• Note that radial2 now appears in the list of variables there.

11. Select radial2 from the pull down and click Draw.

• Visually, the image will not look any different. But, if you take a close look at the legend you will see it is now
showing “0. . . 56.57”.

Visit supports several unary and binary algebraic expressions including +, -, /, \*, bitwise-^,
bitwise-&, sqrt(), abs(), ciel(), floor(), ln(), log10(), exp() and more.

3.2. Data Analysis 727

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.18: Expression variable appears in the plot menus

Accessing coordinates (of a mesh) in expressions

Here, we’ll use the category of Mesh expressions to access the coordinates of a mesh, again, working with
“noise2d.silo”.

1. Go to Controls->Expressions.

2. Click the New button and name this expression “Coords”.

3. Set the Type to Vector mesh variable (because coordinates, at least in this 2D example, are a vector quantity).

4. Put the cursor in the Definition pane.

5. Go to Insert Function. . . and find the Mesh category of expressions and then, within it, find the coord function
expression.

• This should result in the insertion of “coord()” in the Definition pane and place the cursor between the two
parenthesis characters.

• Note that in almost all cases, the category of Mesh expressions expect one or more mesh variables as operands.

6. Now, go to Insert Variable. . . pull down and then to the Meshes submenu and select Mesh.

• This should result in Mesh being inserted between the parentheses in the definition.

7. Click Apply.

8. Now, we’ll define two scalar expressions for the “X” and “Y” coordinates of the mesh. While still in the
Expressions window,

1. Click New.

2. Name the new expression “X”.

• Note that VisIt’s expression system is case sensitive so “x” and “X” can be different variable names.

3. Leave the type as Scalar mesh variable

728 Chapter 3. VisIt Tutorials

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

4. Type into the definition pane, “Coords[0]”

• This expression uses the array bracket dereference operator “[]” to specify a particular component
of an array. In this case, the array being derefrenced is the vector variable defined by “Coords”.

• Note that VisIt’s expression system always numbers its array indices starting from zero.

5. Click Apply.

6. Now, repeat these steps to define a “Y” expression for the “Y” coordinates.

9. Finally, we’ll define the “distance” expression

1. Click the New button.

2. Give the new variable the name “Dist” (Type should be Scalar mesh variable).

3. Type in the definition “sqrt(X*X+Y*Y)”.

4. Click Apply.

Now, we’ll use the new “Dist” variable we’ve just defined to display some data.

1. Delete any existing plots from the plot list.

2. Add a Pseudocolor plot of shepardglobal.

3. Add an Isovolume operator.

• Although this example is a 2D example and so volume doesn’t seem to apply, VisIt’s Isovolume operator per-
forms the equivalent operation for 2D data.

4. Bring up the Isovolume operator attributes (either expand the plot by clicking on the triangle to the left of its
name in the plot list and double clicking on the Isovolume operator there or go to the OpAtts menu and bring up
Isovolume operator attributes that way).

5. Set the variable to Dist.

6. Set the Lower bound to “5” and the Upper bound to “7”.

7. Click Apply.

8. Click Draw.

You should get the picture below. In this picture, we are displaying a Pseudocolor plot of shepardglobal, but Isovol-
umed by our Dist expression in the range “[5. . . 7]”.

This example also demonstrates the use of an expression function, coord() to operate on a mesh and return its coordi-
nates as a vector variable on the mesh.

VisIt has a variety of expression functions that operate on a Mesh including area (for 2D meshes), volume (for 3D
meshes, revolved_volume (for 2D cylindrically symmetric meshes), zonetype, and more. In addition, VisIt includes
the entire suite of Mesh quality expressions from the Verdict Library.

Creating vector and tensor valued variables from scalars

If the database contains scalar variables representing the individual components of a vector or tensor, VisIt’s Expression
system allows you to construct the associated vector (or tensor). You create vectors in VisIt’s Expression system using
the curly bracket vector compose “{}” operator. For example, using “noise2d.silo” again as an example, suppose we
want to compose a Vector valued expression that has “shepardglobal” and “hardyglobal” as components. Here are the
steps.

1. Go to Controls->Expressions.

2. Click the New button and set Name to “randvec”.

3.2. Data Analysis 729

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
http://cubit.sandia.gov/public/verdict.html
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.19: Example of using the radial expression

730 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

3. Be sure to also set the Type to Vector mesh variable.

4. Place the cursor in Definition pane and type “{shepardglobal, hardyglobal}”.

5. Click Apply.

6. Go to Plots->Vector.

• You should now see randvec appear there as a variable name to plot.

7. Add the Vector plot of randvec.

In the example above, we used the vector compose operator, “{}” to create a vector variable from multiple scalar
variables. We can do the same to create a tensor variable. Recall from calculus that a rank 0 tensor is a scalar, a rank
1 tensor is a vector and a rank 2 tensor is a matrix. So, to create a tensor variable, we use multiple vector compose
operators nesting within another vector compose operator. Here, solely for the purposes of illustration (e.g. this isn’t
a physically meaningful tensor) we’ll use the “X” and “Y” coordinate component scalars we defined earlier together
with the shepardglobal and hardyglobal.

1. Go to Controls->Expressions.

2. Click New and set the Name to “tensor”.

3. Be sure to also set the Type to Tensor mesh variable.

4. Place the cursor in Definition pane and type “{ {shepardglobal, hardyglobal}, {X,Y} }”.

• Note the two levels of curly braces. The outer level is the whole rank 2 tensor matrix and the inner curly braces
are each row of the matrix.

• Note that you could also have defined the same tensor expression using two vector expressions like so, “{rand-
vec, Coords}”.

5. Click Apply.

6. Add a Tensor plot of tensor variable.

Variable compatibility gotchas (tensor rank, centering, mesh)

VisIt will allow you to define expressions that it winds up determining to be invalid later when it attempts to execute
those expressions. Some common issues are the mixing of incompatible mesh variables in the same expression without
the necessary additional functions to make them compatible.

Tensor rank compatibility

For example, what happens if you mix scalar and vector mesh variables (e.g. variables of different Tensor rank) in the
same expression? Again, using “noise2d.silo”.

1. Define the expression, “foo” as “grad+shepardglobal” with the Type Vector mesh variable.

• Note that grad is a Vector mesh variable and shepardglobal is a Scalar mesh variable.

2. Now, attempt to do a Vector plot of foo. This works because VisIt will add the scalar to each component of the
vector resulting a new vector mesh variable

3. But, suppose you instead defined foo to be of Type Scalar mesh variable.

• VisIt will allow you to define this expression. But, when you go to plot it, the plot will fail.

As an aside, as you go back and forth between the Expressions window creating and/or adjusting expression definitions,
VisIt makes no attempt to keep track of all the changes you’ve made in expressions and automatically update plots as

3.2. Data Analysis 731

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.20: Example of using vector and tensor expressions

732 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

expressions change. You will have to manually clear or delete plots to force VisIt to re-draw plots in which you’ve
changed expressions.

In the above example, if on the other hand, you had set type of “foo” to Scalar Mesh Variable, then VisIt would have
failed to plot it because it is adding a scalar and a vector variable and the result of such an operation is always a Vector
mesh variable. If what you really intended was a scalar mesh variable, then use one of the expression functions that
converts a vector to a scalar (e.g. magnitude() function or array dereference operator []) to convert the Vector mesh
variable in your expression to a scalar mesh variable. So, “grad[i]+shephardglobal” where “i” is “0” or “1” would
work to define a scalar mesh variable. Or, “magnitude(grad)+shepardglobal” would also have worked.

Centering compatibility

In “noise2d.silo”, some variables are zone centered and some are node centered. What happens if you combine these
in an expression? VisIt will default to zone centering for the result. If this is not the desired result, use the “recenter()”
expression function, where appropriate, to adjust centering of some of the terms in your expression. For example,
again using “noise2d.silo”.

1. Define the Scalar mesh variable expression “bar” as “shepardglobal+airVf”.

• For reference, in “noise2d.silo”, “shepardglobal” is node centered while “airVf” is zone centered.

2. Do a Pseudocolor plot of “bar”.

• Note that “bar” displays as a zone centered quantity.

3. Now, go back to the expression and recenter “airVf” by adjusting the definition to “shepard-
global+recenter(airVf)”.

• The recenter() expression function is a toggle in that it will take whatever the variable’s centering is and swap it
(node->zone and zone->node).

• The recenter() expression function also takes a second argument, a string of one of the values toggle, zonal,
nodal to force a particular behavior.

• Note that when you click Apply, the current plot of “bar” does not change. You need to manually delete and
re-create the plot (or clear and re-draw the plots).

Finally, note that these two expressions. . .

• “shepardglobal+recenter(airVf)”

• “recenter(shepardglobal+airVf)”

both achieve a node-centered result. But, each expression is subtly (and numerically) different. The first recenter’s
“airVf” to the nodes and then performs the summation operator at each node. In the second, there is an implied
recentering of “shepardglobal” to the zones first. Then, the summation operator is applied at each zone center and
finally the results are recentered back to the nodes. In all likelihood this results in a numerically lower quality result.
The moral is that in a complex series of expressions be sure to take care where you want recentering to occur.

Mesh compatibility

In many cases, especially in Silo databases, all the available variables in a database are not always defined on the same
mesh. This can complicate matters involving expressions in variables from different meshes.

Just as in the previous two examples of incompatible variables where the solution was to apply some functions to
make the variables compatible, we have to do the same thing when variables from different meshes are combined
in an expression. The key expression functions which enable this are called Cross Mesh Field Evaluation or CMFE
functions. We will only briefly touch on these here. CMFEs will be discussed in much greater detail in a tutorial
devoted to that topic.

3.2. Data Analysis 733

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Again, using “noise2d.silo”

1. Define the expression “gorf” with definition “PointVar + shepardglobal”.

• Note that PointVar is defined on a mesh named PointMesh while shepardglobal is defined on a mesh named
Mesh.

2. Try to do a Pseudocolor plot of “gorfo”. You will get a plot of points and a warning message like this one. . .

The compute engine running on host somehost.com issued the following warning: In domain 0, your
nodal variable “shepardglobal” has 2500 values, but it should have 100. Some values were removed to
ensure VisIt runs smoothly.

So, whats happening here? VisIt is deciding to perform the summation operation on the PointVar’s mesh. That mesh
consists of 100 points. So, when it encounters the shepardglobal variable (defined on Mesh with 50x50 nodes), it
simply ignores any values in “shepardgloabl” after the first 100. Most likely, this is not the desired outcome.

We have two options each of which involves mapping one of the variables onto the other variable’s mesh using one
of the CMFE expression functions. We can map shepardglobal onto PointMesh or we can map PointVar onto Mesh.
We’ll do both here

Mapping shepardglobal onto PointMesh

1. Define a new expression named “shepardglobal_mapped”.

2. Go to Insert Function. . . , then to the Comparisons submenu and select pos_cmfe.

• This defines a position based cross-mesh field evaluation function. The other option is a conn_cmfe or
connectivity-based which is faster but requires both meshes to be topologically congruent and is not appro-
priate here.

3. A template for the arguments to the pos_cmfe will appear in the Definition pane.

4. Replace “<filename:var>” with “<./noise2d.silo:shepardglobal>”.

• This assumes the “noise2d.silo” file is in the same directory from which VisIt was started.

• This defines the source or donor variable to be mapped onto a new mesh.

5. Replace “<meshname>” with “PointMesh”.

• This defines the destination or target mesh the variable is to be mapped onto.

6. Replace “<fill-var-for-uncovered-regions>” with “-1”.

• This is needed for position-based CMFE’s because the donor variable’s mesh and target mesh may not always
volumetrically overlap 100%. In places where this winds up being the case, VisIt will use this value to fill in.

7. Now with “shepardglobal_mapped” defined, you can define the desired expression, “PointVar + shepard-
global_mapped” and this will achieve the desired result and is shown below.

Mapping PointVar onto Mesh

To be completed. But, cannot map point mesh onto a volumetric mesh. VisIt always returns zero overlap.

Combining expressions and queries is powerful

Suppose you have a database generated by some application code simulating some object being blown apart. Maybe
its a 2D, cylindrically symmetric calculation. Next, suppose the code produced a “density” and “velocity” variable.

734 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.21: The variable Shepardglobal mapped onto a point mesh

3.2. Data Analysis 735



VisIt User Manual Documentation, Release 3.1

However, what you want to compute is the total mass of some (portion of) of the object that has velocity (magni-
tude) greater than some threshold, say 5 meters/second. You can use a combination of Expressions, Queries and the
Threshold operator to achieve this.

Mass is “density * volume”. You have a 2D mesh, so how do you get volume from something that has only 2
dimensions? You know the mesh represents a calculation that is cylindrically symmetric (revolved around the y-axis).
You can use the revolved_volume() Expression function to obtain the volume of each zone in the mesh. Then, you can
multiply the result of revolved_volume() by density to get mass of each zone in the mesh. Once you have that, you can
use threshold operator to display only those zones with velocity (magnitude) greater than 5 and then a variable sum
query to add up all the mass moving at that velocity.

Here, we demonstrate the steps involved using the “noise2d.silo” database. Because that database does not quite
match the problem assumption described in the preceding paragraphs, we simply re-purpose a few of the variables in
the database to serve as our density and velocity variables in this example. Namely, we define the expression density
as an alias for shephardglobal and velocity as an alias for grad.

Fig. 3.22: Mass Expression Definition

Here are the steps involved. . .

1. Go to Controls->Expressions.

2. Click New.

3. Set the Name to “density”.

4. Make sure the Type is set to Scalar mesh variable.

5. Set the Definition to “shepardglobal”.

6. Click Apply.

736 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

7. Click New.

8. Set the Name to “velocity”.

9. Make sure the Type is set to Vector mesh variable.

10. Set the Definition to “grad”.

11. Click Apply.

12. Click New.

13. Set the Name to “mass”.

14. Make sure the Type is set to Scalar mesh variable.

15. Set the Definition to “revolved_volume(Mesh) * density”.

16. Click Apply.

17. Click the New button again (for a new expression).

18. Set the Name to “velmag” (for velocity magnitude).

19. Set the Definition to “magnitude(velocity)”.

20. Go to Plot->Pseudocolor->mass.

21. Click Draw.

22. Add Operator->Threshold.

23. Open the Threshold operator attributes window.

24. Select the default variable and then click Delete selected variable.

25. Go to Add Variable and select velmag from the list of Scalars.

26. Set Lower Bound to “5”.

27. Click Apply.

• Now the displayed plot changes to show only those parts of the mesh that are moving with velocity greater than
5.

28. Go to Controls->Query.

29. Find the Variable sum query from the list of queries.

30. Click the Query button. The computed result will be a sum of all the individual zones’ masses in the mesh for
those zones that are moving with velocity greater than 5.

Automatic, saved and database expressions

VisIt defines several types of expressions automatically. For all vector variables from a database, VisIt will automat-
ically define the associated magnitude expressions. For unstructured meshes, VisIt will automatically define mesh
quality expressions. For any databases consisting of multiple time states, VisIt will define time derivative expressions.
This behavior can be controlled by going to VisIt’s Preferences dialog and enabling or disabling various kinds of
automatic expressions.

If you save settings, any expressions you have defined are also saved with the settings. And, they will appear (and
sometimes pollute) your menus whether or not they are valid expressions for the currently active database.

Finally, databases are also free to define expressions. In fact, many databases define a large number of expressions for
the convenience of their users who often use the expressions in their post-processing workflows. Ordinarily, you never
see VisIt’s automatic expressions or a database’s expressions in the Expression window because they are not editable.

3.2. Data Analysis 737

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.23: Mass plot

738 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.24: Threshold attributes

3.2. Data Analysis 739



VisIt User Manual Documentation, Release 3.1

Fig. 3.25: Mass plot after threshold

740 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.26: The variable sum query result

3.2. Data Analysis 741



VisIt User Manual Documentation, Release 3.1

However, you can check the display expressions from database check box in the Expressions window and VisIt will
also show these expressions.

3.3 Scripting

This section describes the VisIt Command Line Interface (CLI).

3.3.1 Command line interface overview

VisIt includes a rich a command line interface that is based on Python 2.7.

There are several ways to use the CLI:

1) Launch VisIt in a batch mode and run scripts.

• Linux: /path/to/visit/bin/visit -nowin -cli -s <script.py>

• OSX: /path/to/VisIt.app/Contents/Resources/bin/visit -nowin -cli -s
<script.py>

2) Launch VisIt so that a visualization window is visible and interactively issue CLI commands.

3) Use both the standard GUI and CLI simultaneously.

3.3.2 Launching the CLI

We will focus on the use case where we have the graphical user interface and CLI running simultaneously.

To launch the CLI from the graphical user interface:

1) Go to Controls->Command.

This will bring up the Commands window. The Command window provides a text editor with Python syntax high-
lighting and an Execute button that tells VisIt to execute the script. Finally, the Command window lets you record your
GUI actions into Python code that you can use in your scripts.

3.3.3 A first action in the CLI

1) Open “example.silo” in the GUI if it not already open.

2) Cut-and-paste the following Python commands into the first tab of the Commands window.

AddPlot("Pseudocolor", "temp")
# You will see the active plots list in the GUI update, since the CLI and GUI
→˓communicate.
DrawPlots()
#You should see your plot.

3) Click Execute.

742 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

3.3.4 Tips about Python

1) Python is whitespace sensitive! This is a pain, especially when you are cut-n-pasting things.

2) Python has great constructs for control and iteration, here are some examples:

for i in range(100):
# use i

# strided range
for i in range(0,100,10):

# use i

if (cond):
# stmt

import sys
...
sys.exit()

3.3.5 Example scripts

We will be using Python scripts in each of the following sections: You can get execute them by:

1) Cut-n-paste-ing them into a tab in the Commands window and executing it.

For all of these scripts, make sure “example.silo” is currently open unless otherwise noted.

Setting attributes

Each of VisIt’s Plots and Operators expose a set of attributes that control their behavior. In VisIt’s GUI, these attributes
are modified via options windows. VisIt’s CLI provides a set of simple Python objects that control these attributes.
Here is an example setting the minimum and maximum for the Pseudocolor plot

DeleteAllPlots()
AddPlot("Pseudocolor", "temp")
DrawPlots()
p = PseudocolorAttributes()
p.minFlag = 1
p.maxFlag = 1
p.min = 3.5
p.max = 7.5
SetPlotOptions(p)

Animating an isosurface

This example demonstrates sweeping an isosurface operator to animate the display of a range of isovalues from “ex-
ample.silo”.

DeleteAllPlots()
AddPlot("Pseudocolor", "temp")
iso_atts = IsosurfaceAttributes()
iso_atts.contourMethod = iso_atts.Value
iso_atts.variable = "temp"

(continues on next page)

3.3. Scripting 743

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

(continued from previous page)

AddOperator("Isosurface")
DrawPlots()
for i in range(30):

iso_atts.contourValue = (2 + 0.1*i)
SetOperatorOptions(iso_atts)
# For moviemaking, you'll need to save off the image
# SaveWindow()

Using all of VisIt’s building blocks

This example uses a Pseudocolor plot with a ThreeSlice operator applied to display temp on the exterior of the grid
along with streamlines of the gradient of temp.

Note that the script below may not work the first time you execute it. In that case delete all the plots and execute the
script again.

Fig. 3.27: Streamlines

744 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

# Clear any previous plots
DeleteAllPlots()
# Create a plot of the scalar field 'temp'
AddPlot("Pseudocolor","temp")
# Slice the volume to show only three
# external faces.
AddOperator("ThreeSlice")
tatts = ThreeSliceAttributes()
tatts.x = -10
tatts.y = -10
tatts.z = -10
SetOperatorOptions(tatts)
DrawPlots()
# Find the maximum value of the field 'temp'
Query("Max")
val = GetQueryOutputValue()
print "Max value of 'temp' = ", val

# Create a streamline plot that follows
# the gradient of 'temp'
DefineVectorExpression("g","gradient(temp)")
AddPlot("Pseudocolor", "operators/IntegralCurve/g")
iatts = IntegralCurveAttributes()
iatts.sourceType = iatts.SpecifiedBox
iatts.sampleDensity0 = 7
iatts.sampleDensity1 = 7
iatts.sampleDensity2 = 7
iatts.dataValue = iatts.SeedPointID
iatts.integrationType = iatts.DormandPrince
iatts.issueStiffnessWarnings = 0
iatts.issueCriticalPointsWarnings = 0
SetOperatorOptions(iatts)

# set style of streamlines
patts = PseudocolorAttributes()
patts.lineType = patts.Tube
patts.tailStyle = patts.Spheres
patts.headStyle = patts.Cones
patts.endPointRadiusBBox = 0.01
SetPlotOptions(patts)

DrawPlots()

Creating a movie of animated streamline paths

This example extends the “Using all of VisIt’s Building Blocks” example by

• animating the paths of the streamlines

• saving images of the animation

• finally, encoding those images into a movie

(Note: Encoding requires ffmpeg is installed and available in your PATH)

# import visit_utils, we will use it to help encode our movie
from visit_utils import *

(continues on next page)

3.3. Scripting 745

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

(continued from previous page)

# Set a better view
ResetView()
v = GetView3D()
v.RotateAxis(0,44)
v.RotateAxis(1,-23)
SetView3D(v)

# Disable annotations
aatts = AnnotationAttributes()
aatts.axes3D.visible = 0
aatts.axes3D.triadFlag = 0
aatts.axes3D.bboxFlag = 0
aatts.userInfoFlag = 0
aatts.databaseInfoFlag = 0
aatts.legendInfoFlag = 0
SetAnnotationAttributes(aatts)

# Set basic save options
swatts = SaveWindowAttributes()
#
# The 'family' option controls if visit automatically adds a frame number to
# the rendered files. For this example we will explicitly manage the output name.
#
swatts.family = 0
#
# select PNG as the output file format
#
swatts.format = swatts.PNG
#
# set the width of the output image
#
swatts.width = 1024
#
# set the height of the output image
#
swatts.height = 1024

####
# Crop streamlines to render them at increasing time values over 50 steps
####
iatts.cropValue = iatts.Time
iatts.cropEndFlag = 1
iatts.cropBeginFlag = 1
iatts.cropBegin = 0
for ts in range(0,50):

# set the integral curve attributes to change the where we crop the streamlines
iatts.cropEnd = (ts + 1) * .5

# update streamline attributes and draw the plot
SetOperatorOptions(iatts)
DrawPlots()
#before we render the result, explicitly set the filename for this render
swatts.fileName = "streamline_crop_example_%04d.png" % ts
SetSaveWindowAttributes(swatts)
# render the image to a PNG file

(continues on next page)

746 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

SaveWindow()

################
# use visit_utils.encoding to encode these images into a "wmv" movie
#
# The encoder looks for a printf style pattern in the input path to identify the
→˓frames of the movie.
# The frame numbers need to start at 0.
#
# The encoder selects a set of decent encoding settings based on the extension of the
# the output movie file (second argument). In this case we will create a "wmv" file.
#
# Other supported options include ".mpg", ".mov".
# "wmv" is usually the best choice and plays on all most all platforms (Linux ,OSX,
→˓Windows).
# "mpg" is lower quality, but should play on any platform.
#
# 'fdup' controls the number of times each frame is duplicated.
# Duplicating the frames allows you to slow the pace of the movie to something
→˓reasonable.
#
################

input_pattern = "streamline_crop_example_%04d.png"
output_movie = "streamline_crop_example.wmv"
encoding.encode(input_pattern,output_movie,fdup=4)

Rendering each time step of a dataset to a movie

This example assumes the “aneurysm.visit” is already opened.

• Create a plot, render all timesteps and encode a movie.

(Note: Encoding requires that ffmpeg is installed and available in your PATH)

# import visit_utils, we will use it to help encode our movie
from visit_utils import *
DeleteAllPlots()

AddPlot("Pseudocolor","pressure")
DrawPlots()

# Set a better view
ResetView()
v = GetView3D()
v.RotateAxis(1,90)
SetView3D(v)

# get the number of timesteps
nts = TimeSliderGetNStates()

# set basic save options
swatts = SaveWindowAttributes()
#
# The 'family' option controls if visit automatically adds a frame number to
# the rendered files. For this example we will explicitly manage the output name.

(continues on next page)

3.3. Scripting 747



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

#
swatts.family = 0
#
# select PNG as the output file format
#
swatts.format = swatts.PNG
#
# set the width of the output image
#
swatts.width = 1024
#
# set the height of the output image
#
swatts.height = 1024

#the encoder expects file names with an integer sequence
# 0,1,2,3 .... N-1

file_idx = 0

for ts in range(0,nts,10): # look at every 10th frame
# Change to the next timestep
TimeSliderSetState(ts)
#before we render the result, explicitly set the filename for this render
swatts.fileName = "blood_flow_example_%04d.png" % file_idx
SetSaveWindowAttributes(swatts)
# render the image to a PNG file
SaveWindow()
file_idx +=1

################
# use visit_utils.encoding to encode these images into a "wmv" movie
#
# The encoder looks for a printf style pattern in the input path to identify the
→˓frames of the movie.
# The frame numbers need to start at 0.
#
# The encoder selects a set of decent encoding settings based on the extension of the
# the output movie file (second argument). In this case we will create a "wmv" file.
#
# Other supported options include ".mpg", ".mov".
# "wmv" is usually the best choice and plays on all most all platforms (Linux ,OSX,
→˓Windows).
# "mpg" is lower quality, but should play on any platform.
#
# 'fdup' controls the number of times each frame is duplicated.
# Duplicating the frames allows you to slow the pace of the movie to something
→˓reasonable.
#
################

input_pattern = "blood_flow_example_%04d.png"
output_movie = "blood_flow_example.wmv"
encoding.encode(input_pattern,output_movie,fdup=4)

748 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Animating the camera

See Python fly through.

Automating data analysis

See Python analysis curves.

Extracting a per-material aggregate value at each timestep

See example Python aggregate curves.

3.3.6 Recording GUI actions to Python scripts

VisIt’s Commands window provides a mechanism to translate GUI actions into their equivalent Python commands.

1) Open the Commands Window by selecting ‘’Controls Menu->Command’‘

Fig. 3.28: The Commands window

2) Click the Record button.

3.3. Scripting 749

http://visitusers.org/index.php?title=Visit-tutorial-python-fly
http://visitusers.org/index.php?title=Visit-tutorial-python-analysis
http://visitusers.org/index.php?title=Visit-tutorial-python-agg-curve
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

3) Perform GUI actions.

4) Return to the Commands Window.

5) Select a tab to hold the python script of your recorded actions.

6) Click the Stop button.

7) The equivalent Python script will be placed in the tab in the Commands window.

• Note that the scripts are very verbose and contain some unnecessary commands, which can be edited out.

3.3.7 Learning the CLI

Here are some tips to help you quickly learn how to use VisIt’s CLI:

1) From within VisIt’s python CLI, you can type “dir()” to see the list of all commands.

• Sometimes, the output from “dir()” within VisIt’s python CLI is a little hard to look through. So, a useful
thing on Linux to get a nicer list of methods is the following shell command (typed from outside VisIt’s python
CLI). . .

echo "dir()" | visit -cli -nowin -forceinteractivecli | tr ',' '\n' | tr -d " '"
→˓| sort

• Or, if you are looking for CLI functions having to do with a specific thing. . .

echo "dir()" | visit -cli -nowin -forceinteractivecli | tr ',' '\n' | tr -d " '"
→˓| grep -i material

2) You can learn the syntax of a given method by typing “help(MethodName)”

• Type “help(AddPlot)” in the Python interpreter.

3) Use the GUI to Python recording featured outlined in Recording GUI actions to Python scripts.

4) Use ‘’WriteScript()” function, which will create a python script that describes all of your current plots.

• For more details, see WriteScript.

5) When you have a Python object, you can see all of its attributes by printing it.

s = SliceAttributes()
print s
# Output:
originType = Intercept # Point, Intercept, Percent, Zone, Node
originPoint = (0, 0, 0)
originIntercept = 0
originPercent = 0
originZone = 0
originNode = 0
normal = (0, -1, 0)
axisType = YAxis # XAxis, YAxis, ZAxis, Arbitrary, ThetaPhi
upAxis = (0, 0, 1)
project2d = 1
interactive = 1
flip = 0
originZoneDomain = 0
originNodeDomain = 0
meshName = "default"

(continues on next page)

750 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
http://visitusers.org/index.php?title=WriteScript


VisIt User Manual Documentation, Release 3.1

(continued from previous page)

theta = 0
phi = 0

Tips for searching for help

VisIt’s CLI provides a large set of functions. To can limit the scope of your search using a helper functions. One such
helper is the lsearch() function in the visit_utils module:

from visit_utils.common import lsearch
lsearch(dir(),"Material")

lsearch() returns a python list of strings with the names that match the given pattern. Here is another example that
prints each of the result strings on a separate line.

from visit_utils.common import lsearch
for value in lsearch(dir(),"Material"):

print value

3.3.8 Advanced features

1) You can set up your own buttons in the VisIt gui using the CLI. See VisIt Run Commands (RC) File.

2) You can set up callbacks in the CLI that get called whenever events happen in VisIt. See Python callbacks.

3) You can create your own custom Qt GUI that uses VisIt for plotting. See PySide recipes.

3.4 Aneurysm

This tutorial provides a short introduction to VisIt’s features while exploring a finite element blood flow simulation of
an aneurysm. The simulation was run using the LifeV finite element solver and made available for this tutorial thanks
to Gilles Fourestey and Jean Favre, Swiss National Supercomputing Centre.

3.4.1 Open the dataset

This tutorial uses the aneurysm dataset.

1. Download the aneurysm dataset.

2. Click on the Open icon to bring up the File open window.

3. Navigate your file system to the folder containing “aneurysm.visit”.

4. Highlight the file “aneurysm.visit” and then click OK.

3.4.2 Plotting the mesh topology

First we will examine the finite element mesh used in the blood flow simulation.

3.4. Aneurysm 751

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
http://visitusers.org/index.php?title=Python_callbacks
https://visit.llnl.gov
http://visitusers.org/index.php?title=PySide_Recipes
http://www.cscs.ch/
http://www.visitusers.org/index.php?title=Tutorial_Data
http://www.visitusers.org/index.php?title=Tutorial_Data


VisIt User Manual Documentation, Release 3.1

Create a Mesh plot

1. Go to Add->Mesh->Mesh.

2. Click Draw.

Fig. 3.29: Adding a mesh plot.

After this, the mesh plot is rendered in VisIt’s Viewer window. Modify the view by rotating and zooming in the viewer
window.

Modify the Mesh plot settings

1. Double click on the Mesh plot to open the Mesh plot attributes window.

2. Experiment with settings for:

• Mesh color

• Opaque color

• Opaque mode - When the Mesh plot’s opaque mode is set to automatic, the Mesh plot will be drawn in opaque
mode unless it is forced to share the visualization window with other plots, at which point the Mesh plot is
drawn in wireframe mode. When the Mesh plot is drawn in wireframe mode, only the edges of each externally
visible cell face are drawn, which prevents the Mesh plot from interfering with the appearance of other plots.
In addition to having an automatic opaque mode, the Mesh plot can be forced to be drawn in opaque mode or
wireframe mode by selecting the On or Off. This is best demonstrated with the Pseudocolor plot of pressure
present.

• Show internal zones

You will need to click Apply to commit the settings to your plot.

Query the mesh properties

VisIt’s Query interface provides several quantitative data summarization operations. We will use the query interface
to learn some basic information about the simulation mesh.

1. Go to Controls->Query to bring up the Query window.

752 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.30: The mesh plot attributes window.

3.4. Aneurysm 753



VisIt User Manual Documentation, Release 3.1

Fig. 3.31: The mesh plot of the aneurysm.

754 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

2. Select NumZones and click Query.

• This returns the number of elements in the mesh.

3. Select NumNodes and click Query.

• This returns the number of vertices in the mesh

Note: The terms “zones”, “elements”, and “cells” are overloaded in scientific visualization, as are the terms “nodes”,
“points”, and “vertices”.

Additional exercises

• What type of finite element was used to construct the mesh?

• How many elements are used to construct the mesh?

• How many vertices are used to construct the mesh?

• On average, how many vertices are shared per element?

3.4.3 Examining scalar fields

In addition to the mesh topology, this dataset provides two mesh fields:

• A scalar field “pressure”, associated with the mesh vertices.

• A vector field “velocity”, associated with the mesh vertices.

VisIt automatically defines an expression that allows us to use the magnitude of the “velocity” vector field as a scalar
field on the mesh. The result of the expression is a new field named “velocity_magnitude”.

We will use Pseudocolor plots to examine the “pressure” and “velocity_magnitude” fields.

1. Go to Add->Pseudocolor->Pressure.

2. Click Draw.

3. Double click on the Pseudocolor plot to bring up the Pseudocolor plot attributes window.

4. Change the color table to Spectral and check the Invert button.

5. Click Apply.

6. Click Draw.

7. Click Play in the Time animation controls above the plot list on the main GUI window.

You will see the pressure field animate on the exterior of the mesh as the simulation evolves.

Experiment with:

• Setting the Pseudocolor plot limits.

• Hiding and showing the Mesh plot.

When you are done experimenting, stop animating over time steps using the Stop button.

3.4. Aneurysm 755

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.32: The pseudocolor plot of the pressure.

756 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Query the maximum pressure over time

We can use the “pressure” field to extract the heart beat signal. We want to find the maximum pressure value across the
mesh elements at each time step of our dataset. VisIt provides a Query over time mechanism that allows us to extract
this data.

First, we need to set our query options to use timestep as the independent variable for our query.

1. Go to Controls->Query over time options.

2. Select Timestep.

3. Click Apply and Dismiss.

Fig. 3.33: The QueryOverTime attributes window.

Now we can execute the Max query on all of our time steps and collect the results into a curve.

1. Click on the Pseudocolor plot to make sure it is active.

2. Go to Controls->Query to bring up the Query window.

3. Select Max.

4. Check Do Time Query.

5. Click Query.

This will process the simulation output files and create a new window with a curve that contains the maximum pressure
value at each time.

Additional exercises

• How many heart beats does this dataset cover?

• Estimate the number of beats per minute of the simulated heart (each cycle is 0.005 seconds).

3.4. Aneurysm 757

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.34: The query over time plot.

758 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

3.4.4 Contours and sub-volumes of high velocity

Examining the velocity magnitude

Next we create a Pseudocolor plot to look at the magnitude of the “velocity” vector field.

1. Delete all your existing plots by selecting them all and clicking Delete.

2. Go to Add->Pseudocolor->velocity_magnitude.

3. Open the Pseudocolor plot attributes window and set the color table options as before.

4. Click Draw.

Fig. 3.35: The pseudocolor plot of the velocity magnitude.

Notice that the velocity at the surface of the mesh is zero. To get a better understanding of the flow inside the mesh,
we will use operators to extract regions of high blood flow.

3.4. Aneurysm 759



VisIt User Manual Documentation, Release 3.1

Creating a semi-transparent exterior mesh plot

When looking at features inside the mesh, it helps to have a partially transparent view of the whole mesh boundary for
reference. We will add a Subset plot to create this view of the mesh boundary.

1. Uncheck Apply operators to all plots.

Fig. 3.36: The apply operators to all plots setting.

2. Go to Add->Subset->Mesh.

3. Open the Subset plot attributes window.

4. Change the color to Light Blue.

5. Set the Opacity slider to 25%.

6. Click Apply.

7. Click Draw.

Contours of high velocity

Now we will extract contour surfaces at high velocity values using the Isosurface operator.

1. Select the Pseudocolor plot in the plot list.

2. Go to Operators->Slicing->Isosurface.

3. Open the Isosurface operator attributes window.

4. Set Select by to Value, and use “10 15 20”.

5. Click Apply and Dismiss.

6. Click Draw and press the Play button to animate the plot over time.

You will see the contour surfaces extracted from the “velocity_magnitude” field animate as the simulation evolves.

Sub-volumes of high velocity

As an alternative to contours, we can also extract the sub-volume between two scalar values using the Isovolume
operator.

1. Click Stop to stop the animation.

2. Remove the Isosurface operator.

3. Go to Operators->Selection->Isovolume.

4. Open the Isovolume operator attributes window.

5. Set the Lower bound to “10” and the Upper Bound to “20”.

6. Click Apply and Dismiss.

7. Click Draw and press the Play button to animate the plot over time.

760 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.37: The transparent subset plot.

3.4. Aneurysm 761



VisIt User Manual Documentation, Release 3.1

Fig. 3.38: The transparent subset plot with iso surfaces of velocity magnitude.

762 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.39: The transparent subset plot with an iso volume of velocity magnitude.

3.4. Aneurysm 763



VisIt User Manual Documentation, Release 3.1

3.4.5 Visualizing the velocity vector field

This section of the tutorial outlines using glyphs, streamlines, and pathlines to visualize the velocity vector field from
the simulation.

Plotting the vector field directly with glyphs

VisIt’s Vector plot renders a vector field at each time step as a collection of arrow glyphs. This allows us to see
the direction of the vectors as well as their magnitude. We will create a vector plot to directly view the simulated
“velocity” vector field.

1. Go to Add->Vector->velocity.

2. Open the Vector plot attributes window.

3. Go to the Vectors tab.

4. Set Stride to “5”.

5. Go to the Color section on the Data tab.

6. Change the Magnitude to Spectral, and check the Invert option.

7. Go to the Glyphs tab.

8. In the Scale section, set the Scale to “0.5”.

9. In the Style section, set Arrow body to Cylinder.

10. In the Rendering section, set Geometry Quality to High.

11. Click Apply and Dismiss.

12. Click Draw.

13. Click Play.

Examining features of the flow field with streamlines

To explore the flow field further we will seed and advect a set of streamlines near the inflow of the artery. Streamlines
show the path massless tracer particles would take if advected by a static vector field. To construct Streamlines, the
first step is selecting a set of spatial locations that can serve as the initial seed points.

We want to center our seed points around the peak velocity value on a slice near the inflow of the artery. To find this
location, we query a sliced pseudocolor plot of the “velocity_magnitude”.

1. Go to Add->Pseudocolor->velocity_magnitude.

2. Open the Pseudocolor plot attributes window and set the color table options as before.

3. Go to Operators->Slicing->Slice.

4. Open the Slice operator attributes window.

5. In the Normal section set Orthogonal to Y Axis.

6. In the Origin section select Point and set the value to “3 3 3”.

7. In the Up Axis section uncheck Project to 2D.

8. Click Apply and Dismiss.

9. Click Draw.

764 Chapter 3. VisIt Tutorials

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.40: The vector plot of velocity.

3.4. Aneurysm 765



VisIt User Manual Documentation, Release 3.1

Fig. 3.41: The velocity magnitude on a slice.

766 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Query to find the maximum velocity on the slice

1. Click to make sure the Pseudocolor plot of your “velocity_magnitude” slice is active.

2. Go to Controls->Query.

3. Select Max.

4. Select Actual Data.

5. Click Query.

This will give you the maximum scalar value on the slice and the x,y,z coordinates of the node associated with this
value. We will use the x,y,z coordinates of this node to seed a set of streamlines.

Fig. 3.42: The result of the velocity magnitude query.

Plotting streamlines of velocity

1. Go to Add->Pseudocolor->operators->IntegralCurve->velocity.

2. Open the IntegralCurve operator attributes window.

3.4. Aneurysm 767



VisIt User Manual Documentation, Release 3.1

Fig. 3.43: Creating a streamline plot with the IntegralCurve operator.

768 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

3. Go to the Source tab.

4. Set the Source type to Circle.

5. Set the Origin to the value returned from the max query: “3.45115 3 5.54927”, excluding any commas in the
input text box.

6. Set the Normal to the y-axis: “0 1 0”.

7. Set the Up axis to the z-axis: “0 0 1”.

8. Set the Radius to “0.12”.

9. Go to the Sampling section.

10. Set Sampling along: to Boundary.

11. Set Samples in Theta: to “12”.

12. Go to the Advanced tab.

13. In the Warnings section, uncheck all of the warning checkboxes.

14. Click Apply and Dismiss.

Fig. 3.44: The IntegralCurve operator attributes.

15. Open the Pseudocolor plot attributes window.

16. Go to the Data tab.

3.4. Aneurysm 769



VisIt User Manual Documentation, Release 3.1

17. In the Color section set the Color table to Reds.

Fig. 3.45: The Pseudocolor attributes for the streamline data.

18. Go to the Line section on the Geometry tab.

19. Set Line type to Tubes.

20. Set Tail to Sphere.

21. Set Head to Cone.

22. Set the head and tail Radius to “0.03”.

23. Click Apply and Dismiss.

24. Click Draw.

25. Use the time slider controls to view a few time steps.

Examining features of the flow field with pathlines

Finally, to explore the time varying behavior of the flow field we will use pathlines. Pathlines show the path massless
tracer particles would take if advected by the vector field at each timestep of the simulation.

770 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.46: The Pseudocolor attributes for the streamline geometry.

3.4. Aneurysm 771



VisIt User Manual Documentation, Release 3.1

Fig. 3.47: The streamlines of velocity.

772 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

We will modify our previous IntergralCurve options to create pathlines.

1. Set the time slider controls to the first timestep.

2. Open the IntegralCurve attributes window.

3. Go to the Appearance tab.

4. In the Streamlines vs Pathlines section select Pathline.

5. In the Pathlines Options section set How to perform interpolation over time to Mesh is static over time.

Fig. 3.48: The IntegralCurve operator pathline attributes.

6. Click Apply and Dismiss.

This will process all 200 files in the dataset and construct the pathlines that originate at our seed points.

3.4.6 Publishing to SeedMe.org

Required setup

• Sign-in or Sign-up at SeedMe.org.

• Download your “API Key file”, then move it to your Home directory.

Sharing automation script

In this section we will render and save pathline trace in 20 steps. Then upload and share the rendered 20 images as a
sequence and instuct SeedMe to encode a video from these set of images at 2 frames per second. A sample video can
be seen here.

A detailed example with a brief explanation in the comments can be seen here.

1. Go to Controls->Command.

2. Find an empty tab.

3.4. Aneurysm 773

https://www.seedme.org/user
https://www.seedme.org/user/register
https://www.seedme.org/user
https://en.wikipedia.org/wiki/Home_directory
https://www.seedme.org/node/49054#videos
https://bitbucket.org/seedme/seedme-python-client/src/master/demo.py?at=master&fileviewer=file-view-default


VisIt User Manual Documentation, Release 3.1

Fig. 3.49: The pathlines of velocity.

774 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

3. Paste the following Python snippet into this tab.

#
# file: aneurysm_seedme.py
# info:
# Example showing how to use SeedMe to publish a pathline animation
#

##############################################################################
# To do : Set the following four variables
##############################################################################
seedme_apikey_path = '/absolute/path/to/seedme.txt'
my_rendered_image_path = "/absolute/path/for/images/" # does not traverse
→˓recursively
my_content_privacy = "public" # private (default), group, public
my_share_list = "one@example.com, two@example.com" # comma delimited emails

# Set save window attributes including path where the rendered images will be
→˓saved
sa = SaveWindowAttributes()
sa.outputToCurrentDirectory = 0
sa.outputDirectory = my_rendered_image_path
sa.fileName = "pathline"
sa.family = 1
sa.format = sa.PNG
sa.width = 512
sa.height = 512
sa.screenCapture = 0
sa.saveTiled = 0
sa.quality = 80
sa.progressive = 0
sa.binary = 0
sa.stereo = 0
sa.compression = sa.PackBits # None, PackBits, Jpeg, Deflate
sa.forceMerge = 0
sa.resConstraint = sa.ScreenProportions # NoConstraint, EqualWidthHeight,
→˓ScreenProportions
sa.advancedMultiWindowSave = 0
SetSaveWindowAttributes(sa)

# Now save this pathline visualization in 20 frames (images)
# Animate our pathlines by cropping based on time
iatts = IntegralCurveAttributes()
iatts.cropValue = iatts.Time
iatts.cropEndFlag = 1

nsteps = 20 # Number of steps
final_time = .995
for i in range(nsteps+1):

iatts.cropEnd = final_time * i /nsteps
SetOperatorOptions(iatts)
SaveWindow() # will save images at the sa.outputDirectory provided above

# --------------------------------------------------------------------------------
→˓--#

(continues on next page)

3.4. Aneurysm 775



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

# Upload and share content at SeedMe.org
# Instruct the seedme module to upload 20 images then encode a video from it
# seedme module ships with VisIt 2.9.x +
# --------------------------------------------------------------------------------
→˓--#
import seedme

# Set path to the APIKey file
obj.set_auth_via_file(seedme_apikey_path)

# Create a dictionary for rendered image sequence
my_seq = {

"filepath": my_rendered_image_path,
"title": "Pathline",
"description": "Pathlines show the path massless tracer particles would

→˓take if advected by the vector field at each timestep of the simulation.",
"fps": 2,
"encode": True,
}

# Create seedme object
obj = seedme.SeedMe()

# Create a new collection using create_collection method
# composed with title and sequence with public access, shared with two people
result=obj.create_collection(title="Aneurysm vis",

privacy=my_content_privacy, # string = One of
→˓private(default), group, public

sharing=my_share_list, # string = Comma delimited
→˓emails

notify=True, # Boolean = False(default) send email
→˓notification to above two emails

sequences=my_seq, # upload sequence
)

# create_collection returns the result as a string in json format
print result

url = obj.get_url(result)
# Visit this url on your web browser
print("\n\nThe url for this collection is: " + url)

4. Click Execute.

To view your shared content login to SeedMe.org then navigate to My collections.

To learn more about the SeedMe Python API review the example demo.py.

3.4.7 Calculating the flux of a velocity field through a surface

To calculate a flux, we will need the original velocity vector, the normal vector of the surface, and VisIt’s Flux Operator.
We will calculate the flux through a cross-slice located at Y=3, at the beginning of the artery.

776 Chapter 3. VisIt Tutorials

https://www.seedme.org/user
https://www.seedme.org/collections
https://bitbucket.org/seedme/seedme-python-client/src/master/demo.py?at=master&fileviewer=file-view-default
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Creating the slice and showing velocity glyphs

First we will directly plot the velocity vectors that exist on the slice through the 3D mesh.

1. Delete any existing plots.

2. Go to Add->Vector->velocity.

3. Open the Vector plot attributes window.

4. Go to the Vectors tab and set the Fixed number to “40”.

5. Go to the Glyphs tab.

6. Set Arrow body to Cylinder.

7. Set Geometry Quality to High.

Fig. 3.50: The Vector plot attributes.

8. Click Apply and Dismiss.

9. Go to Operators->Slicing->Slice.

10. Open the Slice operator attributes window.

11. Set Normal to Arbitrary and to “0 1 0”.

12. Set Origin to Intercept and to “3”.

13. Uncheck Project to 2D.

14. Click Make default, Apply and Dismiss.

3.4. Aneurysm 777



VisIt User Manual Documentation, Release 3.1

15. Click Draw.

Fig. 3.51: The Slice operator attributes.

In order to give some context to the Vector plot of velocity on the slice let’s add a Pseudocolor plot of veloc-
ity_magnitude on the same slice and a Mesh plot.

16. Go to Add->Pseudocolor->velocity_magnitude.

17. Open the Pseudocolor plot attributes window.

18. Set Limits to Use Current Plot.

19. Click Apply and Dismiss.

20. Go to Operators->Slicing->Slice.

21. Click Draw.

22. Go to Add->Mesh->Mesh.

23. Open the Mesh plot attributes window.

24. Set Mesh color to Custom and select a medium grey color.

25. Click Apply and Dismiss.

26. Click Draw.

27. Zoom in to explore the plot results.

778 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.52: The velocity on the slice.

3.4. Aneurysm 779



VisIt User Manual Documentation, Release 3.1

The Vector plot uses glyphs to draw portions of the instantaneous vector field. The arrows are colored according to
the speed at each point (the magnitude of the velocity vector). Next we create an expression to evaluate the vectors
normal to the Slice. These normals should all point in the Y direction.

Creating a vector expression and using the DeferExpression operator

We will use VisIt’s pre-defined expression to evaluate the normals on a cell-by-cell basis.

1. Go to Controls->Expressions.

2. Click New.

3. Change the Name to “normals” and the Type to Vector mesh variable.

4. Go to Insert function->Miscellaneous->cell_surface_normal in the Standard editor tab.

5. Go to Insert variable->Mesh->Mesh in the Standard editor tab.

Fig. 3.53: The Expressions window.

6. Click Apply and Dismiss.

7. Return to the Vector plot and change its variable to “normals”.

You will then get the error message saying: The ‘normals’ expression failed because The Surface normal expression
can only be calculated on surfaces. Use the ExternalSurface operator to generate the external surface of this object.
You must also use the DeferExpression operator to defer the evaluation of this expression until after the external
surface operator. In fact, VisIt cannot use the name Mesh which refers to the original 3D mesh. It needs to defer the
evaluation until after the Slice operator is applied. Thus, we need to add the Defer Expression operator.

780 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

8. Go to Operators->Analysis->DeferExpression.

9. Open the DeferExpression operator attributes window.

10. Go to Variables->Vector->normals.

Fig. 3.54: The DeferExpression window.

11. Click Apply and Dismiss.

12. Click Draw.

13. Verify that all your normals point in the up (Y) direction.

Calculating the flux on the slice

We are now ready for the final draw.

1. Go to Add->Pseudocolor->operators->Flux->Mesh.

2. Go to Operators->Slicing->Slice.

3. Open the Slice operator attributes window.

4. Verify that the default values previously saved are used.

5. Move the Slice operator above the Flux operator.

6. Go to Operators->Analysis->DeferExpression.

7. Move the DeferExpression operator above the Flux operator just below the Slice operator.

8. Open the Flux operator attributes window.

9. Set the Flow field to “velocity”.

10. Click Apply and Dismiss.

11. Click Draw.

Verify that you have a display that is cell-centered, and that will vary with the Time slider

12. Get the numerical value of the flux by query-ing for the Weighted Variable Sum.

3.5 Potential Flow

This tutorial demonstrates VisIt’s features while exploring results from simple simulations of potential flow around
an obstruction, specifically an airfoil. Potential flow assumes irrotational flow. That is, there is no rotational motion
in the flow, no vortices or eddies. This assumption is valid for low velocities and certain types of gases/fluids and

3.5. Potential Flow 781

https://en.wikipedia.org/wiki/Potential_flow


VisIt User Manual Documentation, Release 3.1

Fig. 3.55: The Vector plot of the normals.

Fig. 3.56: The Flux operator attributes window.

782 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.57: The Vector plot of the flux.

3.5. Potential Flow 783



VisIt User Manual Documentation, Release 3.1

Fig. 3.58: The result of the Weighted Variable Sum query.

784 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

obstructions. When the flow does involve rotation, a more complex solution involving Navier-Stokes equations is
required.

The potential flow solver is a mini-app developed using the MFEM finite element library. The example is available
for this tutorial thanks to Aaron Fischer and Mark Miller of LLNL. The data set includes VTK output files for a set of
solutions where the angle of attack of the velocity varies from -5 degrees to 25 degrees.

3.5.1 Open the dataset

This tutorial uses the potential flow dataset. 1. Download the potential flow dataset. 2. Click on the Open icon to bring
up the File open window. 3. Navigate your file system to the folder containing “potential_flow_ang_sweep.visit”. 4.
Highlight the file “potential_flow_ang_sweep.visit” and then click OK.

3.5.2 Plotting the mesh topology

First we will examine the mesh used by the solver.

Create a Mesh plot

1. Go to Add->Mesh->main.

2. Click Draw.

After this, the mesh plot is rendered in VisIt’s Viewer window. This is a 2D mesh, modify the view by planning and
zooming in the viewer window. Zoom in near the airfoil and look at the mesh structure.

Modify the Mesh plot settings

1. Double click on the Mesh plot to open the Mesh plot attributes window.

2. Experiment with settings for:

• Mesh color

• Opaque color

• Opaque mode

You will need to click Apply to commit the settings to your plot.

3.5.3 Examining the velocity magnitude

In addition to the mesh topology, this dataset provides a vector field “v”, representing the velocity, associated with the
mesh vertices.

VisIt automatically defines an expression that allows us to use the magnitude of the “v” vector field as a scalar field on
the mesh. The result of the expression is a new field named “v_magnitude”.

We will use Pseudocolor plots to examine the “pressure” and “velocity_magnitude” fields.

1. Go to Add->Pseudocolor->v_magnitude.

2. Click Draw.

3. Double click on the Pseudocolor plot to bring up the Pseudocolor plot attributes window.

4. In the Limits section, enable the Maximum checkbox and set the limit to 1.

3.5. Potential Flow 785

http://www.mfem.org/
http://www.llnl.gov
http://www.visitusers.org/index.php?title=Tutorial_Data
http://www.visitusers.org/index.php?title=Tutorial_Data
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.59: Example mesh plot settings for the Potential Flow data.

786 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.60: Example mesh plot result the Potential Flow data.

3.5. Potential Flow 787



VisIt User Manual Documentation, Release 3.1

5. In the Color section,cChange the color table to Spectral and check the Invert button.

6. Click Apply.

7. Click Draw.

8. Drag the Time animation controls above the plot list on the main GUI window.

You will see the velocity magnitude solutions for the different angles of attack.

Experiment with the Color for values > max option to see where the range is being clipped.

Contours of velocity magnitude

Now we will add an additional plot to view velocity magnitude contours

1. Go to Add->Contour->v_magnitude.

2. Double click on the Contour plot to bring up the Contour plot attributes window.

3. In the Contour Levels section, enable the Maximum checkbox and set the limit to 1.

4. In the Lines section, set the Line width to 2.

5. Click Apply.

6. Click Draw.

7. Drag the Time animation controls above the plot list on the main GUI window.

You will see the contours of the velocity magnitude solutions for the different angles of attack.

Delete the contour plot when you are finished exploring, but keep the pseudocolor plot.

3.5.4 Visualizing the velocity vector field

This section of the tutorial outlines using glyphs and streamlines to visualize the velocity vector field from the simu-
lation.

Plotting the vector field directly with glyphs

VisIt’s Vector plot renders a vector field at each time step as a collection of arrow glyphs. This allows us to see the
direction of the vectors as well as their magnitude. We will create a vector plot to directly view the simulated “v”
vector field.

1. Go to Add->Vector->v.

2. Open the Vector plot attributes window.

3. Go to the Vectors tab.

4. Set Stride to “17”.

5. Go the the Data tab.

6. In the Limits section, enable the Maximum checkbox and set the value to “1”.

7. In the Color section, change the Magnitude to viridis

8. Go to the Glyphs tab.

9. In the Scale section, uncheck Scale by magnitude and Auto scale.

10. Click Apply and Dismiss.

788 Chapter 3. VisIt Tutorials

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.61: The pseudocolor plot attributes for the velocity magnitude example.

3.5. Potential Flow 789



VisIt User Manual Documentation, Release 3.1

Fig. 3.62: The pseudocolor plot of the velocity magnitude.

790 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.63: Example contour plot settings for Potential Flow velocity magnitude.
3.5. Potential Flow 791



VisIt User Manual Documentation, Release 3.1

Fig. 3.64: A contour plot of the velocity magnitude.

792 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.65: Vectors tab settings for example vector plot of velocity

3.5. Potential Flow 793



VisIt User Manual Documentation, Release 3.1

Fig. 3.66: Data tab settings for example vector plot of velocity

794 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.67: Glyphs tab settings for example vector plot of velocity

3.5. Potential Flow 795



VisIt User Manual Documentation, Release 3.1

11. Click Draw.

12. Zoom in near the airfoil.

13. Drag the Time animation controls above the plot list on the main GUI window.

Fig. 3.68: The vector plot of velocity.

You will see glyphs of velocity solutions for the different angles of attack.

Delete the vector plot when you are finished exploring, but keep the pseudocolor plot.

Examining features of the flow field with streamlines

To explore the flow field further we will seed and advect a set of streamlines on the left side of the mesh. Streamlines
show the path massless tracer particles would take if advected by a static vector field. To construct Streamlines, the
first step is selecting a set of spatial locations that can serve as the initial seed points.

The flow moves left to right, we will use a vertical line of seed points on the left side of the mesh.

Plotting streamlines of velocity

1. Go to Add->Pseudocolor->operators->IntergralCurve->v.

2. Open the IntegralCurve operator attributes window.

3. Go to the Source section on the Integration tab.

796 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.69: Creating a streamline plot with the IntegralCurve operator.

3.5. Potential Flow 797



VisIt User Manual Documentation, Release 3.1

4. Set the Source type to Line.

5. Set the Start to “-2 -2 0”, excluding any commas in the input text box.

6. Set the Stop to “-2 2 0”.

7. Set Samples along line to “10”.

8. Click Apply and Dismiss.

9. Click Draw on the Main GUI

10. In IntegralCurve operator attributes, click Apply again (for good measure) and then Dismiss.

11. Open the Pseudocolor plot attributes window.

12. Go to the Data tab.

13. In the Color section set the Color table to viridis.

14. Go to the Line section on the Geometry tab.

15. Set Line type to Ribbons.

16. Set Tail to Sphere.

17. Set the tail Radius to “0.025”.

18. Click Apply and Dismiss.

19. Click Draw.

20. Use the time slider controls to view a few different angles of attack solutions.

3.6 MRI

This tutorial provides a short introduction to visualizing MRI data using VisIt. We’ll be relying on the Analyze data
format, which is developed at the Mayo Clinic.

3.6.1 Open the dataset

This tutorial uses the MRI dataset.

1. Download the MRI dataset.

2. Click on the Open icon to bring up the File open window.

3. Navigate your file system to the folder containing “s01_anatomy_stripped.img”.

4. Highlight the file “s01_anatomy_stripped.img” and then click OK.

3.6.2 Plotting areas of interest

First, we’ll add a Pseudocolor plot and isoloate the visualization to an area that we’re interseted in. In this case, it’s a
human brain located within the dataset.

798 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit-dav.github.io/largedata/datarchives/mri
https://visit-dav.github.io/largedata/datarchives/mri


VisIt User Manual Documentation, Release 3.1

Fig. 3.70: The IntegralCurve operator attributes.

3.6. MRI 799



VisIt User Manual Documentation, Release 3.1

Fig. 3.71: The Pseudocolor attributes for the streamline data.

800 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.72: The Pseudocolor attributes for the streamline geometry.

3.6. MRI 801



VisIt User Manual Documentation, Release 3.1

Fig. 3.73: The streamlines of velocity at 0 degree angle of attack.

802 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.74: The streamlines of velocity at 20.5 degree angle of attack.

3.6. MRI 803



VisIt User Manual Documentation, Release 3.1

Fig. 3.75: Adding a Pseudocolor plot.

804 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.76: Visualizing our dataset.

3.6. MRI 805



VisIt User Manual Documentation, Release 3.1

Create a Pseudocolor plot

1. Go to Add->Pseudocolor->Variable.

2. Click Draw.

The Pseudocolor plot should now be rendered in VisIt’s Viewer window. Modify the view by rotating and zooming
in the viewer window. You’ll notice that the visualization doesn’t look very interesting at this point. This is because
what we’re really interested in seeing is hidden within the dataset.

Add an Isovolume operator

Adding an Isolvolume operator will help us remove sections of the dataset that we’re uninterested in.

1. Go to Operators->Selection->Isovolume to add the Isovolume operator.

Fig. 3.77: Adding a Isovolume operator.

2. Click on the triangle to the left of your Pseudocolor plot, and double click Isovolume to open up the Isovolume
attributes.

3. Once you’ve opened the Isovolume attributes, set the Lower bound to 30, and click Apply.

4. Click Draw. You will now see a visualization of a human brain.

806 Chapter 3. VisIt Tutorials

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.78: Opening the Isovolume attributes.

Fig. 3.79: Changing the Isovolume attributes.

3.6. MRI 807



VisIt User Manual Documentation, Release 3.1

Fig. 3.80: Visualizing the underlying data of our dataset.

808 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

5. You can experiment with changing the lower and upper bounds of the Isolvoume attributes to visualize different
sections of the dataset.

Change the color table

The default color table doesn’t add much to the visualization, so let’s change the color table to better suite our needs.
In this case, we’ll choose Pastel1.

1. Double click Pseudocolor to open up the Pseudocolor attributes.

2. Once there, you can choose your color table.

Fig. 3.81: Changing the color table.

3.6. MRI 809



VisIt User Manual Documentation, Release 3.1

3. Click Apply to finalize the change.

Fig. 3.82: Visualizing our updated color table.

3.6.3 Exploring our MRI dataset

Now that we’ve located and visualized the inner section of our dataset, we can further explore characteristics local to
this region.

Performing a Slice

First, we’re going to slice out a single cross-section for closer examination.

810 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

1. Go to Operators->Slicing->Slice to add the Slice operator.

2. Double click on the Slice to bring up the Slice attributes window.

3. There are a lot of options to configure here. For now, we’ll leave all of the default settings except for Project to
2D. Uncheck this box.

4. Click Apply.

5. Click Draw.

Performing a ThreeSlice

Another usefull operator that is similar to Slice is ThreeSlice. This operator creates three axis aligned slices of a 3D
dataset, one in each dimension.

1. Remove the Slice operator by clicking the X button to the right of the added Slice.

2. Go to Operators->Slicing->ThreeSlice to add the ThreeSlice operator.

3. Double click on the ThreeSlice to bring up the ThreeSlice attributes window. You can move the location of each
slice by changing the X, Y, and Z values.

4. Click Apply.

5. Click Draw.

Performing a ThreeSlice using the point tool

Along with directly entering the X, Y, Z coordinates for your ThreeSlice in the attributes window, Visit also provides
the option of using an interactive Point tool for determing these coordinates.

1. In the top left-hand corner of the visualization window, you’ll find a button that activates the Point tool. Click
this button.

2. Once activated, you will see a point surrounded by a red box within the visualization window.

3. Before changing the orientation of our Point tool, Click on the ThreeSlice attributes window so that VisIt under-
stands that we want to associate this Point tool with these attributes.

4. Click and drag the red box to change the location of the point defining the X, Y, Z coordinates of the ThreeSlice.
VisIt will automatically update the plot.

5. Click the Point tool button again to deactivate the tool.

Performing a Clip

One more way to view the interior of your dataset is to perform a Clip, which clips away entire sections of your data.
There are many ways to perform your Clip, each of which has it’s own benefits.

Performing a Clip using a single plane

1. Remove the ThreeSlice operator by clicking the X button to the right of the added ThreeSlice.

2. Go to Operators->Selection->Clip to add a Clip operator.

3. Double click on the Clip to bring up the Clip attributes window. Again, there are many settings to configure
here. The default settings use a single plane for performing the Clip.

3.6. MRI 811

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.83: Changing the Slice attributes.

812 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.84: Visualizing a Slice of our MRI dataset.

3.6. MRI 813



VisIt User Manual Documentation, Release 3.1

Fig. 3.85: The ThreeSlice attributes.

814 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.86: Visualizing a ThreeSlice of our MRI dataset.

Fig. 3.87: Activating the Point tool.

3.6. MRI 815



VisIt User Manual Documentation, Release 3.1

Fig. 3.88: The activated Point tool.

816 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.89: Performing a ThreeSlice with the Point tool.

3.6. MRI 817



VisIt User Manual Documentation, Release 3.1

Fig. 3.90: The Clip attributes.

818 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

4. Click Apply.

5. Click Draw.

Fig. 3.91: Visualizing a Clip of our MRI dataset.

Performing a Clip using two planes

1. Return to the Clip attributes window, check the Plane 2 box, and change the normal of Plane 2 to “0 -1 0”.

2. Click Apply.

3.6. MRI 819



VisIt User Manual Documentation, Release 3.1

Fig. 3.92: Altering the Clip attributes.

820 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.93: Visualizing a 2 Plane Clip of our MRI dataset.

3.6. MRI 821



VisIt User Manual Documentation, Release 3.1

Performing a Clip using three planes

1. Return to the Clip attributes window, and check the Plane 3 box. Next, change the origin of Plane 3 to “0 0 -50”.

2. Click Apply.

Performing a Clip using a sphere

Let’s update the settings of our Clip so that we remove a spherical section of the data.

1. Double click on the Clip to bring up the Clip attributes window again. Change the Slice type to Sphere. The
attribute options should change significantly. Set the Center to “0 100 0”, and set the radius to 150.

2. Click Apply.

3. Click Draw.

Performing a Clip using the Plane tool

VisIt also provides an interactive Plane tool that can be used to determine your intersecting plane by orienting a 3D
axis within the dataset.

1. First, Click the Reset button in the Clip attributes window to reset the Clip attributes to their default state.

2. In the top left-hand corner of the visualization window, you’ll find a button that activates the Plane tool. Click
this button.

3. Once activated, you will see a 3D axis defining a plane within the visualization window.

4. Before changing the orientation of our Plane tool, Click on the Clip attributes window so that VisIt understands
that we want to associate this Plane tool with these attributes.

5. You will see several red boxes aligned with various points of the Plane tool. Click and drag these red boxes to
re-orient the plane you are defining. VisIt will automatically perform a Clip at the newly oriented plane.

Performing a Clip using the Sphere tool

Much like the Plane tool, VisIt also provides a Sphere tool, which allows us to interactively define a sphere that can be
used to set the Clip attributes.

1. Click the Plane tool button to deactivate the Plane tool.

2. Click the Sphere tool button, which is in the same row as the Plane tool.

3. Return to the Clip attributes window and change the Slice type to Sphere. Click Apply.

4. You can change the shape and location of the Sphere tool by clicking and dragging the red boxes associated with
the Sphere.

3.7 Remote Usage

VisIt can be used remotely in several different manners. Some use capabilities native to VisIt, such as running VisIt
in client/server mode, and some use external mechanisms, such as VNC. We will also touch briefly on using batch
allocations in an interactive manner.

VisIt can run remotely in the following ways:

822 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.94: Altering the Clip attributes.

3.7. Remote Usage 823



VisIt User Manual Documentation, Release 3.1

Fig. 3.95: Visualizing a 3 Plane Clip of our MRI dataset.

824 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.96: Changing the Clip attributes.

3.7. Remote Usage 825



VisIt User Manual Documentation, Release 3.1

Fig. 3.97: Visualizing a spherical Clip of our MRI dataset.

826 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.98: Activating the Plane tool.

• Using X display forwarding.

– Easiest to setup and convenient to use.

– Lowest interactivity performance.

• Using a VNC client.

– More complex to set up.

– Convenient to use.

– Provides high interactivity performance.

• Using client/server.

– More complex to set up.

– Provides highest interactivity performance.

3.7.1 Using X Display forwarding though ssh

When VisIt is running with X display forwarding through ssh, it is completely running on the remote system and
sending all its graphics commands over ssh. In one sense this is the easiest to use since you just launch VisIt on you
remote system and you are ready to go. Since you are typically already logged into the remote system and already
in the directory of interest there is no additional setup required, such as entering passwords or navigating the remote
directory structure. Unfortunately it is also the lowest performing option. Graphical user interfaces typically send lots
of small messages back between the remote system and the local display. If there is a high latency between them then
simple operations such as clicking on buttons and bringing up new windows may take a long time. Furthermore, the
rendering performance of the visualization windows suffers because VisIt can’t leverage the graphics processing unit
on the local system.

When using X Display forwarding you need to have an X Server running on the display of your local system. In the
case of Linux and MacOS, both will have X Servers running by default. In the case of Windows you will need to
install a X Server on your system and enable it. Fortunately, most people will already have an X Server installed on
their system if they are using ssh to login to the supercomputing center.

Typically, X display forwarding is enabled by default and all you need to do is launch VisIt on the remote system once
you have ssh’ed to the remote system.

When starting ssh from a command line you will need to use the “-Y” option.

3.7. Remote Usage 827

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.99: The activated Plane tool.

828 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.100: Performing a Clip with the Plane tool.

Fig. 3.101: Activating the Sphere tool.

3.7. Remote Usage 829



VisIt User Manual Documentation, Release 3.1

Fig. 3.102: Performing a Clip with the Sphere tool.

830 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

ssh -Y

Some X Servers may need to have their default options set for use with VisIt. This is primarily because VisIt uses
OpenGL for rendering and not all X Servers are configured properly to work with OpenGL.

Configuring X-Win32 for use with VisIt

The default setting X-Win32 sometimes are not set to work well with OpenGL. This isn’t always the case and will
depend on the graphics card installed on your system. If VisIt crashes on your system you will need to do the following.

1. Bring up the X-Win32 control panel.

2. Go to the Window tab.

3. Turn off Use Direct2D.

4. Turn on Use Software Renderer for OpenGL.

5. Click Apply.

6. At this point you should exit all the windows associated with X-Win32 and re-establish you connections to the
remote system.

3.7.2 Using VNC

When using VNC it looks and behaves just like you were logged into an X Window display running at the supercom-
puting site that is constrained to a single window and is separate from the windowing system running on your local
system. It provides all the conveniences of X display forwarding but at a much higher interactivity level since the
networking between the remote computer and the VNC server will provide high bandwidth and low latency. Ideally
you would do all your interactions with the supercomputer center through the VNC client. The one draw back is that
the VNC server compresses the video stream it sends to the VNC client in order to provide high interactivity. This
may result in small compression artifacts in the images you see in the VNC client.

This portion of the tutorial on using VNC will focus on using RealVNC at the Lawrence Livermore National Labora-
tory (LLNL). Using VNC at other computer centers will be similar, but unique to each site.

Installing VNC

If your system is an LLNL managed system you can install it via the LLNL workstations catalog for MacOS or
Windows. Alternatively, you can download the RealVNC client and install it on your desktop. VNC clients not
supplied by RealVNC will not work at LLNL.

Installing RealVNC on an LLNL managed Windows system

1. Select LANDESK Management->Portal Manager from the Start menu.

2. Click on RealVNC Viewer in the list of software packages.

3. Click Launch to install the package.

3.7. Remote Usage 831

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://www.realvnc.com/download/viewer/


VisIt User Manual Documentation, Release 3.1

Fig. 3.103: The X-Win32 control panel

832 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.104: The LLNL LANDesk Software Portal

Installing RealVNC on an LLNL managed Mac system

1. Start MacPatch from Applications->MacPatch.app.

2. Select the Software tab and scroll down until you find the RealVNC Viewer.

3. Click the Install button in the right column to install the package.

Starting up the RealVNC client

There is a lot of additional content on using RealVNC at Livermore Computing.

At this point we will focus on running RealVNC on Windows. Other than starting the Viewer, everything should be
pretty much the same for Windows, MacOS and Linux.

1. Select RealVNC->VNC Viewer from the Start menu.

2. This will bring up the VNC Viewer.

Now we are ready to create the profiles for logging into the CZ and RZ.

1. Select File->New connection. . . .

2. This will bring up the Properties window.

3. Change the VNC Server field to “czvnc.llnl.gov:5999”.

4. Change the Name field to “CZ VNC”.

5. Click Ok.

6. This will create a profile for logging into the CZ VNC.

7. Now do the same for the RZ.

8. Select File->New connection. . . .

3.7. Remote Usage 833

https://hpc.llnl.gov/software/visualization-software/vnc-realvnc


VisIt User Manual Documentation, Release 3.1

Fig. 3.105: MacPatch: LLNL Managed Software

834 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.106: The VNC Viewer

3.7. Remote Usage 835



VisIt User Manual Documentation, Release 3.1

Fig. 3.107: The VNC Viewer Properties window

836 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

9. Change the VNC Server field to “rzvnc.llnl.gov:5999”.

10. Change the Name field to “RZ VNC”.

11. Click Ok.

12. Your VNC Viewer window should now contain two connection profiles.

Fig. 3.108: The VNC Viewer with two profiles

Now we are ready to login to one of the systems.

1. Double click on the CZ VNC icon

2. This will bring up a login window.

3. Enter your CZ username and password.

This will bring up a Linux desktop. The resolution of the desktop will probably be low if you have never used the
VNC server before. This is so that it isn’t too large if you are on a laptop.

To change the resolution of the display dynamically, bring up a terminal and use the xrandr command.

1. Select Applications->Terminal

2. Enter “xrandr” in the terminal to get a list of supported resolutions.

3. Enter “xrandr -s 1280x720” in the terminal to change the resolution to 1280 by 720.

4. Change the resolution back to something more appropriate to your screen.

3.7. Remote Usage 837



VisIt User Manual Documentation, Release 3.1

Recommended resolutions are:

• Dell laptop running Windows: 1280 x 720

• A high-resolution external monitor: 1920 x 1200

• A Mac laptop: 1680 x 1050 (Retina Display) or 1440 x 900

When using VisIt you should ssh to another CZ machine so that you don’t overload the VNC server. You should use
version 3.1.1 of VisIt for the best performance on a VNC client. Versions prior to 3.0.0 will not work properly with
VNC.

1. Enter “ssh quartz”.

2. Enter “visit -v 3.1.1”.

3. Run VisIt as normal.

Fig. 3.109: VisIt running on the VNC Viewer

Troubleshooting VNC issues

Sometimes you can’t see anything because the default screen is too large. There are two solutions to this issue, one is
to reduce the resolution of the desktop and the other is to have the window scale automatically. To reduce the desktop
resolution:

838 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

1. Use the scroll bars to navigate to upper left hand corner and bring up a terminal.

2. From the terminal use the “xrandr” command to change the resolution as described here.

To have the desktop scale automatically:

1. Go to the slide-out menu at the top center and rest your mouse below the title bar.

Fig. 3.110: The slide-out menu

2. Click the Scale automatically icon.

Fig. 3.111: Clicking on the Scale automatically icon

3. The window should now resize and you can use the VNC client.

Sometimes the response gets really slow when the VNC server is under heavy load. One solution is to reduce the
picture quality.

1. Go to the slide-out menu at the top center and rest your mouse below the title bar.

2. Click the Properties icon.

Fig. 3.112: Clicking on the Properties icon

3. Click on the Options tab.

4. Set the Picture quality to Low.

5. Click Ok.

3.7. Remote Usage 839



VisIt User Manual Documentation, Release 3.1

Fig. 3.113: Setting the Picture quality to Low

840 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

3.7.3 Using client/server

When VisIt is running in a client/server mode, a portion of VisIt is running on your local system and a portion is
running on a remote compute resource such as a supercomputing center. This will always give better performance
than running on a remote system using X display forwarding, since interactions with the graphical user interface will
be faster and VisIt will be able to leverage the graphics processing unit on your local system. The portion running on
your local system is referred to as the client and the portion running on the remote compute resource is referred to
as the server. The client is responsible for the graphical user interface and the rendering window, while the server is
responsible for accessing the data on the remote system, processing it, and sending back geometry to be rendered or
images to be displayed.

When running in client/server mode, VisIt makes use of host profiles that provide information on how to run VisIt on
the remote system, such as where VisIt is installed and information about the batch system. VisIt comes with host
profiles for many different supercomputing systems. This portion of the tutorial will use the Livermore Computing
Center at LLNL.

Installing the host profiles for your computer center

The first thing you will need to do is make sure you have the host profiles installed for the remote system. You can
check this by bringing up the Host profiles window.

1. Select Options->Host profiles. . . to bring up the Host profiles window.

2. If the list of Hosts is blank or doesn’t contain the host of interest, you will need proceed with steps 4 - 10.

3. Click the Dismiss button.

4. Select Options->Host profiles and configuration setup. . . to bring up the Setup Host Profiles and Configuration
window.

5. Click on the Lawrence Livermore National Laboratory (LLNL) open network.

6. Click Install.

7. Restart VisIt.

8. Select Options->Host profiles. . . to bring up the Host profiles window.

9. You should now see the host profiles for LLNL.

10. Click the Dismiss button.

Connecting to a remote system

You are now ready to connect to the remote system.

1. Click on the Open icon in the Sources section of the main window to bring up the File open window.

2. Click on the Host pulldown menu and select LLNL Quartz.

3. This will bring up a window to enter your password.

4. If your username is different on the remote system from the one on your local system you will need to click on
Change username and change your username.

5. The File open will now open to your home directory on the remote system.

You are now ready to open files, create plots and do everything you are used to doing with VisIt.

3.7. Remote Usage 841

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.114: The Setup Host Profiles and Configuration

842 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.115: The Host profiles window with the host profiles for LLNL

3.7. Remote Usage 843



VisIt User Manual Documentation, Release 3.1

Fig. 3.116: The File open window

Fig. 3.117: The Enter Password window

844 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

File locations when running client/server

When running in client/server mode some files are stored on the local system and some are stored on the remote
system. Most files are stored or saved on the local system. Some examples include:

• Images

• Movies

• Host profiles

• Settings

• Color tables

The main exception is when exporting data. Those results are saved on the remote system. This is usually what you
want since you will most likely want to open it on the remote system for further processing.

The window that exports databases is unable to browse the remote file system, so you will need to carefully type in
the path to the directory to save it in.

3.7.4 Using batch systems interactively

When VisIt normally uses the batch system, it submits the parallel compute engine to the batch system and then the
compute engine runs until it exits. Sometimes VisIt exits because of a crash. Once that happens you will lose the rest
of the batch allocation and you will need to submit a batch job, which may not always happen immediately. One way
around this is to get a batch job and then run all of VisIt in batch system using X display forwarding (ideally from
within a VNC client).

One such mechanism is mxterm, a utility available at LLNL. It submits a batch job and pops up an xterm. From the
xterm, the user can start VisIt as many times as they want until the batch job time limit expires. There may be similar
mechanisms available at other supercomputing centers. If not, it would be fairly straightforward to create such a script
for the batch system at your supercomputing center.

Using mxterm

The basic mxterm command is:

mxterm <nnodes> <ntasks> <nminutes> <-q queue_name>

An example that gets 1 node with 36 tasks for 30 minutes in the pdebug queue.

mxterm 1 36 30 -q pdebug

When the job starts an xterm window will appear on your screen.

When using an mxterm, you will need to use the mxterm profile when starting your compute engine.

3.8 Making Movies

Making movies with VisIt runs the gamut from creating a simple movie that shows the time evolution of a simulation
to movies that contain multiple image sequences, where the image sequences may contain:

1. Titles

2. Fade-ins

3.8. Making Movies 845

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.118: Selecting the mxterm host profile

3. Image sequences that involve moving the camera around or through the data.

4. Image sequences where each image contains multiple components such as a 3d view of the data and a curve
showing the time evolution of a value.

5. Image sequences where operator attributes are modified such as animating a slice plane moving through a data
set.

Simple movies can be made with the Save movie wizard and more complex movies are made using Python scripts.
This tutorial will focus on creating simple movies with the Save movie wizard and using Python scripts.

3.8.1 Creating a movie of a simulation evolving over time

The simplest type of movie to create is a movie of a simulation evolving over time. There are several steps to making
such a movie.

1. Create a good image for a single time state. This is typically the first or last time state.

2. Animate the movie to make sure the entire movie looks good and change things if they don’t.

3. Create the images and encode the movie.

3.8.2 Creating a good image from a single time state

This tutorial uses the dbreak3d dataset – available at http://www.visitusers.org/index.php?title=Tutorial_Data

The dataset simulates the evolution of water and air in a water tank after an interface holding a column of water is
instantaneously removed.

Display the tank

1. Open the file dbreak3d_boundaries.silo.

846 Chapter 3. VisIt Tutorials

http://www.visitusers.org/index.php?title=Tutorial_Data


VisIt User Manual Documentation, Release 3.1

2. Create a Subset plot of domains.

3. Click Draw.

4. The Subset plot shows the different faces that comprise the water tank. We do not want to view all of the
boundaries because they will block the fluid data, so next we turn off a few of the boundary faces that are
identified as domains in the data file.

5. We would like to turn off the magenta and yellow boundaries. From the Subset plot legend we can see that those
are domain5 and domain6.

6. Bring up the Subset window by clicking on the Ven Diagram next to the Subset plot in the plot list.

7. Click on domains to expand the list of domains and deselect domain5 and domain6.

8. Click Apply.

9. Now let’s make all the faces the same color.

10. Double click on the Subset plot in the plot list to bring up the Subset plot attributes window.

11. Select Single and choose the light pastel green color.

12. Click Apply and Dismiss.

Display the water

The water information is stored in the file dbreak3d_fluid.visit and contains information about the time evolution of the
water. The boundary of the water can be created using the alpha1 variable. It represents the volume fraction of water
in a cell. A value of 0.0 means that the cell doesn’t contain any water. A value of 1.0 means that the cell is completely
filled with water. The region containing the water can be extracted by using the Isovolume operator, selecting the
region where the volume fraction is between 0.5 and 1.0. Let’s get started.

1. Open the file dbreak3d_fluid.visit.

2. Create a Pseudocolor plot of alpha1.

3. Double click on the Pseudocolor plot in the plot list to bring up its attributes.

4. Change the Color table to PuBu.

5. Change the Opacity to Constant.

6. Set the Opacity slider value to 65%.

7. Click Apply and Dismiss.

8. Deselect Apply operators to all plots on the main control window below the plot list. This will allow you to
apply the Isovolume operator to just the Pseudocolor plot.

9. Go to Operators->Selection->Isovolume to add the Isovolume operator to the Pseudocolor plot.

10. Click on the triangle next to the Pseudocolor plot to expand the Pseudocolor plot.

11. Double click on the Isovolume operator to bring up its attributes.

12. Set the Lower bound to 0.5.

13. Select alpha1 as the Variable option.

14. Click Apply and Dismiss.

15. Click Draw.

3.8. Making Movies 847



VisIt User Manual Documentation, Release 3.1

Fig. 3.119: The default Subset plot of the boundaries.

848 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.120: Bringing up the Subset window from the plot list.

Fig. 3.121: Removing boundaries with the Subset window.

3.8. Making Movies 849



VisIt User Manual Documentation, Release 3.1

Fig. 3.122: The Subset plot with the boundaries removed.

850 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.123: Changing the colors of the Subset plot.

Improve the annotations

To make the movie look more polished, we will change the window annotations, the background color, the lighting
and add a time slider.

1. Go to Controls->Annotation to bring up the Annotation window.

2. Select the General tab.

3. Click No annotations.

4. Click Apply.

5. Select the 3D tab.

6. Select Show bounding box.

7. Click Apply.

8. Select the Colors tab.

9. Set the Foreground color to be the same color as our tank boundaries plot.

10. Set the Background style to Gradient.

11. Set the Gradient style to Radial.

12. Set Gradient color 1 to be light gray.

13. Set Gradient color 2 to be very dark gray.

14. Click Apply.

15. Select the Objects tab.

16. Create a new Time slider.

17. Click Ok when it prompts you for a name.

18. Set the Width to 40%.

19. Set the Height to 7%.

20. Set the Start color to light blue.

21. Set the End color to a darker blue.

22. Deselect Use foreground color.

23. Set the Text color to white.

3.8. Making Movies 851



VisIt User Manual Documentation, Release 3.1

Fig. 3.124: The Subset plot boundaries in a single color.

852 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.125: Setting the Pseudocolor attributes for the water.

Fig. 3.126: Using the Isovolume operator to select the water.

3.8. Making Movies 853



VisIt User Manual Documentation, Release 3.1

Fig. 3.127: The boundaries and the water.

854 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.128: Turning off all the annotations.

3.8. Making Movies 855



VisIt User Manual Documentation, Release 3.1

Fig. 3.129: Adding the bounding box.

856 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.130: Setting the foreground and background colors.

3.8. Making Movies 857



VisIt User Manual Documentation, Release 3.1

24. Click Draw.

25. Go to Controls->Lighting to bring up the Lighting window.

26. Move the light vector up and to the right.

27. Click Apply.

28. Move the time slider in the main control window to a later time state where the water is splashing up.

3.8.3 Encoding the movie with the movie wizard

1. Go to File->Save movie to bring up the Save movie wizard window.

2. Select New simple movie and click Next.

3. Select Specify movie size.

4. Ensure the the lock aspect setting is selected. While you can encode movies with a different aspect ratio than the
aspect ratio of the window on the screen, it is generally not a good idea. Objects are positioned based on a zero
to one coordinate system where zero represents either the left edge or the bottom of the image and the heights
and widths of objects are based on fraction of the height and width. This causes objects to change position and
relative size as the aspect ratio is changed.

5. Change the Width to 600. The Height will automatically change to maintain the aspect ratio.

6. Click the right arrow button to create an entry in the Output list with the format and resolution information
specified on the right hand side of the window. It is possible to change the format and resolution information
and click the right arrow button to create additional entries in the Output list to encode multiple movies with
different settings at once. We are just going to create a single mpeg movie.

7. Click Next.

8. It is possible to specify the range of time states to use for the movie, as well as specify a stride if you have too
many time states saved. The wizard will automatically set the range of time states. We will use all the time
states and a stride of one, so we can use the default values.

9. Click Next.

10. You can specify the directory and file name for the movie. We will use the current directory and name the movie
dbreak3d.

11. Click Next.

12. You can have VisIt send you an e-mail when it has finished creating the movie. Since we will wait for the movie
to complete, we don’t need an e-mail message to be sent when the movie has been finished and can use the
default values.

13. Click Next.

14. You can have VisIt generate the movie now using the currently allocated processors, generate the movie with a
new instance of VisIt, or generate the movie at some later time. We will generate the movie now so we can use
the default value.

15. Click Finish.

16. This may take a few minutes depending on how fast your computer is. You may want to go get a cup of coffee.

17. A command window will appear while the movie is being generated. When the movie is finished the command
window will disappear.

18. On Windows, you may get a window indicating that the VisIt Python Command Line interface has stopped
working. If this happens, click on Close program. Your movie will have been generated properly.

858 Chapter 3. VisIt Tutorials

https://visit.llnl.gov
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.131: Setting the time slider attributes.

3.8. Making Movies 859



VisIt User Manual Documentation, Release 3.1

Fig. 3.132: Setting the light source position.

Playing the movie

You can now play the movie with the native movie player on your system. On Linux you can use a player such as
mplayer. On Mac OSX or Windows you can typically just double click on the icon for the movie. Note that on
Windows you will need to play the movie with “Windows Media Player” and not “Movies & TV”.

3.8.4 Encoding the movie with a Python script

This section of the tutorial is primarily aimed at Linux and Mac OSX systems. There are usually folder path issues
on Windows that will prevent these Python code snippets from working as shown. In particular, the images from the
image saving may get saved in a different folder from where the image encoding expects to find them. If you want to
get this to work on Windows, you will need to specify absolute paths for the filenames. At the moment though, the
image encoding won’t work at all because there are issues with absolute paths and paths with spaces in them.

The first step in encoding a movie with a Python script is to create the images for encoding. The following snippet of
Python code will loop over all the time states and save the images.

# Set the basic save options.
save_atts = SaveWindowAttributes()
save_atts.family = 0
save_atts.format = save_atts.PNG
save_atts.resConstraint = save_atts.NoConstraint
save_atts.width = 1200
save_atts.height = 1068

(continues on next page)

860 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.133: The final result for an image in the movie.

3.8. Making Movies 861



VisIt User Manual Documentation, Release 3.1

Fig. 3.134: Using the movie wizard to create a simple movie.

Fig. 3.135: Setting the movie format and resolution.

862 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Fig. 3.136: Setting the length of the movie.

Fig. 3.137: Setting the name of the movie.

3.8. Making Movies 863



VisIt User Manual Documentation, Release 3.1

Fig. 3.138: Setting the e-mail notification for when the movie is complete.

Fig. 3.139: Creating the movie with the existing processors.

864 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

# Get the number of time steps.
n_time_steps = TimeSliderGetNStates()

# Loop over the time states saving an image for each state.
for time_step in range(0,n_time_steps):

TimeSliderSetState(time_step)
save_atts.fileName = "dbreak3d%04d.png" % time_step
SetSaveWindowAttributes(save_atts)
SaveWindow()

1. Go to Controls->Command to bring up the Commands window.

2. Copy and paste the code snippet above into the first tab of the Commands window.

3. Click Execute.

Fig. 3.140: Saving the movie images with a Python script.

The next step is to encode the movie using the encoder that comes with VisIt. You will need the “ffmpeg” encoder to be

3.8. Making Movies 865

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

installed on your system and in your search path for the encoding module from visit_utils to function. The following
snippet of Python code will load the visit movie encoding module and encode the movie.

from visit_utils import *

encoding.encode("dbreak3d%04d.png","dbreak3d.mpg",fdup=2)

The first argument specifies the file naming pattern for the input files. You can use the same format string used to
create the images. The movie encoder doesn’t support format strings that have multiple digit sequences in them, so it
is best to keep the name of the input images simple, with only a single digit sequence.

The second argument is the name of the output file. The extension determines the file format to create. The available
options are: “mpg”, “wmv”, “avi”, “mov”, “swf”, “mp4” and “divx”. “wmv” is usually the best choice and plays on
most platforms (Linux, OSX and Windows). “mpg” is lower quality, but should play on any platform.

The last argument specifies the number of times each frame is duplicated. We are specifying duplicating each image
twice. This option is useful if you don’t have a lot of time steps and want to extend the length of the movie. Movies
typically play at 30 frames per second so if you only have, for example, 60 frames, the movie will only play for about
2 seconds.

1. Copy and paste the code snippet above into the second tab of the Commands window.

2. Click Execute.

Fig. 3.141: Encoding the movie images with a Python script.

3.8.5 Other Tips for Making Quality Movies

866 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Ensure that limits are appropriate and consistent across the entire movie

The objects in simulations typically change in size or move in position. Because of this the view that may be appro-
priate at the first time step isn’t appropriate at later time states. For example, suppose a simulation were modeling the
explosion of a supernova. As the simulation progresses the supernova grows in size and at some point most of the
supernova may be outside the view. One possible solution would be to set the size based on the supernova at the last
time state. If this isn’t acceptable it may be necessary to zoom out at a few key points in the simulation to ensure that
the supernova is still within the view.

Another common issue is that VisIt by default will set the extents for things like the Pseudocolor plot based on the
limits of the current time state. Typically the limits will change over time, which will result in the meaning of a specific
color changing over time. This is typically not desired behavior for movies. In this case, the limits in the Pseudocolor
plot should be set so that they are appropriate for the entire time series.

Selecting the resolution

You should always select an aspect ratio for your movie that shows off your content the best. One strong consideration
is minimizing the amount of white space in your movie. If your simulation is primarily square then you will probably
want your movie to have a roughly one-to-one aspect ratio. If it is wider than it is tall then you proably want something
closer to a two-to-one or three-to-two (width-to-height) aspect ratio. Another important consideration is the type of
device you will be displaying you movie on. These days monitors tend to be wide screen and a good resolution to have
in mind is HDTV (1920 by 1080). It is probably best to try and add annotations to your movie to fill the white space
so that you can get as close to an HDTV aspect ratio (16 x 9) as possible.

Rendering images gives the most flexibility

If you want to create a movie to show to many people or will be using it in multiple situations it is best to save images
and then manually encode them using the movie encoding tools in VisIt, or if you want a really high quality movie
with sound then you can use a third party movie encoding tool.

If you anticipate using your movie in multiple situations you should encode it at the highest resolution you expect
to need it and then encode multiple movies at different resolutions. To create the different resolution movies, you
would first resize the images to the desired size and then encode the movie. A good trick for generating higher quality
anti-aliased movies is to save the images at quadruple the resolution (two times in each direction) and then resizing
them to a quarter of that resolution before encoding the movie.

Resizing images

A good tool for resizing image is ImageMagick’s convert tool. It is installed on most Linux and Mac OSX operating
systems. If you don’t have ImageMagick installed on your systems and in your search path the following code snippet
will fail. The following snippet of Python code will run convert to resize the images created earlier to one half their
resolution.

from subprocess import call

for time_step in range(0,n_time_steps,4):
file1 = "dbreak3d%04d.png" % time_step
file2 = "dbreak3d_600x534_%04d.png" % time_step
call(["convert", file1, "-resize", "600x534", file2])

1. Copy and paste the code snippet above into the third tab of the Commands window.

2. Click Execute.

3.8. Making Movies 867

https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Fig. 3.142: Resizing the movie images with a Python script.

868 Chapter 3. VisIt Tutorials



VisIt User Manual Documentation, Release 3.1

Convert can also be used to do other types of image manipulations such as cropping a flipping images. To learn more
about convert google ImageMagick convert.

3.8. Making Movies 869



VisIt User Manual Documentation, Release 3.1

870 Chapter 3. VisIt Tutorials



CHAPTER 4

VisIt Developer Manual

4.1 Creating a Pull Request

4.1.1 Overview

Pull Requests (PR (Pull Request)s) allow developers to review work before merging it into the develop branch. PRs
are extremely useful for preventing bugs, enforcing coding practices, and ensuring changes are consistent with VisIt’s
overall architecture. Because PR reviews can take time, we have adopted policies to help tailor the review effort and
balance the load among developers. We hope these policies will help ensure PR reviews are completed in a timely
manner. The benefits of reviews outweigh the added time.

4.1.2 Forking the repo

Developers who do not have write access to the primary VisIt repo may make contributions by forking the repo and
submitting pull requests. GitHub provides excellent informational articles about forking a repo and creating pull
requests from a fork.

4.1.3 Working with the Template

PR submissions are populated with a template to help guide the content. Developers do not have to use this template.
Keep in mind, however, that reviewers need structured context in order to accurately and quickly review a PR. So, it is
best to use the template or something very similar to it. The text sections in the template are designed to be replaced
by information relevant to the work involved. For example, replace a line that says Please include a summary of the
change with an actual summary of the change.

In general, if part of the template is not relevant, please delete it before submitting the PR. For example, delete any
items in the checklist that are not relevant.

If additional structured sections in the PR submission are needed, please use GitHub markdown styling.

In the sections below, we describe each of the sections of the PR template in more detail.

871

https://visit.llnl.gov
https://visit.llnl.gov
https://help.github.com/en/articles/fork-a-repo
https://help.github.com/en/articles/creating-a-pull-request-from-a-fork
https://help.github.com/en/articles/creating-a-pull-request-from-a-fork
https://guides.github.com/features/mastering-markdown/


VisIt User Manual Documentation, Release 3.1

Description

GitHub supports a number of idioms and keywords in PR submissions to help automatically link related items. Please
use them.

For example, when typing a hashtag (#) followed by a number or text, a search menu will appear providing potential
matches based on issue or PR numbers or headlines. Sometimes no matches will be produced even if the number being
entered is correct, but the link will still occur when the PR is submitted. By placing the keyword “Resolves” in front
of a link to an issue, the issue will automatically close when the PR is merged.

If a PR is unrelated to a ticket, please delete the “Resolves #. . . ” line for clarity.

Type of Change

Bug fixes, features, and documentation improvements are among the most common types of PRs. You may select
from the menu by replacing the space between the square brackets ([ ]) with an uppercase X, so that it looks exactly
like [X]. You can also make this selection after submitting the PR by checking the box that appears on the submitted
PR page.

If “Other” is checked, please describe the type of change in the space below.

Testing

Replace the content of this section with a description of how the change was tested.

The Checklist

The Checklist serves as a list of suggested tasks to be performed before submitting the PR. Those that have been
completed should be checked off. Any items that do not relate to the PR should be deleted. For example, if the PR is
not for a bugfix or feature, adding a test may not be required and this checklist item should be deleted.

4.1.4 Reviewers

GitHub will not allow non-owners to merge PRs into develop without a reviewer’s approval. Non-owners will need
at least one reviewer. Owners may merge a PR into develop without review. But, that does not necessarily mean they
should. Follow the guidelines below to determine the need for and number of reviewers. Note, these guidelines serve
as a “lower bound”; you may always add more reviewers to your PR if you feel that is necessary.

No Reviewers (owners only)

If your changes are localized, you have satisfied all the testing requirements and you are confident in the correctness of
your changes (where correctness is measured by both the correctness of your code for accomplishing the desired task
and the correctness of how you implemented the code according to VisIt’s standard practices) then you may merge the
PR without a reviewer after the CI tests pass.

One reviewer

If the changes have a broader impact or involve an unfamiliar area of VisIt or existing behavior is being changed, then
a reviewer should be added.

Non-owners must always have at least one reviewer even if you satisfy all other guidelines for the No Reviewers case.

872 Chapter 4. VisIt Developer Manual

https://help.github.com/en/articles/closing-issues-using-keywords
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

Two or more reviewers

If your changes substantially modify existing behavior or you are updating significant amounts of the code or you are
designing new architectures or interfaces, then you should have at least two reviewers.

Choosing Reviewers

GitHub automatically suggests reviewers based on the blame data for the files you have modified. You should choose
the GitHub suggested reviewer unless you have a specific need for a specific reviewer.

4.1.5 Iteration Process

Review processes are iterative by nature, and PR reviews are no exception. A typical review process looks like this:

1. The developer submits a PR and selects a reviewer.

2. The reviewer reviews the PR and writes comments, suggestions, and tasks.

3. The developer gets clarification for anything that us unclear and updates the PR according to the suggestions.

4. Repeat steps 2 and 3 until the reviewer is satisfied with the PR.

5. The reviewer approves the PR.

The actual amount of time it takes to perform a review or update the PR is relatively small compared to the amount of
time the PR waits for the next step in the iteration. The wait time can be exacerbated in two ways: (1) The reviewer or
developer is unaware that the PR is ready for the next step in the iteration process, and (2) the reviewer or developer
is too busy with other work. To help alleviate the situation, we recommend the following guidelines for the developer
(guidelines for the reviewer can be found here).

• Make sure the code is clear and well commented and that the PR is descriptive. This helps the reviewers quickly
familiarize themselves with the context of the changes. If the code is unclear, the reviewers may spend a lot of
time trying to grasp the purpose and effects of the PR.

• Immediately answer any questions the reviewers ask about the PR. Enabling notifications will help speed this
along.

• When the reviewers have finished reviewing (step 2), quickly update the PR according to the requested changes.
Use the @username idiom to notify the reviewers for any clarification

• When you have finished updating your PR (step 3), write a comment on the PR using @username to let the
reviewers know that the PR is ready to be looked at again.

4.2 Reviewing a Pull Request

4.2.1 Overview

Pull Requests (PRs) allow developers to review work before merging it into the develop branch. PRs are extremely
useful for preventing bugs, enforcing coding practices, and ensuring changes are consistent with VisIt’s overall archi-
tecture. Because PR reviews can take time, we have adopted policies to help tailor the review effort and balance the
load among developers. We hope these policies will help ensure PR reviews are completed in a timely manner. The
benefits of reviews outweigh the added time.

4.2. Reviewing a Pull Request 873

https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/dev_manual/pr_review.html#iteration-process
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

4.2.2 Checklist

In the course of reviewing a PR, the reviewer should use the following as a checklist. The reviewer should verify that
any deleted items are rightfully so.

• The developer followed Visit’s style guidelines

• The developer commented the code, particularly in hard-to-understand areas

• The developer updated the release notes

• The developer made corresponding changes to the documentation

• The developer added debugging support

• The developer added tests that prove the fix is effective or that the feature works

• New and existing unit tests pass

• If necessary, the developer added any new baselines to the repository

4.2.3 Comments and Tasks

GitHub provides two ways to add comments to the PR.

Generic Comments

The first type of comment is a generic PR comment for communicating about general things related to the changes or
the PR process. This comment box is found at the bottom of the “Conversation” tab, which is the main tab on the PR
page. The reviewer should use this when pinging the developer to update changes (see Iteration Process below).

Code Related Comments

The “Files changed” tab in the PR will show a diff of all the changes. Hover the mouse over the white space to the right
of the line number and a blue plus sign will appear. Click this and a comment box will pop up. Type any comments
and click either “Add single comment” or “Start a review” (see Review Changes for more information). This type of
comment can be used to ask specific questions or suggest specific changes to the PR.

4.2.4 Review Changes

In addition to comments, the reviewer should also explicitly mark the state of the PR. There are two ways to do this.

Upon writing a code related comment, select the “Start a review” button. This will initiate a review. Click “Add review
comment” for each new comment. When you are done, navigate to the top-right of the page and click “Finish your
review”.

Alternately, the reviewer can first write all the comments and then submit a review. Use the “Add single comment”
button for each code related comment. Then, once you have finished commenting, navigate to the top-right of the page
and click “Finish your review”.

Upon clicking the green “Finish your review”, GitHub will present the ability to add additional generic comments
and to update the state of the PR. If you left comments via the “Add single comment” button, then you must add an
additional comment here to be able to submit a review. These are the three options for updating the PR:

1. Comment - Submit general feedback without explicit approval. This is ambiguous and should not be used
because the developer does not always know if the reviewer think changes should be made. It does not update
the state of the PR.

874 Chapter 4. VisIt Developer Manual

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

2. Approve - Submit feedback and approve merging these changes. Use this when the PR is ready to be merged
into develop.

3. Request changes - Submit feedback that must be addressed before merging. Use this when the developer should
make additional changes to the PR.

4.2.5 Iteration Process

Review processes are iterative by nature, and PR reviews are no exception. A typical review process looks like this:

1. The developer submits a pull request and selects a reviewer.

2. The reviewer writes comments and submit a “Request change” review or an “Approve” review.

3. The developer updates the PR according to the suggestions.

4. Repeat steps 2 and 3 until the PR is ready.

5. The reviewer approves the PR.

The actual amount of time it takes to perform a review or update the PR is relatively small compared to the amount of
time the PR waits for the next step in the iteration. The wait time can be exacerbated in two ways: (1) The reviewer or
developer is unaware that the PR is ready for the next step in the iteration process, and (2) the reviewer or developer
is too busy with other work. To help alleviate the situation, we recommend the following guidelines for the reviewer
(guidelines for the developer can be found here)

• Immediately address the PR. Enabling notifications will help speed this along.

• If anything in the PR is unclear, ask specific questions using generic or code related comments. Make use of the
@username idiom to directly ping the developer.

• Clearly mark the review as “Approved” or “Request changes”.

• Notify the developer with the @username idiom that the PR is ready for updates.

• When the developer has updated the PR, make it a top priority to review it again.

• When the PR is ready to be merged into develop, approve the PR and squash-merge the PR into develop with a
succinct description of the changes.

If you are chosen as a reviewer and you know that you will not be able to review the PR in a timely manner, please let
the developer know and provide suggestions for who to choose instead. Once you start a PR review, you should make
it a priority and stick with it until the end.

4.3 Release Candidate (RC) Development

4.3.1 Overview

VisIt normally has two active branches for doing development. The first is develop and the second is the current release
candidate. Work performed on the develop branch will go into the next major release, such as 3.1. Work performed
on the current release candidate will go into the next minor release, such as 3.0.2. When doing work on the release
candidate the normal sequence of operations is as follows:

• A branch is created off the current release candidate.

• Changes are made on the branch.

• A pull request is generated to merge the changes to the current release candidate.

• The changes are then merged into the release candidate.

4.3. Release Candidate (RC) Development 875

https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/dev_manual/pr_create.html#iteration-process
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

• A branch is created off of develop.

• The changes from the branch off the release candidate are applied to the branch.

• A pull request is generated to merge the changes to develop.

• The changes are then merged into develop.

In some instances the changes made to the release candidate are not applied to develop, in many instances the exact
same changes can be applied to both the release candidate and develop, and in some instannces the changes applied to
the two branches are slightly or significantly different.

The rest of the section will go through the steps of the most common case of making the exact same changes to both
branches using an example of updating the 3.0.2 release notes on the 3.0RC and develop.

4.3.2 Creating the RC branch

First you checkout the 3.0RC and then create your branch.

git checkout 3.0RC
git checkout -b task/brugger1/2019_09_05_update_release_notes

4.3.3 Making the changes

At this point you would modify your branch as you normally do, modifying, adding or deleting files, and then com-
miting the changes to the branch.

4.3.4 Creating the pull request on the release candidate

Once you have committed all your changes to the branch you are ready to create the pull request. You will start out by
pushing your changes to GitHub as normal.

git push --set-upstream origin task/brugger1/2019_09_05_update_release_notes

Now you go over to GitHub and create your pull request. When creating your pull request, make sure that you are
merging it into the release candidate.

Now you go through the normal pull request process. Once you have merged your changes into the release candidate
you can delete the branch at GitHub and locally.

git remote prune origin
git remote update
git checkout 3.0RC
git pull
git branch -D task/brugger1/2019_09_05_update_release_notes

4.3.5 Apply the same changes to develop

You will apply your changes from the 3.0RC to develop by creating a patch of your changes to the 3.0RC and applying
them to a branch created off of develop. The easiest way to create the patch is immediately after you have merged
your changes into the release candidate before anyone else makes any changes. In this case you can get the last set
of changes from the head. If someone else has made changes in the mean time you will need to use the SHA of your
merge to the release candidate. When we create the branch to make the changes on develop, you can use the same

876 Chapter 4. VisIt Developer Manual



VisIt User Manual Documentation, Release 3.1

Fig. 4.1: Merging into the release candidate.

4.3. Release Candidate (RC) Development 877



VisIt User Manual Documentation, Release 3.1

name as you used on the release candidate branch and add _develop. Normally, you can omit the first two steps
below since you presumably just did that a moment ago.

git checkout 3.0RC
git pull
rm -f patch.txt
git format-patch -1 HEAD --stdout > patch.txt
git checkout develop
git pull
git checkout -b task/brugger1/2019_09_05_update_release_notes_develop
git am -3 < patch.txt

In the case where you need to use the SHA to create the patch, you can get it from the code tab at GitHub for the
release candidate branch.

Fig. 4.2: Getting the SHA for the merge into the release candidate.

The command to create the patch would then look like:

git format-patch -1 69b0561 --stdout > patch.txt

Sometimes conflicts occur when applying the patch. This may happen with frequently updated files such as the release
notes. If that happens you will get a message similar to the one below indicating which files had conflicts.

878 Chapter 4. VisIt Developer Manual



VisIt User Manual Documentation, Release 3.1

Applying: Updated the 3.0.2 release notes. (#3867)
Using index info to reconstruct a base tree...
M src/resources/help/en_US/relnotes3.0.2.html
Falling back to patching base and 3-way merge...
Auto-merging src/resources/help/en_US/relnotes3.0.2.html
CONFLICT (content): Merge conflict in src/resources/help/en_US/relnotes3.0.2.html
error: Failed to merge in the changes.
Patch failed at 0001 Updated the 3.0.2 release notes. (#3867)
The copy of the patch that failed is found in: .git/rebase-apply/patch
When you have resolved this problem, run "git am --continue".
If you prefer to skip this patch, run "git am --skip" instead.
To restore the original branch and stop patching, run "git am --abort".

In our case it was the release notes. The file will be modified with the conflicts highlighted in the normal >>>>>>>>,
=========, and <<<<<<<< notation. You can go in and edit the files and then do a git add for each file that
was in conflict. After that point you can do a git am --continue.

vi src/resources/help/en_US/relnotes3.0.2.html
git add src/resources/help/en_US/relnotes3.0.2.html
git am --continue

Now you changes will have been commited to the branch with the appropriate commit message. You are now ready to
push the change to GitHub and create a new pull request.

4.3.6 Creating the pull request for develop

You first push your changes to GitHub as normal.

git push --set-upstream origin task/brugger1/2019_09_05_update_release_notes_develop

Now you go over to GitHub and create your pull request. When creating your pull request, make sure that you are
merging it into develop.

In the description you can simply say that you are merging from the release candidate into develop rather than providing
all the normal pull request information. If you are resolving an issue, you will want to mention that, since the automatic
closing of issues only happens when you merge into develop.

Now you go through the normal pull request process. Once you have merged your changes into develop you can delete
the branch at GitHub and locally.

git remote prune origin
git remote update
git checkout 3.0RC
git pull
git branch -D task/brugger1/2019_09_05_update_release_notes_develop

That’s it. You have now made the exact same change to both the 3.0RC and develop.

4.4 Creating a Release

4.4.1 Overview

When we put out a new release we should tag the repository and create a release. We will describe creating a release
by way of example using the steps used to create the 3.0.1 release.

4.4. Creating a Release 879



VisIt User Manual Documentation, Release 3.1

Fig. 4.3: Merging into develop.

880 Chapter 4. VisIt Developer Manual



VisIt User Manual Documentation, Release 3.1

Fig. 4.4: The pull request with the abbreviated description.

4.4. Creating a Release 881



VisIt User Manual Documentation, Release 3.1

4.4.2 Tagging the release

To create a release you will first create a tag using git commands. You should get the short SHA for the release that can
be found on the splash screen of any of the binaries built from the source tar file. The Linux distributions are all built
with the source tar file. The Windows distribution is typically not. To bring up the splash screen go to Help->About.

Fig. 4.5: The splash screen with the short SHA.

Now you can issue the git commands to create the tag and push it to GitHub.

git checkout 3.0RC
git checkout 2f38385
git tag v3.0.1
git push origin v3.0.1

If you go to GitHub and go to the Releases tab you will see the newly created tag. Now you are ready to create the
release. Click on Draft a new release to bring up the form to create a new release.

Now you can enter information about the release. Set the Tag version to v3.0.1, the Release title to v3.0.1
and copy and paste the description from the 3.0.0 release into the description, changing the link to the release notes
appropriately. At this point you can go to the bottom of the window and click on Publish release.

Your newly created release will now appear.

4.4.3 Deleting a release

If you mess up the tag or the release you can delete the tag using git commands.

git tag -d v3.0.1
git push origin :refs/tags/v3.0.1

882 Chapter 4. VisIt Developer Manual



VisIt User Manual Documentation, Release 3.1

Fig. 4.6: Creating a new release.

4.4. Creating a Release 883



VisIt User Manual Documentation, Release 3.1

Fig. 4.7: Entering information about the release.

884 Chapter 4. VisIt Developer Manual



VisIt User Manual Documentation, Release 3.1

Fig. 4.8: The newly created release.

4.4. Creating a Release 885



VisIt User Manual Documentation, Release 3.1

You can then remove the release at GitHub. The release will change to a draft release because the tag no longer exists.
Go ahead and click on the release to bring up the draft release.

Fig. 4.9: Selecting the draft release corresponding to the deleted tag.

Click on Delete to delete the release.

4.5 Using Docker

4.5.1 Overview

Docker is a platform for building containers. Containers can run either Windows or Linux operating systems. Docker
is available on the Mac, Windows and Linux. The rest of this tutorial will primarily be focused on running Docker on
Windows. The content on installing and setting up Docker is Windows specific but the remainder of the content on
creating and using containers is operating system independent.

4.5.2 Installing Docker on Windows

Install Docker on your system. It is free to download and install. You will need to be running Windows Professional
and you will need administrator priviledges. The following link will get you started.

https://docs.docker.com/docker-for-windows/

886 Chapter 4. VisIt Developer Manual

https://docs.docker.com/docker-for-windows/


VisIt User Manual Documentation, Release 3.1

Fig. 4.10: Deleting the draft release corresponding to the deleted tag.

4.5. Using Docker 887



VisIt User Manual Documentation, Release 3.1

You will need to enable experimental features to be able to use the --squash option when building your container.
You can enable experimental features with the Settings window. Go to the Daemon tab and check the Experimental
features checkbox and press Apply. Note that this will restart the Docker daemon, which will kill container builds or
running containers.

Fig. 4.11: Enabling experimental features.

If you run into problems running out of disk space, you can increase the amount of disk space allocated to Docker with
the Settings window. Go to the Advanced tab and move the Disk image max size to the right to increase the amount of
disk space and press Apply. Note that this will restart the Docker daemon, which will kill container builds or running
containers.

4.5.3 Creating a Docker Container

First you will want to bring up a Command window and use that to run Docker commands. Next we’ll create a folder
to hold all our Docker files. We are assuming that you are at the root of the C: drive.

C:\>cd \Users\brugger1
C:\Users\brugger1>mkdir docker
C:cd docker

Now you need to copy all the relevant files to your docker folder. You must have the following files in your folder.

C:\Users\brugger1\docker>dir
Volume in drive C is Windows

(continues on next page)

888 Chapter 4. VisIt Developer Manual



VisIt User Manual Documentation, Release 3.1

Fig. 4.12: Increasing the disk space allocated to Docker.

4.5. Using Docker 889



VisIt User Manual Documentation, Release 3.1

(continued from previous page)

Volume Serial Number is A8F6-9F9C

Directory of C:\Users\brugger1\docker

09/13/2019 02:46 PM <DIR> .
09/13/2019 02:46 PM <DIR> ..
09/13/2019 02:39 PM 737,636 build_visit3_0_2
08/28/2019 01:45 PM 1,173 build_visit_docker_cleanup.py
09/12/2019 12:24 PM 1,322 Dockerfile-debian9
09/13/2019 07:27 AM 1,176 Dockerfile-fedora27
09/12/2019 03:49 PM 1,337 Dockerfile-ubuntu16
09/12/2019 12:36 PM 1,321 Dockerfile-ubuntu18
09/12/2019 12:23 PM 216 run_build_visit.sh
09/13/2019 02:39 PM 121,776,180 visit3.0.2.tar.gz

8 File(s) 122,520,361 bytes
2 Dir(s) 814,047,002,624 bytes free

These files can be found in the VisIt repository at GitHub in the following location.

https://github.com/visit-dav/visit/tree/develop/scripts/docker

The Dockerfile determines the type of operating system you will build your container with. The first line in the
Dockerfile contains information about the operating system. Here is a link to a reference on Dockerfile.

https://docs.docker.com/engine/reference/builder/

The Dockerfile will need to be specific to the operating system since the way you install packages and do other
administrative tasks will vary among different Linux operating systems, although there are only a few unique varients
that the rest are built on. You can go to the Docker Hub to find Linux distributions to start with.

https://hub.docker.com/_/centos

https://hub.docker.com/_/debian

https://hub.docker.com/_/fedora

https://hub.docker.com/_/ubuntu

In this example the Dockerfile is set up to use Ubuntu 16. The Dockerfile installs all the packages needed to build
VisIt and then uses build_visit to create all the third party libraries as well as the config site file. The build will take
several hours. Sometimes I have had it stop sending text to the Command window, so if it looks like it is hung, it may
actually be happily progressing along.

C:\Users\brugger1\docker>docker build -f Dockerfile-ubuntu16 -t visitdev:3.0.2-
→˓ubuntu16 . --squash

Start up the container and run it interactively.

C:\Users\brugger\docker>docker run -t -i visitdev:3.0.2-ubuntu16 /bin/bash
visit@bea87fee3276:~$

Now the container is ready for you to build VisIt. First, you need to copy the tar file with the source code. To do this,
you will need to go to another Command window and use the container id shown in the prompt.

C:\Users\brugger\docker>docker cp visit3.0.2.tar.gz bea87fee3276:/home/visit

Now go back to the first Command window and create your distribution.

890 Chapter 4. VisIt Developer Manual

https://visit.llnl.gov
https://github.com/visit-dav/visit/tree/develop/scripts/docker
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/_/centos
https://hub.docker.com/_/debian
https://hub.docker.com/_/fedora
https://hub.docker.com/_/ubuntu
https://visit.llnl.gov
https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

visit@bea87fee3276:~$ tar zxf visit3.0.2.tar.gz
visit@bea87fee3276:~$ cd visit3.0.2
visit@bea87fee3276:~/visit3.0.2$ mkdir build
visit@bea87fee3276:~/visit3.0.2$ cd build
visit@bea87fee3276:~/visit3.0.2/build$ /home/visit/third-party/cmake/3.9.3/linux-x86_
→˓64_gcc-5.4/bin/cmake \

-DCMAKE_BUILD_TYPE:STRING=Release -DVISIT_INSTALL_THIRD_PARTY:BOOL=ON -DVISIT_
→˓ENABLE_XDB:BOOL=ON \

-DVISIT_PARADIS:BOOL=ON -DVISIT_CONFIG_SITE="/home/visit/visit-config.cmake" ../src
visit@bea87fee3276:~/visit3.0.2/build$ make -j 4 package
visit@bea87fee3276:~/visit3.0.2/build$ mv visit3_0_2.linux-x86_64.tar.gz ../..

Now let’s test it to make sure we can create an image.

visit@bea87fee3276:~/visit3.0.2/build$ cd ../..
visit@bea87fee3276:~$ cp visit3.0.2/src/tools/dev/scripts/visit-install .
visit@bea87fee3276:~$ ./visit-install 3.0.2 linux-x86_64 visit
visit@bea87fee3276:~$ visit/bin/visit -cli -nowin
>>> OpenDatabase("visit/data/curv2d.silo")
>>> AddPlot("Pseudocolor", "d")
>>> DrawPlots()
>>> SaveWindow()
>>> quit()
visit@:~$

Now let’s go back to the second Command window and copy the binary distribution back out of the container and the
image we created.

C:\Users\brugger\docker>docker cp bea87fee3276:/home/visit/visit3_0_2.linux-x86_64.
→˓tar.gz .
C:\Users\brugger\docker>docker cp bea87fee3276:/home/visit/visit0000.png .

At this point you can exit your container.

visit@bea87fee3276:~$ exit
C:\Users\brugger\docker>

You should view the image to verify that it was produced correctly. You now have the binary distribution for VisIt
3.0.2 for Ubuntu 16.

4.5.4 Creating a Dockerfile From Scratch

To create a Dockerfile from scratch it is best to do so running interactively as root with the base operating system
image. You can start by installing packages that your are certain you will need. At that point you can run build_visit
until it fails, determining what missing package caused the failure, installing the missing package and repeating until
you have gotten build_visit to complete with the third party libraries you want to build. From that experience you can
create your Dockerfile.

4.5.5 Useful Docker Commands

Here are some useful Docker commands.

docker image ls
docker container ls --all

(continues on next page)

4.5. Using Docker 891

https://visit.llnl.gov


VisIt User Manual Documentation, Release 3.1

(continued from previous page)

docker image rm <image id>
docker container rm <container id>

Docker will create a “checkpoint” after each command it executes. Everytime you partially create an image or execute
a container it is saving those checkpoints. This can quickly start to consume a lot of disk space, so you should
frequently list your images and containers and remove those that you no longer need.

4.6 OpenGL in VisIt

VisIt requires an OpenGL 3.2 context to work properly. Mesa provides a 3.3 context. Most desktop computers or
laptops with graphics cards provide an OpenGL 4.6 or 4.7 context. For some unknown reason most (if not all) Linux
HPC systems only provide a 3.0 context.

When using the QVTKOpenGLWidget with Qt, the following code snippet needs to be executed before creating the
QApplication to tell Qt that it needs an OpenGL 3.2 context.

//
// Setting default QSurfaceFormat required with QVTKOpenGLwidget.
//
auto surfaceFormat = QVTKOpenGLWidget::defaultFormat();
surfaceFormat.setSamples(0);
surfaceFormat.setAlphaBufferSize(0);
QSurfaceFormat::setDefaultFormat(surfaceFormat);

4.6.1 OpenGL in Qt

The sections of Qt that deal with OpenGL are

qtbase/src/opengl
qtbase/src/openglextensions

plugins/platforms/xcb/gl_integrations/xcb_glx

platformsupport/glxconvenience

The context creation is performed in

plugins/platforms/xcb/gl_integrations/xcb_glx/qglxintegration.cpp

void QGLXContext::init(QXcbScreen *screen, QPlatformOpenGLContext *share)

4.6.2 OpenGL in VTK

The sections of VTK that deal with OpenGL are

GUISupport/Qt
Rendering/OpenGL2

The context creation is performed in

892 Chapter 4. VisIt Developer Manual



VisIt User Manual Documentation, Release 3.1

GUISupport/Qt/QVTKOpenGLWidget.cxx

Other stuff is done in

Rendering/OpenGL2/vtkOpenGLRenderWindow.cxx

4.6.3 OpenGL documentation

GLX is the OpenGL extension to the X Window System. In the X Window System, OpenGL rendering is made
available as an extension to X in the formal X sense: connection and authentication are accomplished with the normal
X mechanisms. As with other X extensions, there is a defined network protocol for the OpenGL rendering commands
encapsulated within the X byte stream.

Since performance is critical in 3D rendering, there is a way for OpenGL rendering to bypass the data encoding step,
the data copying, and interpretation of that data by the X server. This direct rendering is possible only when a process
has direct access to the graphics pipeline.

Good documentation on GLX can be found at:

https://www.khronos.org/registry/OpenGL/specs/gl/glx1.4.pdf

GLX functions all start with “glX” and GLX constants all start with “GLX”.

Here is a link to some documentation about creating an OpenGL 3.0 context. It is the source of the test in build_visit
to determine if the OpenGL on a system supports creating a 3.2 context.

https://www.khronos.org/opengl/wiki/Tutorial:_OpenGL_3.0_Context_Creation_(GLX)

Here is a link to some documentation about the history of the changes to OpenGL by OpenGL version.

https://www.khronos.org/opengl/wiki/History_of_OpenGL

4.6. OpenGL in VisIt 893

https://www.khronos.org/registry/OpenGL/specs/gl/glx1.4.pdf
https://www.khronos.org/opengl/wiki/Tutorial:_OpenGL_3.0_Context_Creation_(GLX
https://www.khronos.org/opengl/wiki/History_of_OpenGL


VisIt User Manual Documentation, Release 3.1

894 Chapter 4. VisIt Developer Manual



Index

A
AAN, 448
Always, Auto, Never, 448

C
Cell, 448
Cell-centered, 448

I
Integral Curve, 448

N
Node, 448
Node-centered, 448

P
Parallel task, 448
Pathlines, 448
Point, 448
Point-centered, 448

S
SIL, 448
SR, 448
SR mode, 448
Streamlines, 448
Subset Inclusion Lattice, 448

V
Vertex, 448

Z
Zone, 448
Zone-centered, 448

895


	VisIt GUI User Manual
	VisIt Python (CLI) Interface Manual
	VisIt Tutorials
	VisIt Developer Manual
	Index

