

VisIt User Manuals

	How to Search

	GUI Manual

	CLI Manual

	Tutorials

	Developer Manual

Search Syntax

Searching here uses simple query string syntax which supports
the following operators:

	+ signifies AND operation

	| signifies OR operation

	- negates a single token

	" wraps a number of tokens to signify a phrase for searching

	* at the end of a term signifies a prefix query

	(and) signify precedence

	~N after a word signifies
edit distance [https://en.wikipedia.org/wiki/Levenshtein_distance] (fuzziness)

	~N after a phrase signifies slop amount

	To use any of the above characters literally, escape it with a
preceding backslash (\).

	A space between search terms implies the default operator of OR.

	When upper case is used, the search is case-sensitive. Otherwise it
is case-insenstive.

Examples

	Searchingannot*

	returns pages with Annotation, Annotations,
annotate, annotated, etc.

	SearchingAnnot*

	is case-sensitive and returns pages with Annotations,
Annotation but not annotate.

	Searchingannot* +object

	returns pages with Annotation, Annotations,
Annotated AND object.

	Searchinggetannotationobject\(\)

	returns pages with GetAnnotationObject()

	Searchingannot* | object

	returns pages with Annotation, Annotations, Annotated
and also returns pages with object.

	Searchingload~4

	returns pages including load, lead, head, goal

	Searching"load balance"

	returns pages with the whole quoted phrase as opposed to
pages that contain both load AND balance somewhere on
the page.

	Searchingload -balance

	returns pages with contain load AND not do not also contain
balance.

	Searchingfoo bar -baz

	returns pages containing foo or bar as well as any pages
that do not contain baz (which probably expands the results
well beyond those containing just foo or bar). This is probably
not the intention. This is because the default operator (implied by
spaces) is OR. To return documents that contain foo or bar but
do not contain baz, the search string would be foo bar +-baz
or (foo bar) +-baz.

VisIt GUI User Manual

Contents:

	1. Introduction to VisIt

	2. Working with Databases

	3. Plots

	4. Operators

	5. Saving and Printing

	6. Visualization Windows

	7. Subsetting

	8. Quantitative Analysis

	9. Making it pretty

	10. Animation

	11. Interactive Tools

	12. Multiple Databases and Windows

	13. Client Server

	14. Compute Engines

	15. Command Window

	16. Preferences

	17. Help

	18. Startup Options

	19. Building

	20. Building on Windows

	21. Building on macOS with masonry

	22. Acknowledgments

	23. Glossary

	24. Contributing

1. Introduction to VisIt [https://visit-dav.github.io/visit-website/]

VisIt [https://visit-dav.github.io/visit-website/] is a free, open source, platform independent, distributed, parallel,
visualization tool for visualizing data defined on two- and three-dimensional
structured and unstructured meshes. VisIt [https://visit-dav.github.io/visit-website/]’s distributed architecture allows
it to leverage both the compute power of a large parallel computer and the
graphics acceleration hardware of a local workstation. VisIt [https://visit-dav.github.io/visit-website/]’s user interface
is often run locally on a Windows, Linux, or OSX desktop computer while
its compute engine component runs in parallel on a remote computer. VisIt [https://visit-dav.github.io/visit-website/]’s
distributed architecture allows VisIt [https://visit-dav.github.io/visit-website/] to visualize simulation data where it
was generated, eliminating the need to move the data to a visualization
server. VisIt [https://visit-dav.github.io/visit-website/] can be controlled by its Graphical User Interface (GUI),
through the Python and Java programming languages, or from a custom user
interface that you develop yourself. More information about VisIt [https://visit-dav.github.io/visit-website/] can be
found online at https://wci.llnl.gov/simulation/computer-codes/visit.

This manual explains how to use the VisIt [https://visit-dav.github.io/visit-website/] GUI. You will be given a brief
overview on how VisIt [https://visit-dav.github.io/visit-website/] works and then you will be shown how to start and use
VisIt [https://visit-dav.github.io/visit-website/].

	1.1. Understanding how VisIt works

	1.2. Installing and Starting VisIt

	1.3. The Main Window

	1.4. Getting Started

1.1. Understanding how VisIt [https://visit-dav.github.io/visit-website/] works

1.1.1. VisIt [https://visit-dav.github.io/visit-website/]’s Core Abstractions

VisIt [https://visit-dav.github.io/visit-website/]’s interface is built around five core abstractions. These include:

	Databases

	Plots

	Operators

	Expressions

	Queries

1.1.1.1. Databases

Databases read data from files and presents the data in the user interface
as variables. VisIt [https://visit-dav.github.io/visit-website/] supports many different types of variables including:

	Meshes

	Scalars

	Vectors

	Tensors

	Materials

	Species

Meshes are the foundation of all the other types of variables. They consist
of a discretization of space into cells. All the other variables are defined
on the cells of the mesh.

Scalars are single valued fields and examples include density, pressure
and temperature. Vectors are multi valued fields that have a direction
and magnitude. Examples include velocity and magnetic fields. Tensors are
multi valued fields that are typically thought of as 2 x 2 matrices in
the case of 2D data and 3 x 3 matrices in the case of 3D data. The typical
tensor variable is the stress tensor. Materials are a special type of
variable that associates one or more materials with a cell. The location
of the material is not specified within the cell and in the case of multi
material cells, algorithms must be used to determine where the material is
located in the cell, typically by looking at the materials in neighboring
cells. Species are variables that are associated with each material. For a
given material, species are a further breakdown of a material. The
distinctive property of a species is that it is uniformly distributed
throughout the material. For example, air consists of many different gases
such as oxygen, nitrogen, carbon monoxide, carbon dioxide, etc.

1.1.1.2. Plots

Plots take variables and generate a visual representation of the variable.
Some examples include the Mesh plot, which displays the mesh lines of the
mesh, the Pseudocolor plot, which maps scalar variables to color, and
the Vector plot, which displays vector glyphs indicating the direction
and magnitude of a vector field. Plots work on specific types of variables
and the graphical user interface limits the display of variables that
can be used with a given plot to the appropriate variables.

1.1.1.3. Operators

Operators take variables and modify them in some way. Operators perform
their operations before they are plotted. Multiple operators may be
applied to a variable forming a pipeline. For example, a mesh may be
subsetted so that all the values fall within a given range, furthermore,
the mesh may be subsetted to a portion of the mesh within a user specified
box.

1.1.1.4. Expressions

Expressions perform calculations on variables to generate new variables.
Some common expressions consist of the standard mathematical operations
such as addition, subtraction, multiplication and division. It also includes
more complex operations such as gradient and divergence.

1.1.1.5. Queries

Queries summarize data and typically take variables as input and generate
either a single value or some small number of values. Queries can also
create curves, the most common of which is the result of a query over time
that creates a curve of a scalar value over time. Some examples of queries
include minimum, maximum, spatial extents and volume.

1.1.2. VisIt [https://visit-dav.github.io/visit-website/]’s Architecture

VisIt [https://visit-dav.github.io/visit-website/] has a client-server architecture that consists of one or more clients
that connect to a viewer, which connects to one or more parallel servers.
The clients and viewer typically run locally on the users desktop system
while the parallel servers run on some remote high performance compute
platform. This is shown in Figure 1.1. This
is the most general case, but the components can also all run on a single
system, either on the desktop or on a remote high performance compute
platform. The server can also run in serial and for small data sets is
completely sufficient.

[image: ../../_images/Intro-Architecture.png]

Fig. 1.1 VisIt [https://visit-dav.github.io/visit-website/]’s architecture

VisIt [https://visit-dav.github.io/visit-website/] supports a number of different clients including a Graphical User
Interface (GUI), a Python based Command Line Interface (CLI), and a Java
programming interface. More than one client can be active at a time and
VisIt [https://visit-dav.github.io/visit-website/] coordinates the state between them so that they are consistent.

The viewer is responsible for displaying the visual results of the plots
and coordinating the state information between the various clients.

The server is responsible for reading the data from disk and performing
all the manipulations on the data. The server reads and does all of its
processing in parallel when running in parallel. The server can either
render the data to be displayed in parallel or send the data to be rendered
by the viewer. For small data sets, rendering in the viewer is faster
and has less latency. For large data sets it is better to render the data
in parallel (using scalable rendering) and then send the rendered image to
the viewer for display. The implementation of scalable rendering is shown
in Figure 1.2. VisIt [https://visit-dav.github.io/visit-website/] is by default
configured to automatically switch between shipping data to the viewer
and performing scalable rendering based on the amount of geometry to be
rendered.

[image: ../../_images/Intro-ScalableRendering.png]

Fig. 1.2 VisIt [https://visit-dav.github.io/visit-website/]’s scalable rendering

1.1.3. VisIt [https://visit-dav.github.io/visit-website/]’s Graphical User Interface

When you run the VisIt [https://visit-dav.github.io/visit-website/] graphical user interface, you are seeing windows
from the Qt based GUI and the viewer. The GUI is a VisIt [https://visit-dav.github.io/visit-website/] client that provides
the user interface and menus that let you choose what to visualize. The
viewer displays all of the visualizations and is responsible for keeping
track of VisIt [https://visit-dav.github.io/visit-website/]’s state and coordinating this state with the other components.
Both the GUI and the viewer are meant to run locally to take advantage of
the local computer’s graphics hardware. The next two components can also be
run on a client computer but they are more often run on a remote, parallel
computer or cluster where the data files are generated.

The viewer supports up to 16 visualization windows. Each window is independent
of the others. VisIt [https://visit-dav.github.io/visit-website/] uses an active window concept; all changes made in
Main window or one of its popup windows apply to the currently active
visualization window. The Main window and visualization window are shown
in Figure 1.3.

[image: ../../_images/Intro-VisItGUI.png]

Fig. 1.3 VisIt [https://visit-dav.github.io/visit-website/]’s graphical user interface

Servers are launched on each machine where data to be visualized is located.
Servers are launched on demand, typically when a database is opened. If there
is more than one host profile on a system, VisIt [https://visit-dav.github.io/visit-website/] will pop up a window asking
which profile to use and additional properties such as the number of processors
and nodes to use. The Host Profiles window is used to specify properties
about the servers for different machines, such as the number of processors to
use by default when running the server. The status of a compute engine is
displayed in the Compute Engines window.

1.2. Installing and Starting VisIt [https://visit-dav.github.io/visit-website/]

VisIt [https://visit-dav.github.io/visit-website/] runs on the following platforms:

	Linux (including Ubuntu, RedHat, SUSE, TOSS)

	Mac OSX

	Microsoft Windows

A new version of VisIt [https://visit-dav.github.io/visit-website/] is usually released every 2-3 months, you can
find VisIt [https://visit-dav.github.io/visit-website/] release executables at:
https://wci.llnl.gov/simulation/computer-codes/visit/executables.

Download a binary release compatible with the machine you want to install
VisIt [https://visit-dav.github.io/visit-website/] on. If you are installing VisIt [https://visit-dav.github.io/visit-website/] on Linux, also download the
visit-install script.

1.2.1. Installing on Mac OSX

VisIt [https://visit-dav.github.io/visit-website/] releases include an app-bundle for Mac OSX packaged in a DMG image.
Download and open the DMG file and copy the VisIt [https://visit-dav.github.io/visit-website/] app-bundle to your
applications directory or any other path. To run VisIt [https://visit-dav.github.io/visit-website/] double click on
the VisIt [https://visit-dav.github.io/visit-website/] app-bundle. The visit-install script can also be used to
install tarball packaged OSX binaries. For this case follow the Linux
installation instructions.

1.2.2. Installing on Linux

Installing VisIt [https://visit-dav.github.io/visit-website/] on Linux (and optionally on Mac OSX) is done using the
visit-install script. Make sure that the visit-install script
is executable by entering the following command at the command line prompt:

chmod +x visit-install

The visit-install script has the following usage:

visit-install version platform directory

The version argument is the version of VisIt [https://visit-dav.github.io/visit-website/] being installed. The
platform argument depends on the type platform VisIt [https://visit-dav.github.io/visit-website/] is being installed
for. The platform argument can be one of the following: linux, linux-x86_64,
darwin. The directory argument specifies the directory to install VisIt [https://visit-dav.github.io/visit-website/]
into. If the specified directory does not exist then VisIt [https://visit-dav.github.io/visit-website/] will create it.

For example, to install an x86_64 version of VisIt [https://visit-dav.github.io/visit-website/] 3.0.0, use:

visit-install 3.0.0 linux-x86_64 /usr/local/visit

This command will install the 3.0.0 version of VisIt [https://visit-dav.github.io/visit-website/] into the
/usr/local/visit directory. Note that when you enter the above command,
the file visit3_0_0.linux-x86_64.tar.gz must be present in the current
working directory.

The visit-install script will prompt you to choose a network configuration.
A network configuration is a set of VisIt [https://visit-dav.github.io/visit-website/] preferences that provide
information to enable VisIt [https://visit-dav.github.io/visit-website/] to identify and connect to remote computers
and run VisIt [https://visit-dav.github.io/visit-website/] in client/server mode. VisIt [https://visit-dav.github.io/visit-website/] includes network configuration
files for several computing centers with VisIt [https://visit-dav.github.io/visit-website/] users.

After running visit-install, you can launch VisIt [https://visit-dav.github.io/visit-website/] using bin/visit
. For example, if you installed to /usr/local/visit, you can
run using:

/usr/local/visit/bin/visit

We also recommend adding visit to your shell’s path. For bash users
this can usually be accomplished by modifying the PATH environment
variable in ~/.bash_profile, and for c-shell users accomplished by
modifying the path environment variable in ~/.cshrc.

The exact procedure for this varies with each shell and may be customized
at each computing center, so please refer to your shell and computing
center documentation.

1.2.3. Installing on Windows

VisIt [https://visit-dav.github.io/visit-website/] release binaries for Windows are packaged in an executable installer.
To install on Windows run the installer and follow its prompts.

The VisIt [https://visit-dav.github.io/visit-website/] installation program adds a VisIt [https://visit-dav.github.io/visit-website/] program group to the Windows
Start menu and it adds a VisIt [https://visit-dav.github.io/visit-website/] shortcut to the desktop. You can double-click
on the desktop shortcut or use the Start menu’s VisIt [https://visit-dav.github.io/visit-website/] program group to
launch VisIt [https://visit-dav.github.io/visit-website/]. In addition to creating shortcuts, the VisIt [https://visit-dav.github.io/visit-website/] installation
program creates file associations for .silo, .visit, and
.session/.vses files so double-clicking on files with those extensions
opens them with VisIt [https://visit-dav.github.io/visit-website/].

1.2.4. Startup Options

VisIt [https://visit-dav.github.io/visit-website/] has many startup options that affect its behavior (see the
Startup Options for complete documentation).

1.3. The Main Window

VisIt [https://visit-dav.github.io/visit-website/]’s Main window, shown in Figure 1.4,
contains three main areas: the file area, the plot area and the notepad area.
The file area contains controls for working with sources and selecting the
current time state. The plot area contains controls for creating and modifying
plots and operators. The notepad area is a region where frequently used
windows may be posted for quick and convenient access.

[image: ../../_images/Intro-MainWindow.png]

Fig. 1.4 VisIt [https://visit-dav.github.io/visit-website/]’s Main window

1.3.1. Posting a window

Each time a window posts to the notepad area, a new tab is created in
the notepad and the posted window’s contents are added to the new tab.
Clicking on a tab in the notebook displays a posted window so that it
can be used.

[image: ../../_images/Intro-PostedWindow.png]

Fig. 1.5 An unposted and posted window

Postable windows have a Post button to post the window. Clicking on the
Post button hides the window and adds its controls to a new tab in the
notepad area. Posting windows allows you to have several windows active at
the same time without cluttering the screen. When a window is posted, its
Post button turns to an UnPost button that, when clicked, removes
the posted window from the Notepad area and displays the window in its
own window. Figure 1.5 shows an example of a
window with a Post button and also shows the same window when it is
posted to the notepad area.

1.3.2. Using the main menu

VisIt [https://visit-dav.github.io/visit-website/]’s Main menu contains seven menu options that allow you to access
many of VisIt [https://visit-dav.github.io/visit-website/]’s most useful features. Each menu option displays a submenu
when you click it. The options in the submenus perform an action such as
saving an image. Menu options that contain a name followed by ellipsis open
another VisIt [https://visit-dav.github.io/visit-website/] window. Some menu options have keyboard shortcuts that activate
windows. The File menu contains options that deal with files and
simulations. The Controls menu contains options that open VisIt [https://visit-dav.github.io/visit-website/] windows
that, for the most part, set the look and feel of VisIt [https://visit-dav.github.io/visit-website/]’s visualization
windows. The Options menu contains options that allow you to set the
appearance of the GUI, manage host profiles, manage VisIt [https://visit-dav.github.io/visit-website/] plugins, set
various preferences and save VisIt [https://visit-dav.github.io/visit-website/]’s settings to a configuration file.
The Windows menu contains controls that manage visualization windows.
The PlotAtts and OpAtts menus allow access for setting the attributes
of all the plots and operators. The Help menu provides options for
viewing online help, VisIt [https://visit-dav.github.io/visit-website/]’s copyright agreement, and release notes which
describe the major enhancements and fixes in each new version of VisIt [https://visit-dav.github.io/visit-website/].
The options for each menu except for the plot and operator attribute menus
are shown in Figure 1.6 and will be described
in detail later in this manual.

[image: ../../_images/Intro-MainMenus.png]

Fig. 1.6 VisIt [https://visit-dav.github.io/visit-website/]’s main menus

The Main menu and the Plots and Operators menus are merged in
the OSX version of VisIt [https://visit-dav.github.io/visit-website/] because OSX applications always have all menus in
the system menu along the top of the display.

1.3.3. Viewing status messages

VisIt [https://visit-dav.github.io/visit-website/] informs the user of its progress as it creates a visualization. As
work is completed, status messages are displayed in the bottom of the
Main window in the status bar. In addition to status messages, VisIt [https://visit-dav.github.io/visit-website/]
sometimes displays error or warning messages. These messages are displayed
in the Output window, shown in Figure 1.7.
To open the Output window, click the Output indicator in the
lower, right hand corner of the Main window. When the Output window
contains an unread message, the Output indicator changes colors from
blue to red.

[image: ../../_images/Intro-OutputWindow.png]

[image: ../../_images/Intro-OutputIndicator.png]

Fig. 1.7 The output window and output indicator

1.3.4. Applying settings

When using one of VisIt [https://visit-dav.github.io/visit-website/]’s control windows, you must click the Apply
button for the new settings to take effect. All control windows have an
Apply button in the lower left corner of the window. By default, new
settings are not applied until the Apply button is clicked because it is
more efficient to make several changes and then apply them at once. VisIt [https://visit-dav.github.io/visit-website/] has
a mode called Auto apply that makes all changes in settings take place
immediately. Auto apply is not enabled by default because it can cause
plots to be regenerated each time settings change and for the database sizes
for which VisIt [https://visit-dav.github.io/visit-website/] is designed, auto apply may not always make sense. If you
prefer to have new settings apply immediately, you can enable auto apply by
clicking on the Auto apply check box in the upper, right hand corner of
the Main window. If Auto apply is enabled, you do not have to
click the Apply button to apply changes.

[image: ../../_images/Intro-ApplyButton.png]

[image: ../../_images/Intro-AutoApply.png]

Fig. 1.8 The Apply button and Auto apply check box

1.4. Getting Started

The rest of this manual details the ins and outs to using VisIt [https://visit-dav.github.io/visit-website/], but you can
also very quickly visualize your data by opening a database and creating
plots. You must first select databases to visualize. Sample data files are
usually installed with VisIt [https://visit-dav.github.io/visit-website/] in a data directory in the directory in which
VisIt [https://visit-dav.github.io/visit-website/] was installed. If you are running VisIt [https://visit-dav.github.io/visit-website/] on the Windows platform, you
can double-click on one of the sample Silo data files to open it in VisIt [https://visit-dav.github.io/visit-website/]
or you can run VisIt [https://visit-dav.github.io/visit-website/] and open the File open window from the
Main window’s File menu. Using the File open window, navigate to
the appropriate directory, highlight a file, and click the Ok button.
If the database was successfully opened, the Add menu will be enabled.

Once you have opened a database, you can use it to create a plot by selecting
a plot type and database variable from the Add menu. Once a plot is
created, the Active plot list will show that the new plot has been added
by displaying a description of the plot drawn in green text. The color green
indicates that the plot is in the new state and has not been drawn yet. To
draw the plot, click the Draw button in the middle of the Main window.
That’s all there is to creating a plot using VisIt [https://visit-dav.github.io/visit-website/]. For more detailed
information on creating plots and performing specific actions in VisIt [https://visit-dav.github.io/visit-website/],
refer to the other chapters in this book.

2. Working with Databases

In this chapter, we will discuss how to work with databases in VisIt. A
database can be either a set of files on disk or a running simulation. You can
manage both types of databases using the same VisIt windows. First we’ll learn
about Supported File Types, then the File Open Window which
allows you to browse the local system or a remote host to find your files.
Next, we’ll learn how to open databases for visualization using the
Sources Pane. After that we’ll learn how to control animation in the
Time Pane before learning how to examine information about a database
using the File Information Window.

	2.1. Supported File Types
	2.1.1. File extensions

	2.1.2. Example Data Files

	2.1.3. More Details of ASCII Formats

	2.2. File Open Window
	2.2.1. Changing hosts

	2.2.2. Changing directories

	2.2.3. Default directory

	2.2.4. Changing filters

	2.2.5. Virtual databases

	2.2.6. Refreshing the file list

	2.2.7. Clearing out recently visited paths

	2.2.8. Connecting to a running simulation

	2.3. Database Read Options
	2.3.1. Exodus

	2.3.2. ffp

	2.3.3. NASTRAN

	2.3.4. PLOT3D

	2.3.5. Silo

	2.3.6. ZipWrapper

	2.4. Sources Pane
	2.4.1. Opening a file

	2.4.2. Reopening a database

	2.4.3. Replacing a database

	2.4.4. Overlaying a database

	2.5. Time Pane
	2.5.1. Setting the active time step

	2.5.2. Playing animations

	2.6. File Information Window

2.1. Supported File Types

VisIt [https://visit-dav.github.io/visit-website/] can create visualizations from databases that are stored in many types
of underlying file formats. VisIt [https://visit-dav.github.io/visit-website/] has a database reader for each supported
file format and the database reader is a plugin that reads the data from the
input file and imports it into VisIt [https://visit-dav.github.io/visit-website/]. If your data format is not listed in
File formats supported by VisIt [http://visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports]
then you can first translate your data into a format that VisIt [https://visit-dav.github.io/visit-website/] can read
(e.g. Silo, VTK, etc.) or you can create a new database reader plugin for
VisIt [https://visit-dav.github.io/visit-website/]. For more information on developing a database reader plugin, refer to
the Getting Data Into VisIt [https://wci.llnl.gov/content/assets/docs/simulation/computer-codes/visit/GettingDataIntoVisIt2.0.0.pdf]
manual or send an e-mail inquiry to visit-users@elist.ornl.gov.

2.1.1. File extensions

VisIt [https://visit-dav.github.io/visit-website/] uses file extensions to decide which database reader plugin should be
used to open a particular file format. Each database reader plugin has a set
of file extensions that are used to match a filename to it. When a file’s
extension matches (case sensitive except on MS Windows) that of a certain
plugin, VisIt [https://visit-dav.github.io/visit-website/] attempts to load the file with that plugin. If the plugin cannot
load the file then VisIt [https://visit-dav.github.io/visit-website/] attempts to open the file with the next suitable
plugin, before trying to open the file with the default database reader plugin.
If your files do not have file extensions then VisIt [https://visit-dav.github.io/visit-website/] will attempt to use the
default database reader plugin. You can provide the -default_format
command line option with the name of the database reader plugin to use if
you want to specify which reader VisIt [https://visit-dav.github.io/visit-website/] should use when first trying to open a
file. For example, if you want to load a PDB/Flash file, which usually has no
file extension, you could provide: -default_format PDB on the command line.

2.1.2. Example Data Files

As part of VisIt [https://visit-dav.github.io/visit-website/]’s regular testing, a number of example data files VisIt [https://visit-dav.github.io/visit-website/] reads
can be found in VisIt [https://visit-dav.github.io/visit-website/]’s data [https://github.com/visit-dav/visit/tree/develop/data]
subdirectory of the main code repository. In particular, if you are looking for examples
of various of the human readable ASCII formats VisIt [https://visit-dav.github.io/visit-website/] reads so that you can produce
a compatible file, you may find examples there that help.

2.1.3. More Details of ASCII Formats

Here we describe more details specific to some of the ASCII formats VisIt [https://visit-dav.github.io/visit-website/] reads.

2.1.3.1. Creating .visit Files

To create a .visit file, simply make a new text file that contains the names
of the files that you want to visualize and save the file with a .visit extension.

	Visit will take the first entry in the .visit file and attempt to determine the
appropriate plugin to read the file.

	Not all plugins can be used with .visit files. In general, MD or MT formats
sometimes do not work.

	An MT file is a file format that provides multiple time steps in a single file. Thus,
grouping multiple MT files to produce a time series may not be supported.

	An MD file is one that provides multiple domains in a single file. Thus, grouping
multiple MD files to produce a view of the whole may not be supported.

Here is an example .visit file that groups time steps together. These files should contain
1 time step per file.

timestep0.silo
timestep1.silo
timestep2.silo
timestep3.silo
...

Here is an example .visit file that groups various smaller domain files into a whole dataset
that VisIt can visualize. Note the use of the !NBLOCKS directive and how it designates the
number of files in a time step that constitute the whole domain. The !NBLOCKS directive must
be on the first line of the file. In this example, we have 2 time steps each composed of 4 domain
files.

!NBLOCKS 4
timestep0_domain0.silo
timestep0_domain1.silo
timestep0_domain2.silo
timestep0_domain3.silo
timestep1_domain0.silo
timestep1_domain1.silo
timestep1_domain2.silo
timestep1_domain3.silo
...

You may also explicitly indicate the time associated with a file (or group of block files)
using the !TIME directive like so…

!NBLOCKS 4
!TIME 1.01
timestep0_domain0.silo
timestep0_domain1.silo
timestep0_domain2.silo
timestep0_domain3.silo
!TIME 2.02
timestep1_domain0.silo
timestep1_domain1.silo
timestep1_domain2.silo
timestep1_domain3.silo
...

2.1.3.2. Point3D Files

Point3D files are four or fewer columns of ASCII values with some header text to indicate the
variable names associated with each column and a coordflag entry to indicate how to
interpret the columns of data as coordinates. Point3D files can be used to define discrete
points in 1, 2 and 3 dimensions having a single scalar value associated with each point.
Some examples are below. The Point3D file…

x y z value
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Defines a collection of 8 points in 3 dimensions have a scalar variable named value.
Below, the #coordflag directive is used to define the same collection of 8 points in
3 dimensions as the previous example except where the columns holding the z-coordinate
and the scalar variable are interleaved.

 x y value z
 #coordflag xyvz
 0 0 0 0
 0 0 1 1
 0 1 2 0
 0 1 3 1
 1 0 4 0
 1 0 5 1
 1 1 6 0
 1 1 7 1

In the example below, the #coordflag directive is used to define a collection of
points in two dimensions where each point has a velocity magnitude value associated
with it.

x y velocity
#coordflag xyv
0 0 1
0 1 1.01
1 0 2.02

Likewise, for a collection of points in just one dimension, we would have

x y velocity
#coordflag xv
0 1
1 1.01
2 2.02

There are some
additional examples [https://www.visitusers.org/index.php?title=Reading_point_data#Using_Point3D_files]
of Point3D files on the VisIt [https://visit-dav.github.io/visit-website/] wiki pages.

2.2. File Open Window

The File Open Window allows you to select files and simulations by browsing
file system either on your local computer or the remote computer of your
choice. You can open the File Open Window by choosing the Open option
from the Sources section of the main GUI panel (shown in
Figure 2.1), or by Choosing the Open File option
from the File dropdown menu. When the window opens, its current directory
is set to the current working directory or a directory from VisIt’s preferences.
See Figure 2.2.

[image: ../../_images/sources_mainguipanel.png]

Fig. 2.1 Main gui panel showing Sources section

[image: ../../_images/fileopenwindow.png]

Fig. 2.2 File Open Window

2.2.1. Changing hosts

One of VisIt’s strengths is its ability to operate on files that exist on
remote computers. The default host is: “localhost”, which is a name understood
by the system to be the name of your local computer. To access the files on a
remote computer, you must provide the name of the remote computer in the
Host text field by either typing the name of a remote computer and pressing
the Enter key or by selecting a remote computer from the list of recently
visited hosts. To access the list of recently visited hosts, click on the
down-arrow at the far right of the Host text field.

Changing the host will cause VisIt to launch a database server on the specified
computer so you can access files there. Note that if you do not have an account
on the remote computer, or if VisIt is not installed there, you will not be
able to access files. Also note that VisIt may prompt you for a password to
authenticate your access to the remote computer. To set up password-less
access to remote computers, refer to Setting Up Password-less SSH.

Once a database server is running on the remote computer, its file system
appears in the directory and file lists. The host name for each computer you
access is added to the list of recently visited computers so that you may
switch easily to computers you have recently accessed. If you installed VisIt
with the provided network configurations then the list of recently visited
computers also contains the hosts from the host profiles, which are covered
later in this document.

2.2.2. Changing directories

To select data files, you must often change the active directory. This can be
done in two ways. The first way is to enter the entire directory path into the
Path text field and press Enter. You can use UNIX shell symbols, like the
“~” for your home directory, or the “../” to go up one directory from your
current directory. The directory conventions used depend on the type of
computer being accessed. A MS Windows computer expects directories to be
specified with a disk drive and a path with back slashes
(e.g. C:\temp\data) while a UNIX computer expects directories with forward
slashes (e.g. /usr/local/data). Keep the type of computer in mind when
entering a path. After a path has been typed into the Path text field,
VisIt will attempt to change directories using the specified path. If VisIt
cannot change to the specified directory, the Output Window will appear
with an error message and the Path text field will revert to the last
accepted value. Another way to change directories is to double click the mouse
on any of the entries in the directory list. Note that as you change
directories, the contents of the File list change to reflect the files in
the current directory. You can immediately return to any recently visited
directory by selecting a directory from the Path text field’s pull-down
menu.

2.2.3. Default directory

By default, VisIt looks for files in the current directory. This is often
useful in a UNIX environment where VisIt is launched from a command line shell
in a directory where database files are likely to be located. When VisIt is
set to look for files in the current directory, the
Use “current working directory” by default check box is set. If all of
your databases are located in a central directory that rarely changes, it is
worthwhile to uncheck the check box, change directories to your data directory,
and save settings so the next time VisIt runs, it will look for files in your
data directory.

2.2.4. Changing filters

A filter is a pattern that is applied to the files in the File list to
determine whether or not they should show up in the list. This mechanism allows
the user to exclude many files from the list based on a naming convention,
which is useful since VisIt’s data files often share some part of their names.

The Filter text field controls the filter used to display files in the file
list. Changing the filter will often change the File list as files are
shown or hidden. The Filter text field accepts standard UNIX C-Shell
pattern matching, where, for example, a “*” matches filter (“*”) shows all
files in the File list. Note that you can specify more than one filter
provided you separate them with a space.

2.2.5. Virtual databases

A virtual database is a time-varying database that VisIt artificially creates
out of smaller, single time step databases that have related filenames.
Virtual databases allow you to access time-varying data without having to
first create a .visit :ref:`Need a reference to .visit files file. The
files that are grouped into a virtual database are determined by the file
filter. That is, only files that match the file filter are considered for
grouping into virtual databases. You can change the definition of a virtual
database by changing the file filter. A virtual database appears in the file
list as a set of filenames that are grouped under a single filename that
contains the “*” wildcard character. (Figure 2.3) When you click on
any of the filenames in the virtual database, the entire database is selected.

You can tell VisIt to not automatically create virtual databases by selecting
the Off option in the File grouping pull-down menu. When automatic file
grouping is turned off, no files are grouped into virtual databases and groups
of files that make up a time-varying database will not be recognized as such
without a .visit file. See Figure 2.4.

[image: ../../_images/FileGroupingOn.png]

Fig. 2.3 File grouping turned on (Smart setting)

[image: ../../_images/FileGroupingOff.png]

Fig. 2.4 File grouping turned off

VisIt has two levels of automatic file grouping. The default level is Smart
file grouping, which enables automatic file grouping but has extra rules that
prevent certain groups of files from being grouped into virtual databases. If
you find that Smart file grouping does not provide the virtual databases that
you expect, you can back the file grouping mode down to On or turn it off
entirely.

2.2.6. Refreshing the file list

Scientific simulations often write out new data files as they run. The
Refresh button makes VisIt re-read the current directory to pick up any
new files added by a running simulation. If the active source is a virtual
database whose definition was changed by refreshing the file list, then VisIt
will close and reopen the active source so information about new time states
is made available.

2.2.7. Clearing out recently visited paths

The File Open Window maintains a list of all of the paths that have ever
been visited and adds those paths to the recently visited paths list, which
can be accessed by clicking on the down-arrow at the far right of the
Paths text field. When you click on a path in the recently visited paths
list, VisIt sets the database server’s path to the selected path retrieves the
list of files in that directory. If you visit many paths, the list of recently
visited paths can become quite long. Click the File Open Window’s
Remove Paths button to activate the Remove Recent Paths window. The
Remove Recent Paths window allows you to select paths from the recently
visited paths list and remove them from the list. The Remove Recent Paths
window is shown in Figure 2.5.

[image: ../../_images/RemRecentPaths.png]

Fig. 2.5 Remove recent paths window

2.2.8. Connecting to a running simulation

Computer simulations often take weeks or months to complete and it is often
necessary to visualize data from the simulation before it has completed in
order to diagnose potential problems. VisIt comes with a simulation interface
library that can be linked into your serial or parallel simulation application
in order to provide hooks so VisIt can plot data from your running simulation.
When instrumented with the VisIt simulation interface library, your simulation
can periodically check for incoming VisIt connections. When VisIt successfully
connects to your simulation, all of your simulation variables are available for
plotting without having to write plot files to disk. During the time that VisIt
is connected, your simulation acts as a VisIt compute engine in addition to its
regular responsibilities. You can pause the simulation while using VisIt to
interact with the data or you can choose to have the simulation continue and
push new data to VisIt for plotting. For more information about instrumenting
your simulation code with the VisIt simulation library interface, see the
Getting Data Into VisIt [https://wci.llnl.gov/content/assets/docs/simulation/computer-codes/visit/GettingDataIntoVisIt2.0.0.pdf]
manual.

VisIt currently treats simulations as though they were ordinary files. When
the VisIt simulation interface library is enabled in your application, it
writes a special file with a .sim2 extension to the .visit/simulations
directory in your home directory (%Documents%\VisIt\simulations
on Windows). Each .sim2 file encodes the time and date it was created
into the file name so you can distinguish between multiple simulations that
VisIt can potentially open. A .sim2 file contains information that VisIt
needs in order to connect via sockets to your simulation. If you want to
connect to a simulation, you must select the .sim2 files
corresponding to the simulations to which you want to connect.
(Figure 2.6). Once that is done, connecting to a
simulation is the same as opening any other disk file.

[image: ../../_images/OpenASimulation.png]

Fig. 2.6 Accessing a simulation using the File Open Window

2.3. Database Read Options

Several database plugins have options that affect reading and/or writing with that
format. These are described in this section. Alternatively, in some cases, the
behavior of a database plugin may be affected by enviornment variables.

2.3.1. Exodus

2.3.1.1. Detect Compound Variables

Checking this option will cause the plugin to try to guess that similarly named
variables are the scalar components of an aggregate type such as a vector,
tensor or array variable. The plugin will then automatically define expressions
for these aggregate typed variables. For example, it will cause the plugin to
combine three scalar variables with names such as velx, vely and velz
into a vector expression vel defined as {velx, vely, velz}. Note that
this is just a convenience to free users from having to define expressions
manally within their VisIt [https://visit-dav.github.io/visit-website/] session.

2.3.1.2. Use Material Convention

With this option, the user can cause the plugin to recognize standard or custom
material conventions. The Exodus file format does not define any specific
standards for handling advecting and mixing materials. Different data
producers have defined different conventions. A few pre-defined conventions for
handling mixed materials from Exodus files are supported. In addition, users can
define their own custom conventions as well. For a custom convention, the user
must define the namescheme that will produce the names of the scalar variables
holding material volume fractions. Optionally, users can specify a namescheme to
produce the names of the scalar variables holding material-specific values for an
associated non-material-specific variable.

The
nameschemes [https://wci.llnl.gov/content/assets/docs/simulation/computer-codes/silo/LLNL-SM-654357.pdf?#page=226]
used here are identical to those described in the
Silo user’s manual [https://wci.llnl.gov/content/assets/docs/simulation/computer-codes/silo/LLNL-SM-654357.pdf]
with one extension. The conversion specifier %V is used to denote the basename
(non-material-specific) name of a set of scalar variables holding material
specific values.

The ALEGRA nameschemes for volume fraction and material specific variables are
"@%s@n?'&VOLFRC_%d&n&':'VOID_FRC':@" and "@%V_%d@n".

The CTH nameschemes are "@%s@n?'&VOLM_%d&n&':'VOID_FRC':@" and "@%V_%d@n".

Finally, in all cases it is assumed materials are identified starting from index
one (1). The special material id of zero (0) is used to denote void.

2.3.1.2.1. Material Count

Ordinarily, the plugin will determine the material count from the material
convention nameschemes. However, if it is having trouble getting the correct
count, users can specify it manually with this option.

2.3.2. ffp

The ffp plugin can optionally use the
STRIPACK library [https://people.sc.fsu.edu/~jburkardt/f_src/stripack/stripack.html]
to improve its behavior and performance. It will do so by loading the STRIPACK library as
a dynamicaly loaded shared library when VisIt [https://visit-dav.github.io/visit-website/] can find it. VisIt [https://visit-dav.github.io/visit-website/] will find the
STRIPACK library if it is available in the VisIt [https://visit-dav.github.io/visit-website/] installation’s top-level lib
directory (typically something like /foo/bar/visit/3.1.1/linux-x86_64/lib) or
if the enviornment variable VISIT_FFP_STRIPACK_PATH is set specifying a path to the
shared library as in

setenv VISIT_FFP_STRIPACK_PATH /foo/bar/lib/libstripack.so

for csh (and friends) or for sh (and friends)…

export VISIT_FFP_STRIPACK_PATH=/foo/bar/lib/libstripack.so

In client/server mode, the STRIPACK library must be installed on both the client
and the server.

The build_visit tool can be used to download, build and install the
STRIPACK library. Here is an example bash shell build_visit command-line…

env FCFLAGS="-fdefault-real-8 -fdefault-double-8 -shared -fPIC" \
STRIPACK_INSTALL_DIR=/usr/local/visit/lib ./build_visit --fortran \
--no-visit --no-thirdparty --thirdparty-path /dev/null --no-zlib --stripack

Because STRIPACK is non-BSD licensed software, part of the build_visit
process for installing it is to accept the STRIPACK license terms.

2.3.3. NASTRAN

2.3.3.1. Num Materials

This option allows the user to indicate that the NASTRAN plugin
should look for and try to define a material object. If the user knows the
number of materials in the input database, it is best to specify it here
because that will avert the plugin having to read all lines of the input before
understanding the material configuration. However, if the user does not know
the number of materials, enter -1 here and the plugin will search for
all information related to the material configuration during the open. This will
lead to longer open times. A value of 0 here means to ignore any material
information if present.

2.3.4. PLOT3D

2.3.4.1. Overview

PLOT3D is a computer graphics program designed to visualize the grid and
solutions of structured computational fluid dynamics (CFD) datasets. It is
developed and maintained by NASA [https://software.nasa.gov/software/ARC-14400-1].
PLOT3D is not a self describing format. Therefore VisIt [https://visit-dav.github.io/visit-website/] does not know if the
file it should read is:

	2D or 3D

	Binary or ASCII

	Fortran-style (record based or not) or C-style

	Has Iblanking or not

	Single block or multiblock

To get VisIt [https://visit-dav.github.io/visit-website/] to read your file, you need to give it hints. You do this with a
text file with extension .vp3d, which describes the variant of Plot3D being
used, or through the Read options that can be set when opening the file.

VisIt [https://visit-dav.github.io/visit-website/] will perform some amount of auto-detection for binary files. If
auto-detection fails, then VisIt [https://visit-dav.github.io/visit-website/] will fall back to settings from ‘.vp3d’ if
used, or Read options otherwise. If VisIt [https://visit-dav.github.io/visit-website/] doesn’t display your data as expected,
some of these options may need to be tweaked. Auto-detection will most likely
fail for non-record based Fortran binary files.

Please Note: If your single-grid data file has the ‘nblocks’ field, you will
need to tell VisIt [https://visit-dav.github.io/visit-website/] it is a ‘MultiGrid’ file. VisIt [https://visit-dav.github.io/visit-website/] will then correctly read
‘nblocks’ and create single-grid output.

2.3.4.2. Example vp3d file

Files:
#
Note: the Grid file and Solution file fields do not have to be specified.
If they do not appear, VisIt will assume that the .vp3d should be replaced
with ".x" for the grid file and ".q" for the solution file.
#
Support for time-series solution files added in VisIt 2.10.0.
VisIt will look for '*' and '?' wildcards in the solution name
#
GRID NHLP_2D.g
SOLUTION NHLP_2D.q
Time-series example, requesting all time steps
SOLUTION NHLP_2D_*.q
Time-series example requesting subset of time steps
SOLUTION NHLP_2D_??3?.q

Single/Multi Grid. Single grid will be assumed if no value is specified.
#
Options:
MULTI_GRID
SINGLE_GRID

Data encoding, ASCII or Binary. Binary will be assumed if no value is
specified.
#
Options:
#BINARY
ASCII

Endianness. This only applies to BINARY files. Native endian will
be assumed if no value is specified.
#
Options:
#LITTLE_ENDIAN
#BIG_ENDIAN

OBSOLETE, Structured assumed, due to lack of unstructured sample data
Structured grid vs unstructured grids. Structured grids will be assumed
unless stated otherwise.
#
Options:
STRUCTURED
UNSTRUCTURED

Iblanking in the file. No iblanking is assumed unless stated otherwise.
#
Options:
NO_IBLANKING
IBLANKING

Ignore iblanking. If there is iblanking in the file, you can opt to ignore it.
#
Options:
IGNORE_IBLANKING

2D vs 3D. 3D will be assumed unless stated otherwise.
#
Options:
2D
3D

Precision. Single precision is assumed unless stated otherwise.
#
Options:
SINGLE_PRECISION
DOUBLE_PRECISION

Compression. This only applies to ASCII files. Some codes compress
repeated values as 4*1.5 as opposed to 1.5 1.5 1.5 1.5. It is assumed
the data is not compressed unless stated otherwise.
#
Options:
COMPRESSED_ASCII
UNCOMPRESSED_ASCII

C vs Fortran Binary. C-Binary is assumed.
VisIt 2.10.0, added FORTRAN_BINARY_STREAM, to differentiate between
record-based (FORTRAN_BINARY) and non record based (FORTRAN_BINARY_STREAM)
Options:
C_BINARY
FORTRAN_BINARY
FORTRAN_BINARY_STREAM

Time. Tells VisIt whether or not the 'Time' field in the solution file is accurate.
If set to '1', VisIt will use this as the 'time' value displayed in plots for time-series data. (Default)
If set to '0', and this is time-series data, VisIt will attempt to parse the 'time' from the solution file name.
SOLUTION_TIME_ACCURATE 1

R, Gamma values (used for computing functions like Temperature, Pressure, Enthalpy, Entropy)
Defaults are shown.
R 1.0
GAMMA 1.4

2.3.4.3. Read Options via GUI

[image: ../../_images/PLOT3D_read_options.png]

2.3.4.4. Read Options via CLI

MDServer must be started in order grab the default Open options for the reader
OpenMDServer("localhost")
Grab the default options
opts = GetDefaultFileOpenOptions("PLOT3D")
and change a couple of things
specify sub-selection of time slices.
opts["Solution (Q) File Name"] = r"Jespersen.1/???3?"
opts["Solution Time field accurate"] = 0
SetDefaultFileOpenOptions("PLOT3D", opts)
OpenDatabase(data_path("./TaperedCylinder/grid.p3d"), 0, "PLOT3D_1.0")

Or, you can create your own subset of the options:

opts = {'Multi Grid':1, "Solution (Q) File Name":"wbtr.bin"}
SetDefaultFileOpenOptions("PLOT3D", opts)
OpenDatabase(data_path("./WingBodyTail/wbtg.bin"), 0, "PLOT3D_1.0")

Here are the defaults:

>>> opt = GetDefaultFileOpenOptions("PLOT3D")
>>> print opt
{
 'File Format': 'C Binary # Options are: ASCII, C Binary, Fortran binary, Fortran binary stream',
 'Solution (Q) File Name': '',
 'Solution Time field accurate': 1,
 '3D': 1,
 'Multi Grid': 0,
 'Big Endian': 1,
 'Double Precision': 0,
 'IBlanking': 'Auto # Options are: Auto, Always, Never',
 'Use IBlanking If Present': 1,
 'Gas constant R': 1.0,
 'Gas constant Gamma': 1.4
}

2.3.5. Silo

2.3.5.1. Ignore Extents

The Silo database plugin has the ability to load spatial and data extents for
Silo multi-block (e.g. multiple domain) objects. This feature is an optional
acceleration feature that enables VisIt to cull domains based on knowledge
of downstream operations. For example, it can avoid reading domains known not
to intersect a slice plane. However, if the data producer creates buggy extents
data, this can lead to problems during visualization. So, the Silo plugin has
read options to disable spatial and data extents. The options for each are
Always, Auto, Never and Undef(ined) where Always and
Never mean to always ignore or never ignore the extents data and
Auto means to ignore extents data for files written by data producers known
to have issues with extents data in the past. The Undef setting is to deal
with cases where users may have saved settings with
very old versions of these options.

2.3.5.2. Force Single

The Force Single check box enables the Silo library’s
DBForceSingle() [https://wci.llnl.gov/codes/silo/media/pdf/LLNL-SM-453191.pdf?#page=41]
method. This can potentially be useful when reading double precision data and
running out of memory.

2.3.5.3. Search for ANNOTATION_INT (and friends)

The ANNOTATION_INT (and friends) objects are generic containers sometimes
used to store mesh-specific data using Silo’s
compound array [https://wci.llnl.gov/codes/silo/media/pdf/LLNL-SM-453191.pdf?#page=260].
However, because there is no multi-block analog for Silo compound arrays, in
order to handle them VisIt [https://visit-dav.github.io/visit-website/] needs to be forced to go searching for their
existance in all the files comprising a multi-block database. Thus, enabling
this option can result in much slower database open times.

2.3.6. ZipWrapper

2.3.6.1. TMPDIR

Specifies the directory to be used for temporary, decompressed files.
Defaults to $TMPDIR which will then resolve to the $TMPDIR
environment variable which if either not defined or not a writable
directory will then default to either /usr/tmp or /var/tmp
and finally $HOME environment variable.

2.3.6.2. Don’t atexit()

Ordinarily, when VisIt [https://visit-dav.github.io/visit-website/] exits, it will remove any decompressed files it
left around from invocations of ZipWrapper’s decompression logic. This
disables removal of decompressed files upon exit from VisIt [https://visit-dav.github.io/visit-website/].

2.3.6.3. Max. # decompressed files

Specifies the maximum number of decompressed files that can be in existance
at any one time. Default is 50. In parallel, this is a total summed over
all processors unless a negative number is specified in which case it is the
total per processor (useful for processor local tmp directories).

2.3.6.4. Unique moniker for dirs made in $TMPDIR

An arbitrary string designed to be highly unique among all possible
processes that can write to TMPDIR. Defaults to $USER which
will then resolve to the $USER enviornment variable.

2.3.6.5. Decompression command

Specifies the decompression command to use to decompress files. Default is
to use file extension to determine command according to table below

	File Extension

	Decompression Command

	.gz

	gunzip -f

	.bz

	bunzip -f

	.bz2

	bunzip2 -f

	.zip

	unzip -o

2.4. Sources Pane

The Sources pane , near the top of the Main Window, displays the
currently active source, and contains controls to open, close, reopen, and
and overlay sources. Sources are most frequently database files.

2.4.1. Opening a file

To open a file, you want to visualize, click on the Open button.
This opens the File Open Window. Once a file is open, the Close
and Reopen buttons become enabled.

If you have opened multiple files, the Active source drop-down menu allows
you to switch between the files.

[image: ../../_images/ActiveSources.png]

Fig. 2.7 Controls for setting the active source

When the ReOpen button is clicked, all cached information about the open
database is deleted, the database is queried again for its information, and
any plots that use that database are regenerated using the new information.
This allows VisIt to access data that was added to the database after VisIt
first opened it.

2.4.2. Reopening a database

Sometimes it is useful to begin visualizing simulation data before the
simulation has finished writing out data files for all time steps. When you
open a database in VisIt and create plots and later want to visualize new time
steps that have been generated since you first opened the database, you can
reopen the database to force VisIt to get the data for the new time steps. To
reopen a database, click the ReOpen button in the Sources pane. When
VisIt reopens a database, it clears the geometry for all plots that used that
database and cached information about the database is erased so that when VisIt
reopens the database, plots are regenerated using the new data files.

2.4.3. Replacing a database

If you have created a plot with one database and want to see what it looks like
using data from another database, you can replace the database using the
File panel’s Replace button. To replace a database, first select a new
database by clicking on a file in the File panel’s Selected files list
and then click the Replace button. This will make VisIt try to replace the
databases used in the plots with the new database. If the replace operation is
a success, the plots are regenerated using the new database and they are
displayed in the visualization window.

2.4.4. Overlaying a database

Overlaying a database is a way to duplicate every plot in the plot list using
a new database. To overlay plots, select a new database from the
Active sources dropdown, then click the Overlay button. This copies
each plot in the Active plot list and replaces the database with the
specified database. If the operation succeeds, the plots are generated and
displayed in the visualization window. It is important to remember that each
time the Overlay button is clicked, the number of plots in the plot list
doubles.

2.5. Time Pane

The Time Pane contains controls for setting the active timestep, and
VCR controls for playing animations.

2.5.1. Setting the active time step

When a time-varying database is open, the animation controls are activated so
any time step in the database can be used. Note that the animation controls
are only active when visualizing a time-varying database or when VisIt is in
keyframe animation mode.

Time-varying databases are composed of one or more time steps which contain
data to be visualized. The active time step is the time step within a
time-varying database that VisIt uses to generate plots. The Time pane
is located just below the Sources pane and contains controls
that allow you to set the active time step used for visualization. The
Animation slider and the Animation text field show the active time
step. To set the active time step, you can drag the Animation slider
and release it when you get to the desired time step, or you can type in a
cycle number into the Animation text field . If you type in a cycle number
that is not in the database, the active time step will be set to the time step
with the closest cycle number to the cycle that was specified.

[image: ../../_images/TimeVaryingAnimationControls.png]

Fig. 2.8 Controls for setting the active time step

2.5.2. Playing animations

The Time pane also contains a set of VCR buttons that allow you to put
VisIt into an animation mode that plays your visualization using all of the
time steps in the database. The VCR buttons are only active when you have a
time varying database. The leftmost VCR button moves the animation back one
frame. The VCR button second from the left plays the animation in reverse. The
middle VCR button stops the animation. The VCR button second from the right
plays the animation. The VCR button farthest to the right advances the
animation by one frame. As the animation progresses, the Animation Slider
and the Animation Text Field are updated to reflect the active time step.

2.6. File Information Window

This File Information Window, shown in Figure 2.9,
displays information about the currently open file. The File Information
Window is opened by choosing the Files information option from the
Main Window’s File menu. The window displays the names and properties of
the open file’s meshes, scalar variables, vector variables, and materials.
The window updates each time the active file changes such as when switching
between plots in the Active plot list or opening a new file using the
controls in the File panel.

[image: ../../_images/fileinformationwindow.png]

Fig. 2.9 File Information Window

3. Plots

This chapter explains the concept of a plot and goes into detail
about each of VisIt’s different plot types.

	3.1. Working with Plots

	3.2. Standard Plot Types

3.1. Working with Plots

A plot is a viewable object, created from a database, that can be displayed
in a visualization window. VisIt provides several standard plot types that
allow you to visualize data in different ways. The standard plots perform
basic visualization operations like contouring, pseudocoloring as well as
more sophisticated operations like volume rendering. All of VisIt’s plots
are plugins so you can add new plot types by writing your own plot plugins.
See the wiki at visitusers.org [http://www.visitusers.org/] for more
details on creating new plot plugins or send an e-mail inquiry to
visit-users@elist.ornl.gov.

3.1.1. Managing Plots

To visualize your data, you will iteratively create and modify many plots
until you achieve the end result. Since plots may be created and deleted
many times, VisIt provides controls in its Main Window to handle these
functions. The Plots area, shown in Figure 3.1,
contains the controls for managing plots.

[image: ../../_images/Plots-PlotsArea.png]

Fig. 3.1 The active plots area

The most prominent feature of the Plots area, the plot list contains a
list of the plots that are in the active visualization window. The entries
in the plot list contain the plot name and variable. Plot list entries change
colors depending on the state of the plot. When plots are initially created,
their plot list entries are green indicating that they are new and have not
been submitted to the compute engine for processing. When a plot is being
created on the compute engine, its plot list entry is yellow. When a plot
has finished generating on the compute engine, its plot list entry turns
black to indicate that the plot is done. If the compute engine cannot
generate a plot, the plot’s plot list entry turns red to indicate an error
with the plot.

The plot list displays more then just the names of the visualization
window’s plots. The plot list also allows you to set the active plots, that
is, those plots that can be modified. Highlighted plot entries are active.

The Add menu, an important part of the Plots area, contains the
options that create new plots.

3.1.1.1. Creating a plot

To use any of VisIt’s capabilities, you must know how to create a plot. First,
make sure you have opened a database. Once you have an open database, use
the Add menu to create a plot.

[image: ../../_images/Plots-AddMenu.png]

Fig. 3.2 The Add menu

Selecting the Add menu pops up a list of VisIt plot types. Plots for which
the open database has no data are disabled. If a plot type is enabled, pulling
the mouse toward the right while holding down the left button shows which
variables can be plotted. Release the mouse button when the mouse cursor is
over the variable that you want to plot, and a new plot list entry will appear
in the plot list. The new plot list entry will be colored green in the plot
list until VisIt is told to draw when you click the Draw button. The
Add menu is disabled until a database is open.

3.1.1.2. Deleting a plot

VisIt deletes all the selected plots when you click the Delete button.
If the plot list has keyboard focus, you can also delete a plot using the
Delete key.

3.1.1.3. Selecting a plot

Since VisIt will only let you modify active plots, you must be able to select
plots. To select a plot, click on its entry in the plot list. Multiple plots
can be selected by holding down the Ctrl key and clicking plot entries
one at a time. Alternatively, groups of plot entries can be selected by
clicking on a plot entry and then clicking another plot entry while holding
down the Shift key.

3.1.1.4. Drawing a plot

When you add a plot to the plot list, it won’t be drawn until you click the
Draw button. Once you do, the new plot’s plot list entry switches from
green to yellow in the plot list to indicate that its results are pending
and the compute engine starts generating the plot. Clicking the Draw
button causes all new plots to be drawn.

3.1.1.5. Hiding a plot

When you are visualizing your data, you will often have many different plots
in the same visualization window. Sometimes you might want to temporarily
hide plots from view to more easily view the other plots in the window. To
hide the selected plots, click the Hide/Show button in the Plots
area. When a plot is hidden, its plot list entry is gray and contains the
word hidden to indicate that the plot is hidden. To show a hidden plot,
select the hidden plot and click the Hide/Show button again. Note that
plots must exist for the Hide/Show button to be enabled.

3.1.1.6. Setting plot attributes

Each plot type has its own plot attributes window used to set attributes
for that plot type. Plot attributes windows are activated by double-clicking
a plot entry in the plot list. You can also open a plot attribute window
by selecting a plot type from the PlotAtts (Plot Attributes) menu shown
in Figure 3.3,

[image: ../../_images/Plots-PlotAttsMenu.png]

Fig. 3.3 The PlotAtts menu

3.1.1.7. Changing plot variables

[image: ../../_images/Plots-VariablesMenu.png]

Fig. 3.4 The Variables menu

When examining a plot, you might want to look at another variable. For
example, you might want to switch from looking at density to pressure.
VisIt allows the plot variable to be changed without having to delete
and recreate the plot. To change the plot variable, first make sure the
plot is active, then select a new variable from the available variable
names in the Variables menu. The Variables menu contains only the
variables from the database that are compatible with the plot.

3.2. Standard Plot Types

VisIt comes with eighteen standard plots:
Boundary,
Contour,
Curve,
FilledBoundary,
Histogram,
Label,
Mesh,
Molecule,
MultiCurve,
ParallelCoordinates,
Pseudocolor,
Scatter,
Spreadsheet,
Subset,
Tensor,
Truecolor,
Vector, and Volume. This section explains each plot in detail.

	3.2.1. Common Controls
	3.2.1.1. Plot buttons

	3.2.1.2. Plot colors

	3.2.1.3. Point type and size

	3.2.2. Boundary and FilledBoundary Plots
	3.2.2.1. Changing colors

	3.2.2.2. Opacity

	3.2.2.3. Wireframe mode

	3.2.2.4. Geometry smoothing

	3.2.2.5. Drawing only clean zones

	3.2.2.6. Setting point properties

	3.2.3. Contour Plot
	3.2.3.1. Setting the number of contours

	3.2.3.2. Setting Limits

	3.2.3.3. Scaling

	3.2.3.4. Setting contour colors

	3.2.3.5. Wireframe view

	3.2.4. Curve Plot
	3.2.4.1. Setting curve color

	3.2.4.2. Showing curve labels

	3.2.4.3. Space-filled curves

	3.2.4.4. Setting line style and line width

	3.2.4.5. Drawing points on the Curve plot

	3.2.4.6. Adding Time Cues

	3.2.4.7. Polar coordinate system conversion

	3.2.5. Histogram Plot
	3.2.5.1. Setting the histogram data range

	3.2.5.2. Setting the type of graph

	3.2.5.3. Setting the number of bins

	3.2.5.4. Setting the histogram calculation method

	3.2.5.5. Data scaling

	3.2.6. Label Plot
	3.2.6.1. Choosing the Label plot’s variable

	3.2.6.2. Showing node and zone numbers

	3.2.6.3. Restricting the number of labels

	3.2.6.4. Depth testing for 3D Label plots

	3.2.6.5. Formatting labels

	3.2.6.6. Labeling subset names and material names

	3.2.7. Mesh Plot
	3.2.7.1. Mesh plot opaque modes

	3.2.7.2. Showing internal zones

	3.2.7.3. Changing colors

	3.2.7.4. Changing mesh line attributes

	3.2.7.5. Changing point type and size

	3.2.7.6. Geometry smoothing

	3.2.8. Molecule Plot
	3.2.8.1. Controlling how atoms are drawn

	3.2.8.2. Controlling how bonds are drawn

	3.2.8.3. Controlling colors

	3.2.8.4. Examples in use

	3.2.9. Pseudocolor plot
	3.2.9.1. Data tab options

	3.2.9.2. Geometry tab options

	3.2.10. Scatter Plot
	3.2.10.1. Scatter plot wizard

	3.2.10.2. Selecting a variable

	3.2.10.3. Setting an input variable’s role

	3.2.10.4. Setting the minimum and maximum values

	3.2.10.5. Scaling an input variable

	3.2.10.6. Setting the colors

	3.2.10.7. Setting point properties

	3.2.11. Subset Plot
	3.2.11.1. Changing colors

	3.2.11.2. Opacity

	3.2.11.3. Setting point properties

	3.2.11.4. Wireframe mode

	3.2.11.5. Drawing internal surfaces

	3.2.11.6. Geometry smoothing

	3.2.12. Tensor plot
	3.2.12.1. Changing the tensor colors

	3.2.12.2. Setting the tensor scale

	3.2.12.3. Setting the number of tensors

	3.2.13. Truecolor plot

	3.2.14. Vector plot
	3.2.14.1. Setting vector color

	3.2.14.2. Vector scaling

	3.2.14.3. Heads on the vector glyph

	3.2.14.4. Tails on the vector glyph

	3.2.14.5. Setting the number of vectors

	3.2.15. Volume plot
	3.2.15.1. Rendering Options

	3.2.15.2. Transfer Function

	3.2.15.3. Setting opacities

	3.2.15.4. Changing the opacity variable

	3.2.15.5. Controlling image quality

3.2.1. Common Controls

There are a number of attributes of plots that are common to
many, if not all plots. These include such things as Color table,
Foreground and Background colors, Opacity,
Line style and Point type, Log or Linear scaling,
the Legend checkbox and others. These common plot attributes
are described here first using the Pseudocolor plot as an example.

[image: ../../../_images/pseudocolorwindow.png]

Fig. 3.5 Example of Pseudocolor plot attribute window

Then, attributes specific to each plot type are described in the
remaining sections.

3.2.1.1. Plot buttons

All plot attribute windows have several buttons at the bottom for
common operations. Use the Apply after you have changed one or
more attributes of a plot to make the new settings take effect.
The Make default button is used to take the current settings
and make those the default for the remainder of the VisIt [https://visit-dav.github.io/visit-website/] session.
Each time a new plot of that type is created, it will be created
with whatever the current defaults are for that plot. If you want
these settings to persist across VisIt [https://visit-dav.github.io/visit-website/] sessions, you can either
Save session, and then restart from this saved session later,
or Save settings and then all VisIt [https://visit-dav.github.io/visit-website/] sessions will use those
defaults. For more about saving sessions and settings, see
How to Save Settings. The Save and
Load buttons give you the option of saving and loading plot
attributes using their own separate XML. This allows users to
easily share individual plot attributes. The reset button will
return the plot’s attributes to whatever the current defaults are.
The Dismiss button will dismiss the window. The Post
button will place the window in the Notepad area
(see Posting a window).

3.2.1.2. Plot colors

By default, VisIt [https://visit-dav.github.io/visit-website/] uses the Hot color table which maps values at
the minimum of the data range to blues, values at the maximum of
the data range to reds with transitions from blue to violet, to
green, to yellow in between. However, many plots offer the option of
selecting a specific color table. In the picture of the
Pseudocolor plot attributes window, above, the color table may
be changed by selecting the currently named table. A pull-down list
will appear from which you can select a different table.
For more information about
Color tables, see Color Tables.

In addition, many plots have options to control colors and
transparency (opacity) of individual plot elements such as lines on
the Mesh plot or contours on the Contour plot.

3.2.1.3. Point type and size

The Pseudocolor, Mesh and Scatter plots can use eight different
point types for drawing point meshes (see Figure 3.6).
The default option of Point is fastest and forces the plot to draw all of
its points as tiny points. The Sphere option applies textures to the
points so it is nearly as fast as Point. Any of the other options place a
glyph at each point, taking longer to render. To set the point type choose an
option from the Point type menu. Setting the Point type to anything
other than Point will have no effect if the plotted mesh is not a point
mesh.

If you choose any of the point types except Point, then you can also
specify a point size by typing a new value into the Point size text field.
The point size is used to determine the size of the glyph. For example, if you
choose Box, and you enter a Point size of 0.1, then the length of all
of the edges on the Box glyphs will be 0.1. If you use Point, then the
Point size text field becomes the Point size (pixels) text field
and you can set the point size in terms of pixels.

[image: ../../../_images/glyph_types2.png]

Fig. 3.6 Point types: Box, Axis, Icosahedron, Octahedron, Tetrahedron, Sphere Geometry, Point, Sphere

[image: ../../../_images/point_type_dropdown.png]

Fig. 3.7 Point type menu, expanded

For Mesh and Pseudocolor plots, the point size can also be scaled by a
scalar variable if you check the Scale point size by variable check box and
select a new scalar variable from the Variable menu. The value default
must be replaced with the name of another scalar variable if you want VisIt [https://visit-dav.github.io/visit-website/] to
scale the points with a variable other than the one being plotted.

3.2.2. Boundary and FilledBoundary Plots

The Boundary plot and FilledBoundary plot are discussed together because
of their similarity. Both plots concentrate on the boundaries between
materials but each plot shows the boundary in a different way. The
Boundary plot, shown in Figure 3.8, displays the surface or lines that separate materials.

[image: ../../../_images/boundarystuff.png]

Fig. 3.8 Boundary plot and its plot attributes window

[image: ../../../_images/filledboundarystuff.png]

Fig. 3.9 FilledBoundary plot and its plot attributes window

The FilledBoundary plot (see Figure 3.9) shows
the entire set of materials, each using a different color. Both plots perform
material interface reconstruction on materials that have mixed cells,
resulting in the material boundaries used in the plots.

[image: ../../../_images/filledboundarysubsets.png]

Fig. 3.10 FilledBoundary plot combined with subsets

Combining the FilledBoundary plot with subsets (see Figure 3.10)
can provide a insight into where each material is inside the mesh by turning off
materials in a particular domain. For more information about subsets, see the Subsetting
chapter.
.

3.2.2.1. Changing colors

The main portion of the Boundary plot attributes window and
FilledBoundary plot attributes window, also known as the
Boundary colors area, is devoted to setting material boundary
colors. The Boundary colors area contains a list of material names with
an associated material color. Boundary plot and FilledBoundary plot colors
can be assigned three different ways, the first of which uses a color table.
A color table is a named palette of colors that you can customize to suite
your needs. When the Boundary plot or FilledBoundary plot use a color table
to color subsets, they selects colors that are evenly spaced through the
color table based on the number of subsets. For example, if you have three
materials and you are coloring them using the “xray” color table, three
colors are picked out of the color table so your material boundaries are
colored black, gray, and white. To color a Boundary plot or FilledBoundary
plot with a color table, click on the Color table radio button
and choose a color table from the Color table menu to right of the
Color table radio button.

If you want all subsets to be the same color, click the Single
radio button at the top of the Boundary plot attributes window
and select a new color from the Popup color menu that is activated by
clicking on the Single color button. The opacity slider next to the
Single color button sets the opacity for the single color.

Clicking the Multiple radio button causes each material boundary to
be a different, user-specified color. By default, multiple colors are set
using the colors of the discrete color table that is active when the
Boundary or FilledBoundary plot is created. To change the color for any
of the materials, select one or more materials from the list of materials
and click on the Color button to the right of the Multiple radio
button and select a new color from the Popup color menu. To change
the opacity for a material, move Multiple opacity slider to the left
to make the material more transparent or move the slider to the right to
make the material more opaque.

The Boundary plot attributes window contains a list of material names
with an associated color. To change a material’s color, select one or more
materials from the list, click the color button and select a new color from
the popup color menu.

3.2.2.2. Opacity

The Boundary plot’s opacity can be changed globally as well as on a per
material basis. To change material opacity, first select one or more
materials in the list and move the opacity slider next to the color button.
Moving the opacity slider to the left makes the selected materials more
transparent and moving the slider to the right makes the selected materials
more opaque. To change the entire plot’s opacity globally, use the Opacity
slider near the bottom of the window.

3.2.2.3. Wireframe mode

The Boundary plot and the FilledBoundary plot can be modified so that they
only display outer edges of material boundaries. This option usually leaves
lines that give only the rough shape of materials and where they join other
materials as seen in. To make the Boundary or FilledBoundary plots display
in wireframe mode, check the Wireframe check box near the bottom of the
window.

[image: ../../../_images/filledboundarywireframe.png]

Fig. 3.11 Filled mode and wireframe mode

3.2.2.4. Geometry smoothing

Sometimes visualization operations such as material interface reconstruction
can alter mesh surfaces so they are pointy or distorted. The Boundary plot
and the FilledBoundary plot provide an optional Geometry smoothing option to
smooth out the mesh surfaces so they look better when the plots are visualized.
Geometry smoothing is not done by default, you must click the Fast or
High radio buttons to enable it. The Fast geometry smoothing setting
smooths out the geometry a little while the High setting works produces
smoother surfaces.

3.2.2.5. Drawing only clean zones

The FilledBoundary plot, since it deals almost exclusively with plotting
materials, has an option to only draw clean zones, which are zones that contain
a single material. When only clean zones are drawn, all clean cells are drawn
normally but all zones that contained more than one material are drawn with
a color that can be set to match the vis window’s background color (see).
Drawing clean zones is primarily used to examine how materials mix in 2D
databases. To make VisIt draw only the clean zones, click the
Clean zones only check box. After that, you can set the mixed color by
clicking on the Mixed color color button and selecting a new color from
the popup color palette.

[image: ../../../_images/filledboundarymixedzones.png]

Fig. 3.12 All zones and clean zones

3.2.2.6. Setting point properties

Albeit rare, the Boundary and FilledBoundary plots can be used to plot points
that belong to different materials. Both plots provide controls that allow you
to set the representation and size of the points. You can change the points’
representation using the different Point Type radio buttons. The available
options are:

	Box

	Axis

	Icosahedron

	Octahedron

	Tetrahedron

	Point

	Sphere

The default point type is Point because that is the fastest to draw,
followed by Sphere. The other point types create additional geometry and
can take longer to appear on the screen and subsequently draw. To change the
size of the points when the point type is set to Box, Axis, or
Icosahedron, you can enter a new floating point value into the
Point size text field. When the point type is set to Point or
Sphere, the Point size text field becomes the Point size (pixels)
text field and you should enter your point size in terms of pixels. Finally,
you can opt to scale the points’ glyphs using a scalar expression by turning
on the Scale point size by variable check box and by selecting a scalar
variable from the Variable button to the right of that check box. Note
that point scaling does not occur when the point type is set to Point
or Sphere.

[image: ../../../_images/pointtypes.png]

Fig. 3.13 Point types (left-to-right): Box, Axis, Icosahedron, Point, Sphere

3.2.3. Contour Plot

This plot, shown in Figure 3.14, displays the
location of values for scalar variables like density or pressure using
lines for 2D plots and surfaces for 3D plots. In visualization terms,
these plots are isosurfaces. VisIt’s Contour plot allows you to specify
the number of contours to display as well as the colors and opacities
of the contours.

[image: ../../../_images/contourplot.png]

Fig. 3.14 Example of Contour plot

[image: ../../../_images/contourwindow.png]

Fig. 3.15 Contour plot attributes window

3.2.3.1. Setting the number of contours

By default, VisIt constructs 10 levels into which the data fall. These
levels are linearly interpolated values between the data minimum and data
maximum. However, you can set your own number of levels, specify the
levels you want to see or indicate the percentages for the levels.

To choose how levels are specified, make a selection from the Select by
menu. The available options are: N levels, Levels, and Percent.
N levels, the default method, allows you to specify the number of
levels which will be generated, with 10 being the default. Levels
requires you to specify floating point numbers for the levels you want to see.
Percent takes a list of percentages like 50.5, 60, and 40.0. Using the
numbers just mentioned, the first contour would be placed at the value
which is 50.5% of the way between the minimum and maximum data values.
The next contour would be placed at the value which is 60% of the way
between the minimum and maximum data values, and so forth. You specify
all values for setting the number of contours by typing into the text
field to the right of the Select by menu.

3.2.3.2. Setting Limits

The Contour plot attributes window provides controls that allow you
to specify artificial minima and maxima for the data in the plot. This is
useful when you have a small range of values that are of interest and you
only want the contours to be generated through that range. To set the minimum
value, click the Min check box to enable the Min text field and then
type a new minimum value into the text field. To set the maximum value, click
the Max check box to enable the Max text field and then type a new
maximum value into the text field. Note that either the min, max or both can
be specified. If neither minimum nor maximum values are specified, VisIt
uses the minimum and maximum values in the database.

3.2.3.3. Scaling

The Contour plot typically creates contours through a range of values by
linearly interpolating to the next value. You can also change the scale to
a logarithmic function to get the list of contour values through the specified
range. To change the scale, click either the Linear or Log
radio buttons in the Contour plot attributes window.

3.2.3.4. Setting contour colors

The main portion of the Contour plot attributes window, also known as the
Contour colors area, is devoted to setting contour colors. Contour plot
colors can be assigned three different ways, the first of which uses a color
table. A color table is a named palette of colors that you can customize to
suite your needs. When the Contour plot uses a color table to color the levels,
it selects colors that are evenly spaced through the color table based on the
number of levels. For example, if you have five levels and you are coloring
them using the “rainbow” color table, the Contour plot picks five colors out
of the color table so your levels are colored magenta, blue, cyan, green,
yellow, and red. The colors change when increasing or decreasing the number of
levels when you use a color table because VisIt uses the new number of levels
to sample different locations in the color table. As a rule, increasing the
number of levels results in coloration that is closer to the color table
because more colors from the color table are represented. To color a Contour
plot with a color table, click on the Color table radio button and choose
a color table from the Color table menu to right of the
Color table radio button.

If you want all levels to be the same color, click the Single radio button
at the top of the Contour plot attributes window and select a new color from
the Popup color menu that is activated by clicking on the
Single color button. The opacity slider next to the Single **color button
sets the opacity for the single color.

Clicking the Multiple radio button causes each level to be a different,
user-specified color. By default, multiple colors are set using the colors of the
discrete color table that is active when the Contour plot is created. To change
the color for any of the levels, click on the level’s Color button and select
a new color from the Popup color menu. To change the opacity for a level,
move its opacity slider to the left to make the level more transparent or move
the slider to the right to make the level more opaque.

3.2.3.5. Wireframe view

The Contour plot attributes window provides a Wireframe toggle button
used to draw only the lines along the edges of the contour. This option only
has an effect on 3D Contour plots.

3.2.4. Curve Plot

The Curve plot, shown in Figure 3.16, displays a simple
group of X-Y pair data such as that output by 1D simulations or data produced
by Lineouts of 2D or 3D datasets. Curve plots are useful for visualizations
where it is useful to plot 1D quantities that evolve over time.

[image: ../../../_images/curveplot.png]

Fig. 3.16 Curve plot

3.2.4.1. Setting curve color

The Curve plot’s color is set up to Cycle by default. In other words, each new curve created will be a different color. This can be turned off by selecting the Custom radio button, and a new color can be chosen by clicking on the
Color button and making a selection from the Popup color menu.

[image: ../../../_images/curvewindow.png]

Fig. 3.17 Curve plot attributes, data tab

3.2.4.2. Showing curve labels

Curve plots have a label that can be displayed to help distinguish one Curve
plot from other Curve plots. Curve plot labels are on by default, but if you
want to turn the label off, you can uncheck the Labels check box.

3.2.4.3. Space-filled curves

The space below a curve can be filled with color by changing Fill mode
to either Solid, Horizontal Gradient or Vertical Gradient, then choosing
one or two colors based upon the mode chosen.

[image: ../../../_images/curve_filled_with_points.png]

Fig. 3.18 Curve, space-filled with points

3.2.4.4. Setting line style and line width

Several Curve plots are often drawn in the same visualization window so it is
necessary that Curve plots can be distinguished from each other. Fortunately,
VisIt provides controls to change the line style and line width so that Curve
plots can be told apart. Line style is a pattern used to draw the line and it
is solid by default but it can also be dashed, dotted, or dash-dotted. You
choose a new line style by making a selection from the Line Style combo box
on the Geometry tab (see Figure 3.19). The
line width, which determines the boldness of the curve, is set by making a
selection from the Line Width combo box.

[image: ../../../_images/curvewindow2.png]

Fig. 3.19 Curve plot attributes, geometry tab

3.2.4.5. Drawing points on the Curve plot

The Curve plot is composed of a set of (X,Y) pairs through which line segments
are drawn to form a curve. To make VisIt draw a point glyph at the location of
each (X,Y) point, click the Show points check box on the Geometry tab.
You can control the size of the points by typing a new point size into the
Point size text field. You can choose the type of symbol used to represent
the points by using the Symbol combo box.

The number of points drawn can be controlled by the Static or Dynamic
radio buttons. For Static mode, points are drawn at regular intervals
controlled by the value of the Point stride text box. For Dynamic
mode, the number of points drawn is view-dependent, with density controlled by
the Point density text box.

3.2.4.6. Adding Time Cues

Time cues are most often used in conjunction with movie making. They allow
for markers to be placed at certain positions along a curve, and/or for the
curve to be cropped at the specified position. Time cues make it easier
to see the current time position along a curve. Though most often
created and controlled via scripting, the Extras tab in the Curve
attributes window can also be used (see Figure 3.20).
There are two types of markers: Ball and Line. They are controlled by the
Add Ball and Add Line check boxes. They have separate color and
size controls. To crop the line, select the Crop check box. The
Position of cue text box controls the location along the curve where the
ball and line are placed and where the cropped curve ends.
Figure 3.21 shows examples of curves created using
different time cue settings.

[image: ../../../_images/curvewindow3.png]

Fig. 3.20 Curve plot attributes, extras tab

[image: ../../../_images/curve_time_cues3.png]

Fig. 3.21 Curve plot with time cues added at different positions, both uncropped and cropped.

3.2.4.7. Polar coordinate system conversion

If the curve data is in Polar instead of Cartesian coordinates, you can tell
VisIt to convert by selecting the Polar to Cartesian option on the
Extras tab. You can choose the Order to be R_Theta or Theta_R
and choose Radians or Degrees for the Units.
Figure 3.22 shows an example.

[image: ../../../_images/curve_polar.png]

Fig. 3.22 Curve plot before and after Polar coordinate transform (R-theta, radians)

3.2.5. Histogram Plot

The Histogram plot divides the data range of a scalar variable into a number
of bins and groups the variable’s values into different bins. The values can be
based on frequency, they can be weighed by the area/volume of the cells, or
they can be weighed by a variable. The values in each bin are then used to create
a bar graph or curve that represents the distribution of values throughout
the variable’s data range. The Histogram plot can be used to determine where
data values cluster in the range of a scalar variable. The Histogram plot is
shown in Figure 3.23.

[image: ../../../_images/histogramplot.png]

Fig. 3.23 Histogram plot

3.2.5.1. Setting the histogram data range

By default, the Histogram plot profiles a variables entire data range. If you
want to restrict the Histogram plot so it only takes a subset of a variable’s
data range into consideration when assigning values to bins, you can set the
minimum and maximum values that will be considered by the Histogram plot. To
specify a data range, click the Minimum and/or Maximum check box and
then type in floating point numeric values into the Minimum and Maximum
text fields in the Histogram plot attributes window
(see Figure 3.24) before clicking the Apply
button. Once the data range is set, the Histogram plot will restrict the values
that it considers to the specified data range.

[image: ../../../_images/histogramwindow.png]

Fig. 3.24 Histogram attributes

3.2.5.2. Setting the type of graph

The Histogram plot has two mode in which it can appear: curve and block. When the
Histogram plot is drawn as a curve, it looks like the Curve plot. When the
Histogram plot is drawn in block mode, it is drawn as a bar graph where each
bin is plotted along the X-axis and the height of each bar corresponds to the
number of values that were assigned to that bin. You can set change the
Histogram plot’s appearance by clicking the Curve or Block radio buttons.

3.2.5.3. Setting the number of bins

The Histogram plot divides a variable’s data range into a number of bins and
then counts the values that fall within each bin. The bins and the
counted data are then used to create a graph that represents the distribution
of data within the variable’s data range. As the Histogram plot uses more bins,
the graph of data distribution becomes more accurate. However, the graph can
also become rougher because as the number of bins increases, the likelihood
that no data values fall within a particular bin also increases. To set the
number of bins for the Histogram plot, type a new number of bins into the
Number of Bins text field and click the Apply button in the
Histogram plot attributes window.

3.2.5.4. Setting the histogram calculation method

The data values can be based on frequency, they can be weighed by the
area/volume of the cells, or they can be weighed by a variable. By default,
Frequency is selected under bin contribution. Selecting Weighted will
enable the Weighting options, from which one can select
Area (2D) / Volume (3D) or Variable to determine the type of weighing.

3.2.5.5. Data scaling

There are three radio buttons that controls how the data values are scaled. The three
options are:

	Linear: no scaling is applied. This is the default option.

	Log: the logarithms of all the scalars are binned.

	Square Root: the square roots of all scalars are binned.

3.2.6. Label Plot

The Label plot, shown in Figure 3.25, can display mesh
information, scalar fields, vector fields, tensor fields, array variables,
subset names, and material names. The Label plot is often used as a
debugging device for simulation codes since it allows the user to see
labels containing the exact values at the computational mesh’s nodes or
cell centers. Since the Label plot’s job is to display labels representing
the computational mesh or the fields defined on that mesh, it does not convey
much information about the actual mesh geometry. Since having a Label plot
by itself does not usually give enough information to understand the
plotted dataset, the Label plot is almost always used with other plots.

[image: ../../../_images/labelplot.png]

Fig. 3.25 Label plot of the mesh overlayed on Pseudocolor and Mesh plots

[image: ../../../_images/labelplotwindow.png]

Fig. 3.26 Label plot attributes window

3.2.6.1. Choosing the Label plot’s variable

You can choose the Label plot’s variable using the Variable menu under
the Plot list the same way as you would with any other type of plot. One
special property that distinguishes the Label plot from some of VisIt [https://visit-dav.github.io/visit-website/]’s
other plots is that it can plot multiple types of variables. The Label plot
can display information for meshes, scalars, vectors, tensors, array variables,
subsets, and materials so you will typically find more variables available for
the Label plot than you would for other plots. When you choose a mesh
variable for the Label plot, you can display both the mesh node numbers and
cell numbers otherwise you are limited to displaying only the variable being
plotted.

3.2.6.2. Showing node and zone numbers

The Label plot can display the node and cell numbers for the computational
mesh if you have selected a mesh variable to plot. By default, the Label
plot will display cell numbers only. The cell numbers will be displayed in the
format most natural to the underlying mesh representation, which means that
unstructured meshes will have cell numbers that are displayed as single
integers while structured meshes will be displayed in i,j,k format when
possible. If you want the Label plot to show a mesh’s node numbers in
addition to its cell numbers, you can click on the Show nodes check box. If
you no longer want the Label plot to show the mesh’s cell numbers, you can
turn off the Show cells check box.

3.2.6.3. Restricting the number of labels

Most computational meshes contain many thousands, millions, or even billions of
nodes and cells. Adding that many labels would quickly become burdensome on the
computer and would result in a Label plot so dense that individual labels
could no longer be read or even associated with their cell or node.

VisIt [https://visit-dav.github.io/visit-website/]’s Label plot restricts the number of labels by default to some
user-settable number of labels that can comfortably fit on the screen. The
method used to restrict the number of labels differs for 2D and 3D plots. For
2D plots, the viewable portion of world space is periodically subdivided, based
on the zoom level, into some number of bins to which labels are then assigned.
As you zoom in on the Label plot, labels that go beyond the viewport are no
longer drawn and new labels that were previously hidden take their place. This
allows the Label plot to efficiently draw many labels without crowding the
labels on top of each other. For 3D plots, the Label plot divides up the
screen into a user-settable number of bins. All label coordinates are
transformed so that they can be assigned to a screen bin and the label wins
the screen bin if it is closer than the label that was previously in the bin.
This ensures that a small subset of all possible labels is drawn and that
they do not usually overlap on the screen. If you find that the labels appear to
be from the back of the mesh instead of from the front, it’s quite possible that
the normals generated for your mesh were inverted for some reason. To combat
this problem, select Back or Front or Back from the
Draw labels that face menu.

If you want to set the number of labels that the Label plot will draw, you
can type in a new value into the spin box next to the
Restrict number of labels to check box or use the up and down arrows on the
spin box. If you want to force the Label plot to draw all labels, you can
turn off the Restrict number of labels to check box. Sometimes making the
Label plot draw all of the labels can be faster than drawing a subset of
labels.

3.2.6.4. Depth testing for 3D Label plots

When VisIt [https://visit-dav.github.io/visit-website/] draw plots in the visualization window, the plots’ geometries often
correspond to only the outer surfaces of the originating datasets when those
datasets are 3D. This means that the majority of plots consist of convex
geometry and the normal test for only drawing labels that face front is often
adequate to remove any labels that appear on faces that point away from the
current camera. Some plots have geometries that consist of many concave regions,
which the afore-mentioned test does not handle well. Plots with concave
geometries will often have various pieces be incorrectly visible because though
the surfaces may face the camera, they may be obscured by other geometry. When
VisIt [https://visit-dav.github.io/visit-website/]’s Label plot draws 3D geometry, it tries to enable additional depth
testing to prevent front-facing labels in back of other surfaces from being
drawn. Depth testing can degrade performance so, by default, it is allowed only
when you are running VisIt [https://visit-dav.github.io/visit-website/] on your local workstation. You can set the Label
plot’s depth test mode to tell VisIt [https://visit-dav.github.io/visit-website/] when to enable depth testing. To change
the values for the depth test mode, click on one of the Auto, Always,
Never radio buttons to the right of the Depth test mode label. If VisIt [https://visit-dav.github.io/visit-website/]
wants to use depth testing but is not allowed to then a warning message will be
issued and you can set the depth test mode to Always.

[image: ../../../_images/labelplotdepthtest.png]

Fig. 3.27 Removing extra labels (left) with depth test (right)

3.2.6.5. Formatting labels

The Label plot provides several options for setting label format. First and
foremost, you can set the label display format, which is how mesh node and cell
numbers are displayed. By default, the Label plot will display labels in
their most appropriate format with cell and node numbers for structured meshes
displayed as logical i,j,k indices. Setting the label format is only possible
for Label plots of structured meshes. To change the label format, select a
new option from the Label display format menu.

The Label plot’s default behavior is to use the vis window’s foreground
color but if you want labels to be a specific color, you can turn off the
Use foreground color check box and select a new label color by clicking on
the Label color color button.

The Label plot also allows control over the font used for the labels.
Font name menu allows you to choose from among Arial, Courier and
Times options. The labels can be bold or italic by checking the
appropriate check boxes. Font scale is used to control the font size.

Note that when you are plotting a mesh variable, VisIt [https://visit-dav.github.io/visit-website/] will make more controls
in the Label plot attributes window so you can set color and font options
for cells and nodes independently (see Figure 3.28).

[image: ../../../_images/labelplot2.png]

[image: ../../../_images/labelplotwindow2.png]

Fig. 3.29 Cell and node labels can be different colors when labeling mesh variables
using additional controls in the Label plot attributes window

Finally, the Label plot attributes window provides controls to determine the
horizontal and vertical text justification used when drawing each label. To
change the horizontal text justification, select a new value from the
Horizontal justification menu. To change the vertical text
justification, select a new value from the Vertical justification menu.

3.2.6.6. Labeling subset names and material names

The Label plot can label subset names and material names in addition to
meshes and fields defined on those meshes. To add subset names or material
names to your visualization, be sure to create a Label plot using a
variable of either of those types. An example of a Label plot of material
names is presented in Figure 3.30.

[image: ../../../_images/labelplotmats.png]

Fig. 3.30 Label plot of materials

3.2.7. Mesh Plot

The Mesh plot, shown in Figure 3.31, displays the
computational mesh over which a database’s variables are defined. The mesh plot
is often added to the visualization window when other plots are visualized to
allow individual cells to be clearly seen.

[image: ../../../_images/meshplot.png]

Fig. 3.31 Mesh plot

[image: ../../../_images/meshwindow.png]

Fig. 3.32 Mesh plot window

3.2.7.1. Mesh plot opaque modes

By default, VisIt [https://visit-dav.github.io/visit-website/]’s Mesh plot draws in opaque mode so that hidden surface
removal is performed when the plot is drawn and each face of the externally
visible cells are outlined with lines. When the Mesh plot’s opaque mode is
set to automatic, the Mesh plot will be drawn in opaque mode unless it is
forced to share the visualization window with other plots, at which point
the Mesh plot is drawn in wireframe mode. When the Mesh plot is drawn in
wireframe mode, only the edges of each externally visible cell face are
drawn, which prevents the Mesh plot from interfering with the appearance of
other plots. In addition to having an automatic opaque mode, the Mesh plot
can be forced to be drawn in opaque mode or wireframe mode by clicking the
On or Off Radio buttons to the right of the Opaque mode label in the
Mesh plot attributes window.

3.2.7.2. Showing internal zones

Sometimes it is useful to create mesh plot that shows all internal zones for a
3D database. Rather then plotting just the externally visible zones, which is
the Mesh plot’s default behavior, you can click the Show internal zones
check box to force the Mesh plot to draw the edges of every internal zone.

3.2.7.3. Changing colors

There are two color controls for a Mesh plot. One, the mesh color,
controls the color of mesh edge lines while the other, the opaque color,
controls the color of mesh surface (areal) facets. For each color option,
there are three choices

	A custom color chosen by the user.

	A random color chosen by VisIt [https://visit-dav.github.io/visit-website/].

	The Foreground (for mesh lines) or Background (for opaque facets) color.

The default is to use Foreground color for the mesh and Background color
for the opaque color. In this mode, when these colors are changed via the
Annotation controls,
the Mesh plot obeys the newly selected colors.
Otherwise, the Mesh plot maintains its chosen color (either custom or
random).

The random color option is useful when displaying multiple meshes and the user
simply needs to be able to easily distinguish among them.

3.2.7.4. Changing mesh line attributes

The Mesh plot’s mesh lines have two user-settable attributes that control
their width and line style. You can set the line width and line style are set by
selecting new options from the Line style or Line width menus at the top
of the Mesh plot attributes window.

3.2.7.5. Changing point type and size

Controls for points are described in Point type and size.

3.2.7.6. Geometry smoothing

Sometimes visualization operations such as material interface reconstruction can
alter mesh surfaces so they are pointy or distorted. The Mesh plot provides
an optional Geometry smoothing option to smooth out the mesh surfaces so they
look better when the mesh is visualized. Geometry smoothing is not done by
default, you must click the Fast or High radio buttons to enable it. The
Fast geometry smoothing setting smooths out the geometry a little while the
High setting works produces smoother surfaces.

3.2.8. Molecule Plot

The Molecule plot takes as input data with atoms and bonds (stored
internally as Vertices and Lines in a VTK PolyData structure) and renders it
as spheres and lines/cylinders

[image: ../../../_images/Molecule_crotamine_species.png]

Fig. 3.33 Molecule plot of crotamine, colored by element type, atoms shown with covalent radius, and no bonds.

[image: ../../../_images/Molecule_crotamine_residue.png]

Fig. 3.34 Molecule plot of crotamine, colored by residue type, atoms proportional to covalent radius emulating the CPK syle, bonds colored with adjacent atom color.

[image: ../../../_images/Molecule_crotamine_scalar.png]

Fig. 3.35 Molecule plot of crotamine, colored by a scalar quantity, no atoms shown, and bonds drawn as cylinders.

[image: ../../../_images/Molecule_crotamine_backbone.png]

Fig. 3.36 Molecule plot of crotamine, colored by backbone, atom at same width as thicker cylinder-shaped bonds.

3.2.8.1. Controlling how atoms are drawn

[image: ../../../_images/molecule_atoms.png]

Fig. 3.37 Molecule plot window Atoms tab

The value Spheres for Draw atoms as means to draw spheres using 3D
geometry. Sphere Impostors means to draw them using a single flat polygon
with an image of a sphere – this requires support from graphics hardware and
can introduce some minor graphical artifacts, but it is very fast. The value
None means that you are only interested in seeing the bonds, and you would
like the atoms themselves not to be drawn.

When rendering Spheres, Atom sphere quality determines the number of
polygons used to draw the atom geometry. Low corresponds to about a dozen
polygons per sphere, Medium is several dozen, High a couple hundred, and
Super is about a thousand.

Radius based on determines how the atoms are sized. Scalar variable uses
a nodal variable on the data set to determine radius. Covalent radius and
Atomic radius are the atomic properties, and they are calculated using a
built-in lookup table in VisIt [https://visit-dav.github.io/visit-website/]. Fixed value simply uses the value in the
text field below as the radius. Note that Covalent radius and Atomic radius
require a discrete nodal field called element to exist and contain the atomic
number. Also, note that some default values are set due to much molecular data
being in units of Angstroms. Depending on your data, you may need to change the
atomic/bond radii.

When Radius based on is set to Scalar variable, the
Variable for atom radius field becomes active and determines which variable
shall be used (and multiplied by the scale factor below) as the value for the
radius of the rendered atoms.

Atom radius scale factor applies when Radius based on is not set to
Fixed value. This value multiplies the other value used for radius, whether
it is the atomic/covalent radius or based on a scalar variable. Note that the
atomic and covalent radii used are in Angstroms, so if your data is in other
units, you should apply the appropriate conversion factor here.

Fixed atom radius only applies when Radius based on is set to
Fixed value. It is the actual radius you want to use to draw the atoms in
world coordinate units.

3.2.8.2. Controlling how bonds are drawn

[image: ../../../_images/molecule_bonds.png]

Fig. 3.38 Molecule plot window Bonds tab

The value None for Draw bonds as means you are only interested in seeing
the atoms and would like any bonds to be hidden. Lines uses geometric lines
with no 3D shading, and Cylinders uses 3D geometry with 3D shading.
Lines is much faster but Cylinders looks better.

When Draw bonds as is set to Cylinders, Bond cylinder quality
determines the number of polygons used to draw the bonds. Low is about three
polygons, and High is about twenty.

When Draw bonds as is set to Cylinders, Bond radius determines the
thickness of the cylinder in world coordinate units. Note that defaults for
these values were chosen due to molecular data commonly being in units of
Angstroms. Depending on your data, you may need to change the radius used
for rendering atoms and bonds.

When Draw bonds as is set to Lines, Bond line width determines the
thickness of the line used to draw the bonds in terms of a number of pixels.

Color bonds by can be set to Adjacent atom color, which means that each
half of the bond is drawn using the color of the atom to which it is attached.
Or, it can be set to a Single color chosen at the color selector just to the
right of this checkbox.

3.2.8.3. Controlling colors

[image: ../../../_images/molecule_colors.png]

Fig. 3.39 Molecule plot window Colors tab

The Discrete colors group is for values which take on integral values.
When VisIt [https://visit-dav.github.io/visit-website/] encounters a discrete-valued variable, it determines which one of
these color tables to use based on the variable name (element and restype,
specifically).

Element types and Residue types are specific examples, and they are separate
because there are conventional color tables widely used. VisIt [https://visit-dav.github.io/visit-website/] provides some
of these color tables. Other discrete fields catches anything which is not
an element or residue type.

The Continuous colors group is for values which take on real values.
Color table for scalars can be set to any color table, typically a
continuous one. The Clamp minimum and Clamp maximum check boxes,
along with their values, toggle whether to clamp the continuous field to narrow
the range to a specific range of values of particular interest, making full use
of the color table within that range and clamping anything outside that range
to the colors at the min/max extrema of the selected color table.

3.2.8.4. Examples in use

See Molecular data features for examples of the Molecule plot in use.

3.2.9. Pseudocolor plot

The Pseudocolor plot, shown in Figure 3.40, maps
a scalar variable’s data values to colors and uses the colors to “paint” values
onto the variable’s computational mesh. The result is a clear picture of the
database geometry painted with variable values that have been mapped to
colors. You might try this plot first when examining a scientific database
for the first time since it reveals so much information about the plotted
variable.

[image: ../../../_images/pseudocolorplot.png]

Fig. 3.40 Pseudocolor plot

3.2.9.1. Data tab options

VisIt [https://visit-dav.github.io/visit-website/]’s Pseudocolor plot attributes window Data tab allows you to change
the data scaling, limits and centering, as well as change colors, opacity
and control the plot Legend and lighting.
(shown in Figure 3.41)

[image: ../../../_images/pseudocolorwindow.png]

Fig. 3.41 Pseudocolor plot attributes window Data tab

3.2.9.1.1. Scaling the data

The scale maps data values to color values. VisIt [https://visit-dav.github.io/visit-website/] provides three scaling
options: Linear, Log, and Skew. Linear, which is the default,
uses a linear mapping of data values to color values. Log scaling is
used to map small ranges of data to larger ranges of color. Skew scaling
goes one step further by using an exponential function based on a skew factor
to adjust the mapping of data to colors. The function used in skew scaling is
(s^d-1)/(s-1) where s is a skew factor greater than zero and
d is a data value that has been mapped to a range from zero to one. The
mapping of data to colors is changed by changing the skew factor. A skew
factor of one is equivalent to linear scaling but values either larger or
smaller than one produce curves that map either the high or low end of the
data to a larger color range. To change the skew factor, choose Skew
scaling and type a new skew factor into the Skew factor text field.

3.2.9.1.2. Limits

Setting limits for the plot imposes artificial minima and maxima on the plotted
variable. This effectively restricts the range of data used to color the
Pseudocolor plot. You might set limits when you are interested in only a
small range of the data or when data limits need to be maintained for multiple
time steps, as when playing an animation. In fact, we recommend setting the
limits when producing an animation so the colors will correspond to the same
values instead of varying over time with the range of the plotted variable.
Setting limits often highlights a certain range in the data by assigning more
colors to that data range.

To set the limits for the Pseudocolor plot, you must first select the limit
mode. The limit mode determines whether the original data extents (data extents
before any portions of the plot are removed), are used or the current plot data
extents (data extents after any portions of the plot are removed), are used. To
select the limit mode, choose either Use Original Data or
Use Current Plot from the Limits menu.

The limits for the Pseudocolor plot consist of a minimum value and a maximum
value. You may set these limits, and turn them on and off, independently of one
another. That is, the use of one limit does not require the use of the other.
To set a limit, check the Min or Max check box next to the Min or
Max text field and type a new limit value into the Min or Max text
field.

3.2.9.1.3. Variable centering

Variables in a database can be associated with a mesh in various ways. Databases
supported by VisIt [https://visit-dav.github.io/visit-website/] allow variables to be associated with a mesh’s zones (cells)
or its nodes. When a variable is associated with a mesh’s zones, the variable
field consists of one value for each zone and is said to be
Zone-centered . When a variable is associated with a mesh’s nodes,
there are values for each vertex making up the zone and the variable is said to
be Node-centered.

There are three settings for variable centering: Natural, Nodal, and
Zonal. Natural variable centering displays the data according to the
way the variable was centered on the mesh. This means that node-centered data
will be displayed at the nodes with colors being linearly interpolated between
the nodes, and zone-centered data will be displayed as zonal values, giving a
slightly “blocky” look to the picture. If Nodal centering is selected, all
data is displayed at the nodes regardless of the variable’s natural centering.
This will produce a smoother picture, but for variables which are actually
zone-centered, you will lose some data (local minima and maxima). If you select
Zonal centering, all data is displayed as if they were zone-centered. This
produces a blockier picture and, again, it blurs minima/maxima for
node-centered data.

3.2.9.1.4. Changing the color table

[image: ../../../_images/colortablebutton.png]

Fig. 3.42 Color table button

The Pseudocolor plot can specify which VisIt [https://visit-dav.github.io/visit-website/] color table is used for colors.
To change the color table, click on the Color table button, shown in
Figure 3.42, and select a new color table name from
the list of color tables. The list of color tables always represents the list
of available VisIt [https://visit-dav.github.io/visit-website/] color tables. If you do not care which color table is used,
choose the Default option to use VisIt [https://visit-dav.github.io/visit-website/]’s active continuous color table. New
color tables can be defined using VisIt [https://visit-dav.github.io/visit-website/]’s Color table window which is
described later in this manual.

3.2.9.1.5. Opacity

You can make the Pseudocolor plot transparent by changing its opacity using
the Opacity menu. There are four options:

	Fully opaque: (the default), no transparency is applied.

	From color table:, opacity values are obtained from the active color
table for the plot. If the color table doesn’t support opacities, the plot
will be fully opaque.

	Constant: A constant opacity is applied everywhere. A slider is provided
to modify the opacity value. Moving the opacity slider to the left makes the
plot more transparent while moving the slider to the right makes the
plot more opaque.

	Ramp: Opacity is applied on a sliding scale ranging from fully
transparent (applied to the lowest values), to the opacity value chosen on
the slider. If the the slider is fully to the right, then the maximum values
being plotted will be fully opaque.

3.2.9.1.6. Legend Behavior

The legend for the Pseudocolor plot is a color bar annotated with tick marks
and numerical values. Below the color bar the minimum and maximum data values
are also displayed. Setting the limits for the plot changes only the color-bar
portion of the plot’s legend. It does not change the Min and Max values
printed just below the color bar. Those values will always display the original
data’s minimum and maximum values, regardless of the limits set for the plot or
the effect of any operators applied to the plot.

3.2.9.1.7. Lighting

Lighting adds detail and depth to the Pseudocolor plot, two characteristics
that are important for animations. The Lighting check box in the lower part
of the Pseudocolor plot attributes window turns lighting on and off. Since
lighting is on by default, uncheck the Lighting check box to turn lighting
off.

3.2.9.2. Geometry tab options

VisIt [https://visit-dav.github.io/visit-website/]’s Pseudocolor plot attributes window Geometry tab allows you to
modify the appearance of lines and points, and change rendering options
(shown in Figure 3.43)

[image: ../../../_images/pseudocolorwindow2.png]

Fig. 3.43 Pseudocolor plot attributes window, geometry tab

3.2.9.2.1. Lines

The lines section can be useful when visualizing the results from an
:ref: integral curve system <Integral_Curve_System> operation.

There are three options for Line type: Lines (default), Tubes, and
Ribbons.

The width of Lines can be changed by choosing an option from the
Line width menu. The Tubes type has a Resolution option which
represents the roundness of the tube. The higher the resolution, the rounder
the tube.

Both the Tubes and Ribbons type have various methods for affecting
the radius. The Radius option can be expressed either as an Absolute
quantity or Fraction of the Bounding Box (default) by choosing one of these
via the menu. A Variable can be chosen for the radius by checking the
Variable radius checkbox, and choosing a variable from the menu.

Lines can also have glyphs at their head and tail. Glyph options are
None (default), Sphere, and Cone. You can also specify
Resolution and Radius for the glyphs.

3.2.9.2.2. Point

Controls for points are described in Point type and size.

3.2.9.2.3. Representation

By default, the Pseudocolor plot renders as a Surface. It can also
render in Wireframe or Points mode. Choose the representation by
checking one or any combination of the three. Wireframe and Points
will be rendered in the color specified by their corresponding Color buttons.

3.2.9.2.4. Geometry smoothing

Sometimes visualization operations such as material interface reconstruction
can alter mesh surfaces so they are pointy or distorted. The Pseudocolor
plot provides an optional Geometry smoothing option to smooth out the mesh
surfaces so they look better when the plot is visualized. Geometry smoothing is
not done by default, you must click the Fast or High radio buttons to
enable it. The Fast geometry smoothing setting smooths out the geometry a
little while the High setting produces smoother surfaces.

3.2.10. Scatter Plot

The Scatter plot (see Figure 3.44) allows you to
combine multiple scalar fields into a point mesh so you can investigate the
relationships between multiple input variables. You might, for example, want to
see the behavior of pressure vs. density colored by temperature. The Scatter
plot can take up to four scalar fields as input and can use up to three of
them as coordinates for the created point mesh while one input variable can be
used to assign colors to the point mesh. The Scatter plot provides
individual controls for setting the limits of each input variable and also
allows each input variable to be scaled so that all of the resulting points
from disparate data ranges fit in a unit cube.

[image: ../../../_images/scatterplot.png]

Fig. 3.44 Example of Scatter plot

[image: ../../../_images/scatterplotwindow.png]

Fig. 3.45 Scatter plot attributes window

The Scatter plot attributes window is divided into two tabs: Inputs
and Appearance. The Inputs tab is further subdivided into tabs for each
input variable. Each tab for an input variable contains controls that pertain
to selecting the input variable, settings its limits, or setting the role that
the input variable will perform within the Scatter plot. Each input variable
can have one of five roles that will be covered later. The Appearance tab
contains controls for changing the Scatter plot’s appearance. Under the two
main tabs, the Scatter plot attributes window features a small section that
lists the roles that are used in the plot and which input variables are assigned
to each role.

3.2.10.1. Scatter plot wizard

[image: ../../../_images/scatterplotwizard.png]

Fig. 3.46 Example of the Scatter plot wizard

Plots are typically created in VisIt when you choose a variable from one of the
Plot menus. Since the Scatter plot takes as input up to four input
variables and typical plot creation only initializes one variable, you can
imagine that if a Scatter plot was created the usual way, only one of its
many input variables would be initialized. Furthermore, to initialize the plot,
you would have to open the Scatter plot attributes window and select the
other variables. Since that would not be a very straightforward way to create a
Scatter plot, VisIt now has support for plot wizards. A plot wizard is a
simple dialog window that pops up when you select a variable to plot. A plot
wizard leads you through a series of questions that allow VisIt to more fully
initialize a new plot. The Scatter plot wizard prompts you for the scalar
variable to use for the Y-Axis, the variable to use for the Z-Axis (optional),
and the variable to use for the plot’s colors (optional).

3.2.10.2. Selecting a variable

Three of the Scatter plot’s four input variables can be set in the
Scatter plot attributes window. The first input variable cannot be changed
from within the Scatter plot attributes window because that is the default
variable used by the plot. If you want to change the first input variable, you
can use the Variables menu under the Plot list . If you want to select
a different variable for any of the other input variables, you would first
click on the input variable’s tab and then you would select a new variable by
making a selection from the tab’s Variable button. Note that any
combination of nodal and cell-centered variables can be chosen. The Scatter
plot will recenter any input variables whose centering does not match the first
input variable’s centering.

3.2.10.3. Setting an input variable’s role

Each of the Scatter plot’s input variables has a role that you can set which
determines how the input variable is used by the Scatter plot. An input
variable can be used for the X, Y, Z coordinates, for the color, or it can
have no role. The role of the input variable is not fixed because you might
want to change roles many times and it is much less work to change only the
roles instead of reselecting variables, limits, and scaling for an input
variable. The flexibility of selecting a role for an input variable makes it
convenient to turn off colors or the Z coordinate with little effort. To
change the role for an input variable, select a new role from the input
variable’s Role combo box. If you select a role that is already played by
another input variable, VisIt will give the current input variable the selected
role and set the input variable that previously had the selected role so that
it has no role.

Each of the Scatter plot roles and their associated input variables are
listed in the bottom of the Scatter plot attributes window . Roles that
have an input variable have the name of the input variable printed next to the
name of the role so looking through all of the input variable tabs to determine
what the Scatter plot should look like is not required. Roles that have no
assigned input variable are grayed out.

3.2.10.4. Setting the minimum and maximum values

The Scatter plot allows you to set minimum and maximum limits on the values
considered for inclusion into the created point mesh. If an input variable’s
data value does not lie in the specified minimum/maximum value data range then
the point is not included in the created point mesh. Note that setting limits
does not cause points to be removed when data values in the color role fall
outside of the specified limits. To set the minimum value to be allowed in the
created point mesh, click on the Min check box and type a new minimum value
into the Min text field. To set the maximum value to be allowed in the
created point mesh, click on the Max check box and type a new value into the
Max text field.

3.2.10.5. Scaling an input variable

Sometimes input variable data values are clustered in a certain range of the
data. When this is the case, the points in the Scatter plot will bunch up in
one or more dimensions. For more uniformly spaced points, you might try
scaling one or more input variables. Each input variable can be scaled in the
three common ways: Linear, Log, and Skew. To set the scaling method used for the
input variable, click on the Linear, Log, or Skew radio buttons. If
you choose the Skew scaling method then you should also enter a value greater
than zero into the Skew factor text field to determine the function used for
skew scaling.

Since the Scatter plot’s input variables are likely to have wildly different
data ranges, the Scatter plot provides an option to independently scale each
input variable so it is in the range [0,1] so the resulting plot fits entirely
in a cube. If you prefer to see the Scatter plot without this corrective
scaling, you can turn off the Scale to cube check box on the
Scatter plot attribute window’s Appearance tab.

[image: ../../../_images/scatterplot_appearance.png]

Fig. 3.47 Scatter plot attributes window’s Appearance tab

3.2.10.6. Setting the colors

The Scatter plot can map scalar values to colors like the Pseudocolor plot
(Pseudocolor plot) does or it can color all points using a single
color. If you have set one of the input variables to have a color role then the
Scatter plot will map that input variable’s data values to colors using the
specified color table. To change the color table used by the Scatter plot,
click on the Color table button and select a new color table from the list
of available color tables. If the Scatter plot has been configured such that
none of the input variables is playing the color role then the Scatter
plot’s points will be drawn using one color. When the Scatter plot draws
its points using a single color, its default behavior is to color the points
using the vis window’s foreground color. If you want to instead use a different
color, turn off the Use foreground check box and click on the
Single color color button to select a new color.

3.2.10.7. Setting point properties

Controls for points are described in Point type and size.

3.2.11. Subset Plot

The Subset plot (example in Figure 3.48) is used to display subsets.
The typical scientific database can be decomposed into many different subsets.
Frequently a database is decomposed into non-material subsets such as domains or groups.
In AMR meshes, subsets can consist of levels or patches.
The Subset plot draws the database with its various subsets color coded so they
can be distinguished. For more information about subsets, see the Subsetting
chapter.

[image: ../../../_images/subsetplot.png]

Fig. 3.48 Example of Subset plot of an AMR Mesh

[image: ../../../_images/subsetplotwindow.png]

Fig. 3.49 Subset plot attributes window

3.2.11.1. Changing colors

The main portion of the Subset plot attributes window , also known as the
Subset colors area, is devoted to setting subset colors. The
Subset colors area contains a list of subset names with an associated subset
color. Subset plot colors can be assigned three different ways, the first of
which uses a color table. A color table is a named palette of colors that you
can customize to suite your needs. When the Subset plot uses a color table to
color subsets, it selects colors that are evenly spaced through the color table
based on the number of subsets. For example, if you have three subsets and you
are coloring them using the “xray” color table, the Subset plot picks three
colors out of the color table so your levels are colored black, gray, and white.
To color a Subset plot with a color table, click on the
Color table radio button and choose a color table from the
Color table menu to right of the Color table radio button.

If you want all subsets to be the same color, click the Single radio button
at the top of the Subset plot attributes window and select a new color from
the Popup color menu that is activated by clicking on the
Single color button. The opacity slider next to the Single color button
sets the opacity for the single color.

Clicking the Multiple radio button causes each subset to be a different,
user-specified color. By default, multiple colors are set using the colors of
the discrete color table that is active when the Subset plot is created. To
change the color for any of the subsets, select one or more subsets from the
list of subsets and click on the Color button to the right of the
Multiple radio button and select a new color from the
Popup color menu. To change the opacity for a subset, move Multiple
opacity slider to the left to make the subset more transparent or move the
slider to the right to make the subset more opaque.

The Subset plot attributes window contains a list of subset names with an
associated subset color. To change a subset’s color, select one or more subsets
from the list, click the color button and select a new color from the popup
color menu.

3.2.11.2. Opacity

The Subset plot’s opacity can be changed globally as well as on a per subset
basis. To change subset opacity, first select one or more subsets in the subset
list and move the opacity slider next to the color button. Moving the opacity
slider to the left makes the selected subsets more transparent and moving the
slider to the right makes the selected subsets more opaque. To change the
entire plot’s opacity globally, use the Opacity slider near the bottom of
the window.

3.2.11.3. Setting point properties

Albeit rare, the Subset plot can be used to plot points that belong to different
subsets so the Subset plot attributes window provides controls that allow you
to set the representation and size of the points. You can change the points’
representation using the Point Type combo box. The available options are:
Box, Axis, Icosahedron, Point, and Sphere. To change the
size of the points, you can enter a new floating point value into the
Point size text field. Finally, you can opt to scale the points’ glyphs
using a scalar expression by turning on the Scale point size by variable
check box and by selecting a scalar variable from the Variable button to
the right of that check box.

3.2.11.4. Wireframe mode

The Subset plot can be modified so that it only displays outer edges of subsets.
This option usually leaves lines that give only the rough shape of subsets and
where they join other subsets. To make the Subset plot display in wireframe
mode, check the Wireframe check box near the bottom of the
Subset plot attributes window.

3.2.11.5. Drawing internal surfaces

When you make one or more subsets transparent, you might want to make the Subset
plot draw internal surfaces. Internal surfaces are normally removed from Subset
plots to make them draw faster. To make the Subset plot draw internal surfaces,
check the Draw internal surfaces check box near the bottom of the
Subset plot attributes window.

3.2.11.6. Geometry smoothing

Sometimes visualization operations such as material interface reconstruction can
alter mesh surfaces so they are pointy or distorted. The Subset plot provides an
optional Geometry smoothing option to smooth out the mesh surfaces so they look
better when the plot is visualized. Geometry smoothing is not done by default,
you must click the Fast or High radio buttons to enable it. The Fast
geometry smoothing setting smooths out the geometry a little while the High
setting works produces smoother surfaces.

3.2.12. Tensor plot

The Tensor plot, shown in Figure 3.50, displays tensor
variables using ellipsoid glyphs to convey information about a tensor
variable’s eigenvalues. Each glyph’s scaling and rotation is controlled by the
eigenvalues/eigenvectors of the tensor as follows: for each tensor, the
eigenvalues (and associated eigenvectors) are sorted to determine the major,
medium, and minor eigenvalues/eigenvectors. The major eigenvalue scales the
glyph in the x-direction, the medium in the y-direction, and the minor in the
z-direction. Then, the glyph is rotated so that the glyph’s local x-axis lies
along the major eigenvector, y-axis along the medium eigenvector, and z-axis
along the minor.

[image: ../../../_images/tensorplot.png]

Fig. 3.50 Example of Tensor plot

[image: ../../../_images/tensorwindow.png]

Fig. 3.51 Tensor plot attributes window

3.2.12.1. Changing the tensor colors

The Tensor plot can be colored by a solid color or by the corresponding to the
largest eigenvalue. To color the Tensor plot by eigenvalues, click the
Eigenvalues radio button and then select a color table name from the color
table button to the right of the Eigenvalues radio button. To make all
tensor glyphs be the same color, click the Constant radio button and choose
a color by clicking on the Constant color button and selecting a new color
from the Popup color menu.

3.2.12.2. Setting the tensor scale

The Tensor plot’s tensor scale affects how large the ellipsoidal glyphs that
represent the tensor are drawn. By default, VisIt computes an automatic scale
factor based on the length of the bounding box’s diagonal to multiply by the
user-specified scale factor. This ensures that the tensors are some reasonable
size independent of the size of the mesh. To change the tensor scale, type a new
floating point number into the Scale text field and click the Apply
button in the Tensor plot attributes window. If you want to turn off
automatic scaling so the size of the tensors is solely determined by the scale
in the Scale text field, turn off the Auto scale check box. Yet another scaling
option for tensors is scaling by magnitude. When the Scale by magnitude
check box is checked, the magnitude of the tensor’s longest eigenvector is used
as a scale factor that is multiplied into the scale determined by the
user-specified scale and the automatic scale factor.

3.2.12.3. Setting the number of tensors

When visualizing a large database, a Tensor plot will often have too many
tensors to effectively visualize so the Tensor plot provides controls to reduce
the number of tensors to a number that looks appealing in a visualization. You
can accomplish this reduction by setting a fixed number of tensors or by
setting a stride. To set a fixed number of tensors, select the N tensors
radio button and enter a new number of tensors into the N tensors text
field. To reduce the number of tensors by setting the stride, select the
Stride radio button and enter a new stride value into the Stride
text field.

3.2.13. Truecolor plot

[image: ../../../_images/truecolor.png]

Fig. 3.52 Truecolor Plot

[image: ../../../_images/truecolorwindow.png]

Fig. 3.53 Truecolor Plot Attributes

The Truecolor plot, shown in Figure 3.52, is used to
plot images of observational or experimental data so they can be compared to
other plots, possibly of related, simulated data, in the same visualization
window. The Truecolor plot takes in a color variable, represented in VisIt
as a three or four component vector, and uses the vector components as the
red, green, blue, and alpha values for the plotted image. This allows you
access to many more colors than other plots like the Pseudocolor plot, which
can be used only to plot a single color component of an image.

3.2.14. Vector plot

[image: ../../../_images/vectorplot.png]

[image: ../../../_images/vectorwindow.png]

Fig. 3.55 Vector Plot Attributes and Example Rendering

The Vector plot (example shown in Figure 3.54) displays
vector variables using glyphs that indicate the direction and magnitude of
vectors in a vector field.

3.2.14.1. Setting vector color

The vectors in the Vector plot can be colored by the magnitude of the vector
variable or they can be colored using a constant color. Choose the coloring
method by clicking on either the Magnitude radio button or the Constant
color button. When vectors are colored by a constant color, you can change the
color by clicking on the color button next to the Constant radio button and
choosing a new color from the Popup color menu. When vectors are colored
by magnitude, the color is determined by one of VisIt’s color tables, which can
be chosen from the Color table button next to the Magnitude radio
button.

If you choose to color the vectors by their magnitudes, you have the option of
also specifying minimum and maximum values to aid in the mapping of vector
magnitude to color. The options that are used to aid coloring are collectively
known as limits. Limits can apply to all vectors that exist in the dataset or
just the vectors that have been drawn by the Vector plot. To specify which,
choose the appropriate option from the Limits combo box. When you specify
a minimum value all vectors with magnitudes less than the minimum value are
colored using the color at the bottom of the color table. When you specify a
maximum value all vectors with magnitudes larger than the maximum value are
colored using the color at the top of the color table. To provide a minimum
value, check the Min check box and type a new minimum value into the
Min text field. To provide a maximum value, check the Max check box
and type a new maximum value into the Max text field.

3.2.14.2. Vector scaling

The size of the vector glyphs has a tremendous effect on the Vector plot’s
readability. VisIt uses an automatically computed scaling factor based on the
diagonal of the bounding box as the size for the largest vector. You can
augment this size by entering a new scale factor in to the Scale text
field. It is also possible to turn off automatic scaling by turning off the
Auto scale check box. When automatic scaling is turned off, the vectors in
the Vector plot are the length specified in the Scale text field.

If you want each vector to be further scaled by its own magnitude, you can
turn on the Scale by magnitude check box. When the Scale by magnitude
check box is off, all vectors are the same length as determined by the
automatically computed scale factor and the user-specified scale.

3.2.14.3. Heads on the vector glyph

You can control the vector head size by typing a new value into the
Head size text field, which is the fraction of the entire vector’s length
that will be devoted to the vector’s head. Vectors in the Vector plot can be
drawn without vector heads so that only the line part of the vector glyph is
drawn. This results in cleaner plots, but the vector direction is lost. To turn
off vector heads, uncheck the Draw head check box at the bottom of the
Vector Attributes Window.

3.2.14.4. Tails on the vector glyph

The length of the tails on the vector glyph are determined by the vector
scaling factors that have been enabled. You can also set properties that
determine the location and line properties used to draw a vector glyph’s tail.
First of all, you can set the line style used to draw the vector glyph’s tail
by choosing a line style from the Line style combo box. You can choose a
new line width for the vector glyph’s tail by choosing a new line width from the
Line width combo box. Finally, you can determine where the origin of the
vector is on the vector glyph. The vector origin is a point along the length
of the vector that is aligned with the node or cell center where the vector
glyph will be drawn. The available options are: Head, Middle, and Tail.
You can choose a new Vector origin by clicking on one of the Head,
Middle, or Tail radio buttons.

3.2.14.5. Setting the number of vectors

When visualizing a large database, a Vector plot will often have too many
vectors. The Vector plot becomes incomprehensible with too many vectors. VisIt
provides controls to thin the number of vectors to a number that looks
appealing in a visualization. You can accomplish this reduction by setting a
fixed number of vectors or by setting a stride. To set a fixed number of
vectors, select the Fixed vectors radio button and enter a new number of
vectors into the corresponding text field. To reduce the number of vectors
by setting the stride, select the Stride radio button and enter a new
stride value into the Stride text field.

3.2.15. Volume plot

[image: ../../../_images/volumeplot.png]

Fig. 3.56 Type Ia Supernova (Image Credit: Blue Waters visualization staff, Rob Sisneros and Dave Semeraro)

The Volume plot uses a visualization technique known as volume-rendering, which
assigns color and opacity values to a range of data values. The colors and
opacities are collectively known as a volume transfer function. The volume
transfer function determines the colors of the plot and which parts are
visible. The plot, shown in (Figure 3.56), uses volume-rendering for the magnitude of vorticity. The magnitude of vorticity is a measure of turbulence that helps identify a bubble within the supernova.

The Volume Plot Attributes Window, shown in
(Figure 3.57), is divided into two main tabs.
The Rendering Options tab controls the rendering setting. Each volume
rendering method has a different set of inputs. Additionally, the Rendering
Options tab contains controls for lighting. Transfer function tab
controls how the data is mapped onto colors and the opacities to use for
different scalar values.

[image: ../../../_images/volumewindow.png]

[image: ../../../_images/volumewindow2.png]

Fig. 3.58 Volume Plot Attributes Window

3.2.15.1. Rendering Options

The Volume plot uses hardware-accelerated graphics by default. While users will
want to operate in this mode most of the time, since it’s faster, images drawn
by software are more accurate. To get a more accurate image, select a
Ray casting option from the Rendering method combo box. When the Volume plot
is set to use ray casting as its rendering mode, VisIt [https://visit-dav.github.io/visit-website/] recalculates what the
image should look like in software mode. Note that this can be a time-consuming
process if the database being used is large or if the visualization window is
large. We recommend shrinking the size of the visualization window before
changing the rendering method to ray casting to reduce the time and resources
required to draw the plot. It is worth noting that if the user has a large dataset
with intricate details, the software volume rendering method is the best method
to use because it scales well in parallel. Using a parallel compute engine can
greatly speed up the rate at which software volume rendering operates as long
as the dataset is domain-decomposed into roughly equal-sized pieces.
The third volume-rendering technique, called ray-casting, used by the Volume
plot is not hardware accelerated. In ray-casting, a ray is followed in reverse
from the computer screen into the dataset. As a ray progresses through the
dataset, sample points are taken and the sample values are used to determine
a color and opacity value for the sample point. Each sample point along the
ray is composited to form a final color for the screen pixel. Rays are traced
from closest to farthest to allow for early ray termination which stops the
sampling process when the pixel opacity gets above a certain threshold. This
method of volume-rendering yields superior pictures at the cost of speed and
memory use.

Rendering Method: Default Rendering (Figure 3.59).

[image: ../../../_images/default_rendering.png]

Fig. 3.59 Default Rendering options

Rendering Method: Ray casting: compositing (Figure 3.60)

[image: ../../../_images/raycasting_compositing.png]

Fig. 3.60 Ray casting: compositing options

Rendering Method: Ray casting: integration (grey scale) (Figure 3.61)

[image: ../../../_images/raycasting_integration.png]

Fig. 3.61 Ray casting: integration (grey scale) options

Rendering Method: Ray casting: SLIVR (Figure 3.62)

[image: ../../../_images/raycasting_slivr.png]

Fig. 3.62 Ray casting: SLIVR options

Rendering Method: Ray casting: OSPRay (Figure 3.63). OSPRay [https://www.ospray.org] is an Open source, Scalable, and Portable Ray tracing engine for volume-rendering on Intel Architecure CPUs,

AO Samples: determines the number of rays per sample to compute ambient occlusion.

AO Distance: determines the maximum distance to consider for ambient occlusion.

[image: ../../../_images/raycasting_ospray.png]

Fig. 3.63 Ray casting: OSPRay options

The Volume plot can use lighting to enhance the look of the plot. Lighting is
enabled by default but the user can disable it by unchecking the Lighting check
box near the bottom of the window.

Ambient: ambient light weight in [0-1]

Diffuse: diffuse reflection weight in [0-1]

Specular: specular reflection/transmission weight in [0-1]

Shininess: Phong exponent, usually in [2-10^4]

3.2.15.2. Transfer Function

You can design the color component of the volume transfer function using the
controls in Transfer function tab of the Volume Plot Attributes Window.
The controls are
similar to the controls for the Color Table Window. There is a color
spectrum that has color control points which determine the final look of the
color table. Color control points are added and removed using the +
and - buttons. Dragging control points with the mouse moves them and
changes their order. Right-clicking on a color control point displays a
popup color menu from which a new control point color can be chosen.

The Transfer function tab provides controls for setting the limits of
the variable being plotted. Limits are artificial minima or maxima that are
specified by the user. Setting the limits to a smaller range of values than
present in the database cause the plot’s colors to be distributed among a
smaller range of values, resulting in a plot with more color variety.

To set the limits are set by first clicking the Min
or Max check box next to the Min or Max text field. Clicking a
check box enables a text field into which the user can type a new minimum or
maximum value.

Like VisIt [https://visit-dav.github.io/visit-website/]’s other plots that map scalar values to colors, the Volume plot
allows for the data values to be scaled using Linear, Log, and Skew functions.
To select a scaling function other than linear where values in the data range
are mapped 1:1 to values in the color range, click on the Log or Skew
radio buttons.

3.2.15.3. Setting opacities

The Transfer function tab provides several controls that allow the user
to define the opacity portion of the volume transfer function. The opacity
portion of the volume transfer function determines what can be seen in the
volume-rendered image. Data values with a lower opacity allow more to be seen
and give the plot a gel-like appearance, while data values with higher opacity
appear more solid and occlude objects behind them. The controls for setting
opacities are located at the button of the window in the Opacity area.

[image: ../../../_images/volume_opacity.png]

Fig. 3.64 Volume Plot Opacity Options

You can set opacity three ways. You can hand-draw an opacity map, create it by
designing curves that specify the opacity when they are added together, or use
the opacities in the color table, if present. All
methods use the controls shown in Figure 3.57.

The interaction mode determines how opacity is set. Clicking on the
Freeform or Gaussian radio buttons selects the interaction mode.
If the interaction mode switches from Gaussian to Freeform, the shape
constructed by the Gaussian controls is copied to the Freeform control.
Both controls pretend that the plot’s data range is positioned horizontally
such that the values on the left of the control correspond to the low data
values while the values on the right of the control correspond to high data
values. In addition to the color map, there is a histogram of the current data
to aide in setting opacity of interesting values.
The vertical direction corresponds to the opacity for the given data
value. Taller curves are more opaque while shorter curves are more transparent.

[image: ../../../_images/volume_freeform_controls.png]

Fig. 3.65 Volume Plot Freeform Opacity Options

To design an opacity map using the Freeform control, position the mouse over
it and click the left mouse button while moving the mouse. The shape traced by
the mouse is entered into the Freeform control so that the user can draw the desired
opacity curve. Immediately under the Freeform control, there are four
buttons, shown in (Figure 3.65), which can be
used to manipulate the curve. The first three buttons initialize a new curve.
The black button makes all data values completely transparent. The ramp button
creates a linear ramp of opacity that emphasizes high data values. The white
button makes all data values completely opaque. The Smooth button smooths
out small bumps in the opacity curve that occur when drawing the curve by hand.

[image: ../../../_images/volume_gauss_controls.png]

Fig. 3.66 Volume Plot Gaussian Opacity Options

The Gaussian control used during Gaussian interaction mode is complex but
it provides precise control over the shape of a curve. The basic paradigm
followed by the Gaussian control is that new curves are added and reshaped
to yield the desired opacity curve. You add new curves by clicking and dragging
in the control. Right clicking with the mouse on an existing curve removes the
curve. Each curve has five control points which can change the curve’s position
and shape. The control points are shown in along with the shapes that a curve
can assume. A control point changes color when it becomes active so there the user
knows which control point is used. Curves start as a smooth Gaussian shape but
they can change between the shapes shown in by moving the shape control point
up and down or left and right. Opacity maps are typically created by adding
several curves to the window and altering their shapes and sizes until the
desired image is obtained in the visualization window. The
Attenuation slider, the final control involved in creating an opacity map,
controls the opacity of the entire opacity map defined by the Freeform
or Gaussian controls. It provides a knob to scale all opacities without
having to modify the opacity map.

3.2.15.4. Changing the opacity variable

The variable used to determine opacity does not have to be the plotted
variable. Having a different opacity variable than the plotted variable
is useful for instances in which the user wants to determine the opacity using a
variable like density while coloring the plot by another variable such as
pressure. To change the opacity variable, select a new variable from the
Opacity variable variable menu. By default, the plotted variable is
used as the opacity variable. This is implied when the Opacity variable
variable button contains the word default. Even when “default” is chosen, it
is possible to set artificial data limits on the opacity variable by entering
new values into the Min or Max text fields.

3.2.15.5. Controlling image quality

When the Volume plot is drawn with graphics hardware, the database is resampled
onto a rectilinear grid that is used to place the polygons that are drawn to
produce the image. You can control the coarseness of the resampled grid with the
Number of samples text field. To increase the number of sample
points, enter a larger number into the Number of samples text field.

When the Volume plot is drawn in ray casting mode, the number of samples along
each ray that is cast through the data becomes important. Having too few sample
points along a ray gives rise to sampling artifacts such as rings or voids.
The user should adjust this number until satisfied with the image. More
samples generally produce a better image, though the image will take longer to
produce. To change the number of samples per ray, enter a new number of samples
per ray into the Samples per ray text field.

When using lighting, the gradient calculation method that the Volume plot uses
influences the quality of the images that are produced. By default, VisIt [https://visit-dav.github.io/visit-website/] uses
the Sobel operator, which uses more information from adjacent cells to
calculate a gradient. When the Sobel operator is used to calculate the gradient,
lighting usually looks better. The alternative gradient calculation method is
centered-differences and while it is much less compute intensive than the Sobel
operator, it also produces lesser quality gradient vectors, which results in
images that are not lit as well. To change the gradient calculation method,
click on either the Centered diff or Sobel radio buttons.

4. Operators

This chapter explains the concept of an operator and goes into detail about
each of VisIt’s operators.

	4.1. Working with Operators
	4.1.1. Managing operators

	4.2. Operators that Generate New Variables

	4.3. Operator Types
	4.3.1. Box operator

	4.3.2. Clip operator

	4.3.3. Cone operator

	4.3.4. Connected Components operator

	4.3.5. Create Bonds operator

	4.3.6. Cylinder operator

	4.3.7. Decimate operator

	4.3.8. DeferExpression operator

	4.3.9. Displace operator

	4.3.10. Elevate operator

	4.3.11. Explode operator

	4.3.12. ExternalSurface operator

	4.3.13. Integral Curve System

	4.3.14. Index Select operator

	4.3.15. InverseGhostZone operator

	4.3.16. Isosurface operator

	4.3.17. Isovolume operator

	4.3.18. Lineout operator

	4.3.19. Merge operator

	4.3.20. OnionPeel operator

	4.3.21. Project operator

	4.3.22. Reflect operator

	4.3.23. Replicate operator

	4.3.24. Resample operator

	4.3.25. Revolve operator

	4.3.26. Slice operator

	4.3.27. Smooth operator

	4.3.28. SphereSlice operator

	4.3.29. Tessellate operator

	4.3.30. ThreeSlice operator

	4.3.31. Threshold operator

	4.3.32. Transform operator

	4.3.33. Tube operator

4.1. Working with Operators

An operator is a filter applied to a database variable before the compute
engine uses that variable to generate a plot. VisIt provides several standard
operator types that allow various operations to be performed on plot data.
The standard operators perform data restriction operations like planar
slicing, spherical slicing, and thresholding, as well as more sophisticated
operations like peeling off mesh layers. All of VisIt’s operators are plugins
and new operators can be written to extend VisIt in new ways. See the
wiki [http://visitusers.org] for more details on creating new operator
plugins or send an e-mail inquiry to visit-users@elist.ornl.gov.

4.1.1. Managing operators

When an operator is applied to a plot, it modifies the data that the plot uses
to generate a visualization. Any number of operators can be applied to a plot.
Each operator added to a plot restricts or modifies the data that is supplied
to the plot. Very sophisticated visualizations can be created by using a
series of operators.

The controls for the operators are found in the same location as the plot
controls. The plot list, which displays the list of plots found in the
current visualization window, also displays the operators applied to each
plot. Each entry in the plot list displays the database name (when there is
more than one open source), the plot type, the variable, and all operators
that are applied to the plot. When an operator is applied to a plot, the
name of the operator is inserted in front of the plot variable. If multiple
operators are applied to a plot, the most recently added operator appears
first when reading left to right while the operator that was applied first
appears just to the left of the variable name. Plot list entries can also
be expanded to allow the user to add, remove, reorder, and change the
attributes of operators.

[image: ../../_images/Operators-Plots.png]

Fig. 4.1 The plots area

4.1.1.1. Adding an operator

Operators are added by selecting an operator from the Operators menu,
shown in Figure 4.2. If an operator listed
in this chapter is not listed in the Operators menu then the operator
might not be loaded by default. To enable additional operators, use the
Plugin Manager Window. When an operator is added, it applies the
operator to the selected plots in the plot list unless the
Apply operators to all plots check box is checked, in which case, the
selected operator is applied to all plots in the plot list. By default,
operators are applied to all plots in the plot list.

[image: ../../_images/Operators-OperatorsMenu.png]

Fig. 4.2 The operators menu

When an operator is added to a plot, the name of the operator appears in
the plot list entry to the left of the variable or any previously applied
operator. When an operator is added to an already generated plot, the plot
is reset back to the new state to allow the user an opportunity to set the
operator’s attributes before the plot is regenerated. To regenerate the
plot with the newly added operator, press the Draw button. It is also
possible to apply an operator by clicking an operator attributes window’s
Apply button. When this occurs, a dialog window appears asking the user
if the operator should be applied to the selected plots (see
Figure 4.3).

[image: ../../_images/Operators-ApplyOperatorDialog.png]

Fig. 4.3 The add operator dialog

4.1.1.2. Expanding plots

Plot list entries are normally collapsed by default with the operators
applied to the plots shown in the plot list as a series of nested operators,
which finally take a variable as an argument. The plot list allows plot
list entries to be expanded on a per-plot basis so the user can get to each
individual operator that is applied to a plot. To expand a plot list entry,
click on its expand button, shown in
Figure 4.4. When a plot list entry is
expanded, the plot’s database (if there is more than one open source), the
variable, all the operators, and finally the plot get their own line in the
plot list entry. This is significant because it allows operators to have
additional controls to let you reposition them in the pipeline or remove
them from the middle of the pipeline without having to first remove other
operators.

[image: ../../_images/Operators-PlotCollapsed.png]

[image: ../../_images/Operators-PlotExpanded.png]

Fig. 4.4 A plot list entry before and after being expanded

4.1.1.3. Changing the order of operators

Sometimes with several operators applied, it is useful to change the order
of the operators. For example, the user might want to apply a Slice operator
before a Reflect operator instead of after it to reduce the amount of data
that VisIt must process in order to draw your plot. The order in which
operators are applied often has a significant impact on the visualization.
Using the previous example, suppose a plot is sliced before it is reflected.
The resulting visualization is likely to have a reflected slice of the original
data. If the order of the operators was reversed so that the Reflect operator
came first, the Slice operator’s slice plane might not intersect the reflected
data in the same way, which could result in a totally different looking
visualization.

The plot list entry must be expanded in order to change the order of its
operators. Once the plot list entry is expanded, each operator is listed in
the order in which they were applied and each operator has small buttons to
the right of its name that allow the operator to be moved up or down in the
pipeline. To move an operator closer to the database so it is executed
before it would have been executed before, click on the Up button next
to an operator’s name. Moving the operator closer to the database in the
pipeline is called demoting the operator. Clicking the Down button next
to an operator’s name moves the operator to a later stage of the pipeline.
Moving an operator to a later stage of the pipeline is known as promoting
the operator since the operator appears closer to the plot in the expanded
plot entry. Operators in the plot list entry that can only be moved in one
direction have only the Up button or the Down button while operators
in the middle of the pipeline have both the Up button and the Down
button.

[image: ../../_images/Operators-OperatorsReordered.png]

Fig. 4.5 The controls for changing operator order

4.1.1.4. Removing operators

There are two ways to delete an operator from a plot. The last two entries
in the Operators menu have options that remove one or more operators.
To remove only the last applied operator, select the Remove last option
from the Operators menu. To remove all the operators applied to a plot,
select the Remove all option from the Operators menu. Unless the
Apply operator to all plots check box is checked, operators are only
removed from selected plots. When an operator is removed in this manner and
the plot has already been generated, it is immediately regenerated.

The Operators menu has controls that allow the last operator applied to
a plot to be removed or all of a plot’s operators to be removed. VisIt also
provides controls that let you remove specific operators from the middle of
a plot’s operator list. First expand the plot list entry by clicking its
Expand button and then click on the red X button next to the operator
to be deleted. When an operator is deleted using the red X buttons, the
plot is reset back to the new state so the Draw button must be clicked
to regenerate the plot. See Figure 4.6
for an example of deleting an operator from the middle of a plot’s operator
list.

[image: ../../_images/Operators-OperatorDeleted.png]

Fig. 4.6 After removing an operator from the middle of the pipeline

4.1.1.5. Setting operator attributes

Each operator type has its own attributes window used to set attributes for
that operator type. Operator attribute windows are brought up by selecting
the operator type from the OpAtts (Operator attributes) menu shown in
Figure 4.7.

[image: ../../_images/Operators-OpAttsMenu.png]

Fig. 4.7 The operator attributes menu

When there is only one operator of a given type in a plot’s operator list,
setting the attributes for that operator type will affect that one operator.
When there are multiple instances of the same type of operator in a plot’s
operator list, only the active operator’s attributes are set if the active
operator is an operator of the type whose attributes are being set. The
active operator is the operator whose attributes are set when using an
operator attributes window and can be identified in an expanded plot entry
by the highlight that is drawn around it (see
Figure 4.8). To set the active operator,
expand a plot entry and then click on an operator in the expanded plot
entry’s operator list.

[image: ../../_images/Operators-ActiveOperator1.png]

[image: ../../_images/Operators-ActiveOperator2.png]

Fig. 4.8 Setting the active operator

Setting the active operator is useful when there are multiple operators of
the same type applied to the same plot. For example, there might be two
Transform operators applied to a plot in order to scale a plot with one
operator and then rotate the plot with the second Transform operator. In
this case the user could add two Transform operators, make the first
Transform operator active, set the scaling attributes, make the second
Transform operator active, and set the rotation attributes.

4.2. Operators that Generate New Variables

Some of VisIt’s operators act more like expressions in that they generate
new variables that can be plotted. The variable type they output does not
necessarily match the variable type they accept as input. For example, the
IntegralCurve operator accepts a Vector and outputs a Scalar, while the
ConnectedComponents operator accepts a Mesh and outputs a Scalar.

Most of the operators that generate new variables are best applied using
the operators submenu of a particular plot’s variable menu. See
Figure 4.9,

[image: ../../_images/Operators-OperatorsInVariableMenu.png]

Fig. 4.9 The menu for applying an operator that generates a new variable.

It is probably best after applying an operator in this fashion to open the
Operator’s attributes window to ensure good settings for your data before
clicking Draw.

Operators that generate Scalars:

	Connected Components

	DataBinning

	Flux

	Integral Curve operator

	Lagrangian Coherent Structure (LCS) operator

	Limit Cycle operator

	ModelFit

	Poincaré operator

	StatisticalTrends

Operators that generate Vectors:

	Lagrangian Coherent Structure (LCS) operator

	SurfaceNormal

Operators that generate Curves:

	DataBinning

	Lagrangian

	LimitCycle

	Lineout

4.3. Operator Types

VisIt is installed with operator plugins, which perform a wide variety of
functions. Some of the operators are not be enabled by default so they do not
show up in the Operator menu. Use the Plugin Manager Window, which
can be opened by clicking on the Plugin Manager option in the
Main Window’s Preferences menu, to enable additional operators or disable
operators that you rarely use.

	4.3.1. Box operator

	4.3.2. Clip operator

	4.3.3. Cone operator

	4.3.4. Connected Components operator

	4.3.5. Create Bonds operator

	4.3.6. Cylinder operator

	4.3.7. Decimate operator

	4.3.8. DeferExpression operator

	4.3.9. Displace operator

	4.3.10. Elevate operator

	4.3.11. Explode operator

	4.3.12. ExternalSurface operator

	4.3.13. Integral Curve System

	4.3.14. Index Select operator

	4.3.15. InverseGhostZone operator

	4.3.16. Isosurface operator

	4.3.17. Isovolume operator

	4.3.18. Lineout operator

	4.3.19. Merge operator

	4.3.20. OnionPeel operator

	4.3.21. Project operator

	4.3.22. Reflect operator

	4.3.23. Replicate operator

	4.3.24. Resample operator

	4.3.25. Revolve operator

	4.3.26. Slice operator

	4.3.27. Smooth operator

	4.3.28. SphereSlice operator

	4.3.29. Tessellate operator

	4.3.30. ThreeSlice operator

	4.3.31. Threshold operator

	4.3.32. Transform operator

	4.3.33. Tube operator

4.3.1. Box operator

The Box operator, which is mostly intended for use with 3D datasets, removes
areas of a plot that are either partially or completely outside of the volume
defined by an axis-aligned box. The Box operator does not clip cells that
straddle the box boundary, it just removes the cells from the visualization
leaving jagged edges around the edges of the box where cells were removed.

[image: ../../../_images/box.png]

Fig. 4.10 Box operator example (original on left, with Box operator applied on right)

4.3.1.1. Setting how cells are removed

The Box operator can either remove cells that are totally outside of the box
or it can remove those cells outside of the box and cells that are only
partially outside of the box. By default, the Box operator only removes cells
that are completely outside of the box. To make the Box operator also remove
cells that are partially outside of the box, you click the All radio button
in the Box attributes window (shown in Figure 4.10).
Selecting the Inverse option will return everything in the mesh except
those cells bounded by the selected box.

[image: ../../../_images/boxwindow.png]

Fig. 4.11 Box attributes window

4.3.1.2. Resizing the box

The Box operator uses an axis aligned box to remove cells from the
visualization so the box can be specified as a set of minimum and maximum
values for X, Y, and Z. To set the size of the box using the Box operator
attributes window, you type new coordinates into the X Minimum, X Maximum,
Y Minimum, Y Maximum, Z Minimum, or Z Maximum text fields.

The Box operator can also be resized interactively with VisIt’s Box tool (for
more information, see the Interactive Tools chapter). If you want to
use the Box tool to resize the Box operator’s box, first make sure to
select the plot that uses the Box operator in the Plot list and then enable
the Box tool. When the Box tool appears, it uses the same box as the Box
operator. Moving or resizing the Box tool causes the Box operator to also move
or be resized and the plots in the visualization window get regenerated with
the new box.

4.3.2. Clip operator

The Clip operator can remove certain shapes from a dataset before it is plotted.
More specifically, the Clip operator can clip away box- or sphere-shaped regions
from a database. The database remains in its original dimension after being
clipped by the Clip operator and since the Clip operator manipulates the
database before it is plotted, the surfaces bounding the removed regions are
preserved in the final plot. While being geared primarily towards 3D databases,
the Clip operator also clips 2D databases. When applied to 2D databases, the
Clip operator can remove rectangular or circular regions from the database.
Figure 4.12 shows a Pseudocolor and Mesh plots with a Clip
operator.

[image: ../../../_images/clip.png]

Fig. 4.12 Clip operator example: original plot; clipped with planes; clipped with sphere

4.3.2.1. Removing half of a plot

The Clip operator uses up to three planes to define the region that is clipped
away. Each plane is specified in origin-normal form where the origin is a point
in the plane and the normal is a vector that is perpendicular to the plane.
When a plane intersects a plot, it serves as a clipping boundary for the plot.
The plane’s normal determines which side of the plane is clipped away. The
region on the side of the plane pointed to by the normal is the region that the
Clip operator clips away. If more than one plane is active, the region that is
left as a result of the first clip operation is clipped by the next plane, and
so on.

Only one plane needs to be used to remove half of a plot. Find the center of
the database by inspecting the 3D axis annotations in the visualization window.
Type the center as the new plane origin into the Origin text field for
plane 1 then click the Plane 1 check box for plane 1 (see
Figure 4.13). When the Apply button is clicked, half
of the plot should be removed. You can rotate the clipping plane by entering a
new normal vector into the Normal text field. The normal is specified by
three floating point values separated by spaces.

[image: ../../../_images/clipwindow.png]

Fig. 4.13 Clip attributes window

The Accurate option can be used when multiple planes are specified, to
ensure accuracy when planes intersect a zone but do not clip the vertices.
It can be up to 6x slower than the Fast option.

4.3.2.2. Removing one quarter of a plot

To remove a quarter of a plot, you need two clipping planes. To remove one of
the plot, first remove one half of the plot. Now, enable the second clipping
plane and make sure that it has the same origin as the first clipping plane but
a different normal. To remove exactly one quarter of the plot, make sure that
the normal is perpendicular to plane 1’s normal. Also make sure that plane 2’s
new normal points into the region that was clipped away by plane 1. The two
planes, when considered together, remove one quarter of the plot. For an
illustration of this, see Figure 4.14. In general, the Clip
operator removes regions defined by the intersection of the regions removed by
each clipping plane. Follow the same procedure with the third clipping plane to
remove only one eighth of the plot.

[image: ../../../_images/clipcircle.png]

Fig. 4.14 Removing one quarter of a plot using two clip planes: Plane1 clipped region + Plane2 clipped region = One quarter removed

4.3.2.3. Spherical clipping

The Clip operator not only uses sets of planes to clip databases, it can also
use a sphere. To make the Clip operator use a clipping sphere, click on the
Sphere tab. To specify the location and size of the sphere, enter a new
center location into the Center text field on the Sphere tab of the Clip
attributes window and then enter a new sphere radius.

4.3.2.4. Inverting the clipped region

Once the Clip operator has been applied to plots and a region has been clipped
away, clicking the Inverse check box brings back the clipped region and
clips away the region that was previously unclipped. Using the Inverse
check box is an easy way to get only the clipped region back so it can be used
for other operations.

A common trick when creating animations is to have two identical plots with
identical Clip operators applied and then switch one Clip operator to have an
inverted clipping region. This will make the plot appear whole. The plot with
the inverted clipping region can then be transformed independently of the first
plot so it appears to slide out of the first plot. Then it is common to fade
out the second plot and zoom in on the first plot’s clipped region.

4.3.2.5. Using the crinkle clip

Generally, when using the Clip operator, the clipped surface will be smooth,
but this often isn’t representative of the natural surfaces of the cells along
the clipped boundary. The often jagged edges of those cells are cut away and replaced
with new faces to create this smooth result. There are times, though, when
it may be desirable to retain the original cell faces that lay along this
boundary. This can be accomplished by enabling the Crinkle clip option, shown
in Figure 4.15.

[image: ../../../_images/crinkle_clip.png]

Fig. 4.15 Enabling the Crinkle clip option; Crinkle clip example

4.3.3. Cone operator

Like the Slice operator, the Cone operator is also a slice operator. The Cone
operator slices a 3D database with a cone, creating a surface that can be left
in 3D or be projected to 2D. Plots to which the Cone operator has been applied
become surfaces that exist on the surface of the specified cone. The resulting
plot can be left in 3D space or it can be projected to 2D space where other
operations can be done to it. A Pseudocolor plot to which a Cone operator has
been applied is shown in Figure 4.16.

[image: ../../../_images/cone.png]

Fig. 4.16 Cone operator example: original plot; sliced with cone; sliced with cone and projected to 2D

4.3.3.1. Specifying the slice cone

You can specify the slice cone by setting various fields in the Cone
attributes window, shown in Figure 4.17. To specify how
pointy the cone should be, type a new angle (in degrees) into the Angle
text field. The cone is defined relative to its origin, which is the point at
the tip of the cone. To move the cone, type in a new origin vector into the
Origin text field. The origin is represented by three floating point numbers
separated by spaces. Once the cone is positioned, you can set its direction
(where the cone points) by entering a new direction vector into the
Direction text field.

[image: ../../../_images/conewindow.png]

Fig. 4.17 Cone operator window.

The cone can extend forever or it can be clipped at some distance along its
length. To clip the cone at a certain length, check the Cut cone off check
box and enter a new length value into the Length text field.

4.3.3.2. Projecting the slice to 2D

The Cone operator usually flattens sliced plots to 2D along the cone’s direction
vector. This results in circular 2D plots in the visualization window. The Cone
operator can also unfold sliced plots into a cylinder and then into rectangular
2D plots. Alternatively, the Cone operator can leave the sliced plots in 3D
space where their cone shape is obvious. To set the cone projection mode, click
on one of the following radio buttons: In 3D, Project to 2D, or Cylindrical.

4.3.4. Connected Components operator

The Connected Components operator is in a special class of operators, one that
creates a new variable. In this case, the operator accepts as an input
variable the name of a mesh, and constructs a scalar variable as output.

The operator creates unique labels for each connected mesh sub-component and
tags each zone in the mesh with the label of the connected component it
belongs to. Figure 4.18,

[image: ../../../_images/conn_comp_op.png]

Fig. 4.18 Connected Components operator shown with Pseudocolor Plot.

The operator has one option which controls the use of Ghost Zone Neighbors for connectivity between domains. This option is turned on (set to true) by default.
Figure 4.19

[image: ../../../_images/conncompwindow.png]

Fig. 4.19 Connected Components operator window.

4.3.5. Create Bonds operator

The CreateBonds operator is used to specify ranges of distances for various
types of atoms and use those ranges to create bonds. The default behavior of
this operator is to create a bonds between a Hydrogen and any other species
if the atoms are separated by a distance between 0.4 and 1.2 units
(e.g. Angstroms) and between a pair of atoms (not including H) if they are
between 0.4 and 1.9 units apart. This works well for organic molecules.
However, in Figure 4.20, the default distances
were not useful. In this case, the values were changed to create a bond
including H for distances between 0.4 and 1.5 units and for other species
between 0.4 and 2.5 units. Figure 4.21.

[image: ../../../_images/createbonds_example.png]

[image: ../../../_images/createbonds_bonding.png]

Fig. 4.21 CreateBonds bonding parameters

4.3.5.1. Setting the Bonding parameters

The Bonds list contains the bonding pair specifications to algorithm. Each row contains the species 1st and 2nd, and the Min and Max distance which could be considered a bond.

Note:

	A “*” matches any species.

	It does not matter which species is 1st and which is 2nd. The bonds are not unidirectional.

	The first match in the list is taken, even if later lines also match, which allows you to specify more specific rules above less-specific rules.

For example, if the first line is “H”, “*”, “0.4”, “1.2”, this specifies that the algorithm should create a bond between two atoms if either one is Hydrogen and the distance between them is between 0.4 and 1.2 spatial units.

As a follow-on to this example, suppose the second line is “*”, “*”, “0.4”, and “1.9”. Now suppose two atoms exist, H and O, and they are separated by a distance of 1.5 units. Because one is H, it will match the first line, determine the distance is too great (since it’s greater than 1.2), and so it will not create a bond between this atom pair. Since this atom pair matched the first line, the second line is not considered, even though the atom pair matches its criteria.

Just below the actual bonding rules list are several buttons: The New button creates a new rule, and Del deletes it. Up moves the currently selected rule up in the list, and Down moves the currently selected rule later in the list. Recall that the order of rules matters because only the first match is considered.

The Details section contains controls to set the values for a rule. The 1st and 2nd controls pop up the species selection widget shown in Figure 4.22.

[image: ../../../_images/createbonds-selector.png]

To get a wildcard which will match any type of atom, choose Match any element at the bottom; it is selectable just as any individual species in the periodic table.

Also, note that there is the possibility for some hinting to help guide your selection to the viable types of atoms. (This depends on conditions like file format support.) For example, in this screenshot, the H and Si elements are in boldface, since the file contains only those types of atoms. The Min and Max fields are standard text widgets.

4.3.5.2. Advanced settings

[image: ../../../_images/createbonds_advanced.png]

Variable for atomic number defaults to element as per the convention, but it can be set to any integral variable corresponding to the atomic number of each atom.

If you specify the wrong distance, each atom might try to bond to many other atoms. To keep an error like this from causing a severe hit to memory and performance, Maximum bonds per atom will stop the process before it gets out of hand. The default value is 10, and it could safely be set lower in many cases, but it is user-settable for unusual cases where >10 bonds are needed on some atoms.

When Add periodic bonds is checked, this will make the algorithm see if an atom would bond with an atom past a periodic boundary edge, and add a dangling bond in that case. Checking this setting will enable the Periodic in X,Y,Z controls as well as the controls for Unit cell vectors.

Periodicity in X, Y, Z can be selected independently (or none).

Some file formats specify the vectors for the unit cell (sometimes called “direct lattice” vectors) containing the molecular data in the file. If they are present and Use provided unit cell vectors is checked, then it will use those values instead of the ones specified in this window.

Vector for X, Y, and Z controls the actual vectors describing the amount to displace in each of the three axes.

4.3.5.3. Examples in use

See Molecular data features for examples of the CreateBonds operator in use with the Molecule Plot.

4.3.6. Cylinder operator

The Cylinder operator, shown in Figure 4.24, slices a dataset with a
cylinder whose size and orientation are specified by the user. The result is a
cylindrical surface.

[image: ../../../_images/cylinder.png]

Fig. 4.24 Cylinder operator example: original plot; plot clipped by cylinder

4.3.6.1. Setting the cylinder’s endpoints

There are two ways to set the endpoints for the Cylinder operator. First of all,
you can open the Cylinder operator window (see
Figure 4.25) and type new 3D points into the
Endpoint 1 and Endpoint 2 text fields. The second, and more interactive
way to set the endpoints for the Cylinder operator is to use VisIt’s interactive
Line tool, which is discussed in the Interactive Tools chapter. The Line
tool lets you interactively place the Cylinder operator’s endpoints anywhere in
the visualization. The Line tool’s endpoints correspond to the centers of the
cylinder’s top and bottom circular faces.

4.3.6.2. Setting the radius

To set the radius used for the Cylinder operator’s clipping cylinder, type a
new radius into the Radius text field in the Cylinder attributes window .

[image: ../../../_images/cylinderwindow.png]

Fig. 4.25 Cylinder operator window.

4.3.6.3. Inverting the cylinder region

Once the Cylinder operator has been applied to plots and a cylindrical region
has been clipped away, clicking the Inverse check box brings back the
cylindrical region and removes the region that was previously shown.

[image: ../../../_images/cylinder_inverse.png]

Fig. 4.26 Cylinder with inverse applied

4.3.7. Decimate operator

The Decimate operator, shown in Figure 4.27,
removes nodes and cells from an input mesh, reducing the cell count while
trying to maintain the overall shape of the original mesh. The Decimate
operator can currently operate only on the external surfaces of the input
geometry. This means that in order to apply the Decimate operator, you must
first apply the ExternalSurface operator, which will be covered later
in this chapter. The Decimate operator is not enabled by default but it can be
turned on in the Plugin Manager Window.

4.3.7.1. Using the Decimate operator

The Decimate operator simplifies mesh geometry. This can be useful for
producing models that have lower polygon counts than the model before the
Decimate operator was applied. Models with lower polygon count can be useful
for speeding up operations such as rendering. The Decimate operator has a
single knob that influences how many cells are removed from the input mesh.
The Target Reduction value is a floating point number in the range (0,1)
and it can be set in the Decimate attributes window (see
Figure 4.28). The number specified is the proportion
of number of polygonal cells in the output dataset “over” the number of
polygonal cells in the original dataset. As shown in
Figure 4.27,
higher values for Target Reduction value cause VisIt to simplify
the mesh even more.

[image: ../../../_images/decimate1.png]

[image: ../../../_images/decimate2.png]

Fig. 4.27 Decimate operator applied to reduce the number of cells in the mesh.
(Left-to-right, top-to-bottom):
Original Mesh, Reduction = 0.1,
Reduction = 0.5, Reduction = 0.75

[image: ../../../_images/decimatewindow.png]

Fig. 4.28 Decimate attributes window

4.3.8. DeferExpression operator

The DeferExpression operator is a special-purpose operator that defers
expression execution until later in VisIt’s pipeline execution cycle. This
means that instead of expression execution taking place before any operators
are applied, expression execution can instead take place after operators have
been applied.

4.3.8.1. Plotting surface normals

VisIt can use the DeferExpression operator in conjunction with the
ExternalSurface operator and the surface_normal expression to plot
surface normals for your plot geometry. To plot surface normals, first create a
vector expression using the surface_normal expression , which takes the name of
your plot’s mesh as an input argument. Once you have done that, you can create
a Vector plot of the new expression. Be sure to apply the
ExternalSurface operator first to convert the plot’s 2D cells or 3D
cells into polygonal geometry that can be used in the surface_normal expression.
Finally, apply the DeferExpression operator and set its variable to your new
vector expression. This will ensure that the surface_normal expression is not
evaluated until after the ExternalSurface operator has been applied.

[image: ../../../_images/defer.png]

Fig. 4.29 DeferExpression operator example

4.3.9. Displace operator

The Displace operator deforms a mesh variable using a vector field that is
defined on the nodes of that mesh. Many engineering simulation codes write a
mesh for the first time state of the simulation and then write vector
displacements for the mesh for subsequent time states. The Displace operator
makes it possible to use the mesh and the time-varying vector field to observe
the behavior of the mesh over time. The Displace operator provides a multiplier
that can amplify the effects of the vector field on the mesh so slight changes
in the vector field can be exaggerated. An example showing a mesh and a vector
field, along with the results of the mesh displaced by the vector field is
shown in Figure 4.30.

[image: ../../../_images/displace.png]

Fig. 4.30 Mesh and Vector plots and a Mesh plot that uses the Displace operator to deform the mesh using a vector field.

4.3.9.1. Using the Displace operator

The Displace operator takes as inputs a mesh variable and a vector variable and
a displacement multiplier value. For each node in the mesh, the Displace
operator adds the vector field defined at that node to the node’s coordinates.
Before adding the vector to the mesh, VisIt multiplies the vector by the
displacement multiplier so the effects of the vector field can be exaggerated.
To set a new value for the displacement multiplier, type a new value into the
Displacement multiplier text field in the Displace attributes window
(see Figure 4.31). To set the name of the vector
variable that VisIt uses to displace the mesh, select a new vector variable
from the Displacement variable variable button.

[image: ../../../_images/displacewindow.png]

Fig. 4.31 Displace attributes window

4.3.10. Elevate operator

The Elevate operator uses a scalar field on a 2D mesh to elevate each node in
the input mesh, resulting in a topologically 2D surface in 3D. The Elevate
operator allows you to perform much of the same functionality as a Surface plot
and it allows you to do additional things like elevate plots that do not accept
scalar variables. The Elevate operator can also elevate plots whose input data
was produced from higher dimensional data that has been sliced. Furthermore,
the Elevate operator allows you to display multiple scalar fields in a single
plot such as when a Pseudocolor plot of scalar variable A is elevated by scalar
variable B (see: Figure 4.32).

[image: ../../../_images/elevate.png]

Fig. 4.32 Elevate operator example: 2D plot of rainfall; 2D plot of elevation; Plot of rainfall elevated by elevation

4.3.10.1. Using the Elevate operator

The Elevate operator can be used to create plots that look much like a Surface
plot if you simply apply the Elevate operator to a plot that accepts scalar
values. The Elevate operator is more flexible than a Surface plot because
whereas the Surface plot limits you to elevating by one variable and coloring
by the same variable, the Elevate operator can be used with any plot and still
achieve the Surface plot’s elevated effect. You could use the Elevate operator
to elevate a Pseudocolor plot of rainfall by elevation. You could also take
Vector or FilledBoundary plots (among others) and elevate them by a scalar
variable.

Since the Elevate operator uses a scalar variable to elevate all of the points
in the mesh, the Elevate operator has a number of controls related to scaling
scalar data. For example, the Elevate operator allows you to artificially set
minimum and maximum values for the scalar variable so you can eliminate data
that might otherwise cause your elevated plot to be stretched undesirably in
the Z direction. To set minimum and maximum values for the Elevate operator,
click on the Min or Max check boxes in the Elevate attributes window
(see Figure 4.33) and type new values into the adjacent
text fields. The options for scaling the plots created using the Elevate
operator are the same as those for scaling Surface plots. For more information
on scaling, see the Surface plot documentation.

[image: ../../../_images/elevatewindow.png]

Fig. 4.33 Elevate window

The most useful feature of the Elevate operator is its ability to elevate plots
using an arbitrary scalar variable. By default, the Elevate operator uses the
plotted variable in order to elevate the plot’s mesh. This only works when the
plotted variable is a scalar variable. When you apply the Elevate operator to
plots that do not accept scalar variables, the Elevate operator will fail unless
you choose a specific scalar variable using the Elevate by Variable variable
menu in the Elevate attributes window.

4.3.10.2. Changing elevation height

The Elevate operator uses a scalar variable’s data values as the Z component
when converting a mesh’s 2D coordinates into 3D coordinates. When the scalar
variable’s data extents are small relative to the mesh’s X and Y extents then
you often get what appears to be a flat 2D version of the data floating in 3D
space. It is sometimes necessary to scale the scalar variable’s data extents
relative to the spatial extents in order to produce a visualization where the Z
value differs noticeably. If you want to exaggerate the Z values that the scalar
variable contributes to make differences more obvious, you can click on the
Elevation height relative to XY limits check box in the
Elevate attributes window.

[image: ../../../_images/elevatescale.png]

Fig. 4.34 Effect of scaling relative to XY limits

The Elevate operator can be used to simply place a 2D plot in 3D space by
use of the Elevate with zero height option. This will assign a value of
zero to all of the z coordinates when converting into 3D.

[image: ../../../_images/elevate_zero.png]

Fig. 4.35 Effect of elevating with zero height

4.3.11. Explode operator

[image: ../../../_images/explode_montage.png]

Fig. 4.36 Explode operator example: original plot; exploding cells of a material; exploding materials.

The Explode operator has three primary targets, which are materials, domains, and
cells. There are three different origins of explosion—point, plane, and
cylinder—all of which have unique results and can be applied to any of the
above mentioned targets. While this operator is primarily meant to be used on datasets
containing materials or domains, the capability of exploding all cells remains available for
datasets that lack either.

4.3.11.1. Using the Explode operator

The Explode operator has three areas for user definition. These are the Origin
of explosion, Material Explosion settings, and Cell Explosion settings.
You can add as many explosions as you’d like to a single instance of the operator,
and you have the ability to Add, Remove, or Update explosions
through the Explode attributes window shown below.

[image: ../../../_images/explode_attributes.png]

Fig. 4.37 Explode attributes window

4.3.11.2. Explode origin

As mentioned earlier, there are three different choices for an explode Origin.
To explode from a Point, click the tab labeled Point in the Origin section of
the Explode attributes window. You will then have the opportunity to enter a
3D coordinate defining your point. Similarly, to explode from a Plane,
you must click on the Plane tab. You will then have the option to define a plane
by a point located on that plane and the plane’s normal. Lastly, to explode from
a Cylinder, first click on the Cylinder tab, and then enter two points that
lie on a line traveling through the center (lengthwise) of your cylinder. By
default, the cylinder has a radius of zero and is treated as a line to explode from.
If you do define a positive radius, any data that is located within that radius
will not be exploded when executing this explosion.

4.3.11.3. Exploding materials

Exploding a material results in an individual material within a dataset being
displaced by a specified Factor from a specified origin. Both the
factor with which the material is displaced and the actual material to be
acted upon are set within the Material Explosion section of the attributes
window. If you refer to the far right image in Figure 4.36,
you will find an example of two material explosions. In this example, we see
the materials Cord and Steel, shown in blue and green, being exploded
from the Tire dataset.

4.3.11.4. Exploding domains

To explode the domains of a dataset, you must first make sure that your dataset has
domains that can be plotted using the Subset plot. If this condition is met, all you
need to do is apply the Explode operator to a Subset plot of your domains. The domains
will then be substituted in for materials and treated as such. You can then refer to
the section on exploding materials for usage tips.

4.3.11.5. Exploding cells

Exploding cells results in the separation and displacement of the
cells within your dataset. This can either be applied to an individual material
or the entire dataset. If you refer to the middle image in
Figure 4.36,
you will see the cells of the material Rubber, shown in red, being exploded by a plane. As a
result, the material is split open and separated to allow us to see the inner
contents. As before, you also have control over the explosion
Factor that is applied to the cells. Additionally, you have two options for the
Explosion Pattern. The first option is to explode through Impact, which results in cells
that are closest to the origin being displaced furthest from the origin. The
second option is to explode through Scatter, which results in cells furthest
from the origin being displaced furthest from the origin.

4.3.12. ExternalSurface operator

The ExternalSurface operator takes the input mesh and calculates its external
faces and outputs polygonal data. The ExternalSurface operator is not enabled
by default but it can be turned on in the Plugin Manager Window. The
ExternalSurface operator can be useful when creating plots that only involve
the external geometry of a plot - such as when you create a Vector plot of
surface normals.

[image: ../../../_images/externalsurface.png]

Fig. 4.38 ExternalSurface operator example

4.3.13. Integral Curve System

Within the VisIt [https://visit-dav.github.io/visit-website/] infrastructure is the ability to generate integral curves. An
integral curve is a curve that begins at a seed
location and is tangent at every point in a vector field. It is computed by
numerical integration of the seed location through the vector field. For
example, the image below shows integral curves through the magnetic field of a
core-collapse supernova simulation from the GenASiS code.

[image: ../../../../_images/astro-streamlines.png]

The generation of integral curves forms the basis of VisIt [https://visit-dav.github.io/visit-website/]’s Integral Curve
System (ICS), made up of the Integral Curve operator, the Lagrangian Coherent Structure (LCS) operator, the Limit Cycle operator, and the Poincaré operator.
Much of the underlying infrastructure and interface is the same for each
operator: the user selects a series of seed locations where curves are
generated, which are then visualized and analyzed.

The ICS allows for the computation of Lagrangian Coherent Structures (LCS)
using a variety of techniques developed by George Haller [http://georgehaller.com/] and his group at ETH Zürich. For more information
on LCS, see K. Onu, F. Huhn, & G. Haller, LCS Tool: A Computational
platform for Lagrangian coherent structures, J. of Computational Science, 7
(2015) 26-36.

Many of the terms used in the ICS are familiar to experts in dynamical systems
but may be new to many users. Users can refer to a glossary sepcific to dynamical systems and can reference
VisIt [https://visit-dav.github.io/visit-website/]’s Glossary for some terms that are specific to VisIt [https://visit-dav.github.io/visit-website/]’s ICS. Any
additional terms can be defined through a simple online search.

	4.3.13.1. Integral Curve operator

	4.3.13.2. Lagrangian Coherent Structure (LCS) operator

	4.3.13.3. Limit Cycle operator

	4.3.13.4. Poincaré operator

4.3.13.5. Parameters

Common to all ICS operators is a four tab GUI: Source, Integration,
Appearance, and Advanced (the Poincaré operator also has an Analysis tab).
These tabs contain many functions that are common across all four operators.
The following is a description of those common features.

4.3.13.5.1. Source

The set of points that seed the integral curves. See each operator for varied
settings.

4.3.13.5.1.1. Field

Sets the field type so that the native elements are used when interpolating the
vector fields. Each operator provides the following options:

	Default

	Use VisIt [https://visit-dav.github.io/visit-website/]’s native VTK mesh structure to perform linear interpolation on
the vector field.

	Flash

	Evaluates the velocity field via the Lorentz force. Parameters are:

	Constant - A constant multiple applied to the velocity.

	Velocity - When combined with Leap-Frog integration, this sets the
initial velocity used in the integration.

	M3D-C1 2D

	Evaluates the 3D magnetic field via a 2D poloidal 6th order polynomial.
Parameters are:

	Constant - A constant multiple applied to the perturbed part of the
field.

	M3D-C1 3D

	Evaluates the 3D magnetic field via a 2D poloidal 6th order polynomial and
1D toroidal 4th order Bezier spline.

	Nek5000

	Evaluates the 3D vector field using Nek5000 [https://nek5000.mcs.anl.gov/]
spectral elements.

	Nektar++

	Evaluates the 3D vector field using Nektar++ [https://www.nektar.info/]
spectral elements.

4.3.13.5.2. Integration

Specify settings for the numerical integrator. See each operator for varied
settings.

4.3.13.5.2.1. Integrator

Sets the integration scheme. There are various options common among numerical
integration packages, such as Leap Frog and Runge-Kutta. More details on
the different schemes can be found through a simple online search.

4.3.13.5.2.2. Step Length

Most integrators use a fixed step length. Runge-Kutta-Dormand-Prince (RKDP)
uses adaptive step size, which can be clipped by the step length.

4.3.13.5.2.3. Tolerances

RKDP, Adams-Bashforth, and MD3-C1 make use of the tolerance options.

	RKDP

	The step size adapts to ensure that the maximum error at each step is less
than the maximum between the absolute tolerance and the relative tolerance
times the value of the vector field at the current point. The absolute
tolerance can be truly absolute or relative to the bounding box.

4.3.13.5.2.4. Termination

The criteria for terminating the integration. See specific operator for
details.

4.3.13.5.3. Appearance

Specify appearance settings for the curves. See each operator for varied
settings.

4.3.13.5.3.1. Streamlines vs Pathlines

The user may select the integral curve to be based on an instantaneous or
time-varying vector field producing streamlines or pathlines, respectively. A
streamline is a path rendered by an integrator that uses the same vector field
for the entire integration. A pathline uses the vector field that is in-step
with the integrator, so that as the integrator steps through time, it uses data
from the vector field at each new time step. Pathline options are:

	Override starting time

	Instead of starting with the current time step, utilize another time for
the start time.

	Interpolation over time

	Interpolate the integral curve with a static mesh for all time or with a
varying mesh at each time step. The mesh is typically static, but this
cannot always be assumed and should be verified for each dataset before
use.

4.3.13.5.4. Advanced

4.3.13.5.4.1. Parallel integration

The user may select one of four different parallelization options when
integrating curves in parallel:

	Parallelize over curves

	Distribute the curves between the processors. Parameters are:

	Domain cache size - number of blocks to hold in memory for level of
details.

	Parallelize over domains

	Distribute the domains between the processors. Parameters are:

	Communication threshold - number of integral curve to process before
communication occurs.

	Parallelize over curves and domains

	Distribute both the curves and domains between the processors.

	Have VisIt [https://visit-dav.github.io/visit-website/] select the best algorithm

	VisIt [https://visit-dav.github.io/visit-website/] automagically selects the best parallelization algorithm.

4.3.13.5.4.2. Warnings

Alerts for various conditions that may occur during the integration or
analysis.

	Issue warning when the maximum number of steps is reached

	The maximum number of steps limits run-a-way integration.

	Issue warning when a step size underflow is detected

	If the step size goes to zero, issue a warning.

	Issue warning when stiffness is detected

	Stiffness refers to one vector component being so much larger than another
that tolerances can’t be met.

	Issue warning when a curve doesn’t terminate at a critical point

	For example, the curve may circle around a critical point without
converging.

4.3.13.1. Integral Curve operator

The Integral Curve Operator allows the user to compute an integral curve from a
seed point through a vector field without any analysis of its structure.

4.3.13.1.1. Source

The set of points that seed the integral curves. In addition to the
Source attributes common to all ICS operators, the
Integral Curve operator supports the following attributes:

4.3.13.1.1.1. Source type

The source type controls how the seeds for the curves are created. There are
various options, the names of which are self-descriptive such as creating them
along a line or around a sphere. Only those options that require further
clarification are described further here.

	Point List

	Seed from a list of points. In addition to Add Point, Delete Point, and
Delete All Points, the user can Read Text File that is formatted with
one point per each line either as “X Y Z” or “X, Y, Z”.

	Selection

	Seed with a named selection.

	Field Data

	The seed points are defined by another operator and passed to the Integral
Curve operator. The name of the array containing the seed points must begin
with the string “Seed Points”.

	Up Axis

	The “up axis” serves as the “Y” axis embedded in the plane or circle.

4.3.13.1.1.2. Sampling type

For samples taken from a geometric object, there is an option to generate
uniform or random samples from the specified region. Random samples can be
reproduced by supplying a random number seed.

4.3.13.1.1.3. Boundary vs Interior Samples

Samples from a geometric object can be taken either from the boundary or the
interior. For example, when sampling a plane, the samples can
either lie along the edges of the planar region or within the bounded
rectangle, as shown below.

[image: ../../../../_images/boundary_interior_sampling.png]

4.3.13.1.2. Integration

Specify settings for numerical integrators. In addition to the
Integration attributes common to all ICS operators, the
Integral Curve operator supports the following attributes.

4.3.13.1.2.1. Integration Direction

Sets the integration direction through time. The user can choose from a
combination of forward, backward, and directionless. Eigen vectors are an
example of a directionless vector field. In order to integrate using a
directionless field, any orientation discontinuity must be corrected prior to
linear interpolation. That is, all vectors must be rotated to match the
orientation of the trajectory. The ICS code will do this processing for
standard fields (e.g non-higher order elements).

4.3.13.1.2.2. Termination

Integral curve termination can be controlled in several different ways. The
termination is based on the most conservative criteria, so only one criteria
must be met for termination. The options are:

	Maximum number of steps

	The maximum number of integration steps that will be allowed.

4.3.13.1.3. Appearance

The appearance tab specifies how the integral curve will be rendered. In
addition to the Appearance attributes common to all ICS
operators, the Integral Curve operator supports the following attributes:

4.3.13.1.3.1. Coloring

There are various coloring options, the names of which are self-descriptive
such as coloring the curves with a solid color or according to a seed. Only
those options that require further clarification are described further here.

	Average Distance from seed

	Each curve is colored according to the average distance of all the points
in the curve from the seed.

	Variable

	Each curve’s color varies by the value of a scalar variable.

4.3.13.1.3.2. Cleanup

Allows the user to remove points along the integral curve according to
difference schemes. Options are self-descriptive, with additional information
provided here as needed.

	Delete points before

	Delete all points that come before a critical point defined by a velocity
threshold. This cleaning will reveal when an integral curve may stop
advecting because of some other reason than the critical point (i.e. the
advection continues temporally but not spatially), so this cleaning will
remove all duplicate points leaving the last temporal value. If the last
point’s temporal value is different than the value as dictated by the elapsed
time or max steps, then the advection may have reached a critical point but
terminated because of some other reason.

	Delete points after

	Delete all points that come after a critical point defined by a velocity
threshold. This cleaning will reveal when an integral curve reaches a
critical point (i.e. the advection continues temporally but not spatially,
so this cleaning will remove all duplicate points leaving the first
temporal value).

4.3.13.1.3.3. Crop the integral Curve (for animations)

Integral curves can be cropped so that they appear to grow over time. This
option is useful for creating animations. Users can crop the curves based on
several criteria and within a desired time range.

4.3.13.1.4. Advanced

In addition to the Advanced attributes common to all ICS
operators, the Integral Curve operator supports the following attributes:

4.3.13.1.4.1. Warnings

	Issue warning if the advection limit is not reached

	If the maximum time or distance is not reached, issue a warning.

	Issue warning if the spatial boundary is reached

	If the integral curve reaches the spatial domain boundary, issue a warning.

4.3.13.2. Lagrangian Coherent Structure (LCS) operator

The LCS operator utilizes Lyapunov Exponents based on the Cauchy-Green Tensor
to highlight Lagrangian Coherent Structures in vector fields. When performing a
Finite Time Lyapunov Exponent (FTLE) calculation, the time can be specified as
one would for a traditional FTLE, and the resulting value will be based on the
maximal Eigen value.

However, when performing the calculation with Finite Space Lyapunov Exponents
(FSLE), instead of assuming a uniform mesh discretization and specifying the
dispersion distance, we specify a dispersion factor. In a traditional FTLE,
this is the dispersion distance divided by the initial distance. In the
equivalent definition, the dispersion distance is the maximal Eigen value. Thus
when the maximal Eigen value is greater than the specified dispersion factor,
then the exponent is calculated.

More details can be found in this paper.

4.3.13.2.1. Source

The set of points that seed the integral curves that reveal the Lagrangian
Coherent Structures. In addition to the Source attributes
common to all ICS operators, the LCS operator supports the following attributes:

4.3.13.2.1.1. Source types

The source type controls how the seeds for curves are created. The user can
seed the integral curves using the native mesh or define a rectilinear grid.
The nodes of the mesh are the seed points.

4.3.13.2.1.2. Auxilary Grid

When calculating the Jacobian for the Cauchy-Green tensor, one can use the
neighboring points from the native mesh or one can specify an auxiliary grid
that allows for the detection of finer features but at greater computational
expense. Using an auxiliary grid is advantageous because it is independent of
the native mesh, so it gives more accurate results for higher order elements.
For simulation flows, using the auxiliary grid for eigenvalue calculations
gives better results.

4.3.13.2.2. Integration

Specify settings for numerical integrators. In addition to the
Integration attributes common to all ICS operators, the LCS
operator supports the following attributes:

4.3.13.2.2.1. Integration Direction

Sets the integration direction through time: either forward or backward.

4.3.13.2.3. Appearance

The appearance tab specifies how the LCS’s will be rendered. In addition to the
Appearance attributes common to all ICS operators, the LCS
operator supports the following attributes.

4.3.13.2.3.1. Seed Generation

Filter the number of seeds generated from the mesh (either native or
rectilinear). There are various self-descriptive filtering options.

4.3.13.2.4. Advanced

In addition to the Advanced attributes common to all ICS
operators, the LCS Operator supports the following attributes:

4.3.13.2.4.1. Warnings

	Issue warning if the advection limit is not reached

	If the maximum time or distance is not reached, issue a warning.

	Issue warning if the spatial boundary is reached

	If the integral curve reaches the spatial domain boundary, issue a warning.

4.3.13.3. Limit Cycle operator

The Limit Cycle Operator detects limit cycles within a vector field. Integral
curves are seeded at a Poincaré section and integrated through the vector
field. Curves that return to the Poincaré section indicate a limit cycle, and
the integration of the curve will stop. Those integral curves that do not
return to the Poincaré section are terminated according to separate termination
criteria.

A signed return distance is calculated for the integral curves that return to
the Poincaré section. Curves with a return distance below the cycle tolerance
are considered to be limit cycles. If a curve does not satisfy the tolerance,
then its return distance is compared to its neighboring integral curves. If a
zero crossing is found, then a binary search is conducted. The binary search is
also limited by a maximum number of iterations.

4.3.13.3.1. Source

The set of points that seed the integral curves that reveal the Limit Cycles.
In addition to the Source attributes common to all ICS
operators, the Limit Cycle operator supports the following attributes:

4.3.13.3.1.1. Source Type

The source type controls how the seeds for curves are created. The Limit Cycle
operator only supports uniform samples on a line.

4.3.13.3.2. Integration

Specify settings for numerical integrators. In addition to the
Integration attributes common to all ICS operators, the Limit
Cycle operator supports the following attributes.

4.3.13.3.2.1. Integration Direction

Sets the integration direction through time. The user can choose from a
combination of forward, backward, and directionless. Eigen vectors are an
example of a directionless vector field. In order to integrate using a
directionless field, any orientation discontinuity must be corrected prior to
linear interpolation. That is, all vectors must be rotated to match the
orientation of the trajectory. The ICS code will do this processing for
standard fields (e.g non-higher order elements).

4.3.13.3.2.2. Termination

Integral curve termination can be controlled in several different ways. The
termination is based on the most conservative criteria, so only one criteria
must be met for termination. The options are:

	Maximum number of steps

	The maximum number of integration steps that will be allowed.

4.3.13.3.3. Appearance

The appearance tab specifies how the integral curve will be rendered. In
addition to the Appearance attributes common to all ICS
operators, the Integral Curve operator supports the following attributes.

4.3.13.3.3.1. Cycle tolerance

The smallest return distance for classifying an integral curve as a limit
cycle.

4.3.13.3.3.2. Maximum iterations

The maximum numbers of iterations when performing the bi-section method.

4.3.13.3.3.3. Show partial results

If the maximum number of bi-section iterations has been reached without finding
a limit cycle, show the integral curves still in the queue.

4.3.13.3.3.4. Show the signed return distances for the first iteration

Instead of plotting the limit cycles, plot the return distances along the
Poincaré section.

4.3.13.3.3.5. Coloring

There are various coloring options, the names of which are self-descriptive
such as coloring the curves with a solid color or according to a seed. Only
those options that require further clarification are described further here.

	Average Distance from seed

	Each curve is colored according to the average distance of all the points
in the curve from the seed.

	Variable

	Each curve’s color varies by the value of a scalar variable.

4.3.13.3.4. Advanced

See Advanced tab attributes that are common to all ICS
operators.

4.3.13.4. Poincaré operator

The Poincaré operator constructs a Poincaré section for toroidal geometry. The
basis of constructing a connected plot is to accurately determine the number of
toroidal and poloidal windings (i.e. the winding pair). The image below is
helpful for visually understanding what is meant by toroidal and poloidal:

[image: ../../../../_images/toroidal_poloidal.jpg]

This process is
iterative, starting with a minimum number of puncture points through a Poincaré
section and continuing until the toroidal and poloidal windings are known or
the maximum number of punctures is reached. If an accurate winding pair is
determined, then the puncture points are connected based on it. For more
information, refer to the following resources:

A.R. Sanderson, G. Chen, X. Tricoche, E. Cohen. “Understanding Quasi-Periodic
Fieldlines and Their Topology in Toroidal Magnetic Fields,” In Topological
Methods in Data Analysis and Visualization II, Edited by R. Peikert and H.
Carr and H. Hauser and R. Fuchs, Springer, pp. 125--140. 2012.

A.R. Sanderson, G. Chen, X. Tricoche, D. Pugmire, S. Kruger, J. Breslau.
“Analysis of Recurrent Patterns in Toroidal Magnetic Fields,” In Proceedings
Visualization / Information Visualization 2010, IEEE Transactions on
Visualization and Computer Graphics, Vol. 16, No. 4, pp. 1431-1440. 2010.

4.3.13.4.1. Source

The set of points that seed the integral curves that reveal the Poincaré section.
In addition to the Source attributes common to all ICS
operators, the Poincaré operator supports the following attributes:

4.3.13.4.1.1. Source Type

The source type controls how the seeds for curves are created. There are
various options, the names of which are self-descriptive such as creating them
along a line. Only those options that require further clarification are
described further here.

	Point List

	Seed from a list of points. In addition to Add Point, Delete Point, and
Delete All Points, the user can Read Text File that is formatted with
one point per each line either as “X Y Z” or “X, Y, Z”.

4.3.13.4.2. Integration

Specify settings for numerical integrators. In addition to the
Integration attributes common to all ICS operators, the
Poincaré operator supports the following attributes.

4.3.13.4.2.1. Punctures

While integrating the integral curve to be used the for Poincaré plot, the user
has the option to require a minimum number of initial punctures through the
Poincaré section for the analysis. The user may limit the integration
in case of run-a-way integral curve that cannot be fully analyzed.

	Puncture plot type

	The type of the puncture plot. Options are:

	Single - the analysis is based on the standard double periodic system
(toroidal-poloidal periodicity)

	Double - the analysis is based on the double Poincaré plot. In addition
to the toroidal-poloidal periodicity a third periodicity exists that is
based on the integration time.

When selecting double, Poincaré plot puncture points are accepted if and
only if the period is within the tolerance of the period (the period is
set as part of the Poincaré Pathline Options).

	Period tolerance - when an integral curve punctures the plane, the
period must be within the tolerance value.

4.3.13.4.3. Analysis

The user may adjust settings for how Poincaré analysis is to be done. Some
options include:

	None - Puncture only

	This will result in constructing a traditional Poincaré plot using only
points.

	Full

	This will analyze each curves’ geometry and attempt to reconstruct the
cross sectional profile of the surface which the curve lies on.
Further, the analysis attempts to identify the topology of the surface.

	Maximum toroidal winding

	Limit the search of the toroidal winding to lower order values. Zero
indicates no limit.

	Override toroidal winding

	In some cases, such as debugging, it may be informative to force the
toroidal winding to have a set value. Zero indicates no override.

	Override poloidal winding

	In some cases such as debugging, it may be informative to force the
poloidal winding to have set value. Zero indicates no override.

	Winding pair confidence (Range 0-1, Default 0.9)

	Sets the limit for the number of mismatches in the consistency in the
winding pairs.

	Detect Rational Surface

	Allows for the construction of rational surfaces via an iterative process.
Typically, they can be constructed with 5-10 iterations.

	Detect O Points

	Allows for the detection of O points in “island chains” via an iterative
process. Typically, they can be detected with 5 iterations.

	Perform O-Line Analysis

	Calculate the poloidal winding relative the O-Line (central axis) which
provides a more accurate winding value.

	O-Line toroidal windings (Default 1) – sets the toroidal winding value,
i.e. the period (for the central axis the period is 1).

	O-Line Axis Point File - allows the user to select a text file containing
the points along the axis from 0 to 360 degrees (note there is no overlap
P(0) != P(n)).

	Show chaotic fieldlines as points

	Because chaotic curves cannot be classified, they are not displayed
unless this is checked.

	Show islands only

	Culls the results so that only island chains are displayed.

	Show ridgelines

	Displays the 1D plots of the distance and ridgeline samples.

	Verbose

	Dumps information regarding the analysis to the terminal. The final summary
may be useful. For example,

Surface id = 0 < 2.35019 0 0.664124 > 121:11 121:11 (11) flux surface with 4 nodes (Complete)
Surface id = 0
seed location < 2.35019 0 0.664124 >
the winding pair 121:11
the toroidal:poloidal periods (as a winding pair) 121:11
the multiplication faction (11) i.e. diving by this number will give the base winding values, in this case 11:1.
surface type: flux surface
number of nodes in each winding group: with 4 nodes
analysis state: complete.

4.3.13.4.4. Appearance

The appearance tab specifies how the integral curve will be rendered. In addition
to the Appearance attributes common to all ICS operators, the
Poincaré operator supports the following attributes.

4.3.13.4.4.1. Coloring

The various coloring options are:

	None

	Solid color from the single color

	Safety Factor Q

	Use the safety factor

	Safety Factor P

	Use the safety factor as defined when there are two possible choices for
the magnetic axis

	Safety Factor Q == P

	Render the surfaces on if the safety factor Q is equal to the safety factor P

	Safety Factor Q != P

	Render the surfaces on if the safety factor Q is not equal to the safety
factor P

	Toroidal Windings Q

	Use the toroidal winding value used in the calculation of Q

	Toroidal Windings P

	Use the toroidal winding value used in the calculation of P

	Poloidal Windings

	Use the poloidal winding value

	Fieldline Order

	Use input order of the seeds used to generate the integral curves.

	Point Order

	Use the puncture point index

	Plane

	Use the plane value (integer from 0 to N where N is the number of planes)

	Winding Group Order

	Use the winding group order (integer from 0 to T where T is the toroidal
winding)

	Winding Point Order

	Use the index of the puncture points within each winding group

	Winding Point Order Modulo Order

	Use the order of the punctures within each winding group modulo the
toroidal windings (useful for islands in islands)

4.3.13.4.4.2. Display

Allows the users to display the results in a single plane or multiple planes.
Further, one can reconstruct the 3D surface that the curves lies on.

4.3.13.4.4.3. Overlapping Curve Sections

When displaying the data in a connected manner the raw data will often overlap
itself. As such, for visually pleasing results it may be preferable to remove
the overlaps.

	Raw

	Display all of the punctures points in a connected fashion.

	Remove

	Display all of the punctures points in a connected fashion, removing the
overlapping sections.

	Merge

	Display all of the punctures points in a connected fashion, merging the
overlapping sections. Experimental.

	Smooth

	Display all of the punctures points in a connected fashion, removing the
overlapping sections while smoothing between points.

4.3.13.4.5. Advanced

See Advanced attributes that are common to all ICS
operators.

4.3.14. Index Select operator

The Index Select operator selects a subset of a 2D or 3D structured mesh based
on ranges of cell indices. Structured meshes have an implied connectivity that
allows each cell in the mesh to be specified by an i,j or i,j,k index depending
on the dimension of the mesh. The Index Select operator allows you to specify
different ranges for each mesh dimension. The ranges are used to select a brick
of cells from the mesh. In addition to indices, the Index Select operator uses
stride to select cells from the mesh. Stride is a value that allows the operator
to count by 2’s, 3’s, etc. when iterating through the range indices. Stride is
set to 1 by default. When higher values are used, the resulting mesh is more
coarse since it contains fewer cells in each dimension. The Index Select
operator attempts to preserve the size of the mesh when non-unity stride values
are used. An example of the Index Select operator appears in Figure 4.39.

[image: ../../../_images/indexselect.png]

Fig. 4.39 Index Select operator example: original plot; index selected (stride=1); index selected (stride=2)

4.3.14.1. Setting a selection range

The Index Select attributes window, shown in
Figure 4.40, contains nine spin boxes that allow
you to enter minimum and maximum ranges for i,j,k. To select all cells in the
X dimension whose index is greater than 10, you would enter 10 into the
spin box in the I row and Min column. Then you would enter max into the
spin box in the Max column in the I row. Finally, you would enter a
stride of 1 into the spin box in the Incr column in the I row. If you
wanted to sub-select cell ranges for the Y dimension, you could follow a similar
procedure using the spin boxes in the J row and so forth. To set a range,
first select the maximum number of dimensions to which the Index Select operator
will apply. To set the dimension, click on the 1D , 2D , 3D radio
buttons. Note that if the chosen number of dimensions is larger than the number
of dimensions in the database, the extra dimension ranges are ignored. It is
generally best to select the same number of dimensions as the database. The
three range text fields are listed in i,j,k order from top to bottom. To
restrict the number of cells in the X-dimension, use spin boxes in the I
row. To restrict the number of cells in the Y-dimension, use the spin boxes in
the J row. To restrict the number of cells in the Z-dimension, use the spin
boxes in the K row.

[image: ../../../_images/indexselectwindow.png]

Fig. 4.40 Index Select attributes window

4.3.14.2. Restricting to a subset of the whole database

Some databases are composed of multiple groups of meshes, which are often
called groups or blocks. Some databases are composed of multiple meshes, often
called blocks or domains. Some are composed of both groups and domains.
When examining a database, you might want to look at only one block or group
at a time. By default, the Index Select operator is applied to all blocks in
the database. This means that each index range is applied to each block in the
database and will probably result in an image featuring several small chunks of
cells. When the Index select operator is set to apply to just one block or
group, the index ranges are relative to the specified block or group.

To make the Index Select operator apply to just one block or group, uncheck the
Use Whole Collection check box. The Category and Set combo boxes
will be filled according to how the database has named the groups or sub-meshes.
Choose the correct category from the Category combo box, and the desired
set from the Set combo box.
Figure 4.41 shows a single mesh
selection for a multiple mesh database whose sub-meshes are called domains.

[image: ../../../_images/indexselect_categoryselection.png]

4.3.15. InverseGhostZone operator

The InverseGhostZone operator makes ghost cells visible and removes real
cells from the dataset so plots to which the InverseGhostZone operator have
been applied show only the mesh’s ghost cells. Ghost cells are a layer of
cells around the mesh that usually correspond to real cells in an adjacent
mesh when the whole mesh has been decomposed into smaller domains. Ghost
cells are frequently used to ensure continuity between domains for operations
like contouring. The InverseGhostZone operator is useful for debugging ghost
cell placement in simulation data and for database reader plugins under
development.

[image: ../../../_images/inverseghostzone.png]

Fig. 4.42 InversetGhostZone example

The InverseGhostZone operator’s attributes window
(Figure 4.43) has various Show options
allowing you to select which types of ghost cells are returned. By default
all options are turned on.

[image: ../../../_images/inverseghostzonewindow.png]

Fig. 4.43 InversetGhostZone window

4.3.16. Isosurface operator

The Isosurface operator extracts surfaces from 2D or 3D databases and
allows them to be plotted. The Isosurface operator takes as input a
database and a list of values and creates a set of isosurfaces through
the database. An isosurface is a surface where every point on the surface
has the same data value. You can use an isosurface to see a surface
through cells that contain a certain value. The Isosurface operator
performs essentially the same visualization operation as the Contour plot,
but it allows the resulting data to be used in VisIt’s other plots. For
example, an Isosurface operator can be applied to a Pseudocolor plot
where the Isosurface variable is different from the Pseudocolor variable.
In that case, not only are the isosurfaces shown, but they are colored by
another variable. An example of the Isosurface operator is shown in
Figure 4.44.

[image: ../../../_images/isosurface.png]

Fig. 4.44 Isosurface operator example

4.3.16.1. Setting isosurface levels

By default, VisIt constructs 10 levels into which the data fall. These
levels are linearly interpolated values between the data minimum and data
maximum. However, you can set your own number of levels, specify the
levels you want to see or indicate the percentages for the levels.

[image: ../../../_images/isosurfacewindow.png]

Fig. 4.45 Isosurface attributes

To choose how levels are specified, make a selection from the Select by
menu. The available options are: N levels, Levels, and Percent.
N levels, the default method, allows you to specify the number of
levels that will be generated, with 10 being the default. Levels
requires you to specify real numbers for the levels you want to see.
Percent takes a list of percentages like 50.5 60 40. Using the numbers
just mentioned, the first isosurface would be placed at the value which is
50.5% of the way between the minimum and maximum data values. The next
isosurface would be placed at the value that is 60% of the way between the
minimum and maximum data values, and so forth. You specify all values for
setting the number of isosurfaces by typing into the text field to the right
of the Select by menu.

4.3.16.2. Setting Limits

The Isosurface attributes window, shown in
Figure 4.45, provides controls that allow you to
specify artificial minima and maxima for the data in the plot. You might set
limits when you have a small range of values that you are interested in and
you only want the isosurfaces to be generated through that range. To set the
minimum value, click the Minimum check box to enable the Minimum text
field and then type a new minimum value into the text field. To set the maximum
value, click the Maximum check box to enable the Maximum text field and
then type a new maximum value into the text field. Note that either the
minimum, maximum or both can be specified. If neither minimum nor maximum
values are specified, VisIt uses the minimum and maximum values in the dataset.

4.3.16.3. Scaling

The Isosurface operator typically creates isosurfaces through a range of
values by linearly interpolating to the next value. You can also change
scales so a logarithmic function is used to get the list of isosurface
values through the specified range. To change the scale, click either the
Linear or Log radio buttons in the
Isosurface attributes window.

4.3.16.4. Setting the isosurfacing variable

The Isosurface operator database variable can differ from the plotted
variable. This enables plots to combine information from two variables by
having isosurfaces of one variable and then coloring the resulting
surfaces by another variable. You can change the isosurfacing variable,
by selecting a new variable name from the Variable variable button.

Sometimes it is useful to set the isosurfacing variable when the plotted
variable is not a scalar. For example, you might want to apply the
Isosurface operator to a Mesh plot but the Mesh plot’s plotted variable is
not a scalar so the Isosurface operator does not know what to do. To avoid
this situation, you can set the isosurfacing variable to one you know to
be scalar and the operator will succeed.

4.3.17. Isovolume operator

[image: ../../../_images/isovolume_example.png]

Fig. 4.46 Isovolume Operator Example

The Isovolume operator creates a new unstructured mesh using only cells and
parts of cells from the original mesh that are within the specified data range
for a variable. The resulting mesh can be used in other VisIt plots. You might
use this operator when searching for cells that have certain values. The
Isovolume operator can either use the plotted variable or a variable other
than the plotted variable. For instance, you might want to see a Pseudocolor
plot of pressure while using the Isovolume operator to remove all cells and
parts of cells below a certain density. An example of a plot to which an
Isovolume operator has been applied is shown in
.

4.3.17.1. Using the Isovolume operator

[image: ../../../_images/isovolumewindow.png]

Fig. 4.47 Isovolume Attributes Window

The Isovolume operator iterates over every cell in a mesh and determines which
parts of the cell, if any, contain a value that falls within a specified data
range. If any parts of the cell are within the specified data range, they are
kept as part of the operator’s output. The Isovolume operator uses an
isosurfacing algorithm to determine the interfaces where cells should be split
so the interfaces for neighboring cells are all continuous and fairly smooth.
To specify a data range, type new upper and lower bounds into the
Lower bound and Upper bound text fields in the
Isovolume Attributes Window, which is shown in
Figure 4.47.

The variable that the Isovolume operator uses does not necessarily have to
match the plotted variable. If the plotted variable is to be used, the
Variable text field must contain the word: default. If you want to make
the Isovolume operator use a different variable so you can, for example, plot
temperature but only look at regions that have a density greater than 2g/mL,
you can set the Isovolume’s variable to temperature. To make the Isovolume
operator use a different variable, select a new variable from the Variable
variable button in the Isovolume Attributes Window.

If you apply this operator to a plot that does not operator on scalar variables
such as the Mesh or Subset plots, be sure to set the variable because the
default variables for those plots is never a scalar variable. Without a scalar
variable, the Isovolume operator will not work.

4.3.18. Lineout operator

The Lineout operator samples data values along a line, producing a 1D database
from databases of greater dimension. This operator is used implicitly by
VisIt’s Lineout capability and cannot be added to plots. For more information on
Lineout, see the Lineout section in the Quantitative Analysis chapter.

4.3.19. Merge operator

VisIt’s Merge operator merges all geometry that may exist on separate
processors into a single geometry dataset on a single processor. The
Merge operator can be useful when applying other operators like the
Decimate operator or when creating Streamline plots. The Merge operator
is not enabled by default.

4.3.20. OnionPeel operator

The OnionPeel operator creates a new unstructured mesh by taking a seed cell or
node from a mesh and progressively adds more layers made up of the initial
cell’s neighboring cells. The resulting mesh is then plotted using any of
VisIt’s standard plots. The OnionPeel operator is often useful for debugging
problems with scientific simulation codes, which often indicate error conditions
for certain cells in the simulated model. Armed with the cell number that caused
the simulation to develop problems, the user can visualize the simulation output
in VisIt and examine the bad cell using the OnionPeel operator. The OnionPeel
operator takes a cell index or a node index as a seed from which to start
growing layers. Only the seed is shown initially but as you increase the number
of layers, more of the cells around the seed are added to the visualization. An
example of the OnionPeel operator is shown in Figure 4.48.

[image: ../../../_images/onion.png]

Fig. 4.48 Onion peel operator example

4.3.20.1. Setting the seed

The OnionPeel operator uses a seed cell or a seed node as the seed to which all
cells from other layers are added. When a layer is added around the seed, the
new cells are those immediately connected to the seed. You specify the seed as a
cell index or a node index by typing a new seed value into the
Seed# or ij[k] text field. VisIt interprets the seed as a cell index by
default. If you want to start growing cell layers around a given node, click on
the Node radio button before entering a new seed value. The form of the seed
index depends on how the underlying mesh is organized. Unstructured meshes,
which are a collection of independent cells, require only a single integer value
for the seed while structured meshes are indexed with i,j or i,j,k indices
depending on the dimension of the mesh. To set the seed using i,j,k indices,
type the i and j and k indices, separated by spaces, into the Seed# or ij[k]
text field.

Some meshes that have been decomposed into multiple smaller meshes known blocks
or domains have an auxiliary set of cell indices and node indices that allow
cells and nodes from any of the domains to be addressed as though each domain
was part of a single, larger whole. If you have such a mesh and want to specify
seed indices in terms of global cell indices or global node indices, be sure to
turn on the Seed# is Global check box.

The OnionPeel operator can only operate on one domain at a time and when the
operator grows layers, they do not cross domain boundaries. The seed cell index
is always relative to the active domain. To make a cell in a different domain
the new seed cell, change the domain number by selecting a new domain from the
Set combo box.

4.3.20.2. Growing layers

[image: ../../../_images/onionpeelwindow.png]

Fig. 4.49 Onion peel attributes

The OnionPeel operator starts with a seed and adds layers of new cells around
that seed. The added cells are determined by the layer number and the adjacency
information. The cell adjacency rule determines the connectivity between cells.
Cells are next to each other if they share a cell face or a cell node. The
visualization will differ slightly depending on which adjacency rule is used.
To change the adjacency rule, click the Node or the Face radio buttons
in the OnionPeel attributes window, shown in
Figure 4.49.

The OnionPeel operator initially shows zero layers out from the seed, so only
the seed is shown in the visualization when the OnionPeel operator is first
applied. Consequently, the visualization might appear to be empty since some
seed cells are very small. To add more layers around the seed, enter a larger
layer number into the Layer Number text field. Clicking the up or down
buttons next to the Layer Number text field also increments or decrements
the layer number.

By default, Onion Peel will honor the structure of the original mesh. In some
cases, as with arbitrary polyhedral data, you may want to see how VisIt split the original mesh. In this case, use the combo box to change to
Honor actual mesh.

4.3.21. Project operator

The Project operator sets all of the Z values in the coordinates of a 3D mesh
to zero and reduces the topological dimension of the mesh by 1. The Project
operator is, in essence, an operator to make 2D meshes out of 3D meshes. An
example of the Project operator is shown in Figure 4.50.

[image: ../../../_images/project_operator_example.png]

Fig. 4.50 Project Operator Example

4.3.21.1. Setting the projection type

The Project operator can project 3D down to 2D using either Cartesian or
Cylindrical transforms, which can be performed along the X, Y or Z
axis, as shown in (see Figure 4.51).
To specify which of these transforms you want to use when using the Project
operator, choose the appropriate option from the Projection type combo box.
Z-Axis Cartesian is the default option.

[image: ../../../_images/project_projectiontype.png]

Fig. 4.51 Project Attributes Window showing available projection types

4.3.21.2. Choosing how vectors are treated

The Project operator can treat vectors as instantaneous directions, as
coordinate displacements or as point coordinates. The Project operator can
also ignore the vectors and not transform them at all. To specify how you
wish vectors to be treated during the projection transform, choose the
appropriate option from the Vector transform method combo box.
(see Figure 4.52) The default is
Treat as instantaneous directions.

[image: ../../../_images/project_vectortransform.png]

Fig. 4.52 Project Attributes Window showing available vector treatments

4.3.22. Reflect operator

Use the Reflect operator to reflect database geometry across one or more axes.
Scientific simulations often rely on symmetry so they only need to simulate
part of the problem. When creating a visualization, most users want to see the
entire object that was simulated. This often involves reflecting the database
geometry to create the full geometry of the simulated object. VisIt’s Reflect
operator can be applied to both 2D and 3D databases and can reflect them across
one or more plot axes. An example of the Reflect operator is shown in
Figure 4.53.

[image: ../../../_images/reflect.png]

Fig. 4.53 Reflect operator example

4.3.22.1. Setting the Reflect attribute window’s input mode

The Reflect attributes window, shown in Figure 4.54,
has two input modes. One input mode is for 2D data, in which only reflection
quadrants are shown, and the second input mode is for 3D data for which the
window shows 3D octants. In either input mode, clicking on the brightly colored
shapes turns on different reflections and in the 3D input mode, clicking on the
cyan arrow rotates the view so you can more easily get to reflections in the
back. To set the input mode, click either the 2D or 3D radio buttons.

[image: ../../../_images/reflectwindow.png]

Fig. 4.54 Reflect attributes window

4.3.22.2. Setting the data octant

The Reflect operator assumes that the database being reflected resides in the
+X+Y+Z octant when performing its reflections. Sometimes, due to the
orientation of the database geometry, it is convenient to assume the geometry
exists in another octant. To change the data octant, make a new selection from
the Original data octant menu in the Reflect attributes window.
The Reflect attributes window graphically depicts the original data octant
as the octant that contains a sphere instead of a cube, which correspond only
to reflections.

4.3.22.3. Reflecting plots

Once the Reflect operator has been applied to plots, you must usually specify
the direction in which the plots should be reflected. To set the plot
direction, click on the glyphs below the Original data octant menu. The
possible reflections are shown by cube and sphere glyphs. When a reflection is
set to be on, the glyph in the octant or quadrant will be green or magenta.
When a reflection is not on, its glyph is smaller and silver. To turn a
reflection on or off, just click on its glyph. If the window is in its 3D input
mode and you need to access octants in the back that are obscured by other
octants, clicking on the cyan arrow will rotate the glyphs so the octants in
the back will be more accessible.

4.3.22.4. Reflection limits

Reflection limits determine the axes about which the database geometry is
reflected. The Reflect attributes window has three reflection limits
controls; one for each dimension. You will usually want to reflect plots using
the dataset min value, which you set by clicking the Use dataset min
radio button. When using the dataset min value to reflect plots, the reflected
plots will touch along the reflected edge. You can also specify another axis of
reflection. When using a custom axis of reflection, the reflected plots will
not necessarily touch. This option, though not normally needed, can produce
interesting effects in animations. To specify a custom axis of reflection,
click the Specify X, Specify Y, or Specify Z radio buttons and enter a new
X, Y, or Z value into the appropriate text field.

4.3.23. Replicate operator

The Replicate operator is most often used in atomic and molecular visualization in VisIt [https://visit-dav.github.io/visit-website/], and can be combined with the Molecule Plot and Create Bonds operator.
See Molecular data features for examples of the Replicate operator in use with the Molecule Plot.

[image: ../../../_images/replicatewindow.png]

Fig. 4.55 Replicate attributes window

Some file formats specify the vectors for the unit cell (sometimes called “direct lattice” vectors) containing the molecular data in the file. If they are present and Use provided unit cell vectors is checked, then it will use those values instead of the ones specified in this window.

Vector for X, Y, and Z are controls for specifying the actual vectors describing the amount to displace for a replication in each of the three axes. (The X, Y, and Z labels are only for disambiguation; there is no requirement that the actual vectors specified be related to their name.)

Replications in X, Y, and Z specifies the total number of instances of the data set to create. E.g. 1,1,1 specifies the original data set with no replications. 2,1,1 specifies a total of two instances – one is the original, and the other is a new one created at a displacement of 1x along the “X” vector.

The Merge into one block when possible flag specifies that the output of this operator should be created in a single “chunk”, and helps with correct operation of the Create Bonds operator. It is recommended to leave this enabled.

When there are periodic boundary conditions, atoms at the boundaries of the unit cell are, by definition, logically present at the matching opposite boundaries as well. By checking For molecular data, periodically replicate atoms at unit cell boundaries, it creates those atoms which, after replication, would still fall in the unit cell’s inclusive boundaries.

For example, in a periodic unit cell with origin [0,0,0] and dimensions [1,1,1], suppose there is an atom centered on the minimum-Z face, i.e. located at [0.5, 0.5, 0]. Due to the periodic boundary conditions, this means that there should be another instance of this atom at the maximum-Z face, i.e. at [0.5, 0.5, 1]. If you set the number of Z replications to at least 2, then it will create this other instance of the atom as desired. However, it will also create any atoms which lie in the replicated cell between z=1 and z=2. Sometimes you want to replicate just those atoms which are still within the original unit cell after replication (within epsilon). By checking this flag, but leaving the number of replications at 1,1,1, this operator will create the instance of the atom at [0.5, 0.5, 1] without adding the other atoms at z>1.

Shift atoms to new periodic origin enables the ability to set an origin (using New periodic atom origin) for periodic atom creation.

4.3.24. Resample operator

The Resample operator extracts data from any input dataset in a uniform
fashion, forming a new 2D or 3D rectilinear grid onto which the original
dataset has been mapped. The Resample operator is useful in a variety of
contexts such as downsampling a high resolution dataset (shown in
Figure 4.56), rendering Constructive Solid Geometry (CSG)
meshes, or mapping multiple datasets into a common grid for comparison purposes.

[image: ../../../_images/resample.png]

Fig. 4.56 Resample operator example

4.3.24.1. Resampling onto a rectilinear grid

Resampling a high resolution dataset onto a rectilinear grid is the most common
use case for the Resample operator. When a Resample operator is applied to a
plot, the Resample operator clips out any data values that are not within the
operator’s bounding box. For the data that remains inside the bounding box,
the operator samples it using the user-specified numbers of samples for the X,
Y, and Z dimensions. The default for the Resample operator is to use the entire
extents of the dataset. If you want to choose a smaller region, unselect the
Resample Entire Extents checkbox and enter new bounding box information.
The bounding box is specified by entering new start and end values for each
dimension. For example, if you want to change the locations sampled in the X
dimension then you could type new floating point values into the Start X
and End X text fields. The same pattern applies to changing the locations
sampled in the Y and Z dimensions. One difference between resampling 2D and 3D
datasets is that 3D datasets must have the 3D resampling check box enabled
to ensure that VisIt uses the user-specified Z-extents and number of samples in
Z.

Samples for which there was no data in the original input dataset are provided
with a default value that you can change by typing a new floating point number
into the Value for uncovered regions text field.

[image: ../../../_images/resamplewindow.png]

Fig. 4.57 Resample attributes window

4.3.24.2. Using Resample with CSG meshes

Constructive Solid Geometry (CSG) modeling is a method whereby complex models
are built by adding and subtracting primitive objects such as spheres, cubes,
cones, etc. When you plot a CSG mesh in VisIt, VisIt resamples the CSG mesh
into discrete cells that can be processed as an unstructured mesh and plotted.
The Resample operator can be used to tell VisIt the granularity at which the
CSG mesh should be sampled, overriding the CSG mesh’s default sampling.
Naturally, higher numbers of samples in the Resample operator produce a more
faithful representation of the original CSG mesh.
Figure 4.58 depicts a CSG model that contains a disc
within a smooth ring. Note that as the number of samples in the Resample
operator increases, the model becomes smoother and jagged edges start to
disappear.

[image: ../../../_images/resamplecsg.png]

Fig. 4.58 The Resample operator can be used to control the resolution of CSG meshes.
Resolution is increased from left to right.

4.3.24.3. Resampling surfaces projected to 2D

Sometimes is is useful to project complex surfaces into 2D and resample them
onto a 2D mesh so queries and other analysis can be performed.

When you project a complex surface to 2D using the Project operator, all of a
plot’s geometry remains and its Z coordinates are set to zero. This results in
some areas where the plot is essentially crushed on top of itself, as shown in
Figure 4.59. When resampling the plot onto a new 2D
grid, these overlapping areas can be treated in three different ways. You can
ensure that the top value is taken if you choose the random option by clicking
on the random button in the Resolve ties button group. You can use a
mask variable to decide ties by clicking on the largest or smallest
buttons and by selecting an appropriate variable using the
Variable to resolve ties menu.

[image: ../../../_images/resampleties.png]

Fig. 4.59 Using the Resample operator to create a 2D projection

When used in parallel, the resampled data is distributed across all processors.
This can be changed by unselecting the checkbox.

You can also force the output data to be cell centered by selecting the
Make output cell centered checkbox.

4.3.25. Revolve operator

The Revolve operator is for creating 3D geometry from 2D geometry by revolving
the 2D about an axis. The Revolve operator is useful for incorporating 2D
simulation data into a visualization along with existing 3D data. An example of
the Revolve operator is shown in Figure 4.60.

[image: ../../../_images/revolve.png]

Fig. 4.60 Revolve operator example

4.3.25.1. Using the Revolve operator

To use the Revolve operator, the first thing to do is pick an axis of
revolution. The axis of revolution is specified as a 3D vector in the
Axis of revolution text field (see Figure 4.61) and
serves as the axis about which your 2D geometry is revolved. If you want to
revolve 2D geometry into 3D geometry without any holes in the middle, be sure
to pick an axis of revolution that is incident with an edge of your 2D
geometry. If you want 3D geometry where the initial 2D faces do not meet, be
sure to specify start and stop angles in degrees in the Start angle and
Stop angle text fields. Finally, the number of steps determines how many
times the initial 2D geometry is revolved along the way from the start angle
to the stop angle. You can specify the number of steps by entering a new value
into the Number of steps text field.

By default, VisIt will choose the axis of revolution based on mesh
type, which is also determined automatically. You can specify the mesh type
manually by selecting a radio button other than Auto. To specify the axis
of revolution manually, uncheck the Choose axis based on mesh type checkbox.

[image: ../../../_images/revolvewindow.png]

Fig. 4.61 Revolve attributes window

4.3.26. Slice operator

This operator slices a 3D database with a plane that can have an arbitrary
orientation. Plots to which the Slice operator has been applied are turned into
2D planar surfaces that are coplanar with the slice plane. The resulting plot
can be left as a 2D slice in 3D space or it can be projected to 2D space where
other operations can be done to it. A Pseudocolor plot to which a Slice operator
has been applied is shown in Figure 4.62.

[image: ../../../_images/slice.png]

Fig. 4.62 Slice operator example

4.3.26.1. Positioning the slice plane

You can position the slice plane by setting the origin, normal, and up-axis
vectors in the Slice operator attributes window, shown in
Figure 4.63 . The slice plane is specified using the
origin-normal form of a plane where all that is needed to specify the plane are
two vectors; the origin and the normal. The origin of the plane is a point in
the slice plane. The normal vector is a vector that is perpendicular to the
slice plane.

[image: ../../../_images/slicewindow.png]

Fig. 4.63 Slice attributes window

VisIt allows the slice plane normal to be aligned to a specific axis or it can
be set to any arbitrary vector. If you want the slice plane to be along any of
the three axes, click the X-Axis, Y-Axis, or Z-Axis radio button.
If you want to make a slice plane that does not align with the principle axes,
click the Arbitrary or Theta-Phi radio button and then type a direction
vector into the text field to the right of the radio button. The vector need
not be normalized since VisIt will normalize the vector before using it.

The slice plane’s origin, which specifies the location of the slice plane, can
be set five different ways. The middle of the Slice attributes window, or
Origin area (see the Figures below), provides the necessary controls
required to set the slice plane origin. The Origin area provides five
radio buttons: Point, Intercept, Percent, Zone, and
Node. Clicking on one of these radio buttons causes the Origin area to
display the appropriate controls for setting the slice plane origin. To set
the slice plane origin to a specific point, click the Point radio button in
the Origin area and then type a new 3D point into the Point text field.
To set the slice plane origin to a specific value along the principle slice
axis (usually an orthogonal slice), click the Intercept radio button and
then type a new value into the Intercept text field.

[image: ../../../_images/slicewindow_origins.png]

Fig. 4.64 Origin area appearance

If you don’t know a good value to use for the intercept, consider using the
percent slice mode. Percent slice mode, which is most often used for an
orthogonal slice, allows you to slice along a particular axis using some
percentage of the distance along that axis. For example, this allows you to see
what the slice plane looks like if its origin is 50% of the distance along the
X-Axis. To set the origin using a percentage of the distance along an axis,
click the Percent radio button and then type a new percentage value into
the Percent text field or use the Percent slider.

Sometimes it is useful to slice through a particular zone or node. The Slice
operator allows you to pick an origin for the slice plane so a specific zone or
node lies in the slice plane. To make sure that a particular zone is sliced by
the Slice operator, click on the Zone radio button and then enter the zone
to be sliced into the Zone text field. Be sure to also enter the domain that
contains the zone into the Domain text field if you are slicing a
multi-domain database. If you want to make sure that the slice plane’s origin
is at a specific node in a mesh, click the Node radio button and enter a
new node number into the Node text field. Note that you must also specify a
domain if you are slicing a multi-domain database. If the database contains
multiple meshes, their will also be Mesh combo box option from which to
choose the mesh to use, as seen in the Node example in
Figure 4.64.

Use the up-axis vector when you want the slice plane to be projected to 2D. The
up-axis vector is a vector that lies in the slice plane and defines a 2D
coordinate system within the plane where the up-axis vector corresponds to the
Y-axis. To change the up-axis vector, type a new 3D vector into the
Direction text field in the Up Axis area of the window.

4.3.26.2. Positioning the slice plane using the Plane Tool

You can also position the slice plane using VisIt’s interactive plane tool. The
plane tool, which is available in the visualization window’s popup menu,
allows you to position a slice plane interactively using the mouse. The plane
tool is an object in the visualization window that can be moved and rotated.
When the plane tool is changed, it gives its new slice plane to the Slice
operator if the operator is set to accept information interactively. To make
sure that the Slice operator can accept a new slice plane from the plane tool,
check the Interactive check box in the Slice attributes window.
For more information about the plane tool, read the Interactive Tools
chapter.

4.3.26.3. Projecting the slice to 2D

The Slice operator usually leaves sliced plots in 3D so you can position the
slice with the plane tool. However, you might want the plot projected to 2D.
When a sliced plot is projected to 2D, any 2D operation, like Lineout
, can be applied to the plot. To project a plot to 2D, check the Project 2D
check box in the Slice attributes window .

4.3.27. Smooth operator

The Smooth Operator applies Laplacian Smoothing to a mesh, making the cells
better shaped and the nodes more evenly distributed, which results in smoother
edges and peaks throughout the mesh. Each node is moved
towards a coordinate that is the average of its connected nodes. The
relaxation factor determines how far along that path to move the node. A
sweep over all nodes is a single iteration.

[image: ../../../_images/smooth.png]

Fig. 4.65 Smooth operator example

4.3.27.1. Using the Smooth operator

The Smooth operator has a number of
controls that can be used to tune mesh smoothness.

	Maximum number of iterations

	Controls the maximum number of times the mesh relaxation algorithm is
applied to the input mesh. Larger numbers of iterations will produce
smoother meshes but will also take more time to compute. Values must be
integers.

	Relaxation Factor

	Controls how much the mesh is relaxed. Values near 1 produce a mesh that is
very smooth relative to the input mesh. Values must be floating point
numbers between 0 and 1.

	Convergence

	Limit the maximum point motion. The smoothing process will terminate if the
maximum point motion during an iteration is less than this value. Smaller
numbers result in more iterations, and if 0 is supplied then the Smooth
operator will perform Maximum number of iterations. Values must be
floating point numbers between 0 and 1.

	Maintain Features

	When the surface angle between two zones sharing an edge is greater than
Feature Angle, then the edge is classified as a feature edge. The
nodes in the mesh are then classified as simple (not used by a feature
edge), interior edge (used by exactly two feature edges), or fixed (all
other nodes). Simple nodes are smoothed as before, fixed nodes are not
smoothed at all, and interior edge nodes are only smoothed along the two
connected feature edges, and only if the angle between the edges is less
than Max Angle Edge. This distinction allows the smoothing operation to
preserve sharp peaks in the mesh while still smoothing out
most of the mesh.

	Feature Angle

	Used to determine the number of feature edges for each node. Values must be
floating point numbers between 0 and 90.

	Max Angle Edge

	Used to determine if interior edge nodes will be smoothed. Values must be
floating point numbers between 0 and 90.

	Smooth Along Boundaries

	Enable the smoothing operation on nodes that are along the boundaries of
the mesh.

[image: ../../../_images/smoothwindow.png]

Fig. 4.66 Smooth attributes

4.3.28. SphereSlice operator

The SphereSlice operator slices a 2D or 3D database with an arbitrary sphere.
Plots to which the SphereSlice operator have been applied become 2D surfaces
that are coincident with the surface of the slicing sphere. The resulting
plots remain in 3D space. You can use the SphereSlice operator to slice objects
to judge their deviation from being perfectly spherical. An example of the
SphereSlice operator is shown in Figure 4.67.

[image: ../../../_images/sphere.png]

Fig. 4.67 SphereSlice operator example

4.3.28.1. Positioning and resizing the slice sphere

You can position the slice sphere by setting its origin in the
SphereSlice attributes window shown in
Figure 4.68 . The slice sphere is specified by a
center point and a radius. To change the slice sphere’s center, enter a new
point into the Origin text field. The origin is a 3D coordinate that is
represented by three space-separated floating point numbers. To resize the
sphere, enter a new radius number into the Radius text field.

[image: ../../../_images/sphereslicewindow.png]

Fig. 4.68 SphereSlice attributes window

4.3.28.2. Positioning the slice sphere using the Sphere tool

You can also position the slice sphere using VisIt’s interactive sphere tool.
The sphere tool, available in the visualization window’s popup menu, allows you
to position and resize a slice sphere interactively using the mouse. The sphere
tool is an object in the visualization window that can be moved and resized.
When the sphere tool is changed, it gives its new slice sphere to the
SphereSlice operator. For more information about the sphere tool, read the
Interactive Tools chapter.

4.3.29. Tessellate operator

The Tessellate operator is an operator that tessellates high order elements
so that they appear curved.

[image: ../../../_images/tessellate.png]

Fig. 4.69 Tessellate operator example

The Tessellate operator supports the following high order element types.

	QUADRATIC_EDGE

	CUBIC_LINE

	LAGRANGE_TRIANGLE

	QUADRATIC_TRIANGLE

	BIQUADRATIC_TRIANGLE

	LAGRANGE_QUADRILATERAL

	BIQUADRATIC_QUAD

	QUADRATIC_QUAD

	LAGRANGE_TETRAHEDRON

	QUATRADIC_TETRA

	LAGRANGE_HEXAHEDRON

	QUADRATIC_HEXAHEDRON

If the Tessellate operator encounters an unsupported element type it will
remove the element from the mesh.

4.3.29.1. Changing the tessellation accuracy

The tessalation accuracy is controlled by the Chord error and
Field criterion. The Chord error is with respect to the curvature
of the element and is ratio of a chord to the distance from the curve and
is independent of the scale of the object. The default Chord error is
0.035, which will typically do a good job. The Field criterion is with
respect to the error in the field within the element. The default
Field criterion is also 0.035, which will also typically do a good job.
Reducing the Chord error and Field criterion will both improve the
discretization. They should only be decreased if necessary, since reducing
them will increase the number of elements a single high order element is
tessellated into. This in turn increases the memory usage and the time to
perform operations. The number of elements a single high order element
gets tessellated into may easily get into the hundreds.

[image: ../../../_images/tessellatewindow.png]

Fig. 4.70 Tessellate attributes window

4.3.29.2. Merging the points

The points from the cells generated by the tessellation can either be
shared or not shared by cells. The default Merge points setting will
merge the points. Point merging typically only affects the appearance of
the Mesh plot. When points are merged, the mesh lines of individual
cells of the tessellation will be visible. When points are not merged,
the mesh lines of the high order element will typically only be visible.

4.3.30. ThreeSlice operator

The ThreeSlice operator slices 3D databases using three axis-aligned slice
planes and leaves the resulting planes in 3D where they can all be viewed at the
same time. The ThreeSlice operator is meant primarily for quick visual
exploration of 3D data where the internal features cannot be readily observed
from the outside.

[image: ../../../_images/threeslice.png]

Fig. 4.71 ThreeSlice operator example

4.3.30.1. Moving the ThreeSlice operator

The ThreeSlice operator is controlled by moving its origin, which is the 3D
point where all axis-aligned slice planes intersect. There are two ways to
move the ThreeSlice operator’s origin. First, you can directly set the point
that you want to use for the origin by entering new x, y, z values into the
respective X , Y , Z text fields in the ThreeSlice operator
attributes window , shown in Figure 4.72.
You can also make sure that the Interactive toggle is turned on so you can
use VisIt’s interactive Point tool to set the ThreeSlice operator’s origin.
When you use the Point tool to set the origin for the ThreeSlice operator, the
act of moving the Point tool sets the ThreeSlice operator’s origin and causes
plots that use the ThreeSlice operator to be recalculated with the new origin.
For more information about the point tool, read the Interactive Tools
chapter.

[image: ../../../_images/threeslicewindow.png]

Fig. 4.72 ThreeSlice attributes window

4.3.31. Threshold operator

The Threshold operator extracts cells from 2D and 3D databases where the
plotted variable falls into a specified range. The resulting database can be
used in other VisIt plots. You might use this operator when searching for cells
with certain values. One such example is searching for the cell with the
minimum or maximum value for the plotted variable. The Threshold operator
removes all cells that do not have values in the specified range, making it easy
to spot cells with the desired values. The Threshold operator can also use
variables other than the plotted variable, for instance, you might want to see
a Pseudocolor plot of pressure while using the Threshold operator to remove all
cells below a certain density. By specifying a different threshold variable,
it is possible to visualize different quantities over the subset of cells
specified by the threshold variable and range. An example of the Threshold
operator is shown in Figure 4.73.

[image: ../../../_images/threshold.png]

Fig. 4.73 Threshold operator example

4.3.31.1. Setting the variable range

The Threshold operator uses a range of values to determine which cells from the
database should be kept in the visualization. For the Default bounds input,
you specify the range of values by lower and upper bounds on the threshold
variable. Cells with values below the lower bound or with values above the
upper bound are removed from the visualization. To specify a new lower bound,
type a new number or the special keyword: min into the
Threshold attributes window’s (Figure 4.74)
Lower bound text field. To specify a new upper bound, type a new number
or the special keyword: max into the Upper bound text field.

[image: ../../../_images/thresholdwindow.png]

Fig. 4.74 Threshold attributes window - Default

For the Custom bounds input, you can specify a list of ranges in the
Range text field. A colon - ‘:’ defines a range and a comma - ‘,’ defines
a logical OR. The range shown in Figure 4.75
has the following meaning:

1 <= default <= 10 OR default = 17 OR 23 <= default <= max

Numbers, commas, and colons are the only valid symbols that can be used in
specifying a range list.

[image: ../../../_images/threshold_custom.png]

Fig. 4.75 Threshold attributes window - Custom

When the threshold variable is a nodal quantity, the cell being considered by
the Threshold operator has values at each node in the cell. In this case, the
Threshold operator provides a control that determines whether or not to keep the
cell if some nodes have values in the threshold range or if all nodes have
values in the threshold range. More cells are usually removed from the
visualization when all nodes must be in the threshold range. Select
Part in range from the Show zone if combo box to allow cells where at
least one value is in the threshold range into the visualization. Select
All in range from the Show zone if combo box to require that all nodal
values exist in the threshold range.

4.3.31.2. Setting the threshold variable

The Threshold operator uses the threshold variable to determine whether cells
remain in the visualization. The threshold variable is usually the plotted
variable in which case the Variable column displays: default. To
specify a threshold variable other than the plotted variable, click on the
Add variable variable button and select a new scalar variable from the list
of available variables.

You might set the threshold variable when you apply the Threshold operator to
plots which do not take scalar variables as input. An example of this is the
Mesh plot. When you apply the Threshold operator to a Mesh plot, you must set
the threshold variable to a valid scalar variable for cells to be removed from
the plot. You can also use the threshold variable to remove cells based on one
variable while viewing the plotted variable.

4.3.31.3. Setting the output mesh type

The Threshold operator removes all cells that do not meet the threshold
criterion, leaving behind a set of cells that are gathered into an unstructured
mesh. Sometimes, it can be useful to transform the remaining cells into a point
mesh. You can specify the desired output mesh type using the
Cells from input and Point mesh radio buttons in the
Threshold attributes window .

4.3.32. Transform operator

The Transform operator manipulates a 2D or 3D database’s coordinate field by
applying rotation, scaling, and translation transformations. The operator’s
transformations are applied in the following order: rotation, scaling,
translation. The Transform operator is applied to databases before they are
plotted. You might use the Transform operator to rotate database geometry to a
more convenient orientation or to scale database geometry to make better use of
the visualization window. You can also use the Transform operator to make
objects rotate and move around the visualization window during animations.
This works well when only one part of the visualization should move while other
parts and the view remain fixed. An example of the Transform operator is shown
in Figure 4.76.

[image: ../../../_images/transform.png]

Fig. 4.76 Transform operator example

4.3.32.1. Rotation

You can use the Transform operator to rotate plots around an arbitrary axis in
3D and around the Z-axis in 2D. To apply the rotation component of the
Transform operator, be sure to check the Rotate check box in the
Transform attributes window (Figure 4.77).
An origin and normal are needed to specify the axis of rotation. The origin
serves as a reference point for the object being rotated. The axis of rotation
is a 3D vector that, along with the origin, determines the 3D axis that will
serve as the axis of rotation. You must supply an origin and an axis vector to
specify an axis of rotation. To change the origin, type a new 3D vector into
the top Origin text field. To change the 3D axis, type a new 3D vector into
the Axis text field. Both the origin and the axis are represented by three
space-separated floating point numbers.

[image: ../../../_images/transformwindow.png]

Fig. 4.77 Transform attributes window

When applying the Transform operator to plots, you probably want to make the
origin the same as the center of the plot extents which can be found by looking
at the axis annotations. When the Transform operator is applied to 3D plots, the
axis of rotation can be set to any unit vector. When the Transform operator is
applied to 2D plots, the axis of rotation should always be set to the Z-axis
(0 0 1).

Once you specify the axis of rotation, you must supply the angle of rotation.
The default angle of rotation is zero degrees, which gives no rotation. To
change the angle of rotation, enter a number in degrees or radians into the
Amount text field and click the Deg radio button for degrees or the
Rad radio button if the angle is measured in radians.

4.3.32.2. Scale

You can use the Transform operator to scale plots. Each dimension can be scaled
independently by entering a new scale factor into the X, Y, Z text fields.
Each scale factor is a multiplier so that a value of 1 scales plots to their
original size while a value of 2 scales plots to twice their original size. To
apply the scale component of the Transform operator, be sure to check the
Scale check box in the Transform attributes window .
All dimensions are scaled relative to a scaling origin which can be changed by
typing a new origin into the middle lower Origin text field.

4.3.32.3. Translation

You can use the Transform operator to translate plots. To apply the translation
component of the Transform operator, be sure to check the Translate check
box in the Transform attributes window . To translate plots in the X dimension, replace the default value of zero in the X translation text
field. Translations in the Y and Z dimensions are handled in the same manner.

4.3.32.4. Coordinate system conversion

In addition to being able to rotate, scale, and translate plots, the Transform
operator can also perform coordinate system conversions. A plot’s coordinates
can be specified in terms of Cartesian, Cylindrical, or Spherical coordinates
(illustrated in Figure 4.78). Ultimately, when a plot is
rendered in the visualization window, its coordinates must be specified in
terms of Cartesian coordinates due to the implementation of graphics hardware.
If you have a database where the coordinates are not specified in terms of
Cartesian coordinates, you can apply the Transform operator to perform a
coordinate system transformation so the plot is rendered correctly in the
visualization window.

[image: ../../../_images/coordsystems.png]

Fig. 4.78 Cartesian, Cylindrical, Spherical coordinate systems

Figure 4.79 shows a model of an airplane that is specified
in terms of spherical coordinates. When it is rendered initially, VisIt assumes
that the coordinates are Cartesian, which leads to the plot getting stretched
and tangled. The Transform operator was then applied to convert the plot’s
spherical coordinates into Cartesian coordinates, which allows VisIt to draw the
plot as it is intended to look.

[image: ../../../_images/transform2.png]

Fig. 4.79 Coordinate system conversion using the Transform operator

The Transform operator allows coordinate system transformations between any of
the three supported coordinate systems, shown in
Figure 4.80 . To pick a coordinate system
transformation, you must first pick the coordinate system used for the input
geometry. Next, you must pick the desired output coordinate system. In the
example shown in Figure 4.79, the input coordinate system
was Spherical and the output coordinate system was Cartesian. Note that if you
use the Transform operator to perform a coordinate system transformation then
you cannot also perform rotation, scaling, or translation. If you must perform
any of those operations, add a second Transform operator to your plots.

[image: ../../../_images/transformwindow2.png]

Fig. 4.80 Supported coordinate systems

4.3.32.5. Linear transforms

Linear transforms can be specified via a 4x4 matrix as shown in
Figure 4.81. Vectors will be transformed by default,
uncheck the transform vectors checkbox if this is not desired. The inverse
transform can be applied by selecting Invert linear transform.

[image: ../../../_images/transformwindow3.png]

Fig. 4.81 Linear transformation options

[image: ../../../_images/transform_linear.png]

Fig. 4.82 Linear transformation example

4.3.33. Tube operator

The Tube operator is an operator that turns line geometry into tubes, making
the lines appear fatter and shaded.

[image: ../../../_images/tube.png]

4.3.33.1. Changing tube appearance

The Tube operator provides a few knobs that control the appearance of the
generated tubes. First of all, the tube radius can be set by typing a new
radius into the Radius text field in the Tube attributes window
(Figure 4.84). The specified radius can either be a
Fraction of Bounding Box (default) or Absolute by changing the combo
box option next to the Radius text box. If you want the radius scaled by a
variable instead, check the Scale width by variable? checkbox, and choose a
variable from the Variable menu.

[image: ../../../_images/tubewindow.png]

Fig. 4.84 Tube attributes window

The number of polygons used to make up the circumference of the tube can be
altered by typing a new number of sides into the Fineness of tube
text field. Finally, the ends of tubes can be capped instead of remaining open
by turning on the Cap Tubes check box. See Figure 4.85
for result of capping.

[image: ../../../_images/tube2.png]

Fig. 4.85 Uncapped and capped tubes

5. Saving and Printing

In this chapter, we discuss how to save and print files from within VisIt. The
section on saving files is further broken down into four main areas: saving session files, saving
images, saving movies, saving Cinema databases, and exporting databases. We first
learn about saving session files using the Save Session window. We then learn
about saving images of visualizations using the Save Window and then we move on to
saving movies and sets of image files using the Save movie wizard. In addition
to movies, VisIt provides the Save to Cinema wizard to create Cinema image databases,
which surpass movies and allow the user to explore data from different viewpoints.
After learning to save images, movies, and Cinema databases, this chapter concentrates
on exporting VisIt plots as databases using the Export Database window. Finally,
we learn to print images of visualizations using the Printer Window.

	5.1. Session files
	5.1.1. Saving session

	5.1.2. Restoring session

	5.2. Saving the Visualization Window
	5.2.1. The Save Window

	5.2.2. Selecting the output directory for saved files

	5.2.3. Setting the save file name

	5.2.4. Setting the file type

	5.2.5. Saving images with screen capture

	5.2.6. Setting image resolution

	5.2.7. Saving stereo images

	5.2.8. Saving binary geometry files

	5.2.9. Selecting pixel data

	5.2.10. Saving tiled images

	5.3. Saving movies
	5.3.1. Choosing movie formats

	5.3.2. Choosing movie length

	5.3.3. Choosing the movie name

	5.3.4. Choosing e-mail notification

	5.3.5. Choosing movie generation method

	5.4. Saving Cinema
	5.4.1. Choosing filename

	5.4.2. Choosing specification

	5.4.3. Image settings

	5.4.4. Composite images

	5.4.5. Choosing Camera type

	5.4.6. Frame settings

	5.4.7. Saving Cinema from Libsim

	5.5. Exporting databases
	5.5.1. Exporting variables

	5.5.2. Choosing an export file format

	5.5.3. Export Options

	5.6. Printing
	5.6.1. The Printer Window

5.1. Session files

A session file is an XML file that contains all of the necessary information to
recreate the plots and visualization windows used in a VisIt session. You can
set up complex visualizations, save a session file, and then run a new VisIt
session later and be able to pick up exactly where you left off when you saved
the session file. If you often look at the same types of plots with the same
complex setup then you should save a session file for your visualization once
it is set up so you don’t have to do any manual setup in the future.

5.1.1. Saving session

Once you have set up your plots, you can select Save session option in the
Main Window’s File menu to open up a Save file dialog. Once the
Save file dialog is opened, select the location and filename that you want
to use to store the session file. By default, VisIt stores all session files
in your .visit directory on UNIX and MacOS X computers and in the directory
where VisIt was installed on Windows computers. Once you select the location
and filename to use when saving the session file, VisIt writes an XML
description of the complete state of all vis windows, plots, and GUI windows
into the session file so the next time you come into VisIt, you can completely
restore your VisIt session.

5.1.2. Restoring session

Restoring a VisIt session file deletes all plots, closes all databases,
etc before VisIt reads the session file to get back to the state described
in the session file. After restoring a session file, VisIt will look exactly
like it did when the session file was saved. To restore a session file, click
the Restore session option from the Main Window’s File menu to open
an Open file dialog. Choose a session file to open using the Open file
dialog. Once a file is chosen, VisIt restores the session using the
selected session file. If you are on the Windows platform, you can
double-click session files (.vses files) stored on your computer in order to
directly open them with VisIt.

5.2. Saving the Visualization Window

VisIt allows you to save the contents of any open visualization window to a
variety of file formats. You can save visualizations as images so they can
be imported into presentations. Alternatively, you can save the geometry of
the plots in the visualization window so it can be imported into other
computer modeling and visualization programs.

VisIt currently supports the image files formats:
BMP, JPEG, PNG, PPM, Raster Postscript, RGB, and TIFF

VisIt currently supports the geometry file formats:
Curve, Alias WaveFront Obj, PLY, POV, STL, ULTRA, and VTK

The Curve and ULTRA file formats are specially designed to store the data
created from curve plots and can be used with other Lawrence Livermore
National Laboratory visualization software. The Alias Wavefront Obj file format
is supported so visualizations produced with VisIt can be imported into
rendering programs such as Maya. VisIt can save visualizations into STL files,
which are used with stereolithographic printers to fabricate three-dimensional
parts. Finally, VisIt can save visualizations into the VTK (Visualization
Toolkit) format so they can be read back into VisIt and used in other VTK-based
applications.

When saving the geometry of plots in the visualization window into any of the
afore-mentioned formats, you are performing a type of database export operation.
However, saving geometry in this manner differs from exporting databases using
the Export Database Window. Only the external faces of the plots are saved
out when saving plot geometry whereas during a database export, 3D cells are
preserved in the final exported database. The topic of exporting databases is
covered later in this chapter.

5.2.1. The Save Window

You can set the Save window options before saving by selecting Set Save options… from the
Main Window’s File menu. The Set save options window contains the controls that
allow you to set the options that govern how visualizations are saved.

[image: ../../_images/savewindow.png]

Fig. 5.1 Save Window

The Set Save options window, shown in Figure 5.1,
contains four basic groups of controls. The first group, Filename, allows you
to set the file information. Use the file information controls to set the name
and destination. If the Family checkbox is selected, then each time an image
is saved with the same name, a number will be appended to the filename that is
one more than the current file with the same name. The second group,
Format options, allows you to set the file type, compression type, and any
optional quality parameters that may exist for the selected file type. Use the
third group of controls, Aspect ratio and resolution, to specify the
dimensions of the saved image. If Screen capture is checked, the aspect ratio
and width/height will be ignored and the current screen image will be saved. The
last group, Multi-window save, allows you to set options for each window being
saved by clicking on the Window drop-down and selecting the appropriate
window. When the save options are set and applied
by clicking the Apply button, the active visualization can be saved either
through the Save Window option in the Main Window’s File menu, by the
keyboard shortcut Ctrl+S , or by clicking the Save button in the
Set Save options window.

5.2.2. Selecting the output directory for saved files

On most platforms, VisIt’s default behavior is to save output files to the
current directory, which is the directory where VisIt was started. On the
Windows platform, VisIt saves images to the
location VUSER_HOME/My images. If you want to specify
a special output directory for your output files, you can turn off the
Output files to current directory check box and type in the path to the
directory where you want VisIt to save your files in the Output directory
text field. If you want to browse the file system to find a suitable directory
in which to save your images, click on the “…” button to the right of the
Output directory text field to bring up a Directory chooser dialog.
Once you select a suitable directory using the Directory chooser dialog,
the path that you chose is inserted into the Output directory text field.

5.2.3. Setting the save file name

To set the file name that will be used to save files, type a file name into
the Filename text field. The file name that you use may contain a path
to a directory where you want to write the saved files. If no path is
specified, the saved files are written to the directory from which VisIt was
launched. A file extension appropriate for the type of file being generated
is automatically appended to the file name. For example, a BMP file will
have a “.bmp” extension, while a JPEG file will have a “.jpeg”
extension, and so on.

The file name that VisIt uses to save visualizations is based on the specified
file name, the file format, and also the family toggle setting. The family
toggle setting is set by checking the Family check box towards the top
right part of the Save Window.

The family toggle setting allows you to save series of files that all have
essentially the same name except for a number that is appended to the file
name. The number increases by one each time an image is saved. If the family
toggle setting is on then a file named “visit” of type TIFF will save out
as “visit0000.tiff”. If the family toggle setting is off, the file will save
as “visit.tiff”.

5.2.4. Setting the file type

You set the file type by making a selection from the File type menu.
You can choose from image file types or geometry file types. Note that some
areas of the Save Window become enabled or disabled for certain file types.

Choosing JPEG format files enables the Quality slider and the
Progressive check box. These controls allow you to specify the desired
degree of quality in the resulting JPEG images. A lower quality setting results
in blockier images that fit into smaller files. The progressive setting stores
the JPEG images in such a way that they progressively refine as they are
downloaded and displayed by Web browsers.

Choosing TIFF format files enables the Compression type combo box.
The available compression types are: None, PackBits, JPEG, and Deflate.
When compression is enabled for TIFF files, they are smaller than they would
be without compression.

Choosing STL or VTK file formats saves visualizations as geometry files
instead of images and also enables the Binary check box. The Binary
check box tells these formats to write their geometry data as binary data files
instead of human-readable ASCII text files. In general, files written with the
binary option are smaller and faster to load than their non-binary counterparts.

5.2.5. Saving images with screen capture

The Screen capture check box tells VisIt to grab the image directly off of
the computer screen. This means that the saved image will be exactly the same
size as the image on the screen. There are advantages and disadvantages to
using screen capture. An advantage is that capturing the image from the screen
does not require VisIt to redraw the image to an internal buffer before
saving, which usually results in a faster save. A disadvantage of screen
capture is that any other windows on top of VisIt’s visualization window
occlude portions of the image. Screen capture can also be very slow over a
sluggish network connection. Finally, using screen capture might not provide
images that have enough resolution. Weigh the advantages and disadvantages of
using screen capture for your own situation. Screen capture is on by default.

5.2.6. Setting image resolution

You set image resolution using the controls in the Aspect ratio and resolution group. These controls are disabled unless the file being saved is an image
format and screen capture is not being used. You specify the image height
and width by typing new values into the Height and Width text fields.
If the Maintain 1:1 aspect check box is on, VisIt forces the image’s
height and width to be the same, yielding a square image. Turn off this
setting if you want to save rectangular images. The image resolution is
ignored unless you turn off the Screen capture check box.

5.2.7. Saving stereo images

When the Stereo check box is turned on and you save an image, VisIt will
save a separate image for the left eye and for the right eye. The cameras
used to generate each image are offset such that when the images are played
together at high rates, they appear to have more depth. To enable saving of
stereo images, click the Stereo check box in the Save Window before
you try to save an image.

When Family mode is not enabled, VisIt will prepend left_ and right_
designators to the saved filenames. However, when Family mode is enabled,
VisIt saves the two images in sequence without any left/right designation.
The left image is saved first followed by the right image. If next available
number in the Family is odd, the left will be odd and right will be even.
On the other hand, if next available number in the Family is even, the left
will be even and right will be odd. However, the notification messages VisIt
produces about the saved images may only mention the first (left) saved image
filename.

5.2.8. Saving binary geometry files

Some geometry file formats such as STL and VTK have both ASCII and binary
versions of the file format. The ASCII file formats are human-readable and are
larger and slower for programs to process than binary formats, which are
not human-readable but are smaller and quicker for programs to read. When
geometry file formats support both ASCII and binary formats, the
Binary check box is enabled. By default VisIt writes ASCII
geometry files but you can click the Binary check box to make VisIt write
binary geometry files.

5.2.9. Selecting pixel data

Normally when saving an image, VisIt will simply save the RGB pixel data into
the specified image format. It is possible to request that VisIt saves additional
pixel data when saving an image. This may result in additional files being saved
alongside the normal image file. These additional images will share the same
filename root as the image file but will have suffixes such as “value”, “depth”,
or “lum”, depending on their contents. Special file formats such as OpenEXR can
contain all of these additional image channels. When OpenEXR is the selected
file format, a single “.exr” file will be written containing all pixel data.

The Save options window contains a
Pixel data group that lets you request additional image channels. The RGB
check box selects RGB pixel data. The Alpha check box tells VisIt to also
request transparency information and to not render with a background when saving
an image. This lets VisIt save images with a transparent background, which makes
compositing such an image in front of other backgrounds far easier (see
Figure 5.2). The Depth
check box tells VisIt to export the depth buffer (Z-buffer) to a ZLib-compressed
binary file containing 32-bit floating point numbers. The Luminance check box
tells VisIt to save a luminance image, which shows how much lighting is used in
various parts of the scene. The luminance image is saved to the selected image
format. The Value check box tells VisIt to produce a rendering of the actual
scalar values in the scene in the form of a ZLib-compressed 32-bit floating point
buffer (same format as the depth image).

[image: ../../_images/transparent.png]

Fig. 5.2 Partially transparent plot saved to PNG with alpha channel

5.2.10. Saving tiled images

[image: ../../_images/tiledbefore.png]

Fig. 5.3 Saving tiled images example (before)

[image: ../../_images/tiledafter.png]

Fig. 5.4 Saving tiled images example (after)

A tiled image is a large image that contains the images from all visualization
windows that have plots. If you want to save tiled images, make sure to check
the Save tiled check box in the Set Save options window. To get an idea of how VisIt
saves your visualization windows into a tiled image, see Figure 5.3 and
Figure 5.4.

5.3. Saving movies

In addition to allowing you to save images of your visualization window for the
current time state, VisIt also allows you to save movies and sets of images for
your visualizations that vary over time. There are multiple methods for saving
movies with VisIt. This section introduces the Save movie wizard and explains
how to use it to create movies from within VisIt’s GUI. The
Animation chapter explains some auxiliary methods that
can be used to create movies.

[image: ../../_images/savemoviewizard1.png]

Fig. 5.5 Save movie wizard (screen 1)

The Save movie wizard (see Figure 5.5) is
available in the Main Window’s Files menu. The Save movie wizard’s
purpose is to lead you through a set of simple questions that allow VisIt to
gather the information required to create movies of your visualizations.
For example, the Save movie wizard asks which image and movie formats
you want to generate, where you want to store the movies, what you want to
call the movies, etc. Each of these questions appears on a separate screen
in the Save movie wizard and once you answer the question on the current
screen, clicking the Next (Continue for OSX) button advances you to the next screen. You can
cancel saving a movie at any time by clicking on the Cancel button. If you
advance to the last screen in the Save movie wizard then you have
successfully provided all of the required information that VisIt needs to make
your movie. Clicking the Finish button at that point invokes VisIt’s
movie-making script to make the movie. If you want to make subsequent movies,
you can choose to use the settings for the movies that you just made or you can
choose to create a new movie and provide new information.

5.3.1. Choosing movie formats

[image: ../../_images/savemoviewizard2.png]

Fig. 5.6 Save movie wizard (screen 2)

The Save movie wizard’s
second screen, shown in Figure 5.6, allows you
to pick the types of movies that you want to create. You can select as many
image and movie formats as you want and you can even specify multiple
resolutions of the same movie. VisIt allows you to order multiple versions of
your movie because it is often easier to create different versions of the movie
all at once as opposed to doing it later once it is discovered that you need
a new version to play on a laptop computer or a tiled display wall.

The Save movie wizard’s second screen is divided vertically into two main
areas. On the left you will find the Format and resolution area, which
displays the format and resolution for the current movie. On the right, you
will find the Output area, which lists the formats and resolutions for all
of the movies that you have ordered. By default no movie formats are present
in the Output area’s list of movies. You cannot proceed to the next screen
until you add at least one movie format to the list of movies in the Output
area.

To add a movie format to the list of movies in the Output area, first
choose the desired movie format from the Format combo box in the
Format and resolution area. Next, choose the movie resolution. The movie
resolution can be specified in terms of the visualization window’s current
size or it can be specified in absolute pixels. The default movie resolution
uses the visualization window’s current size with a scale of 1. You can change
the scale to shrink or grow the movie while keeping the visualization window’s
current aspect ratio. If you want to specify an absolute pixel size for the
movie, click on the Specify movie size radio button and type the desired
movie width and height into the Width andHeight text fields. Note
that if you specify a width and height that causes the movie’s shape to differ
from the visualization window’s shape, you might want to double-check that the
view used for the visualization window’s plots does not change appreciably.

The Save movie wizard allows you to create stereo movies if you check the
Stereo movie box and select a stereo type from the Stereo type drop-down
menu. The default is to create non-stereo movies because stereo movies are not
widely supported.

Note

“Streaming movie” format is an LLNL format

The only movie format that VisIt produces that is compatible with stereo movies
is the “Streaming movie” format, which is an LLNL format commonly used for
tiled displays. The “Streaming movie” format can support stereo movies where
the image will flicker between left and right eye versions of the movie,
causing a stereo effect if you view the movie using suitable liquid-crystal
goggles. The stereo option has no effect when used with other movie formats.
However, if you choose to save a stereo movie in any of VisIt’s supported image
formats, VisIt will save images for the left eye and images for the right eye.
You can then take the left and right images into your favorite stereo movie
creation software to create your own stereo movie.

Once you have selected the desired movie format, width, and height, click on
the right-arrow button that separates the Format and resolution area from
the Output area. Clicking the right-arrow button adds your movie to the
list of movies that you want to make. Once you have at least one movie in the
Output area, the screen’s Next button will become active. Click the
Next button to go to the next screen in the Save movie wizard

5.3.2. Choosing movie length

[image: ../../_images/savemoviewizard3.png]

Fig. 5.7 Save movie wizard (screen 3)

It is possible to specify the range of time states to use for the movie, as well
as specify a stride if you have too many time states saved (see Figure 5.7).
The wizard will automatically set the range of time states.

5.3.3. Choosing the movie name

[image: ../../_images/savemoviewizard4.png]

Fig. 5.8 Save movie wizard (screen 4)

Once you have specified options that tell VisIt what kinds of movies that you
want to make, you must provide the base name and location for your movies. By
default, movies are saved to the directory in which you started VisIt. If you
want to specify an alternate directory, you can either type in a new directory
path into the Output directory text field
(see Figure 5.8) or you can select a directory
from the Choose directory dialog box activated by clicking on
the “…” button.

The base filename for the movie is the name that is prepended to all of the
movies that you generate. When generating multiple movies with differing
resolutions, the movie resolution is often encoded into the filename. VisIt may
generate many different movies with different names but they will all share the
same base filename that you provided by typing into the Base filename text
field.

5.3.4. Choosing e-mail notification

[image: ../../_images/savemoviewizard5.png]

Fig. 5.9 Save movie wizard (screen 5)

If you want to be notified by e-mail when the movie creation is complete, then
select the Yes option and enter the appropriate e-mail address (see Figure 5.9).
By default, no e-mail notification is sent once the movie creation is complete.

5.3.5. Choosing movie generation method

[image: ../../_images/savemoviewizard6.png]

Fig. 5.10 Save movie wizard (screen 6)

After all movie options are specified, VisIt prompts you how you
would like your movie made. At this point, you can click the Finish/Done button
to make VisIt start generating your movie. You can change how VisIt creates
your movie by clicking a different movie generation method on the
Save movie wizard’s sixth screen, shown in Figure
Figure 5.10 .

The default option for movie creation allows VisIt to use your current VisIt
session to make your movies. This has the advantage that it uses your current
compute engine and allocated processors, which makes movie generation start
immediately. When you use this movie generation method, VisIt will launch its
command line interface (CLI) and execute Python movie-making scripts in order
to generate your movie. This means that you have both the VisIt GUI and CLI
controlling the viewer. If you use this movie generation method, you will be
able to watch your movie as it is generated. You can track the movie’s progress
using the Movie progress dialog , shown in
Figure 5.11 . The downside to using your
currently allocated processors is that movie generation takes over your VisIt
session until the movie is complete. If you want to regain control over your
VisIt session, effectively cancelling the movie generation process, you can
click the Movie progress dialog’s Cancel button.

[image: ../../_images/movieprogress.png]

Fig. 5.11 Movie progress dialog

The second movie generation method will cause VisIt to save out a session file
containing every detail about your visualization so it can be recreated by a
new instance of VisIt. This method works well if you want to create a movie
without sacrificing your current VisIt session but you cannot watch the movie
as it is generated and you may have to wait for the second instance’s compute
engine to be scheduled to run. The last movie generation option simply makes
VisIt display the command that you would have to type at a command prompt in
order to make VisIt generate a movie of your current visualizations.

5.4. Saving Cinema

VisIt lets you save Cinema databases in addition to saving images and movies of
your plots. A Cinema database is an image-based proxy for large scale data that
lets you explore the data using far fewer computational resources. Where
post-processing full data might take a supercomputer, exploring a Cinema database
can be done on a tablet. Cinema databases consist of images that are indexed by
a JSON file or CSV file. The index file is used by the Cinema viewer (available at
www.cinemascience.org [http://www.cinemascience.org/]) to determine a set of
parameters that can be changed by
the user. These parameters are used to look up corresponding image files for
display in the Cinema viewer. For example, Cinema databases typically allow
the user to navigate through time using a time parameter. Cinema databases also
can be saved using a spherical camera that is described by phi and theta parameters
to let the user see the plots from various camera angles. It is possible to create
Cinema databases in situ using Libsim so Cinema databases can be created
incrementally as a simulation runs. This section introduces
the Save Cinema wizard and explains how to create Cinema databases from within
VisIt’s GUI.

[image: ../../_images/savecinemawizard1.png]

Fig. 5.12 Save Cinema wizard (screen 1)

The Save Cinema wizard (see Figure 5.12) is
available in the Main Window’s Files menu. The Save Cinema wizard’s
purpose is to let you set the options that are used to take the current
visualizations and produce a Cinema database. Progress through the screens using
the Next button until the last screen is reached. Clicking Cancel at any
time will close the wizard. Clicking the Finish button will tell VisIt to
produce a Cinema database with the current settings.

5.4.1. Choosing filename

Cinema databases are stored as a directory structure containing various nested
directories with image files and an index file. When saving a Cinema database,
you must pick the name of the top level directory under which all other files
will be saved. The Save Cinema wizard contains a File name selection
control that lets you select the name of the Cinema “.cdb” directory. The control
can accept file names that are typed in and clicking the … button opens a
filename selection window that permits a new filename to be selected.

5.4.2. Choosing specification

Cinema databases are described by specifications that dictate the format and
allowable contents for the files that they contain. There are currently 3 Cinema
specifications in use: A, C, D.

Specification A describes a Cinema database format
that contains image files (PNG, TIFF, etc.) that are associated with various
user-defined parameters such as time or camera angles in the case of a phi-theta
camera. This specification is compatible with any of the VisIt plots since images
of the currently set up visualizations are saved.
Specification C describes a Cinema database format that adheres to a different
directory structure over specification A and can contain composite images. Composite
images are comprised of 3 separate files: a PNG file containing a luminance image,
a ZLib-compressed file containing the Z-buffer, and a ZLib-compressed file
containing a rendering of actual scalar values for the plot.
Specification D is similar to specification A except that it uses a CSV file to
associate image files with a set of parameters, enabling sparse sets of images.

The Save Cinema wizard contains a set of A, C, D radio buttons to let you
choose the most appropriate specification for the type of Cinema database to
be created.

5.4.3. Image settings

The Save Cinema wizard contains controls for image settings such as the
file format, image width/height, and whether to use screen capture. The
File format control lets you select the image file format to be used.
Several pixel-based image file formats are available such as BMP, PNG, TIFF,
and when available EXR. OpenEXR is a format from ILM that can store various
image channels and data in multiple layers that can be composited later. Support
for OpenEXR is optionally compiled into VisIt. The Width and Height
controls allow the output image width and height to be specified when screen
capture is not in use by setting the Use screen capture controls. This
permits VisIt to save images in a custom size as opposed to saving images
based on the current visualization window’s size. Note that using screen
capture is faster for normal images since it does not require VisIt to
re-render the visualizations.

5.4.4. Composite images

Specification C Cinema databases support saving composite images which consist
of a luminance image, a Z image, and a scalar image. The luminance image is
a gray scale image that indicates the lighting used in the scene and it is
saved as a PNG image or other pixel format image. The Z image is contains the
Z-buffer for the luminance image, stored as a buffer of 32-bit floating point
values that have been ZLib-compressed and written to a raw binary file. The scalar
image is stored the same as the Z buffer image but it contains float values
that correspond to the actual scalars that were rendered in the visualization.
The scalar values are used in the Cinema viewer to dynamically recolor the
scene at render time. Composite images are most appropriate for surface-based
VisIt plots that employ a continuous color table, such as the Pseudocolor plot.
Composite images can be enabled by turning on the
Create composite images check box in the Save Cinema wizard when
specification C is used. When this setting is in effect, each VisIt plot will
be saved to a separate “layer” in the Cinema database so it can be composited
into the scene at will. Figure 5.14 shows multiple
VisIt plots that have been saved as separate layers to a composite image
specification C Cinema database that enables layers to be turned on and
off at view time.

[image: ../../_images/cinemaviewer.png]

Fig. 5.13 Cinema viewer with composite layers

5.4.5. Choosing Camera type

Cinema databases support multiple camera types. VisIt’s Cinema export supports
static cameras and phi-theta cameras. A static camera corresponds to the view
that is currently in effect in the visualization and when it is used, all time
states in the Cinema database will be viewed from that camera orientation. A
phi-theta camera defines 2 angles, phi and theta, that define the view direction
as in a spherical coordinate system. When a phi-theta camera is used, the
Cinema export will save the visualization from a multitude of different camera
orientations. This allows the user later in the Cinema viewer to interactively
rotate around the object much as though the object was live instead of just
a collection of image frames. The camera type can be selected using the
Camera type control in the Save Cinema wizard and either static or
phi-theta cameras can be selected. When a phi-theta camera is selected, the
number of camera angles in the phi and theta dimensions can be set using
the Phi and Theta controls.

5.4.6. Frame settings

The second tab in the Save Cinema wizard
(see Figure 5.14) contains controls that select the
range and stride of time states that will be included in the Cinema database. Use
the Frame start controls to select the beginning time state for the Cinema
database. A value of zero corresponds to the first time state. Use the
Frame end controls to set the last time state that will be included in the
Cinema database. Finally, use the Frame stride controls to set the stride
that will be used between the start and end time states, which is useful when
making shorter preview databases that vary over time but do not include all
time states.

[image: ../../_images/savecinemawizard2.png]

Fig. 5.14 Save Cinema wizard (screen 2)

5.4.7. Saving Cinema from Libsim

It is possible to use VisIt’s Libsim to directly save Cinema databases in situ
from an instrumented simulation. This means that the Cinema database can be generated
incrementally as the simulation runs, making it possible to periodically check
in on the simulation by viewing the Cinema database. To add Cinema support to
a simulation instrumented with Libsim, there are 3 calls that need to be made.
First, the simulation must call VisItBeginCinema, which passes the parameters
that describe the Cinema database format and returns a handle to a Cinema object.
Next, the simulation must call VisItSaveCinema to make Libsim generate and
add the appropriate images to the Cinema database, taking into account the type
of camera being used. The VisItSaveCinema function can be called repeatedly
to add new time states to the Cinema database. It is the simulation’s responsibility
to make Libsim calls that set up VisIt plots or restore a session so there are
plots when VisItSaveCinema is called. Finally, the simulation must call
VisItEndCinema to close out the Cinema database context and free associated
memory. A working example can be found in the
batch simulation example [https://github.com/visit-dav/visit/blob/develop/src/tools/data/DataManualExamples/Simulations/batch.c]
in VisIt’s simulation directory. The overall call structure for creating a Cinema
database looks something like this:

visit_handle h = VISIT_INVALID_HANDLE;
visit_handle hvar = VISIT_INVALID_HANDLE;
double time_value = 0.;
VisItBeginCinema(&h, "visit.cdb", VISIT_CINEMA_SPEC_A, 0,
 VISIT_IMAGEFORMAT_PNG, 800, 800,
 VISIT_CINEMA_CAMERA_PHI_THETA, 12, 7,
 hvar);

while(1) /* Simulation main loop */
{
 /* Compute... */

 VisItSaveCinema(h, time_value);

}

VisItEndCinema(h);

The above code example will generate a Cinema database using the plots that have
been set up elsewhere using Libsim. Since Cinema output may sometimes serve
as the only simulation data product, it can be useful to save out additional
variables. The last argument to VisItBeginCinema is a handle to a name
list object. When the handle is set to VISIT_INVALID_HANDLE, there is
no name list and the argument does nothing. If instead, the name list is
created and filled with a list of variable names from the simulation, the
VisIt plots will have their variables changed to the variables in the name
list and Libsim will generate a Cinema database with images for each
variable. The variable becomes a parameter in the Cinema viewer. A name list
object is created and populated like this:

visit_handle hvar;
VisIt_NameList_alloc(&hvar);
VisIt_NameList_addName(hvar, "pressure");
VisIt_NameList_addName(hvar, "rho");
VisIt_NameList_addName(hvar, "energy");

5.5. Exporting databases

Plot geometry can be saved to a handful of geometric formats by saving the
plots in the window to a format such as VTK. Often saving the plot geometry,
which only consists of the visible faces required to draw the plot, is not
enough. When interfacing VisIt to other tools you may want to save out the
database in a different file format. For instance, you
might plot a 3D database and want to export actual 3D cells for the entire
database instead of just the externally visible geometry. You might also
want to save out additional variables that you did not plot. VisIt allows
this kind of data export via the Export Database Window , shown in
Figure 5.15 .

[image: ../../_images/exportdatabase1.png]

Fig. 5.15 Export Database Window

You can find the Export Database Window in the Main Window’s File
menu. To save a database, you must first have opened a database and created
a plot. Note that the data transformations applied by plots or operators will
affect the data that you export. This allows you to alter the data using
sophisticated chains of operators before you export it for use in another tool.

5.5.1. Exporting variables

[image: ../../_images/exportdatabase2.png]

Fig. 5.16 Variables menu

The Export Database Window allows you to export a subset of the variables
for your active plot’s database by letting you specify which variables are to
be exported. To choose which variables should be exported, you can type the
names of the variables to export into the Variables text field or you can
select from the available variables in the Variables menu depicted in
Figure 5.16 . You can select as many variables as you
want from the menu. Each time you select a variable from the Variables
menu, VisIt will append it to the list of variables to be exported.

5.5.2. Choosing an export file format

The Export Database Window lists the names of the database reader plugins
that can also write data back into their native file formats. A small handful
of the total number of database plugins currently support this feature but in
the future most formats will support this capability more fully, making VisIt
not only a powerful visualization tool but a powerful database conversion tool.

You can try to use any of the supported export formats to export your data but
some of the file formats may not be able to accept certain types of data. The
Silo file format can safely export any type of data that you may want to export.
If you want to export data to other applications and the data must be stored in
an ASCII file that contains columns of data, you might want to choose the Xmdv
file format. If you want to choose a specific database plugin to export your
data files, make a selection from the Export to menu shown in
Figure 5.17 .

[image: ../../_images/exportdatabase3.png]

Fig. 5.17 Export file types

5.5.3. Export Options

Some export formats support various options. Those options will be presented
in a dialog box when the Export button is pressed in the
Export Database Window. For example, shown below are some options for
exporting to the Silo database.

[image: ../../_images/export_options_example.png]

Fig. 5.18 Export options example (for Silo)

If VisIt has been compiled with HDF5 support, Silo’s export options will include
the ability to select either the PDB or HDF5 driver. The Checksums
check-box indicates where the Silo library should compute checksums on the exported
data. In addition, the DBSetCompression() option text box is for specifying a
compression string to be used in Silo’s DBSetCompression() method before
exporting data.

When the meaning of an export option is not clear, try also pressing the Help
button in Export options for XXX writer window to get more information.

5.6. Printing

VisIt allows you to print the contents of any visualization window to a
network printer or to a PostScript file.

5.6.1. The Printer Window

[image: ../../_images/printwindowmac.png]

Fig. 5.19 Printer window

Open the Printer Window by selecting Print window from the
Main Window’s File menu. The Printer Window’s appearance is influenced
by the platform on which you are running VisIt so you may find that it looks
somewhat different when you use the Windows, Unix, or MacOS X versions of
VisIt. The MacOS X version of the Printer Window is shown in
Figure 5.19 .

6. Visualization Windows

A visualization window, also known as a vis window, is a window that
displays plots and allows you to interact with them using the mouse. The
vis window not only allows for direct manipulation of plots but it also
provides a popup menu and toolbar that allow you to switch window modes,
activate interactive tools, and perform commonly used operations. This
chapter explains how to manage and use vis windows.

	6.1. Managing vis windows
	6.1.1. Adding a new vis window

	6.1.2. Deleting a vis window

	6.1.3. Clearing plots from vis windows

	6.1.4. Changing window layouts

	6.1.5. Setting the active window

	6.2. Using vis windows
	6.2.1. Navigate mode

	6.2.2. Zoom mode

	6.2.3. Lineout mode

	6.2.4. Pick mode

	6.3. Interactor settings
	6.3.1. Zoom interactor settings

	6.3.2. Navigation styles

	6.4. The Popup menu and the Toolbar
	6.4.1. Hiding toolbars

	6.4.2. Moving toolbars

	6.4.3. Switching window modes

	6.4.4. Activating tools

	6.4.5. View options

	6.4.6. Animation options

	6.4.7. Window options

	6.4.8. Clear options

	6.4.9. Plot options

	6.4.10. Operator options

	6.4.11. Lock options

6.1. Managing vis windows

VisIt allows you to create up to 16 vis windows and to manage those vis
windows, VisIt provides controls to add vis windows, remove vis windows or
alter their layout. The controls for managing vis windows are located in the
Main Window’s Windows menu (see Figure 6.1),
as well as in the vis window’s Toolbars and Popup menu.

[image: ../../_images/popupmenuwindowmenu.png]

Fig. 6.1 Window menu

6.1.1. Adding a new vis window

You can add a new vis window in a few different ways, the first of which is
by selecting the New option from the Main Window’s Windows menu. You
can also click on the New window icon in the vis window’s Toolbar or
you can select the New window option from the Windows submenu in the
vis window’s Popup menu to add a new vis window. When you add a new
window, it will be sized according to the window layout so if you have only
a single, large vis window, the new vis window will also be large. You can
change the window layout to shrink the vis windows so that they both fit on
the screen. Vis windows are numbered 1 to 16 so the new window will have
the first available number for which there is not already a window. If you
have windows 1, 2, and 4, vis window 3 would be created by adding a new
window. Adding a new window also makes the new window the active window.

A new vis window can also be added by cloning the active window. You
can clone the active window by selecting the Clone option from the
Main Window’s Windows menu or you can click the Clone window icon
in the vis window’s Toolbar. When you clone the active window, VisIt
creates a new window as if you had clicked the Add option but it also
copies the plots, annotations, and lighting from the active window so
that the new window is identical in appearance to the active window. When
plots are copied to the new cloned window, they have not yet been
generated so their plot list entries in the Plot list are green. You
can force the plots to be generated by clicking the Draw button in
the Main Window.

6.1.2. Deleting a vis window

There are four ways to delete a vis window. The first way is to select the
Delete option from the Main Window’s Windows menu. When you delete
a window in this manner, the active window gets deleted and VisIt makes
the window with the smallest number the new active window. The second way
to delete a window is to click on the close window button in the
window decorations provided by the windowing system. The window decorations’
appearance varies based on the platform and windowing system used to run
VisIt, but the button used to close windows is commonly a button with an
X in it. An example of a close window button is shown in
Figure 6.2.

[image: ../../_images/closebutton.png]

Fig. 6.2 Window decorations with close button

The third way to delete a vis window is to click on the Delete window icon
in the vis window’s Toolbar. The fourth way to delete a vis window is to
use the Delete option in the vis window’s Popup menu. When you use
the Toolbar or the Popup menu to delete a window, the window does not
need to be the active window as when other controls are used.

6.1.3. Clearing plots from vis windows

The Main Window’s Windows menu provides a Clear all option that you
can use to clear the plots from all vis windows. Selecting this option does
not delete the plots from a vis window’s plot list but it does clear the
plots so they have to be regenerated by VisIt’s compute engine. You can also
clear the plots for just the active window by selecting the Plots option
from the Clear submenu in the Main Window’s Windows menu (see
Figure 6.3). You might find clearing plots useful
when you want to make several changes to plot attributes because, unlike
plots that are already generated, setting attributes of cleared plots does
not force them to regenerate when you change their attributes.

In addition to clearing plots, you can also clear pick points and
reference lines from a vis window. A pick point is a marker that VisIt
adds to a vis window when you click on a plot in pick mode. The marker
indicates the location of the pick point. A reference line is a line
that you draw in a vis window when it is in lineout mode. You can clear
a vis window’s pick points or reference lines, by selecting the
Pick points or Reference lines options from the Clear submenu
in the Main Window’s Windows menu.

[image: ../../_images/windowclearmenu.png]

Fig. 6.3 Clear menu

6.1.4. Changing window layouts

VisIt uses different window layouts to organize vis windows so they all fit
on the screen. Changing the window layout typically resizes all of the
vis windows and moves them into a tiled formation. If there are not enough
vis windows to complete the desired layout, VisIt creates new vis windows
until the layout is complete. You can change the layout selecting a new
layout from the Layouts menu located in the Main Window’s Windows menu
or you can click on a layout icon in the vis window’s Toolbar.

6.1.5. Setting the active window

VisIt has the concept of an active window that is the window to which
new plots are added. You can change the active window by selecting a
window number from the Active window menu located near the top of
the Main Window. Setting the active window updates the GUI so that
it displays the state for the new active window. The Active window
menu is shown in Figure 6.4. You can also set
the active window using the Active window submenu in the
Main Window’s Windows menu or you can click on the Active window icon
in the vis window’s Toolbar.

[image: ../../_images/activewindow.png]

Fig. 6.4 Active window menu

6.1.5.1. Copying window attributes

VisIt allows you to copy window attributes and plots from one window to
another when you have more than one window. This can be useful when you
are comparing plots generated from similar databases. The Copy menu,
shown in Figure 6.5, contains options to copy
the view, lighting, annotations, plots, or everything from other from other
vis windows. Under each option, the Copy menu provides a list of
available vis windows from which attributes can be copied so, for example,
if you have two windows and you want to copy the view from vis window 1
into vis window 2, you can select the Window 2 option from the
View from submenu. The list of available windows depends on the vis
windows that you have created. You can copy the lighting from one window
to another window by using the Lighting from submenu or you can use
the Annotations from or Plots from to copy the annotations or
plots, respectively. If you make a selection from the Everything from
submenu, all attributes and plots are copied into the active vis window.

[image: ../../_images/windowcopymenu.png]

Fig. 6.5 Copy menu

6.1.5.2. Locking vis windows together

When you use VisIt to do side by side comparisons of databases, you may
find is useful to lock vis windows together. Vis windows can be locked
together in time so that when you change the active database timestep in
one database, as when viewing an animation, all vis windows that are locked
in time switch to the same database timestep. You can lock vis windows
together in time by selecting the Time option from the Lock menu
(see Figure 6.6) in the Main Window’s Windows
menu. Any number of windows can be locked together in time and you can turn
off time locking at any time.

[image: ../../_images/windowlockmenu.png]

Fig. 6.6 Lock menu

You can also lock interactive tools together so that updating a tool in
one window updates the tool in other windows that have enabled tool locking.
This can be useful when you have sliced a database using the plane tool
in more than one window and you want to be able to change the slice using
plane tool in either window and have it affect the other vis windows. You
can enable tool locking by selecting the Tools option from the Lock
menu.

In addition to locking vis windows in time, or locking their tools together,
you can also lock vis windows’ views together so that when you change the
view in one vis window, other vis windows get the same view. When you change
the view in a vis window that has view locking enabled, the view only
effects other vis windows that also have view locking enabled and have plots
of the same dimension. That is, when you change the view of a vis window
that contains 3D plots, it will only have an effect on other locked vis
windows if they have 3D plots. Vis windows that contain 2D plots are not
affected by changing the view of a vis window containing 3D plots and
vice-versa. When you enable view locking, the vis window snaps to the view
used by other vis windows with locked views or it stays the same if no
other vis windows have locked views. To enable view locking, select the
View option from the Lock menu or click on the Lock view
icon in the vis window’s Toolbar.

6.2. Using vis windows

The first thing to know about using a vis window is how to change window
modes. A window mode is a state in which the vis window behaves in a
specialized manner. There are four window modes: Navigate, Zoom, Lineout,
and Pick. Vis windows are in navigate mode by default. This means that most
mouse actions are used to move, rotate, or zoom-in on the plots that the
vis window displays. Each vis window has a Popup menu that can be
activated by clicking the right mouse button while the mouse is inside of
the vis window. The Popup menu contains options that can put the vis
window into other modes and perform other common operations. To put the
vis window into another window mode, open the Popup menu, select
Mode and then select one of the four window modes. You can also change
the window mode using the vis window’s Toolbar, which has buttons to
set the window mode. You can find out more about the Popup menu and
Toolbar later in this chapter.

6.2.1. Navigate mode

Navigate mode is VisIt lingo for moving and zooming-in on plots. When
the vis window is in navigate mode, clicking the left mouse button and
dragging with the mouse will perform an action that moves, rotates, or
zooms the plot. The mouse motions used to rotate plots are shown in
Figure 6.7. You can translate plots by holding
down the Shift key before left-clicking and dragging the plot. You zoom
in on plots by clicking the middle button and moving the mouse up or
down. Sometimes the controls are modified based on the interactor settings.
For more information, look at the section on Interactor settings.

[image: ../../_images/mousemotions.png]

Fig. 6.7 Mouse motions used to rotate plots in navigate mode

6.2.2. Zoom mode

When the window is in zoom mode, you can draw a box around the area of the
vis window that you want drawn larger. Press the left mouse button and move
the mouse to sweep out a box that will define the area to be zoomed. Release
the mouse button when the zoom box covers the desired area. If you start
zooming and decide against it before releasing the left mouse button,
clicking one of the other mouse buttons cancels the zoom operation. Changes
to the view can be undone by selecting the Undo view option from the
popup menu’s View menu. Sometimes the zoom controls can change based
on the interactor settings, which are described further on in Interactor
settings.

6.2.3. Lineout mode

Lineout mode is only available when the vis window contains 2D plots. A
lineout is essentially a slice of a two dimensional dataset that produces
a one dimensional curve in another vis window. When a vis window is in
lineout mode, pressing the left mouse button in the vis window creates
the first endpoint of a line that will be used to create a curve. As you
move the mouse around, the line to be created is drawn to indicate where
the lineout will be applied. When you release the mouse button, VisIt adds
a lineout to the vis window and a curve plot is created in another vis
window.

6.2.4. Pick mode

When a vis window is in pick mode, any click with the left mouse button
causes VisIt to calculate the value of the plot at the clicked point
and place a pick point marker in the vis window to indicate where you
clicked. The calculated value is printed to the Output Window and
the Pick Window.

6.3. Interactor settings

Some window modes such as Zoom mode and Navigate mode have certain
interactor properties that you can set. Interactor properties influence
how user interaction is fed to the controls in the different window modes.
For example, you can set zoom interactor settings that clamp a zoom
rectangle to a square or fill the viewport when zooming. VisIt provides
the Interactors window so you can set properties for window modes
that have interactor properties. The Interactors window is shown in
Figure 6.8.

[image: ../../_images/interactors.png]

Fig. 6.8 Interactors window

6.3.1. Zoom interactor settings

The zoom interactor settings are mostly used when the vis window is in
zoom mode. When the vis window is in zoom mode, clicking in the vis window
will anchor a point that becomes one of the corners of a zoom rectangle.
When you release the mouse, the point over which the mouse was released
becomes the opposite corner of the zoom rectangle. VisIt’s default behavior
is to show guidelines that extend from the edges of the zoom rectangle to
the edges of the plots’ bounding box when the vis window is in 2D mode. If
you want to turn off the guidelines, click off the Show Guidelines check
box in the Interactors window.

When sweeping out a zoom rectangle in zoom mode, VisIt allows you to draw
a rectangle of any proportion. The relative shape of the zoom rectangle,
in turn, influences the shape of the viewport drawn in the vis window. If
you hold down the Shift key while sweeping out the zoom rectangle, VisIt
will constrain the shape of the zoom rectangle to a square. If you want
VisIt to always force a square zoom rectangle so that you don’t have to
use the Shift key, you can click on the Clamp to Square check box,
click Apply in the Interactors window and save your settings.

Using the Clamp to Square zoom mode is a good way to maximize the
amount of the vis window that is used when you zoom in on plots and when
the vis window is in zoom mode. When the vis window is in navigate mode,
the middle mouse button also effects a zoom. By default, zooming with
the middle mouse button zooms into the plots but keeps the same vis
window viewport which may, depending on the aspect ratio of the plots,
not make the best use of the vis window’s pixels. Fortunately, you can
turn on the Fill viewport on zoom check box to force middle mouse
zooming to also enlarge the viewport to its largest possible size in
order to make better use of the vis window’s pixels.

6.3.2. Navigation styles

When VisIt displays 3D plots, there are a few navigation styles from
which you can choose by clicking on the following radio buttons in the
Interactors window: Trackball, Dolly, and Flythrough.
The default navigation style for 3D plots is: Trackball and it allows
you to interactively rotate plots and move around them but it keeps the
camera at a fixed distance from the plots and while it can get infinitely
close to plots when you zoom in, it can never touch them or go inside of
them. The Dolly navigation style behaves like the trackball style except
that the when the camera zooms, it is actually moved. The Flythrough
navigation style moves the camera and allows you to fly into plots and
out the other side.

6.4. The Popup menu and the Toolbar

Each vis window contains a Popup menu and a Toolbar, which can be
used to perform several categories of operations such as window management,
setting the window mode, activating tools, manipulating the view, or
playing animations. Options in the Popup menu exist in the Toolbar
and vice-versa. A group of actions that is represented in the Popup menu
as a menu usually maps to a toolbar in the vis window’s Toolbar. To
perform an action using the Toolbar, you can just click on its buttons.
Access the Popup menu by pressing the right mouse button in the vis
window. Select the desired item, then release the mouse button.

6.4.1. Hiding toolbars

The Popup menu has a Customize menu that lets you customize the
vis window’s Toolbar. For instance, you can choose to hide all of the
toolbars so that they do not take up any of your screen space if you use
a small monitor. If you want to hide all toolbars, you can select the
Hide toolbars option from the Customize menu. If you want to
show the toolbars again, you can click the Show toolbars option in
the Customize menu. Note that when you select the Show toolbars
option, VisIt only shows the toolbars that were enabled before they
were hidden. If you want to enable or disable individual toolbars, you
can select from the Toolbars menu under the Customize menu so
VisIt only shows the toolbars that you routinely need. Once you tell
VisIt which toolbars you want to use, you can save your preferences
using the Save settings option in the Main Window’s Options
menu so that the next time you run VisIt, it only shows the toolbars
that you enabled.

[image: ../../_images/customizemenu.png]

Fig. 6.9 Customize menu

6.4.2. Moving toolbars

Each of the vis window Toolbar’s smaller toolbars can be moved to
other edges of the vis window by clicking the small tab on the left or
top side of the toolbar and dragging it to other edges of the vis window.

6.4.3. Switching window modes

The Popup menu contains a Mode menu (see
Figure 6.10) that contains the 5 window modes.
You can select a window mode from the Mode menu to change the vis
window’s mode. If you want to move or zoom the plot, choose navigate
or zoom modes. If you want to extract data from the plots in the vis
window, choose lineout mode or one of the pick modes. You can also use
the Mode toolbar to change the vis window’s window mode.

[image: ../../_images/modetoolbar.png]

[image: ../../_images/popupmode.png]

Fig. 6.10 Mode toolbar and menu

6.4.4. Activating tools

The Popup menu contains a Tools menu (see
Figure 6.11) that lists of all of VisIt’s interactive
tools. Each tool shown in the menu has an associated icon that is used
to indicate if the tool is enabled and if it is available in the vis
window. Some tools are not available if the vis window does not contain
plots or if the plots in the vis window are the wrong dimension to be
used with the tool. In that event, the tool cannot be activated and the
menu and toolbar entries for that tool are disabled. If a tool is
available, its icon is bright blue; otherwise the icon is grayed out. If
a tool is enabled, its icon has a selection rectangle around it. To
activate a tool, choose an inactive tool from the Tools menu or click
on its button in the Toolbar. To deactivate a tool, choose the tool
that you want to deactivate from the Tools menu or click on its
button in the Toolbar.

[image: ../../_images/tooltoolbar.png]

[image: ../../_images/toolmenu1.png]

Fig. 6.11 Tool toolbar and menu

6.4.5. View options

VisIt’s Popup menu and Toolbar (see
Figure 6.12) have several options that are available
for manipulating the view. You can reset the view, recenter the view,
undo a view change, toggle perspective viewing, save and reuse useful
views, or choose a new center of rotation.

[image: ../../_images/viewtoolbar.png]

[image: ../../_images/viewmenu.png]

Fig. 6.12 View toolbar and menu

6.4.5.1. Resetting the view

The Popup menu has a Reset view option (see
Figure 6.12) that resets the view used to view the
plots in the vis window. The view is typically reset to look down the -Z
axis in a right-handed coordinate system. You can reset the view by
selecting the Reset view option from the Popup menu or by clicking
on the Reset view icon in the Toolbar.

6.4.5.2. Recentering the view

Sometimes adding a plot to a vis window that already contains plots can
result in a lop-sided visualization. This happens when the spatial extents
of the plots do not match. The Popup menu has a Recenter view
option (see Figure 6.12) to calculate a new center of
rotation for the plots so they are drawn in the center of the window. You
can also recenter the view by clicking on the Recenter view icon in
the Toolbar. To make sure that the view updates appropriately when
new plots are added to the vis window, you may also want to check the
Auto center view check box that is available in the View Window .

6.4.5.3. Undo view

The vis window saves the last ten views in a buffer so that you can restore
them if you make an unintended change to the view. You can undo a view
change, by selecting the Undo view option in the Popup menu’s View
menu or by clicking the Undo view icon in the Toolbar (see
Figure 6.12).

6.4.5.4. Changing view perspective

[image: ../../_images/perspective.png]

Fig. 6.13 Perspective examples

When the vis window contains 3D plots, the perspective setting can be used
to enhance how 3D the plot looks. In a perspective projection, graphics
grow smaller as they recede into the distance which makes them look more
realistic. To change the perspective setting, click on the Perspective
option in the Popup menu’s View menu (see
Figure 6.12). When the vis window uses a perspective
projection, the Popup menu’s Perspective option will have a selection
rectangle around its icon. You can also turn perspective on or off by
clicking on the Perspective icon in the Toolbar. The difference
in appearance having perspective and not having it is shown in
Figure 6.13.

6.4.5.5. Locking views

The vis window can lock its view to other vis windows. When this toggle is
set, making a change that affects the view in the active vis window will
cause other vis windows that have the lock views toggle set to receive the
same view as the active window. To lock the view, select the Lock view
option from the Popup menu’s View menu (see
Figure 6.12) or click on the Lock view icon in the
Toolbar. Note that you can lock 2D and 3D windows separately.

6.4.5.6. Saving and reusing views

Sometimes when analyzing a database, it is useful to be able to toggle
between several different views. VisIt allows you to save up to 15 views
that you can then use to look at different parts of your visualization.
When you navigate to a view that you like, click the Save view
icon in the View toolbar or click the Save view option in the
Popup menu’s View menu to save the view. When you save a view, VisIt
adds a new numbered camera icon to the View toolbar and the Popup menu
. Clicking on a view icon makes VisIt use the view that is associated with
the clicked icon so you have one-click access to all of your saved views.
You can preserve the saved views across VisIt sessions if you save your
settings. If you want to delete the saved views so you can create different
saved views, click the Clear saved views icon next to the Save views
icon in the View toolbar.

6.4.5.7. Fullframe mode

Some databases yield plots that are so long and skinny that they leave
most of the vis window blank when VisIt displays them. VisIt provides
Fullframe mode to stretch the plots so they fill more of the vis window
so it is easier to see them. It is worth noting that Fullframe mode does
not preserve a 1:1 aspect ratio for the displayed plots because they are
stretched in each dimension so they fit better in the vis window. To
activate Fullframe mode, click on the Fullframe option in the
Popup menu’s View menu.

6.4.5.8. Choosing a new center of rotation

When you are working with a 3D database and you have created plots and
zoomed in on them, you should set the center of rotation. The center of
rotation is the point about which the plots are rotated when you rotate
the plots in navigate mode. Normally, the center of rotation is set to
the center of the plots being visualized. When you zoom way in on plots
and attempt to rotate them, the default center of rotation often causes
plots to whiz off of the screen when you rotate because the center of
rotation is not close enough to the geometry that you are actually
viewing. To set the center of rotation to something more suitable, VisIt
provides the Choose center button, which can be accessed in the
Popup menu or in the View toolbar. Once you click the
Choose center button, VisIt temporarily switches to pick mode so
you can click on the part of your visualization that you want to become
the new center of rotation. Once you click on a plot, VisIt exits pick
mode and uses the picked point as the new center of rotation. After
setting the center of rotation, VisIt will make sure that the picked
point is visible at all times.

6.4.6. Animation options

The animation controls in VisIt’s Main Window are not the only controls
that are provided for playing animations. Each vis window’s Popup menu
and Toolbar has options for playing and stepping through animations. To
play an animation, select the Play option from the Popup menu’s Animation
menu or click on the Play icon in the Toolbar, shown in
Figure 6.14. To play the animation in reverse, select
the Reverse play option or click on the Reverse play icon in the
Toolbar. To stop the animation from playing, select the Stop option
in the Animation menu or click on the Stop icon in the Toolbar.
If you want to advance or reverse one frame at a time, use forward or reverse
step.

[image: ../../_images/animationtoolbar1.png]

[image: ../../_images/animationmenu.png]

Fig. 6.14 Animation toolbar and menu

6.4.7. Window options

Many window options have previously been explained in this chapter so this
section describes some addition options that were not covered. Many of the
options in the Main Window’s Windows menu are also present in the
Popup menu’s Window menu and toolbar (see
Figure 6.15).

[image: ../../_images/windowtoolbar.png]

[image: ../../_images/popupmenuwindowmenu.png]

Fig. 6.15 Window toolbar and menu

6.4.7.1. Changing bounding-box mode

The vis window allows a simple wireframe box to be substituted for complex
plots when you want to rotate or move them. This is called bounding-box
navigation and you can use it during navigate mode for complex plots so you
can navigate faster when a vis window contains plots that take a long
time to redraw. You can change the bounding-box mode by selecting the
Navigate bbox option from the Popup menu’s Window menu shown in
Figure 6.15. You can also change the
bounding-box mode by clicking on the Bounding-box icon in the
Toolbar.

6.4.7.2. Engaging spin

Spin is a setting that makes plots spin after the user stops rotating them
and it provides a nice, easy way to see the entire plot without having to
actively rotate it. To spin a 3D plot, turn on the Spin option in the
Popup menu’s Windows menu and then rotate the plot as you would in
navigate mode. The plot will continue to spin after you release the mouse
buttons. You can also engage spin using the Spin option in the
Main Window’s Windows menu or by clicking the Spin icon in the
vis window’s Toolbar. You can stop plots from spinning by turning off
spin.

6.4.7.3. Inverting the foreground and background colors

Sometimes it is useful to swap the vis window’s foreground and background
colors. You can invert the background and foreground colors by clicking on
the Windows menu’s Invert background option. Note that this option
is disabled when the vis window has a gradient background.

6.4.8. Clear options

The Clear menu (see Figure 6.16) in the Popup menu
contains options that cause certain items such as: plots, pick points, and
reference lines to be removed from a vis window. The Clear menu also
appears in the Main Window’s Windows menu.

[image: ../../_images/clearmenu.png]

Fig. 6.16 Clear menu

6.4.8.1. Clearing plots from all windows

Sometimes it is useful to clear all plots from the vis window. Clearing
plots from the vis window does not delete the plots but instead deletes
their computed geometry and returns them to the new state so they appear
green in the Plot list. An example of when you might want to clear
plots is when you change material interface reconstruction options since
changing them requires a plot to be regenerated. Rather than deleting
plots that existed before changing the material interface reconstruction
parameters, you can clear the plots and force them to be completely
regenerated by clearing the plots.

6.4.8.2. Clearing pick points

Click on the Clear menu’s Clear pick points option if you want
to remove all of the pick labels that were added when you picked on the
plots in the vis window. Clearing the pick points also removes any pick
information related to those pick points in the Pick window.

6.4.8.3. Clearing reference lines

Click on the Clear menu’s Clear reference lines option if you
want to remove all of the reference lines that were added to the vis
window when you performed lineouts on the plots in the vis window.

6.4.9. Plot options

The Plot toolbar and Plot menu let you create new plots using
variables from the open databases and also let you hide, delete, and
draw the plots that correspond to the selected plot entries in VisIt’s
Plot list. The Plot menu is always available in the Popup menu
but the Plot toolbar is not visible by default. If you want to make
the Plot toolbar visible, you can turn it on in the
Popup menu’s Customize menu. The Plot menu and toolbar are
shown in Figure 6.17.

[image: ../../_images/plottoolbar.png]

[image: ../../_images/plotmenu.png]

Fig. 6.17 Plot toolbar and menu

6.4.9.1. Adding a plot

The Plot menu and toolbar both provide options for you to add new
plots. Each plot has its own menu option or icon that contains the
variables that can be plotted from the open database. To add a new
plot using the Plot menu, click the Add plot option to activate
the list of available plots and then select a variable for the desired
plot type. To add a new plot using the Plot toolbar, click on the
icon for the desired plot type and select a variable from its variable
menu. A new plot will appear in the Main Window’s Plot list and it
will be in the new state. To draw the plot, click the Draw button.

6.4.9.2. Drawing a plot

All plots added using the Plot menu or toolbar are in the new state,
indicating that they have not been generated yet. To generate a plot
once it has been created, click the Draw plots option in the Plot
menu.

6.4.9.3. Hiding active plots

To hide the active plots, which are the plots that are highlighted in the
Main Window’s Plot list, click the Plot menu’s Hide active plots
option. Once clicked, the selected plots are made invisible until you hide
them again to show them.

6.4.9.4. Deleting active plots

To delete the active plots, which are the plots that are highlighted in
the Main Window’s Plot list, click the Plot menu’s Hide active
plots option. Once a plot has been deleted, you can’t get it back.

6.4.10. Operator options

The Operator menu and toolbar allow you to add new operators and
remove operators from plots. The Operator menu is always available
in the Popup menu but the Operator toolbar is not visible by
default. If you want to make the Operator toolbar visible, you can
turn it on in the Popup menu’s Customize menu. The Operator menu
and Operator toolbar are shown in Figure 6.18.

[image: ../../_images/operatortoolbar.png]

[image: ../../_images/operatormenu.png]

Fig. 6.18 Operator toolbar and menu

6.4.10.1. Adding an operator

The Operator menu and toolbar both provide options for you to add new
operators. Each operator has its own menu option or icon that adds an
operator of that type to the selected plots when you click its menu option
or icon.

6.4.10.2. Removing the last operator

The Operator menu and toolbar both have options for you to remove the
last operator from a plot. Each plot has a list of applied operators and
clicking the Remove last operator menu option or icon will remove the
last operator from each plot that is selected in the Plot list. Plots
that have been drawn are regenerated.

6.4.10.3. Removing all operators

The Operator menu and toolbar both have options for you to remove all
operators from a plot. Each plot has a list of applied operators and clicking
the Remove all operators menu option or icon will remove all operators
from each plot that is selected in the Plot list. Plots that have been
drawn are regenerated.

6.4.11. Lock options

The Lock menu and toolbar, both shown in Figure 6.19,
allow you to lock certain visualization window attributes so that when you
change them, other locked visualization windows also update. Currently, you
can lock the view, time and tools. See Locking Windows for more
information on how to use the lock options.

[image: ../../_images/locktoolbar.png]

[image: ../../_images/lockmenu.png]

Fig. 6.19 Lock toolbar and menu

7. Subsetting

Meshes are frequently composed of a variety of subsets that represent
different portions of the mesh. Common examples are domains, groups
(of domains), AMR patches and levels, part assemblies, boundary conditions,
node sets and zone sets, materials and even material species.

Users often find it useful to restrict which subsets are used in any given
operation to focus their analyses on only certain regions of interest. This is
handled through VisIt [https://visit-dav.github.io/visit-website/]’s Subset Window. Here, we describe VisIt’s
subsetting functionality and Subset Window in detail.

What is described here is primarily about pre-defined, first-class, named
subsets as created by the data producer and supported within VisIt.
Nonetheless, It is important to keep in mind that there are other ways that
the data producer can organize data within VisIt’s GUI or that users can employ
VisIt’s Expressions and Operators to
create and manage subsets. However, using these other approaches for the sole
purpose of subsetting is often cumbersome through VisIt’s GUI. To understand
why as well as read about other issues related to subsetting, please see
these developer notes [https://www.visitusers.org/index.php?title=Generalized_Subsetting].

	7.1. What is a subset?
	7.1.1. Domain Subsets

	7.1.2. Group or Block Subsets

	7.1.3. Material Subsets

	7.1.4. Species Subsets

	7.1.5. Domains, Groups, Materials and Species In Combination

	7.1.6. Enumerated Subsets

	7.2. Subset Inclusion Lattice

	7.3. Using the Subset Window
	7.3.1. Browsing subsets

	7.3.2. Changing a SIL restriction

	7.3.3. Creating complex subsets

	7.3.4. Turning multiple sets on and off

	7.4. Material Interface Reconstruction
	7.4.1. Choosing a MIR algorithm

	7.4.2. Finding materials with low volume fractions

	7.4.3. Simplifying heavily mixed cells

	7.4.4. Smoother material boundary interfaces

	7.4.5. Forcing material interface reconstruction

	7.4.6. Mixed variables

	7.5. Species
	7.5.1. Plotting species

	7.5.2. Turning off species

7.1. What is a subset?

VisIt has first-class support for four different kinds of subsets; Domains,
Groups (also called Blocks), Materials and material Species.
In particular, as currently designed, any given mesh in VisIt can have only
one decomposition into each of these kinds of subsets. That is, a mesh can
have only one Domain decomposition, one Group decomposition, one
Material decomposition and one material Species decomposition.
A fifth kind of subset, Enumerated, is also supported and provides some
additional generality but cannot be used in combination with the other four
or even with other Enumerated subsets.

Data producers as well as the database plugins that read data into VisIt
often have flexibility in deciding how to utilize these various kinds
of subsets in representing their data. We describe each of these kinds of
subsets and constraints in their use below.

7.1.1. Domain Subsets

VisIt’s concept of a Domain subset is fundamental to its
parallel programming and execution model. A domain in VisIt represents a
chunk of mesh plus its variables that is both stored (in files and in
memory) and processed coherently as a single, self-contained unit.
Large meshes in VisIt are typically decomposed into Domain subsets for
parallel processing. In fact, except in rare cases, the maximum number of
MPI tasks VisIt may use is determined by the number of Domain subsets
created by the data producer. VisIt’s approach to processing a mesh in
parallel is often described as piggy-backing off of the parallel decomposition
created by the data producer.

Domain subsets also represent the unit of work VisIt allocates in its load
balancing algorithms. If VisIt is running on M processors and reading a
mesh of N domains, then if N<M, N-M processors will idle for operations
involving that mesh. On the other hand, if N>kM (k an integer), some processors
will be assigned k domains and some k+1 domains.

In almost all cases, if a mesh is to be processed in parallel by VisIt, it must
have been decomposed into Domain subsets by the data producer prior to reading
the data into VisIt. In general, VisIt does not perform any on-the-fly domain
decomposition of data it is reading. However, there is one, special case
where VisIt can perform on-the-fly domain decomposition of a large, monolithic
mesh; a structured mesh stored in a file format that supports hyper-slabbed I/O.
In this simple case, VisIt will try to evenly decompose the 2 or 3D mesh into
roughly equal sized hyper-slabs whose number is determined by the number of
parallel tasks. VisIt will also then utilize the file format’s hyper-slab I/O
routines to read into each parallel task only the part(s) of the mesh assigned
to that task.

A mesh is required to have domains if it is ever to be processed in parallel
by VisIt.

7.1.2. Group or Block Subsets

Groups (or Blocks) are just unions of Domains. They are optional. A mesh
is not required to have groups. On the other hand, if a mesh has Groups,
then every domain in the mesh must be assigned to one and only one Group
subset. Groups may be used to represent, for example, the files in which
multiple domains are stored or sets of neighboring domains that share a common
logical/structured indexing arrangement in an otherwise globally unstructured
mesh.

The key constraint about group subsets is that they can represent only unions
of the domain subsets. Internally in VisIt, a group subset is implemented as
a list of domain subset ids.

7.1.3. Material Subsets

Material subsets are used to represent the decomposition of a mesh into various
materials. For example, a mesh may be composed of steel, brass, and aluminum
materials. If these materials are given integer ids 83 (int('S')), 66
(int('B')) and 65 (int('A')), then each zone (or cell) in the mesh can
be assigned a value of 83, 66 or 65 to indicate the zone is composed of steel,
brass or aluminum. This would be equivalent to an integer valued (with 3 unique
values), zone-centered variable on the mesh.

For material subsets, however, VisIt also supports a notion of
mixing where a single zone (or cell) can be composed of multiple materials
each occupying some fractional volume of a whole zone (or cell). From a
sub-setting perspective, a more formal way of thinking about mixing
is that it is way of supporting partial inclusion of a mesh zone (or cell)
within a given material subset.

Material subsets are optional. Furthermore, if material subsets are defined
additionally supporting mixing is also optional. Only some data producers that
involve Material subsets also involve mixing.

When mixing materials are involved, VisIt can employ a variety of
sophisticated
Material Interface Reconstruction (MIR)
algorithms to draw the interfaces between materials based on the volume
fractions of the mixing. The main point about MIR is that it represents
an additional computational burden when manipulating Material subsets.
Manipulating Group or Domain subsets has no such equivalent computational
cost.

7.1.3.1. Mesh Variables with Material Specific Properties

For some mesh variables, data producers may have different values of the
variable for each of the materials within various zones (or cells) of the mesh
where mixing is occurring. When such a variable is being plotted, for example
with the Pseudocolor Plot, what value/color
should VisIt show for such zones? The fact is, depending on the user’s needs,
VisIt is capable of showing either an overall value for the zone or showing
the material-specific values in the zone. This can be handled through
appropriate use of VisIt’s (MIR)
algorithms and Subset Window controls.

7.1.4. Species Subsets

In addition to mixing, another feature Materials subsets support is a
notion of Species. For example, there are many different varieties of
brass and steel depending on the alloys used. Neither brass nor steel are
themselves pure elements on the periodic table. They are instead alloys of
other pure metals. Common Yellow Brass is, nominally, a mixture
of Copper (Cu) and Zinc (Zn) while Tool Steel is composed primarily of Iron (Fe)
but mixed with some Carbon (C) and a variety of other elements.

Lets suppose we are dealing with the following alloys and species
compositions…

	Material

	Species composition

	Brass

	Cu:65%, Zn:35%

	T-1 Steel

	Fe:76.3%, W:18%, Cr:4.0%, C:0.7%, V:1%

	O-1 Steel

	Fe:96.2%, W:0.5%, Cr:0.5%, C:0.9%, Mn:1.4%, Ni:0.5%

The Materials decomposition would consist of 3 subsets for Brass, T-1 Steel
and O-1 Steel. For the Species decomposition, Brass would be further
decomposed into 2 Species subsets, T-1 Steel into 5 Species subsets and
O-1 Steel, 6 Species subsets.

Alternatively, one could opt to characterize both T-1 Steel
and O-1 Steel has a single, non-specific Steel having
7 Species subsets, Fe, W, Cr, C, V, Mn, Ni where for T-1 Steel, the Mn and Ni
Species subsets are always empty and for O-1 Steel the V Species subset
is always empty. In that case, there would only be 2 Materials subsets
for Brass and non-specific Steel.

Species subsets are optional. A mesh does not need to have them defined.
However, as currently designed, a data producer cannot define Species
subsets without also defining Materials subsets (even if there is only one
material subset for the whole mesh).

A final thing to note about Species subsets is that they do not represent
spatially distinct parts of the mesh like Domains, Groups, or Materials.
Instead, Species, if they are defined are ever present, everywhere in the
mesh. Only their relative concentrations vary at any given point in the mesh.
But, Species do permit subsetting a particular physical quantity’s value
in that, for example the total pressure in a zone can be decomposed into
partial pressures on each of the species comprising the materials in the zone.
Furthermore, using the Subset Window, VisIt can then control which partial
value(s) are used in a particular plot.

7.1.5. Domains, Groups, Materials and Species In Combination

A given mesh may involve any combination of Domain, Group and Material
subsets. Furthermore, VisIt’s Subset Window makes it possible to manipulate
these four kinds of subset in combination. That is, a user can simultaneously
control which domains, which materials and which groups VisIt should process in
any given operation. However, manipulating subsets in combination works only
for these kinds of subsets. Other kinds of sub-setting, such as Enumerated
subsets which are discussed next, are not as well integrated.

7.1.6. Enumerated Subsets

A key constraint of the other kinds of subsets is that any given mesh can have
only one decomposition into domains and one decomposition into groups
and one decomposition into materials. However, a mesh can be composed of
any number of Enumerated subsets. Enumerated subsets are defined by first
defining the enumeration class and then creating a bitmap like variable
over the mesh to indicate which mesh entities (nodes, edges, faces or volumes)
belong to which subsets of the enumeration class.

Within an enumeration class, the sets can be arranged hierarchically so that
some sets contain other sets as in a part assembly.

Enumerated subsets do not work in
combination with domains, groups or materials or in combination with other
classes of Enumerated subsets. On the other hand, for any given mesh, there
can be any number of enumeration classes, each defining a collection of related
subsets. For example, if a mesh has defined two enumeration classes, one for
node sets and one for face sets, then different subsets of nodes can be
manipulated simultaneously or different subsets of faces can be manipulated
simultaneously but different sets of nodes cannot simultaneously be manipulated
in combination with different sets of faces. Finally, manipulating enumerated
subsets can also incur small a computational burden due to the work involved in
finding the mesh entities within a given subset.

7.2. Subset Inclusion Lattice

VisIt relates all possible subsets in a database using what is called a
Subset Inclusion Lattice (SIL). Ultimately the subsets in a database are
cells that can be grouped into different categories such as material
region, domain, patch, refinement level, etc. Each category has some
number of possible values when taken together form a collection. A
collection lets you group the subsets that have different values but
are still part of the same category. For example, the mesh shown in
Figure 7.1 is broken down into domain and material
categories and there are 3 domain subsets in the domain category.
VisIt uses the SIL to remove pieces of a database from a plotted
visualization by turning off bottom level subsets that are arrived at
through turning off members in various collections or turning off entire
collections. When various subsets have been turned off in a SIL, the
collective on/off state for each subset is known as a SIL restriction.

[image: ../../_images/subset1.png]

Fig. 7.1 Whole mesh divided up into domains and materials

7.3. Using the Subset Window

Users can open the Subset Window, shown in
Figure 7.2, by clicking on the Subset option in the
Main Window’s Controls menu or by clicking on the Subset
Venn Diagram-looking icon next to the name of a plot in the Plot list.
VisIt’s Subset Window shows the relationships between subsets and provides
controls that allow users to turn subsets on and off.

[image: ../../_images/subsetwindow.png]

Fig. 7.2 Subset window

The Subset Window initially has three panels that display the sets
associated with mesh of the currently active plot. The window will grow
more panels to the right, when necessary as the subset structure of a
mesh is browsed. Each successive panel shows the next level of subsets
in the mesh. The leftmost panel contains the top level (e.g. whole) set for
the whole mesh of the currently active plot. The top level or whole set,
which includes all subsets in the mesh, is usually decomposed into the various
kinds of subsets described in the section
What is a subset?. For example, it
can be decomposed by material, processor domain, etc. The various ways in
which a database can be decomposed are called subset categories. The subset
categories will vary depending on how the data producer(s) create the
database(s).

7.3.1. Browsing subsets

To browse the subsets for a database, users must first have created a plot.
Once a plot is created and selected, open the Subset Window. The left
panel in the Subset Window contains the database’s top level set and
may also list some subset categories. Some simple databases don’t include
any subset and so VisIt will not show any subsets for them. To start browsing
the available subsets, users can click on one of the subset categories to
display the subsets in that category. For instance, clicking on a “Material”
subset category will list all of the mesh’s materials in the next panel to
the right. The materials are subsets of the top level set. Double clicking on
a set or clicking on an expand arrow lists any subset categories that can be
used to further break down the set.

7.3.2. Changing a SIL restriction

Each set in the Subset Window has a small check box next to it that
allows users to turn the set on or off. The check box not only displays
whether a set is on or off, but it also displays whether or not a set
is partially on. When a set is partially on, it means that at least one
(but not all) of the subsets it contains is turned on. When a set is
partially on, its check box shows a small slash instead of a check or an
empty box. Uncheck the check box next to a set name to turn the set off.

Suppose a user has a database that contains 4 domains, numbered 1 through 4.
If the user wants to turn off the subset named “domain1”, first click on the
“domains” category to list the subsets in that category. Next, click the check
box next to the subset name “domain1” and click the Apply button. The
result of this operation, shown in Figure 7.3,
removes the “domain1” subset from the visualization. Note that the
Subset Window “domain1” set’s check box is unchecked and the top
level set’s check box has a slash through it to show that some subsets
are turned off.

[image: ../../_images/subset1.png]

Fig. 7.3 Removing one subset.

[image: ../../_images/subsetwindow2.png]

Fig. 7.4 Subset window with one subset removed.

7.3.3. Creating complex subsets

When visualizing a database, it is often useful to look at combinations
of subsets. Suppose a user has a database that has two subset categories:
“Materials”, and “Domains” and that the user wants to turn off the
“domain1” subset but also wants to turn off a material in the
“domain4” subset. Users can do this by clicking on the “Domains” category and
then unchecking the “domain1” check box in the second panel. Now, to turn
off a material in the “domain4” subset, the user clicks on the “domains”
category in the left panel. Next, double-click on the “domain4” subset in the
second panel. Select the “Materials” subset category in the second panel to make
the third panel list the materials that can be removed from the “domain4”
subset. Turning off a couple materials from the list in the third panel
will only affect the “domain4” subset. An example of a complex subset
selection is shown in Figure 7.5 and the state of the
Subset window is shown in Figure 7.6.

[image: ../../_images/subset2.png]

Fig. 7.5 Example of a complex subset.

[image: ../../_images/subsetwindow3.png]

Fig. 7.6 Subset window for complex subset example.

7.3.4. Turning multiple sets on and off

When databases contain large numbers of subsets, it is convenient to turn
many of them on and off at the same time. Users can select ranges of subsets
by clicking on the name of a subset using the left mouse button and dragging
the mouse up or down to other subsets in the list while still holding down
the left mouse button. Alternatively, users can click on a subset to select
it and then click on another subset while holding down the Shift
key to select all of the subsets in the middle. Finally, users can select a
group of multiple nonconsecutive subsets by holding down the Ctrl key
while clicking on the subsets to be selected.

Once a group of subsets has been selected, the buttons at the bottom of the
pane can be used to adjust the selection in various ways. The top button
applies an action to all of the sets in the pane regardless of how they have
been selected. The bottom button applies an action to only the subsets that
have been selected. Each action button has three possible actions: Turn on,
Turn off, and Reverse. Users can change the action for an action button by
clicking on the down-arrow button to its right and selecting one of the
Turn on, Turn off, and Reverse menu options. When the Turn on
action is used, the appropriate subsets will be turned on. When the
Turn off action is used, they will be turned off. When the Reverse
action is used, the on/off state of the sets will be reversed (or toggled).

7.4. Material Interface Reconstruction

Many data producers create meshes with material subsets. In some cases,
materials include mixing where multiple materials exist within each
mesh zone and in other cases materials are clean in each zone (e.g. no
mixing).

The materials are often used to break meshes into subsets that correspond to
physical parts of a model. Materials are commonly stored out as a list of
materials and material volume fractions for each cell in the database. If a
cell has only one material then is a clean cell. If a cell has more than one
material, it has some fraction of each of the materials and it is known as
a mixed cell. The fraction of the material in a cell if accounted for by the
material volume fraction. Since only the volume fractions are known, and not
any information about how the materials are distributed in the cell, VisIt
must make a guess at the location of the boundaries between materials.

Material interface reconstruction (MIR) is the process of constructing the
boundaries between materials, in cells with mixed materials, from the material
volume fraction information stored in the database. MIR is not usually needed
when you visualize the entire database but when you start to subset the
database by removing materials, VisIt must perform MIR to remove only the
parts of the database that contain the material to be removed. Without MIR,
visualizations containing mixed materials would be very blocky when materials
are removed. VisIt’s MIR algorithms have several settings, which you can
change using the controls in the Material Reconstruction Options Window
(see Figure 7.7), that influence the appearance of
the final plot. To open the Material Reconstruction Options Window,
click on the Materials option in the Main Window’s Controls menu.

[image: ../../_images/miroptions.png]

Fig. 7.7 Material Reconstruction Options Window

7.4.1. Choosing a MIR algorithm

VisIt currently provides three MIR algorithms: Tetrahedral, Zoo-based,
and Isovolume. Each MIR algorithm reconstructs the interfaces between
materials using a different method and one method may work better or worse
than another based on the complexities of the input data. You can select
your preferred MIR algorithm by choosing from the Algorithm combo box
in the Material Reconstruction Options Window. Note that if you have
plots that have already been generated, the new material options will not
take effect for those plots unless you clear the plots and redraw them.

The Tetrahedral algorithm breaks up each mixed cell into tetrahedra and
computes the interfaces through the original cell by recursively subdividing
the tetrahedra until the approximate volume fractions, which determine the
amount of material in a cell, are reached. The Tetrahedral MIR algorithm
results in a high cell count so it is not often used.

The Zoo-based MIR algorithm breaks up mixed cells into elements based on
supported finite elements (tetrahedra, prisms, pyramids, wedges, cubes).
The resulting reconstruction results in far fewer cells than other methods
while also producing superior material boundaries. The Zoo-based algorithm
is the default because of the quality of the material boundaries and because
the zoo-based cell representation saves memory and ultimately leads to
faster pipeline execution due to the smaller cell count.

[image: ../../_images/mirtetzoo.png]

Fig. 7.8 Tetrahedral MIR vs. Zoo-based MIR

The Isovolume algorithm computes an isovolume containing portions of cells
that contain a user-specified fraction of materials. The Isovolume approach
to MIR does not generally produce very good looking results since there are
gaps where several materials join. However, the Isovolume algorithm does
do a better job than the other two algorithms when it comes to finding
cells that contain very small fractions of a certain material when the
cells are heavily mixed. If you use the Isovolume MIR algorithm, you can
specify the amount of material required to be present before VisIt creates
a material interface for a material. The amount of material is specified
as a volume fraction in the range [0,1]. Specifying smaller values in the
Volume Fraction for Isovolume text field will find materials that may
be omitted by other MIR algorithms.

[image: ../../_images/mirgaps.png]

Fig. 7.9 Zoo-based MIR vs. Isovolume MIR

7.4.2. Finding materials with low volume fractions

When mixed cells contain several materials, the Zoo-based MIR algorithm
will often omit materials with very small volume fractions, leaving only
the materials in the mixed cell that had the highest volume fractions.
If you want to plot materials in mixed cells where the volume fraction
is very small then you can try using the Isovolume MIR algorithm since
it can be used to find materials whose volume fractions are above a
user-specified threshold. Figure 7.10 shows an example
of a dataset containing five mixed materials where the first four mixed
materials are roughly equal in the amount of area that they occupy. The
fifth material has a volume fraction that never exceeds 0.08 so it is
omitted by the Zoo-based MIR algorithm due to its comparatively low volume
fraction. To ensure that VisIt plots the fifth material, the Isosurface
MIR algorithm is used with a Volume Fraction for Isovolume setting of
0.02. Using the Isovolume MIR algorithm with a low
Volume Fraction for Isovolume value can find materials that have been
distributed into many heavily mixed cells.

[image: ../../_images/lowfrac.png]

Fig. 7.10 Materials with low volume fractions can be found with the isosurface MIR algorithm

7.4.3. Simplifying heavily mixed cells

VisIt provides the Simplify heavily mixed cells check box in the
Material Reconstruction Options Window so you can tell VisIt to throw
away information materials that have low volume fractions. When you tell
VisIt to omit these materials, VisIt will use less memory and will also
finish MIR faster because fewer materials have to be considered. The
Simplify heavily mixed cells check box is especially useful for
databases where most of the cells are mixed or where there are many cells
that contain tens of materials. When you tell VisIt to simplify heavily
mixed cells, you can tell VisIt how many of the top materials to keep
from each cell by entering a new number of materials into the
Maximum materials per zone text field. By keeping the N top materials,
VisIt will be sure to preserve the features that are contributed by the
most dominant materials.

7.4.4. Smoother material boundary interfaces

VisIt’s material interface reconstruction algorithm sometimes produces
small, pointy outcroppings on reconstructed material boundaries next to
where clean cells are located. Since these are often distracting features
when looking at a visualization, VisIt provides an interface smoothing
option that allows materials to bleed a little bit into clean cells to
improve how they look when their material boundary is reconstructed.
Figure 7.11 shows a plot that has not been smoothed next
to a plot that has been smoothed. To enable interface smoothing, check the
Enable interface smoothing check box. Note that changing this setting
will not affect plots that have already been generated. If you want to
make your current plots regenerate with smoother interfaces, you must
also clear them out of the visualization window by choosing the Plots
option from the Clear submenu located in the Main Window’s Windows
menu.

[image: ../../_images/mir.png]

Fig. 7.11 Effect of material interface smoothing

7.4.5. Forcing material interface reconstruction

VisIt tries to minimize the amount of work that it must do to generate a
plot so that it can be done quickly. Sometimes databases have variable
information for each material in a cell instead of just having a single
value for each cell or node. Because the variable is defined for each
material in the cell, these variables are known as mixed variables. VisIt
tends to just plot the value for the entire cell since it is more work
to go through the material interface reconstruction (MIR) stage, which
is usually only done when removing material subsets but is required to
plot mixed variables correctly. You can force VisIt to always do MIR by
checking the Force interface reconstruction check box. This will make
mixed variables plot correctly even when you are not removing any material
subsets.

7.4.6. Mixed variables

Some simulations write out multiple scalar values for cells that contain
mixed materials so each material in the cell can have its own scalar value.
Once a cell has undergone MIR, it is split into multiple cells if the
original cell contained more than one material. Each split cell gets its
corresponding scalar value from the original mixed variable data. The
resulting plot can then display each split cell’s actual value, taking into
account the material boundaries. Suppose you are simulating the interaction
between hot lava and ice and you have a material interface that happens to
cross in the middle of a cell. Obviously each material in the cell has its
own temperature. Plotting mixed variables allows the visualization to more
faithfully depict the material boundaries while preserving the actual data
so the multiple mix values do not have to be averaged in the cell (see
Figure 7.12). Note that VisIt does not use mixed variable
values for variables that have them unless the
Force interface reconstruction check box is enabled because most scalar
fields are not mixed variables and automatically performing MIR can be
expensive. If your scalars are mixed variables and you want to visualize
them as such, be sure to enable the Force interface reconstruction
check box.

[image: ../../_images/mixvar.png]

Fig. 7.12 Mixed variables can improve a visualization

7.5. Species

VisIt adds species, which are components of materials, to the SIL when
they are defined by the data producer. Air is a common material in simulations
since many things in the real world are surrounded by air. The chemical
composition of air on Earth is roughly 78% Nitrogen, 21% oxygen, 1% Argon.
One can say that if air is a material then it has species: Nitrogen, Oxygen,
and Argon with mass fractions 78%, 21%, 2%, respectively. Suppose one of the
calculated quantities in a database with the aforementioned air material is
atmospheric temperature. Now suppose that we are examining one cell that
contains only the air material from the database and its atmospheric temperature
is 100 degrees Fahrenheit. If we wanted to know how much the Nitrogen
contributed to the atmospheric temperature, we could multiply its concentration
of 78% times the 100 degrees Fahrenheit to yield: 78 degrees Fahrenheit. Species
are often used to track chemical composition of materials and their effects
on various calculated quantities.

When species are defined, VisIt creates a scalar variable called Species
and it is available in the variable menus for each plot that can accept
scalar variables. The Species variable is a cell-centered scalar field
defined over the whole mesh. When all species are turned on, the Species
variable has the value of 1.0 over the entire mesh. When species are turned
off, the Species variable is set to 1.0 minus the mass fraction of the
species that was turned off. Using the previous example, if we plotted the
Species variable and then turned off the air material’s Nitrogen species,
we would be left with only Oxygen’s 21% and Argon’s 1% so the species
variable would be reduced to 22% or 0.22. When species are turned off, the
amount of mass left to be multiplied by the plotted variable drops so the
plotted variable’s value in turn drops.

[image: ../../_images/speciesvar.png]

Fig. 7.13 Species variable

VisIt adds species to the SIL as a category that contains the various
chemical constituents for all materials that have species. Since species
are handled using the SIL, one can use VisIt’s Subset Window to turn
off species. Turning off species has quite a different effect than turning
off entire materials. When materials are turned off, they no longer appear
in the visualization. When species are turned off, no parts of the
visualization disappear but the plotted data values may change due to
drops in the Species variable.

7.5.1. Plotting species

VisIt provides the Species scalar variable so users can plot or create
expressions that involve species. If the user creates a Pseudocolor plot of the
Species variable, the resulting plot will have a constant value of 1.0
over the entire mesh because when no species have been removed, they all
sum to 1.0. Once species are removed by turning off species subsets
in the Subset Window, the plotted value of Species changes, causing
plots that use it to also change. If all but one species are removed, the
plots that use the Species variable will show zero for all areas that do
not contain the one selected species (see Figure 7.14).
For example, if a user had air for a material and then removed every
species except for oxygen, the plots that use the Species variable would
show zero for every place that had no oxygen.

[image: ../../_images/speciesplot.png]

Fig. 7.14 Plots of materials and species

7.5.2. Turning off species

VisIt adds species information to the SIL as new subsets under a
category called: Species. Since species are part of the SIL, users can use the
Subset Window (see Figure 7.15) to turn
off species. To access the list of species, select the Species category
under the whole mesh. Once the Species category is clicked, the second pane
in the Subset Window is populated with the species for all materials.
Users can turn off the species that are not needed to look at by clicking off
the check box next to the name of the species subset. When the user applies
these changes, the values for the Species variable are recalculated to include
only the mass fractions for the species that are still turned on.

[image: ../../_images/subsetwindow_species2.png]

Fig. 7.15 Turning off species in the Subset Window

8. Quantitative Analysis

Simulation data must often be compared to experimental data so VisIt provides
a number of features that allow quantitative information to be extracted from
simulation databases. This chapter explains how to visualize derived variables
created with expressions and query information about a database. This chapter
also explains VisIt’s Pick, Query and Lineout capabilities which allow users
to compute highly sophisticated quantitative, as opposed to visual, results.

	8.1. Expressions
	8.1.1. Expression Window

	8.1.2. Expression grammar

	8.1.3. Built-in expressions

	8.1.4. Expression Compatibility Gotchas

	8.1.5. Automatic expressions

	8.2. Query
	8.2.1. Query types

	8.2.2. Built-in queries

	8.2.3. Executing a query

	8.2.4. Querying over time

	8.3. Pick
	8.3.1. Pick mode

	8.3.2. Pick Window

	8.4. Lineout
	8.4.1. Lineout mode

	8.4.2. Curve plot

	8.4.3. Lineout Operator

	8.4.4. Lineout query

	8.4.5. Lineout via Curve plot variable menu

	8.4.6. Global lineout options

	8.5. Data Level Comparisons Wizard

8.1. Expressions

Scientific simulations often keep track of several dozen variables as they
run. However, only a small subset of those variables are usually written
to a simulation database to save disk space. Sometimes variables can be
derived from other variables using an expression. VisIt [https://visit-dav.github.io/visit-website/] provides
expressions to allow scientists to create derived variables using
variables that are stored in the database. Expressions are extremely powerful
because they allow users to analyze new data without necessarily having to
rerun a simulation. Variables created using expressions behave just like
variables stored in a database; they appear in menus where database variables
appear and can be visualized like any other database variable.

8.1.1. Expression Window

VisIt [https://visit-dav.github.io/visit-website/] provides an Expression Window, shown in
Figure 8.1, that allows users to create new
variables that can be used in visualizations. Users can open the
Expression Window by clicking on the Expressions option in the
Main Window’s Controls menu. The Expression Window is divided
vertically into two main areas with the Expression list on the left
and the Definition area on the right.
The Expression list contains the list of expressions. The Definition
area displays the definition of the expression that is highlighted in
the Expression list and provides controls to edit the expression
definition.

[image: ../../_images/expressionwindow.png]

Fig. 8.1 Expression Window

Expressions in VisIt [https://visit-dav.github.io/visit-website/] are created either manually by the user or automatically
by various means including…

	Preferences

	Mesh quality expressions

	Time derivative expressions

	Vector magnitude expressions

	GUI wizards

	Operators

	Databases

By default, the Expression list will display only those expressions
created manually by the user. A check box near the bottom of the
Expression list controls the display of automatically created
expressions. When this box is checked, the Expression list will also
include expressions created automatically by Preferences and Databases
but not expressions created automatically by GUI wizards or Operators.

8.1.1.1. Creating a new expression

Users can create a new expression by clicking on the Expression Window’s New
button. When the user clicks on the New button, VisIt [https://visit-dav.github.io/visit-website/] adds a new expression
and shows its new, empty definition in the Definitions area. The initial
name for a new expression is “unnamed” followed by some integer suffix. After
the user types a new name for the expression into the Name text field,
the expression’s name in the Expression list will update. If the user types
a name that already exists in the expression list, then Visit [https://visit-dav.github.io/visit-website/] will
automatically append a number to the end of the name to avoid duplicate
expression names.

Each expression also has a Type that specifies the type of variable
the expression produces. The available types are:

	Scalar

	Vector

	Tensor

	Symmetric Tensor

	Array

	Curve

Users must be sure to select the appropriate type for any expression they
create. The selected type determines the menu in which the variable appears
and subsequently the plots that can operate on the variable.

To edit an expression’s definition, users can type a new expression
comprised of constants, variable names, and even other VisIt [https://visit-dav.github.io/visit-website/] expressions into
the Definition text field. The expression definition can span multiple
lines as the VisIt [https://visit-dav.github.io/visit-website/] expression parser ignores whitespace. For a complete
list of VisIt [https://visit-dav.github.io/visit-website/]’s built-in expressions, refer to the table in section
Built-in expressions. Users can also use the Insert Function…
menu, shown in Figure 8.2, to
insert any of VisIt [https://visit-dav.github.io/visit-website/]’s built-in expressions directly into the expression
definition. The list of built-in expressions is divided into certain
categories as shown by the structure of the Insert Function…
menu.

[image: ../../_images/expressionwindow-functionmenu.png]

Fig. 8.2 Expression Window’s Insert Function… menu

In the example shown in Figure 8.2,
the Insert Function… operation inserted a sort of template for the
function giving some indication of the argument(s) to the function and their
meanings. Users can then simply edit those parts of the function template that
need to be specified.

In addition to the Insert Function… menu, which lets users insert built-in
functions into the expression definition, VisIt [https://visit-dav.github.io/visit-website/]’s Expression Window
provides an Insert Variable… menu that allows users to insert variables
from the active database into the expression definition. The
Insert Variable… menu, shown in
Figure 8.3, is broken up into Scalars,
Vectors, Meshes, etc. and has the available variables under the appropriate
heading so they are easy to find.

[image: ../../_images/expressionwindow-varmenu.png]

Fig. 8.3 Expression Window’s Insert Variable… menu

Some variables can only be expressed as very complex expressions containing
several intermediate subexpressions that are only used to simplify the
overall expression definition. These types of subexpressions are seldom
visualized on their own. If users want to prevent them from being added to
the Plot menu, turn off the Show variable in plot menus check box.

8.1.1.2. Deleting an expression

Users can delete an expression by clicking on it in the Expression list
and then clicking on the Delete button. Deleting an expression removes
it from the list of defined expressions and will cause unresolved references
for any other expressions that use the deleted expression. If a plot uses
an expression with unresolved references, VisIt [https://visit-dav.github.io/visit-website/] will not be able to generate
it until the user resolves the reference.

8.1.2. Expression grammar

VisIt [https://visit-dav.github.io/visit-website/] allows expressions to be written using a host of unary and binary
math operators as well as built-in and user-defined functions. VisIt [https://visit-dav.github.io/visit-website/]’s
expressions follow C-language syntax, although there are a few differences.
The following paragraphs detail the syntax of VisIt [https://visit-dav.github.io/visit-website/] expressions.

8.1.2.1. Math operators

These include use of +, -, *, /, ^ as addition, subtraction, multiplication,
division, and exponentiation as infix operators, as well as the unary minus,
in their normal precedence and associativity. Parentheses may be used as
well to force a desired associativity.

Examples: a+b^-c (a+b)*c

8.1.2.2. Constants

Scalar constants include floating point numbers and integers, as well as
booleans (true, false, on, off) and strings.

Examples: 3e4 10 “mauve” true false

8.1.2.3. Vectors

Expressions can be grouped into two or three dimensional vector variables
using curly braces.

Examples: {xc, yc} {0,0,1}

8.1.2.4. Lists

Lists are used to specify multiple items or ranges, using colons to create
ranges of integers, possibly with strides, or using comma-separated lists
of integers, integer ranges, floating points numbers, or strings.

Examples: [1,3,2] [1:2, 10:20:5, 22] [silver, gold] [1.1, 2.5, 3.9] [level1, level2]

8.1.2.5. Identifiers

Identifiers include function names, defined variable and function names,
and file variable names. They may include alphabetic characters, numeric
characters, and underscores in any order. Identifiers should have at least
one non-numeric character so that they are not confused with integers, and
they should not look identical to floating point numbers such as 1e6.

Examples: density x y z 3d_mesh

8.1.2.6. Functions

These are used for built in functions, but they may also be used for
functions/macros defined by the user. They take specific types and numbers
of arguments within the parentheses, separated by commas. Some functions
may accept named arguments in the form identifier=value.

Examples: sin(pi / 2) cross(vec1, {0,0,1}) my_xform(mesh1) subselect(materials=[a,b])

8.1.2.7. Database variables

These are like identifiers, but may also include periods, plus, and minus
characters. A normal identifier will map to a file variable when it is not
defined as another expression. To force variables that look like integers
or floating point numbers to be interpreted as variable names, or to force
variable names which are defined by another expression to map to a variable
in a file, they should be enclosed with < and >, the left and right
carats/angle brackets. Note that quotation marks will cause them to be
interpreted as string constants, not variable names. In addition, variables
in files may be in directories within a file, so they may include slashes
in a path when in angle brackets.

Examples: density <pressure> <a.001> <a.002> <domain1/density>

8.1.2.8. Databases

A database specification looks similar to a database variable contained
in angle brackets, but it is followed by a colon before the closing angle
bracket, and it may also contain extra information. A database specification
includes a file specification possibly followed a machine name, a time
specification by itself, or a file/machine specification followed by a
time specification. A file specification is just a file name with a path
if needed. A machine specification is an at-sign @ followed by a host name.
A time specification looks much like a list in that it contains integer
numbers or ranges, or floating point numbers, separated by commas and
enclosed in square brackets. However, it may also be followed by a letter
c, t, or i to specify if the time specification refers to cycles, times,
or indices, respectively. If no letter is specified, then the parser
guesses that integers refer to cycles, floating point numbers refer to
times. There is also an alternative to force indices which is the pound
sign # after the opening square bracket.

Examples: </dir/file:> <file@host.gov:> <[# 0:10]:> <file[1.234]:> <file[000, 023, 047]:> <file[10]c:>

8.1.2.9. Qualified file variables

Just like variables may be in directories within a file, they may also be
in other timesteps within the same database, within other databases, and
even within databases on other machines. To specify where a variable is
located, use the angle brackets again, and prefix the variable name with
a database specification, using the colon after the database specification
as a delimiter.

Examples: <file:var> </dir/file:/domain/var> <file@192.168.1.1:/var> <[#0]:zerocyclevar>

8.1.3. Built-in expressions

The following table lists built-in expressions that can be used to create
more advanced expressions. Unless otherwise noted in the description, each
expression takes scalar variables as its arguments.

8.1.3.1. Arithmetic Operator Expressions (Math Expressions)

In binary arithmetic operator expressions, each operand must evaluate to
the same type field. For example, both must evaluate to a
scalar field or both must evaluate to a vector field.

In addition, if the two expressions differ in centering (e.g. one is zone
or cell centered or piecewise-constant over mesh cells while the other is
node or point centered or pieceiwse-linear over mesh cells), VisIt [https://visit-dav.github.io/visit-website/] will
recenter any node-centered fields to zone centering to compute the
expression. This may not always be desirable. When it is not, the
recenter() may be used to explicitly
control the centering of specific operands in an expression.

	Sum Operator (+)exprL + exprR

	Creates a new expression which is the sum of the exprL and exprR
expressions.

	Difference Operator (-)exprL - exprR

	Creates a new expression which is the difference of the exprL and
exprR expressions.

	Product Operator (*)exprL * exprR

	Creates a new expression which is the product of the exprL and
exprR expressions.

	Division Operator (/)exprL / exprR

	Creates a new expression which is the quotient after dividing the exprL
expression by the exprR expression.

	Division Operatordivide(val_numerator, val_denominator, [div_by_zero_value, tolerance])

	Creates a new expression which is the quotient after dividing the
val_numerator expression by the val_denominator expression. The
div_by_zero_value is used wherever the val_denominator is within
tolerance of zero.

	Exponent Operator (^)exprL ^ exprR

	Creates a new expression which is the product after multiplying the
exprL expression by itself exprR times.

	Logical AND Operator (&)exprL & exprR

	Creates a new expression which is the logical AND of the exprL and
exprR expressions treating each value as a binary bit field. It is
probably most useful for expressions involving integer data but can be
applied to expressions involving any type.

	Associative Operator (())(expr0 OP expr1)

	Parenthesis, () are used to explicitly group partial results of sub
expressions and control evaluation order.

For example, the expression (a + b) / c first computes the sum, a+b
and then divides by c.

	Absolute Value Function (abs())abs(expr0)

	Creates a new expression which is everywhere the absolute value if its
argument.

	Ceiling Function (ceil())ceil(expr0)

	Creates a new expression which is everywhere the ceiling (smallest integer
greater than or equal to) of its argument.

	Exponent Function (exp())exp(expr0)

	Creates a new expression which is everywhere e (base of the natural
logarithm) raised to the power of its argument.

	Floor Function (floor())floor(expr0)

	Creates a new expression which is everywhere the floor (greatest integer
less than or equal to) of its argument.

	Natural Logarithm Function (ln())ln(expr0)

	Creates a new expression which is everywhere the natural logarithm of its
argument.

	Base 10 Logarithm Function (log10())log10(expr0)

	Creates a new expression which is everywhere the base 10 logarithm of its
argument.

	Max Function (max())max(expr0, exrp1 [, ...])

	Creates a new expression which is everywhere the maximum among all input
variables.

	Min Function (min())min(expr0, exrp1 [, ...])

	Creates a new expression which is everywhere the minimum among all input
variables.

	Modulo Function (mod())mod(expr0,exrp1)

	Creates a new expression which is everywhere the first argument, expr0,
modulo the second argument, expr1.

	Random Function (random())random(expr0)

	Creates a new expression which is everywhere a random floating point number
between 0 and 1, as computed by \((\text{rand()} \% 1024) \div 1024\)
where rand() is the standard C library
rand() [http://www.cplusplus.com/reference/cstdlib/rand/] random
number generator. The argument, expr0, must be a mesh variable. The seed
used on each block of the mesh is the absolute domain number.

	Round Function (round())round(expr0)

	Creates a new expression which is everywhere the result of rounding
its argument.

	Square Function (sqr())sqr(expr0)

	Creates a new expression which is everywhere the result of squaring
its argument.

	Square Root Function (sqrt())sqrt(expr0)

	Creates a new expression which is everywhere the square root of
its argument.

8.1.3.2. Relational, Conditional and Logical Expressions

The if() conditional expression is designed to be used in concert with
the Relational and Logical expressions. Together, these expressions
can be used to build up more complex expressions in which very different
evaluations are performed depending on the outcome of other evaluations.
For example, the if() conditional expression can be used together with
one or more relational expressions to create a new expression which evaluates
to a dot-product on part of a mesh and to the magnitude of a divergence operator
on another part of a mesh. However, the Relational and Logical expressions
alone (e.g. when not used within an if() expression) do not produce a
useful result.

	If Function (if())if(exprCondition, exprTrue, exprFalse)

	Creates a new expression which is equal to exprTrue wherever
the condition, exprCondition is non-zero and which is equal to
exprFalse wherever exprCondition is zero.

For example, the expression
if(and(gt(pressure, 2.0), lt(pressure, 4.0)), pressure, 0.0)
combines the if expression with the gt and lt expressions
to create a new expression that is equal to pressure wherever it is
between 2.0 and 4.0 and 0 otherwise.

	Equal Function (eq())eq(exprL,exprR)

	Creates a new expression which is everywhere a boolean value (1 or 0)
indicating whether its two arguments are equal. A value of 1 is produced
everywhere the arguments are equal and 0 otherwise.

	Greater Than Function (gt())gt(exprL,exprR)

	Creates a new expression which is everywhere a boolean value (1 or 0)
indicating whether exprL is greater than exprR. A value of 1
is produced everywhere exprL is greater than exprR and 0
otherwise.

	Greater Than or Equal Function (ge())ge(exprL,exprR)

	Creates a new expression which is everywhere a boolean value (1 or 0)
indicating whether exprL is greater than or equal to exprR.
A value of 1 is produced everywhere exprL is greater than or equal to
exprR and 0 otherwise.

	Less Than Function (lt())lt(exprL,exprR)

	Creates a new expression which is everywhere a boolean value (1 or 0)
indicating whether exprL is less than exprR. A value of 1
is produced everywhere exprL is less than exprR and 0 otherwise.

	Less Than or Equal Function (le())le(exprL,exprR)

	Creates a new expression which is everywhere a boolean value (1 or 0)
indicating whether exprL is less than or equal to exprR. A value
of 1 is produced everywhere exprL is less than or equal to exprR
and 0 otherwise.

	Equal Function (ne())ne(exprL,exprR)

	Creates a new expression which is everywhere a boolean value (1 or 0)
indicating whether its two arguments are not equal. A value of 1
is produced everywhere the arguments are not equal and 0 otherwise.

	Logical And Function (and())and(exprL,exprR)

	Creates a new expression which is everywhere the logical and of its two
arguments. Non-zero values are treated as true whereas zero values are
treated as false.

	Logical Or Function (or())or(exprL,exprR)

	Creates a new expression which is everywhere the logical or of its two
arguments. Non-zero values are treated as true whereas zero values are
treated as false.

	Logical Not Function (not())not(expr0)

	Creates a new expression which is everywhere the logical not of its
argument. Non-zero values are treated as true whereas zero values are
treated as false.

8.1.3.3. Trigonometric Expressions

	Arc Cosine Function (acos())acos(expr0)

	Creates a new expression which is everywhere the arc cosine of its
argument. The returned value is in radians.

	Arc Sine Function (asin())asin(expr0)

	Creates a new expression which is everywhere the arc sine of its
argument. The returned value is in radians.

	Arc Tangent Function (atan())atan(expr0)

	Creates a new expression which is everywhere the arc tangent of its
argument. The returned value is in radians.

	Cosine Function (cos())cos(expr0)

	Creates a new expression which is everywhere the cosine of its
argument. The argument is treated as in units of radians.

	Hyperbolic Cosine Function (cosh())cosh(expr0)

	Creates a new expression which is everywhere the hyperbolic cosine of its
argument. The argument is the hyperbolic angle.

	Sine Function (sin())sin(expr0)

	Creates a new expression which is everywhere the sine of its
argument. The argument is treated as in units of radians.

	Hyperbolic Sine Function (sinh())sinh(expr0)

	Creates a new expression which is everywhere the hyperbolic sine of its
argument. The argument is the hyperbolic angle.

	Tangent Function (tan())tan(expr0)

	Creates a new expression which is everywhere the tangent of its
argument. The argument is treated as in units of radians.

	Hyperbolic Tangent Function (tanh())tanh(expr0)

	Creates a new expression which is everywhere the hyperbolic tangent of its
argument. The argument is the hyperbolic angle.

	Degrees To Radians Conversion Function (deg2rad())deg2rad(expr0)

	Creates a new expression which is everywhere the conversion from degrees
to radians of its argument. The argument should be a variable defined
in units of degrees.

	Radians To Degrees Conversion Function (rad2deg())rad2deg(expr0)

	Creates a new expression which is everywhere the conversion from radians
to degrees of its argument. The argument should be a variable defined
in units of radians.

8.1.3.4. Vector and Color Expressions

	Vector Compose Operator ({}){expr0, expr1, ... , exprN-1}

	Curly braces, {} are used to create a new expression of higher tensor rank
from 2 or more expression of lower tensor rank. A common use is to compose
several tensor rank 0 expressions (e.g. scalar expressions) into a tensor
rank 1 expression (e.g. a vector expression). The component expressions,
expr0, expr1, etc. must all be the same tensor rank and expression
type. For example, they must all be rank 0 (e.g. scalar expressions) or
they must all be rank 1 (e.g. vector) expressions of the same number of
components. If they are all scalars, the result is a tensor of rank 1 (e.g.
a vector). If they are all vectors, the result is a tensor of rank 2 (e.g.
a tensor). The vector compose operator is also used to compose array
expressions.

For example, the expression {u, v, w} takes three scalar mesh variables
named u, v and w and creates a vector mesh variable.

	Vector Component Operator ([])expr[I]

	Square brackets, [], are used to create a new expression of lower tensor
rank by extracting a component from an expression of higher tensor rank.
Components are indexed starting from 0. If expr
is a tensor of rank 2, the result will be a tensor of rank 1 (e.g. a
vector). If expr is a tensor of rank 1, the result will be a tensor
of rank 0 (e.g. a scalar). To obtain the J-th component of the I-th
row of a tensor of rank 2, the expression would be expr[I][J]

	Color Function (color())color(exprR,exprG,exprB)

	Creates a new, RGB vector, expression which defines a color vector where
exprR defines the red component, exprG defines the green
component and exprB defines the blue component of the color vector.
The resulting expression is suitable for plotting with the
Truecolor Plot. The arguments are used to define color values in
the range 0…255. Values outside that range are clamped. No normalization
is performed. If the arguments have much smaller or larger range than
[0…255], it may be appropriate to select a suitable multiplicative scale
factor.

	Color4 Function (color4())color4(exprR,exprG,exprB,exprA)

	See color(). This function is similar to the
color() function but also supports alpha-transparency as the
fourth argument, again in the range 0…255.

	Color lookup Function (colorlookup())colorlookup(expr0,tabname,scalmode,skewfac)

	Creates a new vector expression that is the color that each value in
expr0 maps to. The tabname argument is the name of the color table.
The expr0 and tabname arguments are required. The scalmode
and skewfac arguments are optional. Possible values for scalmode are
0 (for linear scaling mode), 1 (for log scaling mode) and 2
(for skew scaling mode). The skewfac argument is required only for
a scalmode of 2.

	Cross Product Function (cross())cross(exprV0,exprV1)

	Creates a new vector expression which is the vector cross product created
by crossing exprV0 into exprv1. Both arguments must be vector
expression.

	Dot Product Function (dot())dot(exprV0,exprV1)

	Creates a new scalar expression which is the vector dot product
of exprV0 with exprV1.

	HSV Color Function (hsvcolor())hsvcolor(exprH,exprS,exprV)

	See color(). This function is similar to the
color() function but takes Hue, Saturation and Value (Lightness)
arguments as inputs and produces an RGB vector expression.

	Magnitude Function (magnitude())magnitude(exprV0)

	Creates a new scalar expression which is everywhere the magnitude of the
exprV0.

	Normalize Function (normalize())normalize(exprV0)

	Creates a new vector expression which is everywhere a normalized vector
(e.g. same direction but unit magnitude) of exprV0.

	Curl Function: curl()curl(expr0)

	Creates a new vector expression which is everywhere the curl of
its input argument, which must be vector valued. In a 3D context, the
result is also a vector. However, in a 2D context the result vector
would always be [0,0,V] so expression instead returns only the
scalar V.

	Divergence Function: divergence()divergence(expr0)

	Creates a new scalar expression which is everywhere the divergence of
its input argument, which must be vector valued.

	Gradient Function: gradient()gradient(expr0)

	Creates a new vector expression which is everywhere the gradient of its
input argument, which must be scalar. The method of calculation varies
depending on the type of mesh upon which the input is defined. See also
ij_gradient() and
ijk_gradient().

	IJ_Gradient Function: ij_gradient()ij_gradient(expr0)

	No description available.

	IJK_Gradient Function: ijk_gradient()ijk_gradient(expr0)

	No description available.

	Surface Normal Function: surface_normal()surface_normal(expr0)

	This function is an alias for
cell_surface_normal()

	Point Surface Normal Function: point_surface_normal()point_surface_normal(expr0)

	Like cell_surface_normal()
except that after computing face normals, they are averaged to the nodes.

	Cell Surface Normal Function: cell_surface_normal()cell_surface_normal(<Mesh>)

	Computes a vector variable which is the normal to a surface. The input
argument is a Mesh variable. In addition, this function cannot be used
in isolation. It must be used in combination the
external surface, first, and the
defer expression, second, operators.

	Edge Normal Function: edge_normal()edge_normal(expr0)

	No description available.

	Point Edge Normal Function: point_edge_normal()point_edge_normal(expr0)

	No description available.

	Cell Edge Normal Function: cell_edge_normal()cell_edge_normal(expr0)

	No description available.

8.1.3.5. Tensor Expressions

	Contraction Function: contraction()contraction(expr0)

	Creates a scalar expression which is everywhere the contraction of
expr0 which must be a tensor valued expression. The contraction is
the sum of pairwise dot-products of each of the column vectors of the
tensor with itself as shown in the code snip-it below.

Show/Hide Code for contraction()

 // Conceptually it is like as doting each column vector with
 // itself and adding the column results
 //

 ctract +=vals[0] * vals[0] + vals[1] * vals[1] + vals[2] * vals[2];
 ctract +=vals[3] * vals[3] + vals[4] * vals[4] + vals[5] * vals[5];
 ctract +=vals[6] * vals[6] + vals[7] * vals[7] + vals[8] * vals[8];

	Determinant Function: determinant()determinant(expr0)

	Creates a scalar expression which is everywhere the
determinant [https://en.wikipedia.org/wiki/Determinant] of
expr0 which must be tensor valued.

	Effective Tensor Function: effective_tensor()effective_tensor(expr0)

	Creates a scalar expression which is everywhere the square root of three
times the second principal invariant of the stress deviator tenosr,
\(\sqrt{3*J_2}\), where \(J_2\) is the second principal invariant
of the stress deviator tensor. This is also known as the von Mises stress
or the Huber-Mises stress or the Mises effective stress.

Show/Hide Code for effective_tensor()

 double s11 = vals[0], s12 = vals[1], s13 = vals[2];
 double s21 = vals[3], s22 = vals[4], s23 = vals[5];
 double s31 = vals[6], s32 = vals[7], s33 = vals[8];

 // First invariant of the stress tensor
 // aka "pressure" of incompressible fluid in motion
 // aka "mean effective stress"
 double trace = (s11 + s22 + s33) / 3.;

 // components of the deviatoric stress
 double dev0 = s11 - trace;
 double dev1 = s22 - trace;
 double dev2 = s33 - trace;

 // The second invariant of the stress deviator
 // aka "J2"
 double out2 = 0.5*(dev0*dev0 + dev1*dev1 + dev2*dev2) +
 s12*s12 + s13*s13 + s23*s23;

 // stress deviator
 out2 = sqrt(3.*out2);

	Eigenvalue Function: eigenvalue()eigenvalue(expr0)

	The expr0 argument must evaluate to a 3x3 symmetric tensor. The
eigenvalue
expression returns the eigenvalues of the 3x3 symmetric matrix argument
as a vector valued expression where each eigenvalue is a component of
the vector. Use the vector component operator,
[], to access individual
eigenvalues. If a non-symmetric tensor is supplied, results are
indeterminate.

	Eigenvector Function: eigenvector()eigenvector(expr0)

	The expr0 argument must evaluate to a 3x3 symmetric tensor. The
eigenvector
expression returns the eigenvectors of the 3x3 matrix argument as a tensor
(3x3 matrix) valued expression where each column in the tensor is one of
the eigenvectors.

In order to use the vector component operator
[], to access individual
eigenvectors, the result must be transposed with the
transpose(), expression function.

For example, if
evecs = transpose(eigenvector(tensor)), the expression evecs[1]
will return the second eigenvector.

	Inverse Function: inverse()inverse(expr0)

	Creates a new tensor expression which is everywhere the inverse of its
input argument, which must also be a tensor.

	Principal Deviatoric Tensor Function: principal_deviatoric_tensor()principal_deviatoric_tensor(expr0)

	Deviatoric stress is the stress tensor which results after subtracting the
hydrostatic stress tensor [http://www.continuummechanics.org/hydrodeviatoricstress.html].
Hydrostatic stress is a scalar quantity also often referred to as
average pressure or just pressure. However, it is often characterized in
tensor form by multiplying it through a 3x3 identity matrix.

The principal_deviatoric_tensor() expression function creates a new
vector expression which is everywhere the principal components of the
deviatoric stress tensor computed from the symmetric tensor argument
expr0. In other words, the eigenvalues of the deviatoric
stress tensor.

Potentially, it would be more appropriate to create a new tensor field
here with all zeros for off-diagonal elements and the eigenvalues on the
main diagonal.

This expression can also be computed by using a combination of the trace()
and principal_tensor() expression functions. The trace() (divided by
3) would be used to subtract out hydrostatic stress and the result could be
used in the principal_tensor() expression to arrive at the same result.

Show/Hide Code for principal_deviatoric_tensor()

 double pressure = -(vals[0] + vals[4] + vals[8]) / 3.;
 double dev0 = vals[0] + pressure;
 double dev1 = vals[4] + pressure;
 double dev2 = vals[8] + pressure;

 // double invariant0 = dev0 + dev1 + dev2;
 double invariant1 = 0.5*(dev0*dev0 + dev1*dev1 + dev2*dev2);
 invariant1 += vals[1]*vals[1] + vals[2]*vals[2] + vals[5]*vals[5];
 double invariant2 = -dev0*dev1*dev2;
 invariant2 += -2.0 *vals[1]*vals[2]*vals[5];
 invariant2 += dev0*vals[5]*vals[5];
 invariant2 += dev1*vals[2]*vals[2];
 invariant2 += dev2*vals[1]*vals[1];

 double princ0 = 0.;
 double princ1 = 0.;
 double princ2 = 0.;
 if (invariant1 >= 1e-100)
 {
 double alpha = -0.5*sqrt(27./invariant1)
 *invariant2/invariant1;
 if (alpha < 0.)
 alpha = (alpha < -1. ? -1 : alpha);
 if (alpha > 0.)
 alpha = (alpha > +1. ? +1 : alpha);

 double angle = acos((double)alpha) / 3.;
 double value = 2.0 * sqrt(invariant1 / 3.);
 princ0 = value*cos(angle);
 angle = angle - 2.0*vtkMath::Pi()/3.;
 princ1 = value*cos(angle);
 angle = angle + 4.0*vtkMath::Pi()/3.;
 princ2 = value*cos(angle);
 }

 double out3[3];
 out3[0] = princ0;
 out3[1] = princ1;
 out3[2] = princ2;

	Principal Tensor Function: principal_tensor()principal_tensor(expr0)

	Creates a new vector expression which is everywhere the
principal stress components of the input argument, which must a symmetric
tensor. The principal stress components are the
eigenvalues of the stress tensor. [https://uclageo.com/SoilMechanicsNotes/Section2.3.php]
So, the vector expression computed here is the same as
eigenvalue().

Potentially, it would be more appropriate to create a new tensor field
here with all zeros for off-diagonal elements and the eigenvalues on the
main diagonal.

	Transpose Function: transpose()transpose(expr0)

	Creates a new tensor expression which is everywhere the transpose of
its input argument which must also be a tensor. The first row vector
in the input becomes the first column vector in the output, etc.

	Tensor Maximum Shear Function: tensor_maximum_shear()tensor_maximum_shear(expr0)

	Creates a new Scalar expression which is everywhere the maximum
shear stress as defined in J.C. Ugural and S.K. Fenster “Advanced Strength
and Applied Elasticity”, Prentice Hall 4th Edition, page 81. the specific
mathematical operations of which are shown in the code snip-it below.

Show/Hide Code for tensor_maximum_shear()

[image: ../../_images/tensor_max_shear_eqns.png]
 double *vals = in->GetTuple9(i);
 double s11 = vals[0], s12 = vals[1], s13 = vals[2];
 double s21 = vals[3], s22 = vals[4], s23 = vals[5];
 double s31 = vals[6], s32 = vals[7], s33 = vals[8];

 // Hydro-static component
 double pressure = (s11 + s22 + s33) / 3.;

 // Deviatoric stress components
 double dev0 = s11 - pressure;
 double dev1 = s22 - pressure;
 double dev2 = s33 - pressure;

 // double invariant0 = dev0 + dev1 + dev2;
 // Second invariant of stress deviator
 double invariant1 = 0.5*(dev0*dev0 + dev1*dev1 + dev2*dev2);
 invariant1 += s12*s12 + s13*s13 + s23*s23;

 // Third invariant of stress deviator
 double invariant2 = -dev0*dev1*dev2;
 invariant2 += -2.0*s12*s13*s23;
 invariant2 += dev0*s23*s23;
 invariant2 += dev1*s13*s13;
 invariant2 += dev2*s12*s12;

 // Cubic roots of the characteristic equation
 // http://mathworld.wolfram.com/CubicFormula.html
 double princ0 = 0.;
 double princ2 = 0.;
 if (invariant1 >= 1e-100)
 {
 double alpha = -0.5*sqrt(27./invariant1)
 *invariant2/invariant1;
 if (alpha < 0.)
 alpha = (alpha < -1. ? -1 : alpha);
 if (alpha > 0.)
 alpha = (alpha > +1. ? +1 : alpha);

 double angle = acos((double)alpha) / 3.;
 double value = 2.0 * sqrt(invariant1 / 3.);
 princ0 = value*cos(angle);
 // Displace the angle for princ1 (which we don't calculate)
 angle = angle - 2.0*vtkMath::Pi()/3.;
 // Now displace for princ2
 angle = angle + 4.0*vtkMath::Pi()/3.;
 princ2 = value*cos(angle);
 }

 // set the output value

	Trace Function: trace()trace(expr0)

	Creates a new scalar expression which is everywhere the
trace [https://en.wikipedia.org/wiki/Trace_(linear_algebra)]
of expr0 which must be a 3x3 tensor. The trace is the sum of the
diagonal elements.

	Viscous Stress Function: viscous_stress()viscous_stress(expr0)

	Creates a new tensor expression which is everywhere the
viscous stress [https://en.wikipedia.org/wiki/Viscous_stress_tensor].
The key difference between viscous stress and elastic stress (which
is the kind of stress many of the other functions here deal with) is
that viscous stress is related to the rate of change of deformation
whereas elastic stress is related to the amount of deformation.
These two are related in the same way velocity and distance are related.

The argument here, expr0 is a vector valued velocity. In addition,
the current implementation of this function works only for 2D, structured
gridded meshes.

Show/Hide Code for viscous_stress()

 dx[0] = .5 * (px[0] + px[1] - px[2] - px[3]);
 dx[1] = .5 * (px[1] + px[2] - px[3] - px[0]);

 dy[0] = .5 * (py[0] + py[1] - py[2] - py[3]);
 dy[1] = .5 * (py[1] + py[2] - py[3] - py[0]);

 du[0] = .5 * (vx[0] + vx[1] - vx[2] - vx[3]);
 du[1] = .5 * (vx[1] + vx[2] - vx[3] - vx[0]);

 dv[0] = .5 * (vy[0] + vy[1] - vy[2] - vy[3]);
 dv[1] = .5 * (vy[1] + vy[2] - vy[3] - vy[0]);

 div = 1.0 / (dx[0] *dy[1] - dx[1] *dy[0] + tiny);

 dvx[0] = div * (du[0]*dy[1] - du[1] * dy[0]);
 dvx[1] = div * (du[1]*dx[0] - du[0] * dx[1]);

 dvy[0] = div * (dv[0]*dy[1] - dv[1] * dy[0]);
 dvy[1] = div * (dv[1]*dx[0] - dv[0] * dx[1]);

 // create the tensor

 // if rz mesh include extra divergence term
 if(rz_mesh)
 {
 cyl_term = (vy[0] + vy[1] + vy[2] + vy[3]) /
 (py[0] + py[1] + py[2] + py[3] + tiny);
 }

 // diag terms
 vstress[0] = 1/3.0 * (2.0 * dvx[0] - dvy[1]- cyl_term);
 vstress[4] = 1/3.0 * (2.0 * dvy[1] - dvx[0]- cyl_term);
 vstress[8] = 0.0;
 // other terms
 vstress[1] = 0.5 * (dvy[0] + dvx[1]);
 vstress[2] = 0.0;
 vstress[5] = 0.0;

 // use symm to fill out remaining terms
 vstress[3] = vstress[1];
 vstress[6] = vstress[2];
 vstress[7] = vstress[5];
}

8.1.3.6. Array Expressions

	Array Compose Function: array_compose()array_compose(expr0, expr1, ..., exprN-1)

	Create a new array expression variable which is everywhere the array
composition of its arguments, which all must be scalar type.
An array mesh variable is useful when using the label plot or when
doing picks and wanting pick values to always return a certain selected
set of mesh variables. But, all an array mesh variable really is is a
convenient container to hold a group of individual scalar mesh variables.
Each argument to the array_compose expression must evaluate to a scalar
expression and all of the input expressions must have the same centering.
Array variables are collections of scalar variables that are commonly used
with certain plots to display the contents of multiple variables
simultaneously. For example, the Label plot can display the values in an
array variable.

	Array Compose With Bins Function: array_compose_with_bins()array_compose_with_bins(expr0,...,exprN-1,b0,...bn-1)

	This expression combines two related concepts. One is the array concept
where a group of individual scalar mesh variables are grouped into an array
variable. The other is a set of coordinate values (you can kinda think of
as bin boundaries), that should be used by VisIt [https://visit-dav.github.io/visit-website/] for certain kinds of
operations involving the array variable. If there are N variables in the
array, expr0, expr1, and so on, there are N+1 coordinate values
(or bin boundaries), b0, b1. When such a variable is picked using
one of VisIt [https://visit-dav.github.io/visit-website/]’s pick operations, VisIt [https://visit-dav.github.io/visit-website/] can display a bar-graph. Each bar in
the bar-graph has a height determined by the associated scalar mesh variable
(at the picked point) and a width determined by the associated
bin-boundaries.

For example, suppose a user had an array variable, foo, composed of 5 scalar
mesh variables, a1, a2, a3, a4, and a5 like so…

array_compose_with_bins(a1,a2,a3,a4,a5,0,3.5,10.1,10.7,12,22)

For any given point on a plot, when the user picked foo, there are 5 values
returned, the value of each of the 5 scalar variable members of foo. If the
user arranged for a pick to return a bar-graph of the variable using the
bin-boundaries, the result might look like…

[image: ../../_images/new_array_compose_with_bins.png]

Fig. 8.4 Bar graph created from picking an array variable created with array_compose_with_bins()

	Array Decompose Function: array_decompose()array_decompose(Arr,Idx)

	Creates a new scalar expression which is everywhere the scalar member of
the array input argument at index Idx (numbered starting from zero).

	Array Decompose 2D Function: array_decompose2d()array_decompose2d(expr0)

	No description available.

	Array Component-wise Division Function: array_componentwise_division()array_componentwise_division(<Array>,<Divisor>)

	Return a new array variable which is the old input <Array> variable
with each of its components divided by the <Divisor>.

	Array Component-wise Product Function: array_componentwise_product()array_componentwise_product(<Array>,<Multiplier>)

	Return a new array variable which is the old input <Array> variable
with each of its components multiplied by the <Multiplier>.

	Array Sum Function: array_sum()array_sum(<Array>)

	Return a new scalar variable which is the sum of the <Array> components.

8.1.3.7. Material Expressions

	Dominant Material Function: dominant_mat()domimant_mat(<Mesh>)

	Creates a new scalar expression which is for every mesh cell/zone the
material having the largest volume fraction.

	Material Error Function: materror()materror(<Mat>,[Const,Const...])

	Creates a new scalar expression which is everywhere the difference in
volume fractions as stored in the database and as computed by VisIt [https://visit-dav.github.io/visit-website/]’s
material interface reconstruction (MIR) algorithm. The <Mat> argument
is a material variable from a database and the Const argument is
one of the material names as an quoted string or a material number
as an integer. If multiple materials are to be selected from the
material variable, enclose them in square brackets as a list.

Examples…

materror(materials, 1)
materror(materials, [1,3])
materror(materials, "copper")
materror(materials, ["copper", "steel"])

	Material Volume Fractions Function: matvf()matvf(<Mat>,[Const,Const,...])

	Creates a new scalar expression which is everywhere the sum of the volume
fraction of the specified materials within the specified material variable.
The <Mat> argument is a material variable from a database and
the Const argument(s) identify one or more materials within the
material variable.

Examples…

matvf(materials, 1)
matvf(materials, [1,3])
matvf(materials, "copper")
matvf(materials, ["copper", "steel"])

	NMats Function: nmats()nmats(<Mat>)

	Creates a new scalar expression which for each mesh cell/zone is the number
of materials in the cell/zone. The <Mat> argument is a
material variable from a database.

	Specmf Function: specmf()specmf(<Spec>,<MConst>,[Const,Const,...])

	Performs the analogous operation to matvf for species mass fractions.
The <Spec> argument is a species variable from a database. The
<MConst> argument is a specific material within the species variable.
The <Const> argument(s) identify which species within the
species variable to select.

Examples:

specmf(species, 1, 1)
specmf(species, "copper", 1)
specmf(species, "copper", [1,3])

	Value For Material Function: value_for_material()value_for_material(<Var>,<Const>)

	Creates a new scalar expression which is everywhere the material-specific
value of the variable specified by <Var> for the material specified by
<Const>. If variable specified by <Var> has no material specific
values, the values returned from this function will be just the variable’s
values.

8.1.3.8. Mesh Expressions

	Area Function: area()area(<Mesh>)

	See the Verdict Manual

	cylindrical Function: cylindrical()cylindrical(<Mesh>)

	Creates a new vector variable on the mesh which is the cylindrical coordinate
tuple (R,theta,Z) of each mesh node.

	Cylindrical Radiuscylindrical_radius(<Mesh>)

	Creates a scalar new variable on the mesh which is the radius component of the
cylindrical coordinate (from the Z axis) of each mesh node.

	cylindrical theta Function: cylindrical_theta()cylindrical_theta(<Mesh>)

	Creates a new scalar variable on the mesh which is the angle component of the
cylindrical coordinate (around the Z axis from the +X axis) of each mesh node.

	polar radius Function: polar_radius()polar_radius(<Mesh>)

	Creates a new scalar variable on the mesh which is the radius component of
the polar coordinate of each mesh node.

	polar theta Function: polar_theta()polar_theta(<Mesh>)

	Creates a new scalar variable on the mesh which is the theta component of
the polar coordinate of each mesh node.

	polar phi Function: polar_phi()polar_phi(<Mesh>)

	Creates a new scalar variable on the mesh which is the phi component of
the polar coordinate of each mesh node.

	min coord Function: min_coord()min_coord(expr0)

	No description available.

	max coord Function: max_coord()max_coord(expr0)

	No description available.

	external node Function: external_node()external_node(expr0)

	No description available.

	external cell Function: external_cell()external_cell(expr0)

	No description available.

	Zoneid Function: zoneid()zoneid(<Mesh>)

	Return a zone-centered scalar variable where the value for each
zone/cell is local index of a zone, staring from zero, within its domain.

	Global Zoneid Function: global_zoneid()global_zoneid(<Mesh>)

	If global zone ids are specified by the input database, return a
zone-centered scalar variable where the value for each zone/cell
is the global index of a zone, as specified by the data producer.

	Nodeid Function: nodeid()nodeid(expr0)

	Return a node-centered scalar variable where the value for each
node/vertex/point is local index of a node, staring from zero, within
its domain.

	Global Nodeid Function: global_nodeid()global_nodeid(expr0)

	If global node ids are specified by the input database, return a
node-centered scalar variable where the value for each
node/vertex/point is the global index of a node, as specified by
the data producer.

	Volume Function: volume()volume(<Mesh>)

	No description available.

	Volume2 Function: volume2()volume2(<Mesh>)

	No description available.

	Revolved Volume Function: revolved_volume()revolved_volume(<Mesh>)

	No description available.

	Revolved Surface Area Function: revolved_surface_area()revolved_surface_area(<Mesh>)

	No description available.

	Zone Type Function: zonetype()zonetype(<Mesh>)

	Return a zone centered, character valued variable which indicates
the shape type of each zone suitable for being used within the
label plot. Upper case characters generally denote 3D shapes
(e.g. T for tet) while lower case characters denote 2D shapes
(e.g. t for triangle).

	Zone Type Rank Function: zonetype_rank()zonetype_rank(<Mesh>)

	Return a zone centered, integer valued variable which indicates
the VTK shape type of each zone. This expression is often useful
with the threshold operator to select only certain shapes within
the mesh to be displayed.

8.1.3.9. Mesh Quality Expressions

VisIt [https://visit-dav.github.io/visit-website/] employs the Verdict Mesh Quality Library to support a number of
expressions related to computing cell-by-cell mesh quality metrics. The
specific definitions of the various mesh quality metrics defined by the
Verdict Mesh Quality Library are amply explained in the
Verdict Manual. Below, we
simply list all the mesh quality metrics and describe in detail only
those that are not part of the Verdict Mesh Quality Library

In all cases in the Mesh Quality Expressions, the input argument is
a mesh variable from a database and the output is a scalar expression.

	Neighbor Function: neighbor()neighbor(<Mesh>)

	See the Verdict Manual

	Node Degree Function: node_degree()node_degree(<Mesh>)

	See the Verdict Manual

	degree Function: degree()degree(expr0)

	No description available.

	Aspect Function: aspect()aspect(<Mesh>)

	See the Verdict Manual

	Skew Function: skew()skew(<Mesh>)

	See the Verdict Manual

	Taper Function: taper()taper(<Mesh>)

	See the Verdict Manual

	Minimum Corner Angle Function: min_corner_angle()min_corner_angle(<Mesh>)

	See the Verdict Manual

	Maximum Corner Angle Function: max_corner_angle()max_corner_angle(<Mesh>)

	See the Verdict Manual

	Minimum Edge Length Function: min_edge_length()min_edge_length(<Mesh>)

	See the Verdict Manual

	Maximum Edge Length Function: max_edge_length()max_edge_length(<Mesh>)

	See the Verdict Manual

	Minimum Side Volume Function: min_side_volume()min_side_volume(<Mesh>)

	See the Verdict Manual

	Maximum Side Volume Function: max_side_volume()max_side_volume(<Mesh>)

	See the Verdict Manual

	Stretch Function: stretch()stretch(<Mesh>)

	See the Verdict Manual

	Diagonal Ratio Function: diagonal_ratio()diagonal_ratio(<Mesh>)

	See the Verdict Manual

	Maximum Diagonal Function: max_diagonal()max_diagonal(<Mesh>)

	See the Verdict Manual

	Minimum Diagonal Function: min_diagonal()min_diagonal(<Mesh>)

	See the Verdict Manual

	Dimension Function: dimension()dimension(<Mesh>)

	See the Verdict Manual

	Oddy Function: oddy()oddy(<Mesh>)

	See the Verdict Manual

	Condition Function: condition()condition(<Mesh>)

	See the Verdict Manual

	Jacobian Function: jacobian()jacobian(<Mesh>)

	See the Verdict Manual

	Scaled Jacobian Function: scaled_jacobian()scaled_jacobian(<Mesh>)

	See the Verdict Manual

	Shear Function: shear()shear(<Mesh>)

	See the Verdict Manual

	Shape Function: shape()shape(<Mesh>)

	See the Verdict Manual

	Relative Size Function: relative_size()relative_size(<Mesh>)

	See the Verdict Manual

	Shape and Size Function: shape_and_size()shape_and_size(<Mesh>)

	See the Verdict Manual

	Aspect Gamma Function: aspect_gamma()aspect_gamma(<Mesh>)

	See the Verdict Manual

	Warpage Function: warpage()warpage(<Mesh>)

	See the Verdict Manual

	Maximum Angle Function: maximum_angle()maximum_angle(<Mesh>)

	See the Verdict Manual

	Minimum Angle Function: minimum_angle()minimum_angle(<Mesh>)

	See the Verdict Manual

	Minimum Corner Area Function: min_corner_area()min_corner_area(<Mesh>)

	See the Verdict Manual

	Minimum Sin Corner Function: min_sin_corner()min_sin_corner(<Mesh>)

	See the Verdict Manual

	Minimum Sin Corner CW Function: min_sin_corner_cw()min_sin_corner_cw(<Mesh>)

	See the Verdict Manual

	Face Planarity Function: face_planarity()face_planarity(<Mesh>)

	Creates a new expression which is everywhere a measure of how close to
planar all the points comprising a face are. This is computed for
each face of a cell and the maximum over all faces is selected for each
cell. Planarity is measured as the maximum distance from an arbitrary plane
defined by the first 3 points of a face of the remaining points of the face.
Values closer to zero are better. A triangle face will always have a
planarity measure of zero. This mesh quality expression is not part of
the Verdict library.

	Relative Face Planarity Function: relative_face_planarity()relative_face_planarity(<Mesh>)

	Performs the same computation as the
face_planarity(), except where each
face’s value is normalized by the average edge length of the face.

8.1.3.10. Comparison Expressions

Comparing variables defined on the same mesh is often as simple as taking
their difference. What about comparing variables when they are defined on
different meshes? A common example is taking the difference between results
from two runs of the same simulation application. Even if the two runs operate
on computationally identical meshes, the fact that each run involves its own
instance of that mesh means that as far as VisIt [https://visit-dav.github.io/visit-website/] is concerned, they are
different meshes.

In order to compose an expression involving variables on different meshes, the
first step is to map the variables onto a common mesh. The position-based
CMFE function and its friend, the connectivity-based CMFE function,
conn_cmfe() are the work-horse methods
needed when working with variables from different meshes in the same
expression. CMFE is an abbreviation for cross-mesh field evaluation.

The syntax for specifying CMFE expressions can be complicated. Therefore, the
GUI supports a wizard to help create them. See the
Data-Level Comparisons Wizard for more
information. Here, we describe the details of creating CMFE expressions
manually.

All of the comparison expressions involve the concepts of a donor variable
and a target mesh. The donor variable (e.g. pressure) is the variable to
be mapped. The target mesh is the mesh onto which the donor variable is to be
mapped. In addition, the term donor mesh refers to the mesh upon which the
donor variable is defined.

	Position-Based CMFE Function: pos_cmfe()pos_cmfe(<Donor Variable>,<Target Mesh>,<Fill>)

	The pos_cmfe() function performs the mapping assuming the two meshes,
that is the <Target Mesh> and the mesh upon which the
<Donor Variable> (e.g. the donor mesh) is defined, share only a
common spatial (positional) extent. Its friend, the
conn_cmfe()
function is optimized to perform the mapping when the two meshes are also
topologically identical. In other words, their coordinate and
connectivity arrays are 1:1. In this case, the mapping can be performed
with more efficiency and numerical accuracy. Therefore, when it is possible
and makes sense to do so, it is always best to use conn_cmfe().

We’ll describe the arguments to pos_cmfe() working backwards from the
last.

The last, <Fill> argument is a numerical constant that VisIt [https://visit-dav.github.io/visit-website/]
will use to determine the value of the result in places on the target
mesh that do not spatially overlap with the mesh of the donor variable. Note
that if a value is chosen within the range of the donor variable, it may
by difficult to distinguish regions VisIt [https://visit-dav.github.io/visit-website/] deemed were non-overlapping.
On the other hand, if a value outside the range is chosen, it will effect
the range of the mapped variable. A common practice is to choose a value that
is an extremum of the donor variable’s range. Another practice is to
choose a value that is easily distinguishable and then apply a threshold
operator to remove those portions of the result. If the Fill argument
is not specified, zero is assumed.

Working backwards, the next argument, is the <Target Mesh>.
The <Target Mesh> argument in pos_cmfe() is always
interpreted as a mesh within the currently active database. The CMFE
expressions are always mapping data from other meshes, possibly in other
databases onto the <Target Mesh> which is understood to be in the
currently active database. When mapping data between meshes
in different databases, the additional information necessary to specify
the other database is encoded with a special syntax prepending the
Donor Variable argument.

The Donor Variable argument is a string argument of the form:

<PATH-TO-DATABASE-FROM-CWD[SSS]MM:VARNAME>

consisting of the donor variable’s name and up to three pre-pending
sub-strings which may be optionally needed to specify…

	…the Database (PATH-TO-DATABASE-FROM-CWD) in which the donor variable resides,

	…the State Id ([SSS]) from which to take the donor variable,

	…the Modality (MM) by which states are identified in the State Id
sub-string.

Depending on circumstances, specifying the Donor-Variable argument to
the CMFE functions can get cumbersome. For this reason, CMFE expressions
are typically created using the
Data-Level Comparisons Wizard
under the Controls menu. Nonetheless, here we describe the syntax and
provide examples for a number of cases of increasing complexity in specifying
where the Donor Variable resides.

When the donor variable is in the same database and state as the target mesh,
then only the variable’s name is needed. The optional substrings are not.
See case A in the examples below.

When the donor variable is in a different database and the databases
do not have multiple time states, then only sub-string 1, above, is
needed to specify the path to the database in the file system. The path
to the database can be specified using either absolute or relative
paths. Relative paths are interpreted relative to the current working
directory in which the VisIt [https://visit-dav.github.io/visit-website/] session was started. See cases B and C
in the examples below.

When the donor variable is in a different database and the databases
have multiple states, then all 3 sub-strings, above, are required. The
State Id substring is a square-bracket enclosed number used to identify
which state from which to take the donor variable. The Modality
substring is a one- or two-character moniker. The first character indicates
whether the number in the the State Id substring is a cycle (c),
a time (t), or an index (i). The second character, if present, is a
d character to indicate the cycle, time or index is relative (e.g. a
delta) to the current state. For example, the substring [200]c means to
treat the 200 as a cycle number in the donor database whereas the
the substring [-10]id means to treat the -10 as an (i) index
(d) delta. So, [200]c would map the donor at cycle 200
to the current cycle of the target and [-10]id would map the
donor at the current index minus 10 to the current index of the target.
In particular, the string [0]id is needed to create a CMFE that keeps
donor and target in lock step. Note that in cases where the donor database
does not have an exact match for the specified cycle or time, VisIt [https://visit-dav.github.io/visit-website/] will chose
the state with the cycle or time which is closest in absolute distance. For the
index modality, if there is no exact match for the specified index, an error
results. See cases D-I in the examples below.

Note that the relative form of specifying the State Id is needed even
when working with different states within the same database. In particular,
to create an expression representing a time derivative of a variable in
a database, the key insight is to realize it involves mapping a donor
variable from one state in the database onto a mesh at another state. In
addition, the value in using the relative form of specifying the
State Id of the donor variable is that as the current time is changed,
the expression properly identifies the different states of the donor
variable instead of always mapping a fixed state.

Examples…

Case A: Donor variable, "pressure" in same database as mesh, "ucdmesh"
Note that due to a limitation in Expression parsing, the '[0]id:' is
currently required in the donor variable name as a substitute for
specifying a file system path to a database file. The syntax '[0]id:'
means a state index delta of zero within the active database.
pos_cmfe(<[0]id:pressure>,<ucdmesh>,1e+15)

Case B: Donor variable in a different database using absolute path
pos_cmfe(</var/tmp/foo.silo:pressure>,<ucdmesh>,1e+15)

Case C: Donor variable in a different database using relative path
pos_cmfe(<foo/bar.silo:pressure>,<ucdmesh>,1e+15)

Case D: Map "p" from wave.visit at state index=7 onto "mesh"
pos_cmfe(<./wave.visit[7]i:p>, mesh, 1e+15)

Case E: Map "p" from wave.visit at state index current-1 onto "mesh"
pos_cmfe(<./wave.visit[-1]id:p>, mesh, 1e+15)

Case F: Map "p" from wave.visit at state with cycle~200 onto "mesh"
pos_cmfe(<./wave.visit[200]c:p>, mesh, 1e+15)

Case G: Map "p" from wave.visit at state with cycle~cycle(current)-200 onto "mesh"
pos_cmfe(<./wave.visit[-200]id:p>, mesh, 1e+15)

Case H: Map "p" from wave.visit at state with time~1.4 onto "mesh"
pos_cmfe(<./wave.visit[1.4]t:p>, mesh, 1e+15)

Case I: Map "p" from wave.visit at state with time~time(current)-0.8 onto "mesh"
pos_cmfe(<./wave.visit[-0.8]td:p>, mesh, 1e+15)

	Connectivity-Based CMFE Function: conn_cmfe()conn_cmfe(<Donor Variable>,<Target Mesh>)

	The connectivity-based CMFE is an optimized version of
pos_cmfe() for cases where the
Target Mesh and the mesh of the Donor Variable are
topologically and geometrically identical. In such cases, there is no
opportunity for the two meshes to fail to overlap perfectly. Thus, there
is no need for the third, <Fill> argument. In all other respects,
conn_cmfe() performs the same function as
pos_cmfe() except that
conn_cmfe() assumes that any differences in the coordinates of the
two meshes are numerically insignificant to the resulting mapped variable.
In other words, differences in the coordinate fields, if they exist, are
not incorporated into the resulting mapping.

	Curve CMFE Function: curve_cmfe()curve_cmfe(<Donor Curve>,<Target Curve>)

	The curve-based CMFE performs the same function as
pos_cmfe() except for curves. The
arguments specify the Target Curve and Donor Curve and the same
syntax rules apply for specifying the Donor Curve as for the
Donor Variable in pos_cmfe().
However, if curves represent different spatial extents or different
numbers of samples or sample spacing, no attempt is made to unify them.

	Symmetric Difference By Point Function: symm_point()symm_point(<Scalar>,<Fill>,[Px,Py,Pz])

	Return a new scalar variable which is the symmetric difference of
<Scalar> reflected about the point [Px, Py, Pz]. In 2D, Pz
is still required but ignored. The <Fill> argument is a numerical
constant that VisIt [https://visit-dav.github.io/visit-website/] will use to determine the value of the result in
places symmetry about the point doesn’t overlap with the donor mesh.
This operation involves both the reflection about the point and
taking the difference. If the input <Scalar> is indeed symmetric
about the point, the result will be a constant valued variable of zero.

	Symmetric Difference By Plane Function: symm_plane()symm_plane(<Scalar>,<Fill>,[Nx,Ny,Nz,Px,Py,Pz])

	Return a new scalar variable which is the symmetric difference of
<Scalar> reflected about the plane defined by the point [Px, Py, Pz]
and normal [Nx, Ny, Nz]. In 2D, the Nz and Pz arguments are
still required but ignored. The <Fill> argument is a numerical
constant that VisIt [https://visit-dav.github.io/visit-website/] will use to determine the value of the result in
places symmetry about the plane doesn’t overlap with the donor mesh.
This operation involves both the reflection about the plane and
taking the difference. If the input <Scalar> is indeed symmetric about
the plane, the result will be a constant valued variable of zero.

	Symmetric Difference By Transform Function: symm_transform()symm_transform(<Scalar>,<Fill>,[T00,T01,T02,...,T22])

	Return a new scalar variable which is the symmetric difference of
<Scalar> reflected through the 3x3 transformation where each point,
[Px,Py,Pz], in the mesh supporting <Scalar> is transformed by the
transform coefficients, [T00, T01,...,T22] as shown below. In 2D, all
9 transform coefficients are still required but the last row and column are
ignored. The <Fill> argument is a numerical constant that VisIt [https://visit-dav.github.io/visit-website/] will
use to determine the value of the result in places symmetry through the
transform doesn’t overlap with the donor mesh. This operation involves
both the transform and taking the difference. If the input
<Scalar> is indeed symmetric through the transform, the result will
be a constant valued variable of zero.

\[\begin{split}\begin{bmatrix}
 T_{00} & T_{01} & T_{02} \\
 T_{10} & T_{11} & T_{12} \\
 T_{20} & T_{21} & T_{22}
\end{bmatrix}
*
\begin{bmatrix}
 P_{x} \\
 P_{y} \\
 P_{z}
\end{bmatrix}
=
\begin{bmatrix}
 T_{00}*P_{x}+T_{01}*P_{y}+T_{02}*P_{z} \\
 T_{10}*P_{x}+T_{11}*P_{y}+T_{12}*P_{z} \\
 T_{20}*P_{x}+T_{21}*P_{y}+T_{22}*P_{z}
\end{bmatrix}\end{split}\]

	Evaluate Point Function: eval_point()eval_point(<Scalar>,<Fill>,[Px,Py,Pz])

	Performs only the reflection half of the
symm_point() operation. That is, it
computes a new scalar variable which is the input <Scalar> reflected
through the symmetric point. It does not then take the difference between
with the input <Scalar> as
symm_point() does.

	Evaluate Plane Function: eval_plane()eval_plane(<Scalar>,<Fill>,[Nx,Ny,Nz,Px,Py,Pz])

	Performs only the reflection half of the
symm_plane() operation. That is, it
computes a new scalar variable which is the input <Scalar> reflected
through the symmetric plane. It does not then take the difference between
with the input <Scalar> as
symm_plane() does.

	Evaluate Transform Function: eval_transform()eval_transform(expr0,<Fill>,[T00,T01,T02...T22])

	Performs only the transform half of the
symm_transform() operation.
That is, it computes a new scalar variable which is the input
<Scalar> mapped through the transform. It does not then take the
difference between with the input <Scalar> as
symm_transform() does.

8.1.3.11. Image Processing Expressions

The image processing expressions defined here are not suitable for multi-block
data. They do not handle domain boundaries properly even if the input database
properly defines suitable layers of ghost zones. They do, however, operate
on 2 and 3D data.

	conservative smoothing Function: conservative_smoothing()conservative_smoothing(expr0)

	No description available.

	Mean Filter Function: mean_filter()mean_filter(<Scalar>,<Int>)

	Return a filtered version of the input scalar variable using the
mean filter of width specified by <Int> argument. By default, the
filter width is 3 (3x3). The input scalar must be defined on a structured
mesh.

	Median Filter Function: median_filter()median_filter(expr0)

	Return a filtered version of the input scalar variable using a
3x3 median filter. The input scalar must be defined on a structured
mesh.

	Abel Inversion Function: abel_inversion()abel_inversion(expr0)

	No description available.

8.1.3.12. Miscellaneous Expressions

	Zonal Constant Function: zonal_constant()zonal_constant(expr0)

	Return a scalar, zone-centered field that is everywhere on
<Mesh> the constant value <Const>.

	Zone Constant Function: zone_constant()zone_constant(<Mesh>,<Const>)

	An alias for zonal_constant()

	Cell Constant Function: cell_constant()cell_constant(expr0)

	An alias for zonal_constant()

	Nodal Constant Function: nodal_constant()nodal_constant(<Mesh>,<Const>)

	Return a scalar, node-centered field that is everywhere on
<Mesh> the constant value <Const>.

	Node Constant Function: node_constant()node_constant(expr0)

	An alias for nodal_constant()

	Point Constant Function: point_constant()point_constant(expr0)

	An alias for nodal_constant()

	Time Function: time()time(expr0)

	Return a constant scalar variable which is everywhere the time
of the associated input argument within its time-series.

	Cycle Function: cycle()cycle(expr0)

	Return an integer constant scalar variable which is everywhere the cycle
of the associated input argument within its time-series.

	Timestep Function: timestep()timestep(expr0)

	Return an integer constant scalar variable which is everywhere the index
of the associated input argument within its time-series.

	curve domain Function: curve_domain()curve_domain(expr0)

	No description available.

	curve integrate Function: curve_integrate()curve_integrate(expr0)

	No description available.

	curve swapxy Function: curve_swapxy()curve_swapxy(expr0)

	No description available.

	curve Function: curve()curve(expr0)

	No description available.

	Enumerate Function: enumerate()enumerate(<Int-Scalar>,<[Int-List]>)

	Map an integer valued scalar variable to a new set of integer values.
If K is the maximum value in the Int-Scalar input argument,
the [Int-List] argument must be a square bracketed list of K+1
integer values. Value i in the Int-Scalar input argument is used to
index the ith entry in the [Int-List] to produce mapped value.

	Map Function: map()map(<Scalar>,<[Input-Value-List]>,<[Output-Value-List]>, fill_value)

	A more general form of enumerate()
which supports non-integer input scalar variables and input and output
maps which are not required to include all values in the input scalar
variable. The [Input-Value-List] and [Output-Value-List] must have
the same number of entries. A value in the input scalar variable that
matches the ith entry in the [Input-Value-List] is mapped to the new
value at the ith entry in the [Output-Value-List]. Values that do not
match any entry in the [Input-Value-List] are mapped to fill_value,
which is -1 by default.

	Resample Function: resample()resample(<Var>,Nx,Ny,Nz)

	Resample <Var> onto a regular grid defined by taking the
X, Y and for 3D, Z spatial extents of the mesh <Var> is defined on and
taking Nx samples over the spatial extents in X,
Ny samples over the spatial extents in Y, and, for 3D,
Nz samples over the spatial extents in Z.
Any samples that miss the mesh <Var> is defined on are assigned
the value -FLT_MAX. For 2D, the Nz argument is still required but
ignored.

	Recenter Expression Functionrecenter(expr, ["nodal", "zonal", "toggle"])

	This function can be used to recenter expr. The second argument is
optional and defaults to “toggle” if it is not specified. A value of
“toggle” for the second argument means that if expr is node
centered, it is recentered to zone centering and if expr is
zone centered, it is recentered to node centering. Note that the
quotes are required for the second argument. This function is typically
used to force a specific centering among the operands of some other
expression.

	Process Id Function: procid()procid(<Var>)

	Return an integer scalar variable which is everywhere the MPI rank
associated with each of the blocks of the possibly parallel decomposed mesh
upon which <Var> is defined. For serial execution or for parallel
execution of a single-block mesh, this will produce a constant zero
variable. Otherwise, the values will vary block by block.

	Thread Id Function: threadid()threadid(expr0)

	Return an integer scalar variable which is everywhere the local thread id
associated with each of the blocks of the possibly parallel decomposed mesh
upon which <Var> is defined. For non-threaded execution, this will
produce a constant zero variable. Otherwise, the values will vary block
by block.

	isnan Function: isnan()isnan(expr0)

	No description available.

	q criterion Function: q_criterion()q_criterion(<gradient(velocity[0])>, <gradient(velocity[1])>, <gradient(velocity[2])>)

	Generates the Q-criterion value developed by Hunt et. al.. It is based on the
observation that, in regions where the Q-criterion is greater than zero, rotation
exceeds strain and, in conjunction with a pressure min, indicates the presence of
a vortex. The three arguments to the function are gradient vectors of the x-, y-,
and z-velocity. The gradient function (see gradient()) can be used to create the gradient vectors.

	lambda2 Function: lambda2()lambda2(<gradient(velocity[0])>, <gradient(velocity[1])>, <gradient(velocity[2])>)

	Generates the Lambda-2 criterion. It is based on the observation that, in
regions where Lambda-2 is less than zero, rotation exceeds strain and, in
conjunction with a pressure min, indicates the presence of a vortex. The three
arguments to the function are gradient vectors of the x-, y-, and z-velocity.
The gradient function (see gradient()) can be used to create the gradient vectors.

	mean curvature Function: mean_curvature()mean_curvature(expr0)

	No description available.

	Gauss Curvature Function: gauss_curvature()gauss_curvature(expr0)

	No description available.

	agrad Function: agrad()agrad(expr0)

	No description available.

	key aggregate Function: key_aggregate()key_aggregate(expr0)

	No description available.

	Laplacian Function: laplacian()laplacian(expr0)

	No description available.

	rectilinear Laplacian Function: rectilinear_laplacian()rectilinear_laplacian(expr0)

	No description available.

	conn components Function: conn_components()conn_components(expr0)

	No description available.

	resrad Function: resrad()resrad(expr0)

	No description available.

8.1.3.13. Time Iteration Expressions

	Average Over Time Function: average_over_time()average_over_time(<Scalar>,<Start>,<Stop>,<Stride>)

	Return a new scalar variable in which each zonal or nodal value is the
average over the times indicated by Start, Stop and Stride.

	Min Over Time Function: min_over_time()min_over_time(<Scalar>,<Start>,<Stop>,<Stride>)

	Return a new scalar variable in which each zonal or nodal value is the
minimum value the variable, <Scalar>, attained over the times indicated
by Start, Stop and Stride.

	Max Over Time Function: max_over_time()max_over_time(<Scalar>,<Start>,<Stop>,<Stride>)

	Return a new scalar variable in which each zonal or nodal value is the
maximum value the variable, <Scalar>, attains over the times indicated
by Start, Stop and Stride.

	Sum Over Time Function: sum_over_time()sum_over_time(<Scalar>,<Start>,<Stop>,<Stride>)

	Return a new scalar variable in which each zonal or nodal value is the
sum of the values the variable, <Scalar> attains over the times
indicated by Start, Stop and Stride.

	First Time When Condition Is True Function: first_time_when_condition_is_true()first_time_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,<Stride>)

	Return a new scalar variable in which each zonal or nodal value is the
first time (not cycle and not time-index, but floating point time) at which
the true/false condition, <Cond> is true. The <Fill> value is used
if there is no first time the condition is true.

	Last Time When Condition Is True Function: last_time_when_condition_is_true()last_time_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,<Stride>)

	Return a new scalar variable in which each zonal or nodal value is the
last time (not cycle and not time-index, but floating point time) at which
the true/false condition, <Cond> is true. The <Fill> value is used
if there is no last time the condition is true.

	First Cycle When Condition Is True Function: first_cycle_when_condition_is_true()first_cycle_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,<Stride>)

	Return a new integer valued scalar variable in which each zonal or nodal
value is the first cycle (not time and not time-index, but integer cycle)
at which the true/false condition, <Cond> is true. The <Fill> value
is used if there is no first cycle the condition is true.

	Last Cycle When Condition Is True Function: last_cycle_when_condition_is_true()last_cycle_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,<Stride>)

	Return a new integer valued scalar variable in which each zonal or nodal
value is the last cycle (not time and not time-index, but integer cycle)
at which the true/false condition, <Cond> is true. The <Fill> value
is used if there is no last cycle the condition is true.

	First Time Index When Condition Is True Function: first_time_index_when_condition_is_true()first_time_index_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,<Stride>)

	Return a new integer valued scalar variable in which each zonal or nodal
value is the first time index (not cycle and not time, but integer
time-index) at which the true/false condition, <Cond> is true.
The <Fill> value is used if there is no first time-index the
condition is true.

	Last Time Index When Condition Is True Function: last_time_index_when_condition_is_true()last_time_index_when_condition_is_true(<Cond>,<Fill>,<Start>,<Stop>,<Stride>)

	Return a new integer valued scalar variable in which each zonal or nodal
value is the last time index (not cycle and not time, but integer
time-index) at which the true/false condition, <Cond> is true.
The <Fill> value is used if there is no last time-index the
condition is true.

	var when condition is first true Function: var_when_condition_is_first_true()var_when_condition_is_first_true(expr0)

	No description available.

	var when condition is last true Function: var_when_condition_is_last_true()var_when_condition_is_last_true(expr0)

	No description available.

	time at minimum Function: time_at_minimum()time_at_minimum(expr0)

	No description available.

	cycle at minimum Function: cycle_at_minimum()cycle_at_minimum(expr0)

	No description available.

	time index at minimum Function: time_index_at_minimum()time_index_at_minimum(expr0)

	No description available.

	value at minimum Function: value_at_minimum()value_at_minimum(expr0)

	No description available.

	time at maximum Function: time_at_maximum()time_at_maximum(expr0)

	No description available.

	cycle at maximum Function: cycle_at_maximum()cycle_at_maximum(expr0)

	No description available.

	time index at maximum Function: time_index_at_maximum()time_index_at_maximum(expr0)

	No description available.

	value at maximum Function: value_at_maximum()value_at_maximum(expr0)

	No description available.

	localized compactness Function: localized_compactness()localized_compactness(expr0)

	No description available.

	merge tree Function: merge_tree()merge_tree(expr0)

	No description available.

	split tree Function: split_tree()split_tree(expr0)

	No description available.

	local threshold Function: local_threshold()local_threshold(expr0)

	No description available.

	python Function: python()python(expr0)

	No description available.

	relative difference Function: relative_difference()relative_difference(expr0)

	No description available.

	var skew Function: var_skew()var_skew(expr0)

	No description available.

	apply data binning Function: apply_data_binning()apply_data_binning(expr0)

	No description available.

	distance to best fit line Function: distance_to_best_fit_line()distance_to_best_fit_line(expr0)

	No description available.

	distance to best fit line2 Function: distance_to_best_fit_line2()distance_to_best_fit_line2(expr0)

	No description available.

	geodesic vector quantize Function: geodesic_vector_quantize()geodesic_vector_quantize(expr0)

	No description available.

	bin Function: bin()bin(expr0)

	No description available.

	biggest neighbor Function: biggest_neighbor()biggest_neighbor(expr0)

	No description available.

	smallest neighbor Function: smallest_neighbor()smallest_neighbor(expr0)

	No description available.

	neighbor average Function: neighbor_average()neighbor_average(expr0)

	No description available.

	Displacement Function: displacement()displacement(expr0)

	No description available.

8.1.4. Expression Compatibility Gotchas

VisIt [https://visit-dav.github.io/visit-website/] will allow you to define expressions that it winds up determining to be
invalid later when it attempts to execute those expressions. Some common
issues are the mixing of incompatible mesh variables in the same expression
without the necessary additional functions to make them compatible.

8.1.4.1. Tensor Rank Compatibility

For example, what happens if you mix scalar and vector mesh variables in the
same expression? VisIt [https://visit-dav.github.io/visit-website/] will allow users to define such an expression. But, when
it is plotted, the plot will fail.

As an aside, as the user goes back and forth between the Expressions window
creating and/or adjusting expression definitions, VisIt [https://visit-dav.github.io/visit-website/] makes no attempt to
keep track of all the changes made in expressions and automatically update
plots as expressions change. Users have to manually clear or delete plots to
force VisIt [https://visit-dav.github.io/visit-website/] to re-draw plots in which the expressions changed.

If what is really intended was a scalar mesh variable, then users must use
one of the expression functions that converts a vector to a scalar such as
the magnitude() built-in expression or the array de-reference operator.

8.1.4.2. Centering Compatibility

Some variables are zone centered and some are node centered. What happens if
a user combines these in an expression? VisIt [https://visit-dav.github.io/visit-website/] will default to zone centering
for the result. If this is not the desired result, the
recenter() expression function should be
used, where appropriate, to adjust centering of some of the
terms in the expression. Note that ordering of operations will probably be
important. For example

node_var + recenter(zone_var)
recenter(zone_var + node_var)

both achieve a node-centered result. But, each expression is subtly
(and numerically) different. The first recenter’s zone_var to the
nodes and then performs the summation operator at each node. In the
second, there is an implied recentering of node_var to the zones first. Then,
the summation operator is applied at each zone center and finally the results
are recentered back to the nodes. In all likelihood this creates in a
numerically lower quality result. The moral is that in a complex series of
expressions be sure to take care where you want recentering to occur.

8.1.4.3. Mesh Compatibility

In many cases, especially in Silo databases, all the available variables in a
database are not always defined on the same mesh. This can complicate matters
involving expressions in variables from different meshes.

Just as in the previous two examples of incompatible variables where the
solution was to apply some function to make the variables compatible, we have
to do the same thing when variables from different meshes are combined in an
expression. The key expression functions which enable this are called
Cross Mesh Field Evaluation or CMFE expression functions. We will only
briefly touch on these here. CMFEs will be discussed in much greater detail
elsewhere.

Just as for centering, we have two options when dealing with variables from
two different meshes. Each of which involves mapping one of the variables
onto the other variable’s mesh using one of the CMFE expression functions.

8.1.5. Automatic expressions

8.2. Query

VisIt allows you to gather quantitative information from the database being
visualized through the use of queries. A query is a type of calculation that
can either return values from the database or values that are calculated
from data in the database. For example, VisIt’s Pick and Lineout capabilities
(described later in this chapter) are specialized point and line queries
that print out the values of variables in the database at points or along
lines. In addition to point and line queries, VisIt provides database
queries that return values that are based on all of the data in a database.

Some queries can even be executed for all of the time states in a database
to yield a Curve plot of the query’s behavior over time. This feature will
be covered in more detail a little later.

[image: ../../_images/querywindow.png]

Fig. 8.5 Query window

VisIt’s queries are available in the Query Window (shown in
Figure 8.5), which you can open by clicking the
Query option in the Main Window’s Control menu. The Query Window
consists of upper and lower areas where the upper area allows you to select
a query and set its query parameters. The controls for setting a query’s
parameters change as required and some queries have no parameters and thus
have no controls for setting parameters. The bottom area of the window
displays the results of the query once VisIt has finished processing it.
The results for new queries are appended to the output from previous queries
until you clear the Query results by clicking the Clear results
button.

8.2.1. Query types

VisIt’s queries can be divided into three types: database queries, point
queries, and line queries. Database queries usually calculate information
for the database as a whole instead of concentrating on a single zone or
node but some Pick-related database queries do concentrate on cells and
nodes. Point queries calculate information for a point in the database
and several types of variable picking queries fall into this category.
Line queries calculate information along a line. Each type of query has
different controls in the Query parameters area (see
Figure 8.6) and as you highlight different
queries, the controls in the Query parameters area may change.

[image: ../../_images/queryparams_db.png]
[image: ../../_images/queryparams_db2.png]
[image: ../../_images/queryparams_db3.png]
[image: ../../_images/queryparams_point.png]

[image: ../../_images/queryparams_line.png]

Fig. 8.6 Query parameters area

Database queries provide a few different interfaces depending on the query.
Many database queries require no additional input so they have no controls
except for the Query button. Other database queries ask whether the
query is to be performed with respect to the original data or the actual
data, which is that data that is left in the plot after subsets have been
removed and operators have transformed the data. Finally, some database
queries ask for a specific domain number and zone or node number.

Point queries provide interfaces in the Query parameters area that allow
you to enter a 3D point or a screen space point to use as the point for the
query. Line queries provide an interface that lets you specify the start
and end positions of the line as well as the number of sample points to
consider along the length of the line. Nearly all query types allow you to
provide additional variables to query in a Variables text field.

8.2.2. Built-in queries

8.2.2.1. Database Queries

	2D Area

	The 2D area query calculates the area of the 2D plot highlighted in the
Plot list and prints the result to the Query results. VisIt can
produce a Curve plot of this query with respect to time.

	3D Surface Area

	The 3D surface area calculates the area of the plot highlighted in the
Plot list and prints the result to the Query results. VisIt can
produce a Curve plot of this query with respect to time.

	Connected Component Area

	Performs the same operation as either 2/3D area query except individually
for each component of a disconnected mesh. The query result is a list of
values, one for each component.

	Connected Component Length

	Performs an operation similar to Connected Component Area except that it
works only for 1D components and returns their length. The query result is
a list of values, one for each component.

	Area Between Curves

	The Area Between Curves query calculates the area between 2 curve plots.
The plots that will serve as input to this query must both be highlighted
in the Plot list or VisIt will issue an error message. Once the area
has been calculated, the result is printed to the Query results.

	Centroid

	This query can calculate a centroid (geometric center) or center-of-mass
of a dataset depending on the plot (and variable) upon which the query is
performed. On a Pseudocolor plot, the plot’s variable will be treated as
a density field. The value of this field at the center of each cell
will be multiplied by the cell’s volume to compute a cell-centered mass
contribution for each cell. If the plot’s variable is indeed a true
density variable, then the result will be the center-of-mass. If the
plot’s variable is not a true density variable (e.g. temperature), the
result may be nonsensical. If the plot’s variable is constant over the
whole object, the result will be a centroid (geometric center). If the
query is performed on a Mesh or FilledBoundary plot, constant density will
be assumed and the result will be a centroid. The results are printed to
the Query results.

	Connected Component Centroid

	Performs the same operation as either Centroid query except individually
for each component of a disconnected mesh. The query result is a list of
values, one for each component.

	Chord Length Distribution

	The Chord Length Distribution query calculates a probability density
function of chord length over a two or three dimensional object. Axially
symmetric objects (RZ-meshes) are treated as 3D meshes and chords are
calculated over the revolved, 3D object. A statistical approach, casting
uniform density, random lines, is used. The result of this query is a
curve, which is outputted as a separate file. This curve is a probability
density function over length scale. The name of the resulting file is
printed to the Query results.

	Compactness

	The Compactness query calculates mesh metrics and prints them in the
Query results.

	Cycle

	The Cycle query prints the cycle for the plot that is highlighted in the
Plot list to the Query results.

	Distance from Boundary

	The Distance From Boundary query calculates how much mass is at a given
distance away from the boundary of a shape. An important distinction for
this query is that distance from the boundary (for a given point) is not
defined as the shortest distance to the boundary, but simultaneously as all
surrounding distances. Axially symmetric objects (RZ-meshes) are treated as
3D meshes and length scales are calculated over the revolved, 3D object.
The implementation employs a statistical approach, with the casting of
uniform density, random lines. The result of this query is a curve, which
is outputted as a separate file. This curve contains the amount of mass as
a function of length scale. Integrating the curve between P0 and P1 will
give the total mass at distance between P0 and P1 (given the interpretation
above). The name of the resulting file is printed to the Query results.

	Eulerian

	The Eulerian query calculates the Eulerian number for the mesh that is used
by the highlighted plot in the Plot list. The results are printed to the
Query results.

	Expected Value

	The Expected Value query calculates the integral of \(xf(x)dx\) for
some curve f(x). The curve should be highlighted in the Plot list and
prints the result to the Query results. This query is intended for
distribution functions.

	Grid Information

	The Grid Information query prints information for each domain in a multi-
domain mesh. The mesh type is printed as well as the mesh sizes. For
structured meshes the size information contains the logical mesh dimensions
(IJK sizes) and for unstructured meshes the size information contains the
number of nodes and number of cells in the mesh. The query can optionally
accept a get_extents parameter that will cause the spatial extents for
each domain to be obtained. The query also accepts an optional
get_ghosttype parameter that causes the ghost zone information for each
domain to be obtained. Both the numerical value and list of or’d values for
ghost values are obtained. All query outputs are printed to the
Queryresults.

	Integrate

	The Integrate query calculates the area under the Curve plot that is
highlighted in the Plot list and prints the result to the
Query results.

	Kurtosis

	The Kurtosis query calculates the kurtosis of a normalized distribution
function. The normalized distribution function must be represented as a
Curve plot in VisIt. Kurtosis measures the variability of a distribution by
comparing the ratios of the fourth and second central moments. The results
are print to the Query results.

	L2Norm

	The L2Norm query calculates the L2Norm, or square of the integrated area,
of a Curve plot. The Curve plot must be highlighted in the Plot list.
The results are printed to the Query results.

	L2Norm Between Curves

	The L2Norm query takes two Curve plots as input and calculates the L2Norm
between the 2 curves. Both Curve plots must be highlighted in the
Plot list or VisIt will issue an error message. The results are printed
to the Query results.

	Min

	The Min query calculates the minimum value for the variable used by the
highlighted plot in the Plot list and prints the value and the logical
and physical coordinates where the minimum value was found to the
Query results.

	Mass Distribution

	The Mass Distribution query calculates how much mass occurs at different
length scales over a two or three dimensional object. Axially symmetric
objects (RZ-meshes) are treated as 3D meshes and length scales are
calculated over the revolved, 3D object. The implementation employs a
statistical approach, with the casting of uniform density, random lines.
The result of this query is a curve, which is outputted as a separate file.
This curve contains the amount of mass as a function of length scale.
Integrating the curve between P0 and P1 will give the total mass between
length scale P0 and length scale P1. The name of the resulting file is
printed to the Query results.

	Max

	The Max query calculates the maximum value for the variable used by the
highlighted plot in the Plot list and prints the value and the logical and
physical coordinates where the maximum value was found to the
Query results.

	MinMax

	The MinMax query calculates the minimum and maximum values for the variable
used by the highlighted plot in the Plot list and prints the values and
their logical and physical coordinates in the Query results.

	Moment of inertia

	This query will calculate the moment of inertia tensor for each cell in a
three-dimensional dataset. The contribution of each cell is calculated
assuming its mass all lies at the center of the cell. If the query is
performed on a Pseudocolor plot, the plot’s variable will be assumed to be
density. If the query is performed on a plot such as a mesh plot or
FilledBoundary plot, uniform density will be used. The results are printed
to the Query results.

	NodeCoords

	The NodeCoords query prints the node coordinates for the specified node and
prints the values in the Query results.

	NumNodes

	The NumNodes query prints the number of nodes for the mesh used by the
highlighted plot in the Plot list to the Query results.

	NumZones

	The NumZones query prints the number of zones for the mesh used by the
highlighted plot in the Plot list to the Query results.

	Revolved surface area

	The Revolved surface area query revolves the mesh used by the highlighted
plot in the Plot list about the X-axis and prints the plot’s revolved
surface area to the Query results.

	Revolved volume

	The Revolved volume area query revolves the mesh used by the highlighted
plot in the Plot list about the X-axis and print’s the plot’s volume
to the Query results.

	Skewness

	The Skewness query calculates the skewness of a normalized distribution
function. The normalized distribution function must be represented as a
Curve plot in VisIt. Skewness measures the symmetry of a distribution using
its second and third central moments. The results are print to the
Query results

	Spatial Extents

	The Spatial Extents query calculates the original or actual spatial extents
for the plot that is highlighted in the Plot list. Whether the original
or actual extents are calculated is determined by setting the options in
the Query parameters area. The spatial extents are printed to the
Query results when the query has finished.

	Spherical compactness factor

	This query attempts to measure how spherical a three dimensional shape is.
The query first determines what the volume of a shape is. It then
constructs a sphere that has that same volume. Finally, the query positions
the sphere so that the maximum amount of the original shape is within the
sphere. The query returns the percentage of the original shape that is
contained within the sphere. The results are print to the
Query results. VisIt can produce a Curve plot of this query with
respect to time.

	Time

	The Time query prints the time for the plot that is highlighted in the Plot
list to the Query results.

	Variable Sum

	The Variable Sum query adds up the variable values for all cells using the
plot highlighted in the Plot list and prints the results to the
Query results. VisIt can produce a Curve plot of this query with
respect to time.

	Connected Component Variable Sum

	Performs the same operation as Variable Sum query except individually for
each component of a disconnected mesh. The query result is a list of
values, one for each component.

	Volume

	The Volume query calculates the volume of the mesh used by the plot
highlighted in the Plot list and prints the value to the
Query results. VisIt can use this query to produce a Curve plot of
volume with respect to time.

	Connected Component Volume

	Performs the same operation as Volume query except individually for each
component of a disconnected mesh. The query result is a list of values,
one for each component.

	Watertight

	The Watertight query determines if a three-dimensional surface mesh, of the
plot highlighted in the Plot list, is “watertight”, meaning that it is
a closed volume with mesh connectivity such that every edge is incident to
exactly two faces. This means that no edge can have a duplicate in the
exact same position. The result of the query is printed in the
Query results.

	Weighted Variable Sum

	The Weighted Variable Sum query adds up the variable values, weighted by
cell size (volume in 3D, area in 2D, length in 1D), for all cells using the
plot highlighted in the Plot list and prints the results to the
Query results. VisIt can produce a Curve plot of this query with respect
to time.

	Connected Component Weighted Variable Sum

	Performs the same operation as Weighted Variable Sum query except
individually for each component of a disconnected mesh. The query
result is a list of values, one for each component.

	XRay Image

	Generates a simulated radiograph by tracing rays through a volume using
an absorbtivity and emissivity variable. The absorbtivity and emmisivity
variables must be zone centered and can be either scalar variables or
array variables. If using an array variable it will generate an image
per array variable component.

The query operates on 2D R-Z meshes and 3D meshes. In the case of 2D
R-Z meshes, the mesh is revolved around the Z axis.

The query performs the following integration as it traces the rays through
the volume.

decay[i] = exp(-a[i] * seglength[i])
intensity[i] = intensity[i-1] * decay[i] + e[i] * (1. - decay[i])

 8.3. Pick

8.3. Pick

VisIt provides a way to interactively pick values from the visualized data
using the visualization window’s Zone Pick and Node Pick modes. When a
visualization window is in one of those pick modes, each mouse click in the
visualization window causes VisIt to find the location and values of selected
variables at the pick point. When VisIt is in Zone pick mode, it finds the
variable values for the zones that you click on. When VisIt is in node pick
mode, similar information is returned but instead of returning information
about the zone that you clicked on, VisIt returns information about the
node closest to the point that you clicked. Pick is an essential tool for
performing data analysis because it can extract exact information from the
database about a point in the visualization.

8.3.1. Pick mode

You can put the visualization window into one of VisIt’s pick modes by
selecting Zone Pick or Node Pick from the Popup menu’s Mode
submenu. After the visualization window is in pick mode, each mouse click
causes VisIt to determine the values of selected variables for the zone
that contains the picked point or the node closest to the picked point.
Each picked point is marked with an alphabetic label which starts at A,
cycles through the alphabet and repeats. The pick marker is added to the
visualization window to indicate where pick points have been added in
the past. To clear pick points from the visualization window, select the
Pick points option from the Clear menu in the Main Window’s Window
menu. The dimension of the plots in the visualization does not matter when
using pick mode. Both 2D and 3D plots can be picked for values. However,
when using pick mode with 3D plots, only the surface of the plots can be
picked for values. If you want to obtain interior values then you should
use one of the Pick queries or apply operators that expose the interiors
of 3D plots before using pick. An example of the visualization window
with pick points is shown in Figure 8.16 and an
example of node pick and zone pick markers is shown in
Figure 8.17.

[image: ../../_images/pickviswindow.png]

Fig. 8.16 Visualization window with pick points

[image: ../../_images/pickpoints.png]

Fig. 8.17 Zone pick marker L and node pick markers M, N, O, P

8.3.2. Pick Window

Each time a new pick point is added to the visualization window by
clicking on a plot, VisIt extracts information about the pick point
from the plot’s database and displays it in the Pick Window
(Figure 8.18) and the Output Window. If the
Pick Window does not automatically open after picking, you can
open the Pick Window by selecting the Pick option from the
Main Window’s Controls menu.

[image: ../../_images/pickwindow.png]

Fig. 8.18 Pick Window

The Pick Window mainly consists of a group of tabs, each of which displays
the values from a pick point. The tab label A, B, C, etc. corresponds to the
pick point label in the visualization window. Since there is a fixed number
of tabs in the Pick Window, tabs are recycled as the number of pick
points increases. When a pick point is added, the next available tab, which
is usually the tab to the right of the last unused tab, is populated with
the pick information. If the rightmost tab already contains pick information,
the leftmost tab is recycled and the process repeats. To see a complete list
of picked points, open the Output Window.

The information displayed in each tab consists of the database name and
timestep, the coordinates of the pick point, the zone/cell that contains
the pick point, the nodes that make up the cell containing the pick point,
and the picked variables. The rest of the Pick Window is devoted to
setting options that format the pick output.

8.3.2.1. Setting the pick variable

The Pick Window contains a Variables text field that allows you
to specify pick variables Most of the time, the value in the text field is
the word “default” which tells VisIt to use the plotted variables as the
pick variables. You can replace the default pick variable by typing one or
more valid variable names, separated by spaces, into the Variables
text field. You can also select additional pick variables by selecting a
new variable name from the Variables variable button to the left of
the Variables text field. When more than one variable is picked,
multiple variables appear in the pick information displayed in the
information tabs.

8.3.2.2. Concise pick output

Pick returns a lot of information when you pick on a plot. The Pick Window
usually displays the pick output one item per line, which can end up taking
a lot of vertical space. If you want to condense the information into a
smaller area, click the Concise output check box. Sometimes, not all of
the information is relevant for your analysis so VisIt provides options to
hide certain items in the pick output. If you don’t want VisIt to display
the name of the picked mesh, turn off the Show Mesh Name check box.
If you don’t want VisIt to show the time state, turn of the Show timestep
check box.

8.3.2.3. Turning off incident nodes and cells in pick output

When VisIt performs a pick, the default behavior is to show a lot of
information about the cell or node that was picked. This information
usually includes the nodes or cells that were incident to the node or
cell that was picked. The incident nodes and cells are included to give
more information about the neighborhood occupied by the cell or node.
If you want to turn off incident nodes and cells in the pick output,
click off the Display incident nodes/zones check box.

8.3.2.4. Displaying global node and cell numbers

Many large meshes are decomposed into smaller meshes called domains that,
when added together, make up the whole mesh. Each domain typically has its
own range of cell numbers that begin at 0 or 1, depending on the mesh’s
cell origin. Any global cell numbering scheme that may have been in place
before the original mesh was decomposed into domains is often lost. However,
some meshes have auxiliary information that allows VisIt to use the original
global node and cell numbers for the domains. If you want the pick output
to contain global node and cell numbers if they are available, click on the
Display global nodes/zones check box.

8.3.2.5. Turning off pick markers for new pick points

Some queries that perform picks create pick markers by default, as do VisIt’s
regular pick modes. If you want to prevent pick queries from creating pick
markers, click off the Pick Window’s Display reference pick letter
check box.

8.3.2.6. Returning node information

In addition to printing the values of the pick variables, pick can also
display information about the nodes or cells over which the pick variables
are defined. By default, VisIt only returns the integer node indices of
the nodes contained by the picked cell. You can make VisIt return the node
coordinates in other formats by checking the Id check box in the
Display for Nodes area. The node coordinates can be displayed 4
different ways: Node indices, physical coordinates, domain-logical
coordinates, or block-logical coordinates. Click the check boxes in the
Display for Nodes area that correspond to the types of node information
that you want to examine.

8.3.2.7. Returning zone information

The Pick Window has controls in its Display for Zones area that
allow you to specify how you want VisIt to display zone information. Click
the check boxes that correspond to the types of information that you want
to examine.

8.3.2.8. Automatically showing the Pick Window

When you pick on a plot, VisIt automatically opens the Pick Window
to display the results of the pick operation. You can prevent VisIt from
automatically showing the Pick Window after a pick operation by turning
off the Automatically show window check box in the Pick Window.
If the Pick Window does not automatically appear after picking then
you can turn on the Automatically show window check box.

8.3.2.9. Picking over time

Querying over time is normally done using the controls in the Query Window
but you can also pick over time to generate curves that show the behavior of
a picked zone or node over time. To pick over time, you must click the
Create time curve with next pick check box in the Pick Window. Once
that check box is turned on, each pick operation will result in a new Curve
plot that shows the behavior of the most recently picked zone or node over
time.

Note on performance: You’ll notice that you can either choose to follow
the picked coordinates or the picked element through time. While each
of these options generates very different results, it’s worth keeping in
mind that following the picked element will be substantially faster when
working with datasets with large numbers of time steps.

 8.4. Lineout

8.4. Lineout

One-dimensional curves, created using data from 2D or 3D plots, are popular
for analyzing data because they are simple to compare. VisIt’s visualization
windows can be put into a mode that allows you to draw lines, along which
data are extracted, in the visualization window. The extracted data are
turned into a Curve plot in another visualization window. If no other
visualization window exists, VisIt creates one and adds the Curve plot to
it. Curve plots are often more useful than 2D Pseudocolor plots because
they allow the data along a line to be seen spatially as a 1D curve instead
of relying on differences in color to convey information. Furthermore, the
curve data can be exported to curve files that allow the data to be imported
into other Lawrence Livermore National Laboratory curve analysis software
such as Ultra.

8.4.1. Lineout mode

You can put the visualization window into lineout mode by selecting
the Lineout icon (Figure 8.19) in the visualization
window’s Toolbar or from the Popup menu’s Mode submenu. Note that lineout
mode is only available with 2D plots in this version though you can create 3D
lineouts using the Lineout query in the Query Window. After the
visualization window is in lineout mode, you can draw reference lines in
the window. Each reference line causes VisIt to extract data from the
database along the prescribed path and draw the data as a Curve plot in
another visualization window. Each reference line is drawn in a color that
matches the initial color of the Curve plot so the reference lines, which
may not have labels, can be easily associated with their corresponding Curve
plots. To clear the reference lines from the visualization window, select the
Clear reference lines option from Popup menu’s Clear submenu.
An example of the visualization window with reference lines and Curve plots is
shown in Figure 8.20.

[image: ../../_images/lineoutmodeicon.png]

Fig. 8.19 Lineout mode toolbar icon

[image: ../../_images/lineout.png]

Fig. 8.20 Visualization windows with reference line and Curve plots

8.4.2. Curve plot

Curve plots are created by drawing reference lines. The visualization
window must be in lineout mode before reference lines can be created.
You can create a reference line by positioning the mouse over the first
point of interest, clicking the left mouse button and then moving the
mouse, while pressing the left mouse button, and releasing the mouse over
the second endpoint. Releasing the mouse button creates a reference line
along the path that was drawn with the mouse. When you draw a reference
line, you cause a Curve plot of the data along the reference line to
appear in another visualization window. If another visualization window
is not available, VisIt opens a new one before creating the Curve plot.
The Curve plot in the second window can be modified by setting the active
window to the visualization window that contains the Curve plots.

See Curve Plot for information on changing the Curve plot’s appearance.

8.4.2.1. Saving curves

Once a curve has been generated, it can be saved to a curve file. A curve
file is an ASCII text file that contains the X-Y pairs that make up the
curve and it is useful for exporting curve data to other curve analysis
programs. To save a curve, make sure you first set the active window to
the visualization window that contains the curve. Next, save the window
using the curve file format. All of the curves in the visualization
window are saved to the specified curve file.

8.4.3. Lineout Operator

The Curve plot uses the Lineout operator to extract data from a database
along a linear path. The Lineout operator is not generally available
since curves are created only through reference lines and not the
Plot menu. Still, once a curve has been created using the Lineout
operator, certain attributes of the Lineout can be modified. Note that
when you modify the Lineout attributes, it is best to turn
off the Apply operators to all plots check box in the Main Window
so that all curves do not get the same set of Lineout operator
attributes.

There are two factors that affect how the interpolation along the line is
performed. These are the centering of the variable and the lineout sampling
method. There are two types of centering and two types of sampling. The
following sections will go into detail for the four cases.

Zonal variables are constant within a cell and a lineout would be expected
to be a step function as the line moves from cell to cell.

All the images associated with the examples can be generated with the
script lineout.py.

8.4.3.1. Zonal centering with sampling

In the case of sampling, the step function will become more and more apparent
as the number of sample points increases.

In the example below there are only 12 samples points and the step function
is only somewhat apparent, since the number of sample points within a cell
ranges between one and three.

[image: ../../_images/rect2d_d_12_sampled.png]

Fig. 8.21 A zonal variable with relatively few sample points.

In the example below there are 60 sample points and the step function is
quite apparent.

[image: ../../_images/rect2d_d_60_sampled.png]

Fig. 8.22 A zonal variable with a large number of sample points.

8.4.3.2. Zonal centering without sampling

In the case of non-sampling, the sample points are chosen where the line
intersects cell boundaries, which are lines in 2D and faces in 3D. The first
point of the line has the zonal value of the cell it is within and the
remaining points have the value of the cell the line is about to enter.
In this case the step function nature of the variable is completely lost.

In the example below the sample points are placed based on where the line
intersects the edges of the cells. The step function nature of the variable
is completely lost and the line looks smoother than the sampled case.

[image: ../../_images/rect2d_d_nonsampled.png]

Fig. 8.23 A zonal variable without sampling.

Nodal variables vary linearly within a cell. Using sampling produces high
quality results as long as the number of sample points is chosen such
that all the cells along the line contain at least one sample point. Using
non sampling tends to produce poor results based on its interpolation
method (described below) and may result in jagged lines, even for smoothly
varying functions.

8.4.3.3. Nodal centering with sampling

In the example below the 12 samples points do a good job of capturing
the data along the line since all the cells are sampled at least once.

[image: ../../_images/rect2d_d2_12_sampled.png]

Fig. 8.24 A nodal variable with relatively few sample points.

Increasing the number of sample points in this case doesn’t change the
shape of the curve.

[image: ../../_images/rect2d_d2_60_sampled.png]

Fig. 8.25 A nodal variable with many sample points.

8.4.3.4. Nodal centering without sampling

In the example below the sample points are placed based on where the line
intersects the edges of the cells. The first point of the line has the
average of the nodes of the cell that the point is within and the remaining
points have the value of the average of the nodes of the cell the line is
about to enter. This can lead to a jagged line even for a smoothly varying
function.

[image: ../../_images/rect2d_d2_nonsampled.png]

Fig. 8.26 A nodal variable without sampling.

8.4.3.5. Further exploring the Linout operator

The following script was used to generate 6 images above and can be used
to further understand the behavior of the Lineout operator.

import math
import time

def create_images(sampling, n_samples, var):
 if (sampling == 1):
 save_name = "rect2d_%s_%d_lineout_sampled" % (var, n_samples)
 curve1_name = "rect2d_%s_%d_lineout_sampled.curve" % (var, n_samples)
 curve2_name = "rect2d_%s_%d_refline_sampled.curve" % (var, n_samples)
 image_name = "rect2d_%s_%d_pc_sampled" % (var, n_samples)
 else:
 save_name = "rect2d_%s_lineout_nonsampled" % var
 curve1_name = "rect2d_%s_lineout_nonsampled.curve" % var
 curve2_name = "rect2d_%s_refline_nonsampled.curve" % var
 image_name = "rect2d_%s_pc_nonsampled" % var

 #
 # Open the database to make the lineouts from.
 #
 OpenDatabase("rect2d.silo")

 #
 # Turn off extraneous annotations.
 #
 annot = AnnotationAttributes()
 annot.userInfoFlag = 0
 annot.databaseInfoFlag = 0
 annot.timeInfoFlag = 0
 annot.legendInfoFlag = 0
 SetAnnotationAttributes(annot)

 #
 # Create the lineout and do the lineout.
 #
 AddPlot("Mesh", "quadmesh2d")
 AddPlot("Pseudocolor", var)
 AddPlot("Label", var)
 labelAtts = LabelAttributes()
 labelAtts.numberOfLabels = 400
 SetPlotOptions(labelAtts)
 DrawPlots()
 view2D = View2DAttributes()
 view2D.windowCoords = (0.070, 0.255, 1.022, 1.210)
 view2D.viewportCoords = (0.15, 0.95, 0.1, 0.95)
 SetView2D(view2D)
 Lineout(start_point=(0.11137, 1.18468), end_point=(0.21461, 1.05520), use_sampling=sampling, num_samples=n_samples)

 #
 # Go to the lineout window, save the image, save the curve and create
 # a reference line with the sample points from the saved curve.
 #
 SetActiveWindow(2)
 SetAnnotationAttributes(annot)
 curveAtts = CurveAttributes()
 curveAtts.showPoints = 1
 curveAtts.pointSize = 8
 curveAtts.showLegend = 0
 curveAtts.showLabels = 0
 curveAtts.curveColorSource = curveAtts.Custom
 curveAtts.curveColor = (85, 85, 127, 255)
 SetPlotOptions(curveAtts)
 saveAtts = SaveWindowAttributes()
 saveAtts.fileName = save_name
 saveAtts.family = 0
 saveAtts.format = saveAtts.CURVE
 SetSaveWindowAttributes(saveAtts)
 SaveWindow()
 saveAtts.width = 600
 saveAtts.height = 600
 saveAtts.screenCapture = 0
 saveAtts.resConstraint = saveAtts.NoConstraint
 saveAtts.format = saveAtts.PNG
 SetSaveWindowAttributes(saveAtts)
 SaveWindow()

 #
 # Create a reference line with the sampled point from the saved curve
 # to overlay on the pseudocolor plot.
 #
 time.sleep(1)

 file1 = open(curve1_name, "r")
 file2 = open(curve2_name, "w")

 x1 = 0.11137
 y1 = 1.18468
 x2 = 0.21461
 y2 = 1.05520
 dx = x2 - x1
 dy = y2 - y1
 len = math.sqrt(dx * dx + dy * dy)
 dx = dx / len
 dy = dy / len
 slope = dy / dx

 line = file1.readline()
 line = file1.readline()
 file2.write("# refline\n")
 while line:
 vals = line.split()
 dist = float(vals[0])
 val = float(vals[1])
 x = x1 + (dist / len) * (x2 - x1)
 y = y1 + (dist / len) * (y2 - y1)
 file2.write("%g %g\n" % (x, y))
 line = file1.readline()

 file1.close()
 file2.close()

 time.sleep(1)

 #
 # Add the reference line to the pseudocolor plot.
 #
 SetActiveWindow(1)
 OpenDatabase(curve2_name)
 AddPlot("Curve", "refline")
 DrawPlots()
 SetPlotOptions(curveAtts)
 saveAtts.fileName = image_name
 SetSaveWindowAttributes(saveAtts)
 SaveWindow()

 #
 # Clean up.
 #
 DeleteAllPlots()
 SetActiveWindow(2)
 DeleteAllPlots()
 SetActiveWindow(1)
 CloseDatabase("rect2d.silo")
 CloseDatabase(curve2_name)

OpenComputeEngine("localhost", ("-np", "1"))

DefineScalarExpression("d2", "recenter(<d>, \"nodal\")")

create_images(1, 12, "d")
create_images(1, 60, "d")
create_images(0, 12, "d")
create_images(1, 12, "d2")
create_images(1, 60, "d2")
create_images(0, 12, "d2")

quit()

8.4.3.6. Setting lineout endpoints

You can modify the line endpoints by typing new coordinates into the
Point 1 or Point 2 text fields of the Lineout attributes window
(Figure 8.27). Each endpoint is a 3D
coordinate that is specified by three space-separated floating point
numbers. If you are performing a Lineout operation on 2D data, you can
set the value for the Z coordinate to zero.

[image: ../../_images/lineoutattswindow.png]

Fig. 8.27 Lineout attributes window

8.4.3.7. Setting the number of lineout samples

The sampling is controlled with the Use Sampling toggle button and
the Samples text field. The Use Sampling toggle button controls
whether sampling is used and Samples is used to set the number of
sample points when sampling.

8.4.3.8. Interactive mode

When the Interactive check box is checked, changes to the Lineout
operator can be made by using the Line tool available from the
originating plot’s visualization window Toolbar or Popup menu.
Interactive mode does not apply to lineouts created via the Curve plot’s
variable menu.

To utilize the line tool to modify a Lineout curve, make the visualization
window with the originating plot the active window. Choose the Line tool. It
should be initialized with the endpoints of the reference line. Moving the tool
will change the lineout.
(Note: Due to a current bug, the tool must be activated, deactivated, then activated a second time in order to be properly initialized with the Lineout’s endpoint values.)
See Interactive Tools for more information on tool utilization.

8.4.3.9. Reference line labels

You can make the reference lines in the window that caused Curve plots to be
generated to have labels by checking the Lineout operator’s Refline Labels
check box.

8.4.4. Lineout query

Performing a Lineout query requires an existing non-hidden plot in the active
window. Choose Lineout from the Query window (available from the GUI’s
Controls dropdown menu). Set start and end points (similar to Setting lineout
endpoints). Lineout query is the only Lineout method that allows you to create
curves for multiple variables. Simply select the desired variables from the
Variables dropdown menu. Default means the variable as plotted in the
currently active plot. A lineout curve will be generated for each variable,
plotted along the same reference line. Each curve will have its own color.
The Use Sampling and Sample Points option is the same as before.

[image: ../../_images/lineout_query_params.png]

Fig. 8.28 Lineout query’s parameters window

8.4.5. Lineout via Curve plot variable menu

With this method, Lineout is considered one of the
Operators that Generate New Variables. That means you can use it without
first generating a plot of the data from which you wish to extract the lineout.
To create a Lineout in this manner, open your database, select Curve plot, then
choose operators/Lineout/<var-name> from the Curve plot’s variable menu as
shown in Figure 8.29.

[image: ../../_images/lineout_from_curveplot.png]

Fig. 8.29 Choosing lineout from the Curve plot’s variable menu

It is highly recommended that you modify the Lineout’s endpoints before clicking
draw, as the defaults will probably not be appropriate for your data.

8.4.6. Global lineout options

The Lineout Options Window, available by selecting Lineout from the
Controls menu in the Main Window contains global lineout options.
They are global in the sense that they will apply to all future lineouts.
The Lineout Options Window has controls for choosing the destination
window of the lineout curve plots, as well as settings for how changes to
the originating plot affect the lineout curve plot. Modifying these options
will only apply to future lineouts, not lineouts already created.

[image: ../../_images/lineoutoptionswindow.png]

Fig. 8.30 Lineout Options Window

8.4.6.1. Lineout destination window

By default, VisIt will place all lineout curves in the same window. It will
use the first unused open window or create one if one does not yet exist.
You can override this behavior for future lineouts by unchecking the
Use 1st unused window checkbox, and typing a window number into the
Window # text box.

8.4.6.2. Freeze In Time

If the plot that originated the Lineout curve was from a time-varying database,
the curve can be advanced in time using the animation controls for the window
containing the lineout curve. If you would rather the lineout be frozen
at the timestep from which it was taken, check the Freeze in Time option.
This will also disable the ability to synchronize the lineout curve with its
originating plot.

8.4.6.3. Synchronous lineout

Normally when you perform a lineout operation, the Curve plot that
results from the lineout operation is in no way connected to the plots
in the window that originated the Curve plot. If you want variable or time
state changes made to the originating plots to also affect the Curve plots that
were created via lineout, click the Synchronize with originating plot
check box in the Lineout Options Window
(see Figure 8.30).

With this option selected, any change to the variable in the plot that
originated the lineout, will update the lineout to reflect the new variable’s
data. When you change time states for the plot that originated the lineout,
the lineout will update to reflect the data at the new time state.

To make VisIt create a new Curve plot for the lineout instead of updating when
you change time states in the originating plot, change the Time change
behavior in the Lineout Options Window from updates curve to
creates new curve. VisIt will then put a new curve in the lineout
destination window each time you advance to a new time state, resulting in many
Curve plots (see Figure 8.31). By default, VisIt will
make all of the related Curve plots be the same color. You can override this
behavior by selecting creates new color instead of repeats color from
the New curve combo box.

Synchronization does not apply to lineout curves created via the Curve plot
variable menu, as this type of lineout does not have an originating plot.

[image: ../../_images/dynamiclineout.png]

Fig. 8.31 Dynamic lineout can be used to create curves for multiple time states

8.4.6.4. Sampling and Refline labels

These options are the same as described for individual lineouts. Use these
options when you want your choices to apply to all lineouts.

 8.5. Data-Level Comparisons Wizard

8.5. Data-Level Comparisons Wizard

The data-level comparisons wizard facilitates creation of expressions that can
be used when comparing fields on different meshes and/or in different databases.
Such expressions are also known as
Cross-Mesh Field Evaluation (CMFE)
expressions because they effectively take a field defined on one mesh and
evaluate it (e.g. map it) onto a new mesh. The data-level comparisons wizard
is a very helpful alternative to entering CMFE expressions directly into the
expression system manually.

These expressions involve the concepts of a donor variable
and a target mesh. The donor variable is the variable to be mapped onto a new
mesh. The target mesh is the mesh onto which the donor variable is to be mapped.
In addition, the term donor mesh refers to the mesh upon which the donor
variable is defined. Also, the target mesh is always interpreted as a mesh in
the currently active database. Data-level comparison expressions (CMFEs) are
always mapping data from other meshes, possibly in other databases onto a
target mesh which is understood to be in the currently active database.

To start the wizard, go to Controls->Data-Level Comparisons… as shown
in Figure 8.32.

[image: ../../_images/DataLevelComparisons0.png]

Fig. 8.32 Starting the Data-Level Comparisons Wizard

This will open the the initial window where the user is asked to choose
between a few basic varieties of CMFE expressions. These differ in the
relative locations (e.g. which database) of the donor variable and target
mesh.

	Donor variable and target mesh are in the same database.

	Donor variable and target mesh are from different time states of the
same database.

	Donor variable and target mesh are in wholly different databases.

Note: if you wish to create a CMFE that works properly across a time series
with wholly different databases (3rd case above),
the data-level comparisons wizard does not directly support that. However, you
can use wizard to construct an initial CMFE expression and then edit it manually
in the Expression Window to adjust it for a time series
following the documentation on
donor variable syntax.

[image: ../../_images/DataLevelComparisons1.png]

Fig. 8.33 Selecting among varieties of CMFE expressions

If the user is unsure, selecting the last option is usually fine. There are
some simplifications and maybe some small performance optimizations in the
creation and evaluation of the expressions that can be made for the other cases.
But, VisIt [https://visit-dav.github.io/visit-website/] will operate fine even if those are not chosen. In the description
that follows, we demonstrate only this selection but describe variations where
necessary.

After selecting the variety of CMFE expression to create,
the user is presented with the next wizard window to specify the
target mesh and donor variables to be used in the expression.

[image: ../../_images/DataLevelComparisons3b.png]

Fig. 8.34 Setting up the target mesh and donor variables

The target mesh
selection will present the user with a pull-down list of currently opened
databases with the currently active database in the list selected. If another
database is desired, the user may either select it from among the pull-down list
of currently open databases or, if the database is not yet open, press the
ellipsis (3 dots) button next to the database selection list to open a file
browser and navigate to the desired database in the file system as shown in
Figure 8.35

[image: ../../_images/DataLevelComparisons3c.png]

Fig. 8.35 Setting up the target mesh and donor variables

Once the database of the target mesh is specified, the target mesh within that
database is specified with the Target Mesh: pull down list.

A similar sequence of steps is followed for specifying the donor variable. The
example in Figure 8.36 demonstrates the selection of a specific
donor variable from the donor database with the Donor Variable: pull down
list.

[image: ../../_images/DataLevelComparisons3d.png]

Fig. 8.36 Selecting a specific variable from a database

Next, the user is presented with a window to specify the manner in which the
CMFE expression is to be evaluated. The choices are either connectivity-based
or position-based. A position-based CMFE is a more general evaluation at the
likely expense of lower performance. When in doubt, it is best to use this
option. Connectivity-based evaluation is applicable only when donor and
target meshes are one-for-one both topologically and geometrically. In this
case, VisIt [https://visit-dav.github.io/visit-website/] can optimize the evaluation and avoid having to deal with cases
where the donor and target meshes do not wholly overlap.

[image: ../../_images/DataLevelComparisons4.png]

Fig. 8.37 Selecting the mode of evaluation

For a position-based CMFE, the user is required to also specify what VisIt [https://visit-dav.github.io/visit-website/]
should do for those positions on the target mesh that do not overlap with the
mesh of the donor variable. The user can choose either a constant numerical
value (e.g. a fill value) or can specify a variable already defined on the
target mesh. It is possible for the user to make a choice that either enhances
or inhibits one’s ability to distinguish between values in the result that
come from the donor and values that come from the selected fill choice.
A common practice is to choose a constant value that is an extremum of the
donor variable’s range. For example, if the donor variable has a maximum value
of 25.7, then selecting this as the constant to use for non-overlapping regions
in the CMFE has the benefit of not altering the variable’s range but
then also being indistinguishable from real data. Another practice is to choose
a value that is easily distinguishable and later apply a threshold operator to
remove those portions of the result.

The final step in the wizard is to give the result variable a name and then
decide what to do with the result variable. In Figure 8.38,
we have given the result variable the name hardyglobal_onto_mesh1_from_globe.

[image: ../../_images/DataLevelComparisons5.png]

Fig. 8.38 Selecting result variable name and comparison method

Often, it is sufficient to have VisIt [https://visit-dav.github.io/visit-website/] just compute the mapped variable and then
allow the user to use the result variable in other expressions. However, for
convenience, the wizard also offers a number of options common to the work of
comparing the mapped variable to another variable. This last window in the
wizard allows the user to select from among several common methods for comparing
the mapped variable to another variable on the target mesh. By selecting the
Expression with option, the user is then offered the ability to select a
variable already defined on the target mesh from the pull down list. Then,
the user can select from one of several common methods for comparing the two
variables. For example, the Absolute value of difference choice will have the
effect of creating a single expression that computes the difference in the
donor and selected variables and then take its absolute value.

At any point during the steps in the wizard, the user can hit the Go Back
button to go back and make different choices. The user completes the wizard by
hitting the Done button. There is no way to go back after hitting the
Done button. Upon completion of the wizard, a new expression is created
according to user’s selections. This new expression can be edited in the
expression window, like any other expression as illustrated in
Figure 8.39

[image: ../../_images/DataLevelComparisons7.png]

Fig. 8.39 New can be manipulated in the Expression window

In addition, this new expression can be used in other expressions. Finally,
if for some reason the resulting expression is problematic, it can be deleted
from the Expression system and the Data-Level Comparisons wizard can be run
again to re-create it as desired.

 9. Making it pretty

9. Making it pretty

Now that you know how to visualize databases, it is time to learn how to make presentation quality visualizations. This chapter explains what options are available for making professional looking visualizations and introduces new windows that allow you to control annotations, colors, lighting, and the view.

	9.1. Annotations
	9.1.1. Annotation Window

	9.1.2. General Annotations

	9.1.3. 2D Annotations

	9.1.4. 3D Annotations

	9.1.5. Annotation Colors

	9.1.6. Annotation Objects

	9.2. Color Tables
	9.2.1. Color Table Window

	9.3. Lighting
	9.3.1. Lighting Window

	9.4. Rendering Options
	9.4.1. Making Lines Look Smoother

	9.4.2. Specular Lighting

	9.4.3. Shadows

	9.4.4. Depth Cueing

	9.5. View
	9.5.1. View Window

 9.1. Annotations

9.1. Annotations

Annotations are objects in the visualization window that convey information
about the plots. Annotations can be global objects that show information
such as the database name, or they can be objects like plot legends that
are directly tied to plots. Annotations are an essential component of a good
visualization because they make it clear what is being visualized and make
the visualization appear more polished.

VisIt [https://visit-dav.github.io/visit-website/] supports several different annotation types that can be used to enhance
visualizations. The first category of annotations includes general annotations
like the database name, the user name, and plot legends. These annotations
convey a good deal of information about what is being visualized, what values
are in the plots, and who created the visualization. The second category of
annotations include the plot axes and labels. This group of annotations comes
in three groups: 2D, 3D and Array. The attributes for these groups can be
set independently. Colors can greatly enhance the look of a visualization so
VisIt [https://visit-dav.github.io/visit-website/] provides controls to set the colors used for annotations and the
visualization window that contains them. The third and final category includes
annotation objects that can be added to the visualization window. You can add
as many annotation objects as you want to a visualization window. The currently
supported annotation objects are: 2D text, 3D text, time slider, 2D line,
3D line, and image annotations.

9.1.1. Annotation Window

[image: ../../_images/MakingItPretty-Annotation.png]

Fig. 9.1 The Annotation window

The Annotation Window (Figure 9.1)
contains controls for the various annotations that can appear in a
visualization window. You can open the window choosing the Annotation
option from the Main Window’s Controls menu. The Annotation Window
has a tabbed interface which groups the different categories of annotations
together.

9.1.2. General Annotations

[image: ../../_images/MakingItPretty-Annotation2DExample.png]

Fig. 9.2 2D plot with annotations

VisIt [https://visit-dav.github.io/visit-website/] has a few general annotations that describe the visualization and are
independent of the type of database in the visualization. General annotations
encompass the user name, the database name, and plot legends. The general
annotation controls are located in the General tab.
Figure 9.2 shows common
locations for some general annotations.

9.1.2.1. Turning plot legends off globally

Plot legends are special annotations that are added by plots. An example of
a plot legend is the color bar and title that the Pseudocolor plot adds to
the visualization window. Normally, plot legends are turned on or off by a
check box in a plot attribute window but VisIt [https://visit-dav.github.io/visit-website/] also provides a check box in
the General tab that can turn off the plot legends for all the plots
in the visualization window. You can use the Legend check box at the
top of the General tab to turn plot legends off if they are present.

9.1.2.2. Displaying database information

When plots are displayed in the visualization window, the name of the database
used in the plots is shown in the visualization window’s upper left corner.
You can turn the database information on or off using the Database check
box in the General tab.

The Path Expansion selection box controls the display of the filename
text. File causes just the name of the file to be displayed. Directory
causes the directory name of the file to be displayed. Full causes the
full path of the file to be displayed. Smart uses simulation code
specific conventions to display the file name in an optimal fashion.
Smart Directory uses simulation code specific conventions to display
the directory name in an optimal fashion.

The Time check box controls the display of the time associated with
the current database. If Time is enabled then the Time scale factor
and Time offset controls become active, allowing you to scale as well
as apply an offset to the time associated with a database when displaying it.

9.1.2.3. Displaying user information

When you add plots to the visualization window, your username is shown in the
lower right corner. The user information annotation is turned on or off using
the User information check box. You may want to turn off user information
when you are generating images for presentations.

9.1.3. 2D Annotations

VisIt [https://visit-dav.github.io/visit-website/] has a number of controls in the Annotation Window to control 2D
annotations on the 2D tab
(Figure 9.3). The 2D
annotation settings are primarily concerned with the appearance of the
2D axes that frame plots of 2D databases.
Figure 9.2 shows a plot
with various annotations.

[image: ../../_images/MakingItPretty-Annotation2DGeneral.png]

Fig. 9.3 The general 2D properties

The Show axes check box turns on and off the display of the 2D axes.

9.1.3.1. General 2D axis properties

Auto scale label values causes the labels to be multiplied by a factor
of 10 to a multiple of 3 power such that the labels are in the range 0.001
to 999. It then displays the multiplier in the axis title. An example is
shown in Figure 9.4.
The X-Axis range is 0 to 100,000, which causes the labels to be in the range
0 to 100, with a (x10^3) added to the X-Axis and Y-Axis labels to indicate
that the true range is actually 0 to 100x10^3 or 100,000.

[image: ../../_images/MakingItPretty-AutoscaleAxesLabelsExample.png]

Fig. 9.4 2D plot with axes labels being scaled by 10^3

The tick marks are small lines that are drawn along the edges of the 2D
viewport. Tick marks can be drawn on a variety of axes by selecting a new
option from the Show tick marks menu. Tick marks can also be drawn on
the inside, outside, or both sides of the plot viewport by selecting a new
option from the Tick mark locations menu.

Tick mark spacing is usually changed to best suite the plots in the
visualization window but you can explicitly set the tick mark spacing by
first unchecking the Auto set ticks check box and then typing new tick
spacing values into the Major minimum, Major maximum,
Major spacing, and Minor spacing text fields in the X-Axis and
Y-Axis tabs.

9.1.3.2. Setting the X-Axis and Y-Axis properties

There are tabs for separately controlling the properties of the X and Y
axes. The tab for setting the X-Axis properties is shown in
Figure 9.5.

[image: ../../_images/MakingItPretty-Annotation2DAxes.png]

Fig. 9.5 The 2D axes properties

The axis titles are the names that are drawn along each axis, indicating
the meaning of the values shown along the axis. Normally, the names used
for the axis titles come from the database being plotted so the axis titles
are relevant for the displayed plots. Many of VisIt [https://visit-dav.github.io/visit-website/]’s database readers
plugins read file formats that have no support for storing axis titles
so VisIt [https://visit-dav.github.io/visit-website/] uses default values such as: “X-Axis”, “Y-Axis”. VisIt [https://visit-dav.github.io/visit-website/] provides
options that allow you to override the defaults or the axis titles that
come from the file. You can control the display of the axis titles by
enabling and disabling the Title check box. If you want to override
the axis titles that VisIt [https://visit-dav.github.io/visit-website/] uses for 2D visualizations, turn on the
Custom title check box and type the new axis title into the adjacent
text field.

In addition to overriding the names of the axis titles, you can also
override the units that are displayed next to the axis titles. Units are
displayed only when they are available in the file format and like axis
titles, they are not always stored in the file being plotted. If you want
to specify units for the axes, turn on the Custom Units check box
and type new units into the adjacent text field.

The axis labels are the labels that appear along the 2D plot viewport.
By default, the axis labels are enabled and set to appear. You can turn
the labels off by unchecking the Labels check box. You can change
the label scale factor by changing the Scaling (x10^?) text field.

Tick mark spacing is usually changed to best suite the plots in the
visualization window but you can explicitly set the tick mark spacing by
first unchecking the Auto set ticks check box on the General 2D
tab and then typing new tick spacing values into the Major minimum,
Major maximum, Major spacing, and Minor spacing text fields.

The 2D grid lines are a set of lines that make a grid over the 2D viewport.
The grid lines are disabled by default but you can enable them by checking
the Show grid check box. The grid lines correspond to the major tick
marks.

9.1.4. 3D Annotations

VisIt [https://visit-dav.github.io/visit-website/] has a number of controls, located on the 3D tab in the
Annotation Window for controlling annotations that are used when the
visualization window contains 3D plots. Like the 2D controls, these
controls focus mainly on the axes that are drawn around plots.
Figure 9.6 shows an
example 3D plot with the 3D annotations.
Figure 9.7 and
Figure 9.8 shows the
Annotation Window’s 3D tab.

[image: ../../_images/MakingItPretty-Annotation3DExample.png]

Fig. 9.6 3D plot with annotations

[image: ../../_images/MakingItPretty-Annotation3DGeneral.png]

Fig. 9.7 The general 3D properties

The Show axes check box turns on and off the display of the 3D axes.

The Show triad check box turns on and off the display of the triad
annotation. The triad annotation consists of a small set of axes and is
displayed in the lower left corner of the visualization window and help
you get your bearings in 3D.

The Show bounding box check box turns on an off the display of the
bounding box. The bounding box annotation displays the edges of a box that
contains all the data.

9.1.4.1. General 3D axis properties

Auto scale label values causes the labels to be multiplied by a factor
of 10 to a multiple of 3 power such that the labels are in the range 0.001
to 999. It then displays the multiplier in the axis title. A 2D example is
shown in Figure 9.4.
The X-Axis range is 0 to 100,000, which causes the labels to be in the range
0 to 100, with a (x10^3) added to the X-Axis and Y-Axis labels to indicate
that the true range is actually 0 to 100x10^3 or 100,000.

The tick marks are small lines that are drawn along the edges of the bounding
box surfaces. Tick marks can be drawn on a variety of axes by selecting a
new option from the Show tick marks menu. Tick marks can also be drawn
on the inside, outside, or both sides of the plot bounding box by selecting
a new option from the Tick mark locations menu.

Tick mark spacing is usually changed to best suite the plots in the
visualization window but you can explicitly set the tick mark spacing by
first unchecking the Auto set ticks check box and then typing new tick
spacing values into the Major minimum, Major maximum,
Major spacing, and Minor spacing text fields in the X-Axis,
Y-Axis and Z-Axis tabs.

9.1.4.2. Setting the X-Axis, Y-Axis and Z-Axis properties

There are tabs for separately controlling the properties of the X, Y and Z
axes. The tab for setting the X-Axis properties is shown in
Figure 9.8.

[image: ../../_images/MakingItPretty-Annotation3DAxes.png]

Fig. 9.8 The 3D axes properties

The axis titles are the names that are drawn along each axis, indicating
the meaning of the values shown along the axis. Normally, the names used
for the axis titles come from the database being plotted so the axis titles
are relevant for the displayed plots. Many of VisIt [https://visit-dav.github.io/visit-website/]’s database readers
plugins read file formats that have no support for storing axis titles
so VisIt [https://visit-dav.github.io/visit-website/] uses default values such as: “X-Axis”, “Y-Axis” and “Z-Axis”.
VisIt [https://visit-dav.github.io/visit-website/] provides options that allow you to override the defaults or the axis
titles that come from the file. You can control the display of the axis
titles by enabling and disabling the Title check box. If you want to
override the axis titles that VisIt [https://visit-dav.github.io/visit-website/] uses for 3D visualizations, turn on
the Custom title check box and type the new axis title into the
adjacent text field.

In addition to overriding the names of the axis titles, you can also
override the units that are displayed next to the axis titles. Units are
displayed only when they are available in the file format and like axis
titles, they are not always stored in the file being plotted. If you want
to specify units for the axes, turn on the Custom Units check box
and type new units into the adjacent text field.

The axis labels are the labels that appear along the edges of the bounding
box. By default, the axis labels are enabled and set to appear. You can
turn the labels off by unchecking the Labels check box. You can change
the label scale factor by changing the Scaling (x10^?) text field.

Tick mark spacing is usually changed to best suite the plots in the
visualization window but you can explicitly set the tick mark spacing by
first unchecking the Auto set ticks check box on the General 3D
tab then typing new tick spacing values into the Major minimum,
Major maximum, Major spacing, and Minor spacing text fields.

The 3D grid lines are a set of lines that make a grid over the the bounding
box. The grid lines are disabled by default but you can enable them by
checking the Show grid check box. The grid lines correspond to the
major tick marks.

9.1.5. Annotation Colors

Colors are very important in a visualization since they help to determine
how easy it is to read annotations. VisIt [https://visit-dav.github.io/visit-website/] provides a tab in the
Annotation Window, shown in
Figure 9.9, specifically
devoted to choosing annotation colors. The Colors tab contains controls
to set the background and foreground for the visualization window which, in
turn, set the colors used for annotations. The Colors tab also provides
controls for more advanced background colors called gradients which are
colors that bleed into each other.

[image: ../../_images/MakingItPretty-AnnotationColors.png]

Fig. 9.9 The annotation colors tab

The Background color and Foreground color buttons allow you to
set the background and foreground colors. To set the color, click the
color button and select a color from the Popup color menu
(see Figure 9.10).
Releasing the mouse outside of the Popup color menu cancels color
selection and the color is not changed. Once you select a new color
and click the Apply button, the colors for the active visualization
window change. Note that each visualization window can have different
background and foreground colors.

[image: ../../_images/MakingItPretty-ColorSelectDialog.png]

Fig. 9.10 The popup color menu and the color selection dialog

The Background style setting allows you to select from four background
styles. The default background style is Solid where the entire background
is a single color. The second style is a Gradient background. In a
gradient background, two colors are blended into each other in various
ways. The resulting background offers differing degrees of contrast and can
enhance the look of many visualizations. The third style is an Image
background, where an image is tiled across the background. The fourth style
is an Image sphere, where an image is projected onto a sphere. This can
be used to paint the stars onto the background of an astrophysics simulation.
To change the background style, click the Background style radio buttons.

VisIt [https://visit-dav.github.io/visit-website/] provides controls for setting the colors and style used for gradient
backgrounds. There are two color buttons: Gradient color 1 and
Gradient color 2 that are used to change colors. To change the
gradient colors, click on the color buttons and select a color from the
Popup color menu. The gradient style is used to determine how colors
blend into each other. To change the gradient style, make a selection from
the Gradient style menu. The available options are Bottom to Top, Top
to Bottom, Left to Right, Right to Left, and Radial. The first four options
blend gradient color 1 to gradient color 2 in the manner prescribed by
the style name. For example, Bottom to Top will have gradient color 1 at
the bottom and gradient color 2 at the top. The radial gradient style puts
gradient color 1 in the middle of the visualization window and blends
gradient color 2 radially outward from the center. Examples of the gradient
styles are shown in Figure 9.11.

[image: ../../_images/MakingItPretty-Gradients.png]

Fig. 9.11 The various gradient styles

The Background image text field allows you to specify the name of the
file to use for the background image. The Repetitions in X and
Repetitions in Y settings allow you to specify how many times to
replicate the image in each of the X and Y image directions.

9.1.6. Annotation Objects

So far, the annotations that have been described can only have a single
instance. To provide more flexibility in the types and numbers of annotations,
VisIt [https://visit-dav.github.io/visit-website/] allows you to create annotation objects, which are objects that
are added to the visualization window to convey information about the
visualization. Currently, VisIt [https://visit-dav.github.io/visit-website/] supports six types of annotation objects:
2D text objects, 3D text objects, time slider objects, 2D line objects, 3D
line objects and image objects. All of those types of annotation objects
will be described herein. The Objects tab, in the Annotation Window
(Figure 9.12) is devoted
to managing the list of annotation objects and setting their properties.

[image: ../../_images/MakingItPretty-AnnotationObjects.png]

Fig. 9.12 The annotation objects tab

The Objects tab in the Annotation Window is divided up into three
main areas. The top of the window is split vertically into two areas that
let you create new annotation objects and manage the list of annotation
objects. The bottom half of the Objects tab displays the controls for
setting the attributes of the selected annotation object. Each annotation
object provides a separate user interface that is tailored for setting
its particular attributes. When you select an annotation in the annotation
object list, the appropriate annotation object interface is displayed.

9.1.6.1. Creating a new annotation object

The Create new area in the Annotation Window’s Objects tab contains
one button for each type of annotation object that VisIt [https://visit-dav.github.io/visit-website/] can create. Each
button has the name of the type of annotation object VisIt [https://visit-dav.github.io/visit-website/] creates when
you push it. After pushing one of the buttons, VisIt [https://visit-dav.github.io/visit-website/] creates a new instance
of the specified annotation object type, adds a new entry to the
Annotation objects list, and displays the appropriate annotation object
interface in the bottom half of the Objects tab to display the attributes
for the new annotation object.

9.1.6.2. Selecting an annotation object

The Objects tab displays the annotation object interface for the selected
annotation object. To set attributes for a different annotation object, or
to hide or delete a different annotation object, you must first select a
different annotation object in the Annotation objects list. Click on a
different entry in the Annotation objects list to highlight a different
annotation object. Once you have highlighted a new annotation object, VisIt [https://visit-dav.github.io/visit-website/]
displays the object’s attributes in the lower half of the Objects tab.

9.1.6.3. Hiding an annotation object

To hide an annotation object, select it in the Annotation objects list
and then click the Hide/Show button on the Objects tab. To show the
hidden annotation object, click the Hide/Show button a second time.
The interfaces for the currently provided annotation objects also have a
Visible check box that can be used to hide or show the annotation object.

9.1.6.4. Deleting an annotation object

To delete an annotation object, select it in the Annotation objects
list and then click the Delete button on the Objects tab. You can
delete more than one object if you select multiple objects plots in the
Annotation objects list before clicking the Delete button.

9.1.6.5. Text annotation objects

Text annotation objects, shown in
Figure 9.13,
are created by clicking the Text button in the Create new area on the
Objects tab. Text annotation objects are simple 2D text objects that are
drawn on top of plots in the visualization window and are useful for adding
titles to a visualization.

[image: ../../_images/MakingItPretty-AnnotationObjectTextExample.png]

Fig. 9.13 Examples of text annotations

The text annotation object properties, shown in
Figure 9.14, can be used
to set the position, size, text, colors, and font properties.

[image: ../../_images/MakingItPretty-AnnotationObjectText.png]

Fig. 9.14 The text annotation interface

Text annotation objects are placed using 2D coordinates where the X, and Y
values are in the range [0,1]. The point (0,0) corresponds to the lower left
corner of the visualization window and the point (1,1) corresponds to the
upper right of the visualization window. The 2D coordinate used to position
the text annotation matches the text annotation’s lower left corner. To
position a text annotation object, enter a new 2D coordinate into the
Lower left text field. You can also click the down arrow next to the
Lower left text field to interactively choose a new lower left coordinate
for the text annotation using the screen positioning control, which represents
the visualization window. The screen positioning control, shown in
Figure 9.15, lets you
move a set of cross-hairs to any point on a square area that represents the
visualization window. Once you release the left mouse button, the location
of the cross-hairs is used as the new coordinate for the text annotation
object’s lower left corner.

[image: ../../_images/MakingItPretty-AnnotationObjectPosition.png]

Fig. 9.15 Screen positioning control

The size of the text is set using the Height spin box. The height is the
fraction of the visualization window height.

To set the text that a text annotation object displays, type a new string
into the Text text field. You can make the text annotation object display
any characters that you type in but you can also use the $time wildcard
string to make the text annotation object display the time for the current
time state of the active database. A text string of the form: Time=$time
will display Time=10 in the visualization window when the active database’s
time is 10. Whatever text you enter for the text annotation object is used
to identify the text annotation object in the Annotation objects list.

In addition to the usual text properties, text annotation objects can also
include a shadow.

9.1.6.6. 3D text annotation objects

3D text annotation objects, shown in
Figure 9.16,
are created by clicking the 3D Text button in the Create new area on
the Objects tab. 3D text annotation objects are extruded text that are
positioned in 3D and are part of the 3D scene, so they may become obscured
by other objects in the scene and will move in space as the image is panned
and zoomed.

[image: ../../_images/MakingItPretty-AnnotationObject3DTextExample.png]

Fig. 9.16 Examples of 3d text annotations

The 3D text annotation object properties, shown in
Figure 9.17, can be used
to set the text, position, size, orientation and color properties.

[image: ../../_images/MakingItPretty-AnnotationObject3DText.png]

Fig. 9.17 The 3D text annotation interface

To set the text that a 3D text annotation object displays, type a new string
into the Text text field.

3D text annotation objects are placed in 3D coordinates in the same coordinate
system used by the simulation data. To position a 3D text annotation object,
enter a new 3D coordinate into the Position text field.

The size of the text can be specified in two different ways. The first is
using a relative height, where the height is a fraction of the size of the
simulation data. The second is a fixed size, where the size is specified
in the coordinate system of the simulation data. If you were to specify a
relative height and apply the Transform operator to scale the data in each
direction by a factor of 10, the size of the text would not change. If you
were to specify a fixed height, scaling the data by a factor of 10 would
result in the text being one tenth the size. To specify a relative height,
select the Relative radio button and set the size using the spin box
next to it. The specify a fixed height, select the Fixed radio button
and enter the new height in the text box next to it.

The orientation of the text can also be specified in two different ways.
The first is relative to the screen coordinate system and the second is
in the coordinate system of the simulation data. If the orientation is
relative to the screen coordinate system, then rotating the image will
not change the orientation of the text. If the orientation is relative
to the coordinate system of the simulation data, then rotating the image
will change the orientation of the text. To make the orientation relative
to the screen, select the Preserve orientation when view changes
radio button. To make the orientation relative to the simulation coordinate
system, uncheck the Preserve orientation when view changes radio
button. To set the orientation, set the Rotate Y, Rotate X and
Rotate Z spin boxes. The rotations are applied in the left to right
order of the spin boxes in the interface.

9.1.6.7. Time slider annotation objects

Time slider annotation objects, shown in
Figure 9.18,
are created by clicking the Time slider button in the Create new area
on the Objects tab. Time slider annotation objects consist of a graphic
that shows the progress through an animation using animation and text that
shows the current database time. Time slider annotation objects can be
placed anywhere in the visualization window and you can set their size,
text, colors, and appearance properties.

[image: ../../_images/MakingItPretty-AnnotationObjectTimeSliderExample.png]

Fig. 9.18 An example of a time slider annotation object

Time slider annotation objects are placed using 2D coordinates where the X,
and Y values are in the range [0,1]. The point (0,0) corresponds to the
lower left corner of the visualization window and the point (1,1) corresponds
to the upper right of the visualization window. The 2D coordinate used to
position the text annotation matches the text annotation’s lower left corner.
To position a text annotation object, enter a new 2D coordinate into the
Lower left text field. You can also click the down arrow next to the
Lower left text field to interactively choose a new lower left coordinate
for the text annotation using the screen positioning control, which represents
the visualization window.

[image: ../../_images/MakingItPretty-AnnotationObjectTimeSlider.png]

Fig. 9.19 The time slider interface

The size of a time slider annotation object is controlled by settings its
height and width as a percentage of the visualization window height and
width. Type new values into the Width and Height spin buttons
to set a new width or height for the time slider annotation object.

You can set the text displayed by the time slider annotation object by
typing a new text string into the Text label text field. Text is
displayed below the time slider annotation object and it can contain any
message that you want. The text can even include wildcards such as $time,
which evaluates to the current time for the active database. If you use
$time to make VisIt [https://visit-dav.github.io/visit-website/] incorporate the time for the active database, you
can also specify the format string used to display the time. The format
string is a standard C-language format string (e.g. “%4.6g”) and it
determines the precision used to write out the numbers used in the time
string. You will probably want to specify a format string that uses a
fixed number of decimal places to ensure that the time string remains the
same length during the animation, preventing distracting differences in
the length of the string from taking the eye away from the visualization.
Type a C-language format string into the Time format text field to
change the time format string.

Time slider annotations have three color attributes: start color, end
color, and text color. A time slider annotation object displays time like
a progress bar in that the progress bar starts out small and then grows to
the right until it takes up the whole length of the annotation. The color
used to represent the progress can be set by clicking the Start color
button and choosing a new color from the Popup color menu. As the time
slider annotation object shows more progress, the color that is used to
fill up the time that has not been reached yet (end color) is overtaken
by the start color. To set the end color for the time slider annotation
object, click the End color button and choose a new color from the
Popup color menu. Normally, time slider annotation objects use the
foreground color of the visualization window when drawing the annotation’s text.
If you want to make the annotation use a special color, turn off the
Use foreground color check box and click the Text color button
and choose a new color from the Popup color menu.

Time slider objects have two more attributes that affect their appearance.
The first of those attributes is set by clicking on the Rounded check
box. When a time slider annotation object is rounded, the ends of the
annotation are curved. The last attribute is set by clicking on the
Shaded check box. When a time slider annotation object is shaded,
simple lighting is applied to its geometry and the annotation will appear
to be more 3-dimensional.

9.1.6.8. 2D line annotation objects

2D line annotation objects, shown in
Figure 9.21, are created
by clicking the 2D Line button in the Create new area on the
Objects tab. 2D line annotation objects are simple line objects that are
drawn on top of plots in the visualization window and are useful for pointing
to features of interest in a visualization. 2D line annotation objects can be
placed anywhere in the visualization window and you can set their locations,
arrow properties, and color.

[image: ../../_images/MakingItPretty-AnnotationObject2DLineExample.png]

Fig. 9.20 Examples of 2D line annotations

2D line annotations are described mainly by two coordinates that specify the
start and end points for the line. The start and end coordinates are specified
as pairs of floating point numbers in the range [0,1] where the point (0,0)
corresponds to the lower left corner of the visualization window and the
point (1,1) corresponds to the upper right corner of the visualization window.
You can set the start or end points for the 2D line annotation by entering
new start or end points into the Start or End text fields in the 2D
line object interface. You can also click the down arrow to the right of the
Start or End text fields to interactively choose new coordinates using
the screen positioning control.

[image: ../../_images/MakingItPretty-AnnotationObject2DLine.png]

Fig. 9.21 The 2D line object interface

Once the 2D line annotation has been positioned there are other attributes
that can be set to improve its appearance. First of all, if the 2D line
annotation is being used to point at important features in a visualization,
you might want to increase the 2D line annotation’s width to make it stand
out more. To change the width, select the new pixel width from the Width
menu. It is also possible to set the line style. To change the style of the
line, select the new line style from the Style menu. After changing the
width and style, the color of the 2D line annotation should be chosen to
stand out against the plots in the visualization. The color that you use
should be chosen such that the line contrasts sharply with the plots over
which it is drawn. To choose a new color for the line, click on the
Line color button and choose a new color from the Popup color menu.
You can also adjust the opacity of the line by using the opacity slider
next to the Line color button.

The last properties that are commonly set for 2D line annotations determine
whether the end points of the line have arrow heads. The 2D line annotation
supports two different styles of arrow heads: filled and lines. To make your
line have arrow heads at the start or the end, make new selections from the
Begin arrow and End arrow menus.

9.1.6.9. 3D line annotation objects

3D line annotation objects, shown in
Figure 9.16,
are created by clicking the 3D Line button in the Create new area on
the Objects tab. 3D line annotation objects are lines that are
positioned in 3D and are part of the 3D scene, so they may become obscured
by other objects in the scene and will move in space as the image is panned
and zoomed.

The 3D line annotation object properties, shown in
Figure 9.22, can be used
to set the position, style and color properties.

[image: ../../_images/MakingItPretty-AnnotationObject3DLine.png]

Fig. 9.22 The 3D line object interface

3D text annotation objects are placed in 3D coordinates in the same coordinate
system used by the simulation data. To position a 3D line annotation object,
specify the start and end location of the line by entering the start location
in the Start text field and the end location in the End text field.

There are two types of lines supported, one is a normal line and the other
is a tube. The line type is selected through the Line type menu. When
using a normal line, you can specify the normal line width and line style
properties using the Line Width and Line Style menus. When using
a tube you can specify the tube quality and radius. The tube is created
from a series of flat surfaces around the center of the line to approximate
a tube. The number of surfaces used is controlled by the tube quality. The
tube radius is the radius of the tube in the coordinate system of the
simulation data. These properties can be changed through the Tube Quality
and Tube Radius menus.

It is also possible to add arrows to the beginning and end of the line. These
can be enabled with the Begin Arrow and End Arrow toggle buttons.
For each arrow, the user can also control the resolution and radius of the
arrows. The arrows consist of cones places at the ends of the line and are
constructed out of triangles that approximate a cone. The number of triangles
used is controlled by the resolution. The radius is the radius of the
cone in the same coordinate system as the simulation data. The resolution
can be changed using the Resolution spin box and the radius is changed
by typing a new value into the Radius text field.

9.1.6.10. Image annotation objects

Image annotation objects, shown in
Figure 9.23,
are created by clicking the Image button in the Create new area on
the Objects tab. Image annotation objects display images from image
files on disk in a visualization window. Images are drawn on top of plots
in the visualization window and are useful for adding logos, pictures of
experimental data, or other views of the same visualization. Image annotation
objects can be placed anywhere in the visualization window and you can set
their size, and optional transparency color.

[image: ../../_images/MakingItPretty-AnnotationObjectImageExample.png]

Fig. 9.23 An Example of a visualization with two overlaid image annotations

The first step in incorporating an image annotation into a visualization
is to choose the file that contains the image that will serve as the
annotation. To choose an image file for the image annotation, type in
the full path and filename to the file that you want to use into the
Image source text field. You can also use the file browser to locate
the image file if you click on the “…” button to the right of the
Image source text field in the Image annotation interface, shown
in Figure 9.24. Note
that since image annotations are incorporated into a visualization inside
of VisIt [https://visit-dav.github.io/visit-website/]’s viewer component, the image file must be located on the same
computer that runs the viewer.

[image: ../../_images/MakingItPretty-AnnotationObjectImage.png]

Fig. 9.24 The image object interface

After selecting an image file, you can position its lower left coordinate
in the visualization window. The lower left corner of the visualization
window is the origin (0,0) and the upper right corner of the visualization
window is (1,1).

Once you position the image where you want it, you can optionally scale
it relative to its original size. Unlike some other annotation objects,
the image annotation does not scale automatically when the visualization
window changes size. The image annotation will remain the same size -
something to take into account when setting up movies that use the image
annotation. To scale the image relative to its original size, enter new
percentages into the Width and Height spin boxes. If you want to
scale one dimension of the image and let the other dimension remain
unchanged, turn off the Lock aspect check box.

Finally, if you are overlaying an image annotation whose image contains a
constant background color or other area that you want to remove, you can
pick a color that VisIt [https://visit-dav.github.io/visit-website/] will make transparent. For example,
Figure 9.23
shows an image of some Curve plots overlaid on top of the plots in the
visualization window and the original background color in the annotation
object was removed to make it transparent. If you want to make a color in
an image transparent before VisIt [https://visit-dav.github.io/visit-website/] displays it as an image annotation
object, click on the Transparent color check box and then select a
new color by clicking on the Transparent color button and picking a
new color from the Popup color menu.

 9.2. Color Tables

9.2. Color Tables

A color table is a set of colors that is used by certain plots to color
variables. Color tables can be immensely important for understanding
visualizations since changes in color can highlight interesting features.
VisIt has several built-in color tables that can be used in visualizations.
VisIt also provides a Color table window for designing custom color tables.

Color tables come in two types: continuous and discrete. A continuous color
table is defined as a relatively few color control points defined at certain
intervals in the color table and the gaps in between the color control points
are filled by smoothly interpolating the colors. This makes continuous color
tables look smooth since there are several colors that are blended to form
the color table. Continuous color tables are used by several plots including
the Pseudocolor, Tensor, and Vector plots. A plot that uses a continuous
color table attempts to use all of the colors in the color table. Some
plots that opt to only use a handful of colors from a continuous color
table pick colors that are evenly distributed through the color table so
that the plots end up with colors that still somewhat resemble the original
colors from the continuous color table.

A discrete color table is a set of N colors that can be set individually.
There are no other colors in a discrete color table other than the colors
that you provide. Discrete color tables are usually used by plots like the
Boundary, Contour, FilledBoundary, or Subset plots, which need only a small
set of colors. Typically, these plots use a color from a discrete color
table to color some object and then use the next color to color another
object, and so on. When they reach the end of the color table and still
need more colors, they start again at the beginning with the first color
from the discrete color table.

9.2.1. Color Table Window

[image: ../../_images/MakingItPretty-ColorTables.png]

Fig. 9.25 The color table window

You can open VisIt’s Color table window, shown in
Figure 9.25, by selecting
Color table from the Main Window’s Controls menu. The
Color table window is vertically separated into three areas. The
top area allows you to set the active color tables. The middle area, or
manager portion of the window, allows you to create or delete new color
tables, as well as export color tables. The bottom area, or editor
portion of the window, allows you to edit color tables by adding,
removing, moving, or changing the color of color control points. A
color control point is a point with a color that influences how the
color table will look.

9.2.1.1. Setting the active color table

VisIt has the concept of active color tables, which are the color tables
used to color plots that do not specify a color table. There is both an
active continuous color table (for plots that prefer to use continuous
color tables) and an active discrete color table (for plots that prefer
to use discrete color tables). The active color table can be different
for each visualization window. To set the active continuous color table,
select a new color table name from the Continuous menu in the
Active color table area. To select a new active discrete color
table, select a new color table name from the Discrete menu in the
Active color table area.

9.2.1.2. Creating a new color table

Creating a new color table is a simple process where you first type a
new color table name into the Name text field and then click the
New button. This creates a copy of the currently highlighted color
table, which is the color table that is selected in the Manager
area, and inserts it into the color table list with the specified name.
After creating the new color table, you can modify the color control
points to fashion a new color table.

9.2.1.3. Deleting a color table

To delete a color table, click on a color table name in the color table
list and then click the Delete button. You can delete all color
tables except for the last color table. VisIt makes no distinction
between built-in color tables and user-defined color tables so any color
table can be deleted. When you delete a color table, the active color
table is set to the color table that comes first in the list. If a color
table is in use when it is deleted, plots that used the deleted color
table will use the default color table from that point on.

9.2.1.4. Exporting a color table

If you design a color table that you want to share with colleagues,
click the Export button in the Manager area to save an XML file
containing the color table definition for the highlighted color table
to your .visit directory. The name of a color table file will usually
be composed of the name of the color table with a “.ct” extension.
Copying a color table file to a user’s .visit directory will allow
VisIt to find the color table the next time VisIt runs. Look for the
color table file in the directory in which VisIt was installed if you
use the Windows version of VisIt.

9.2.1.5. Editing a continuous color table

[image: ../../_images/MakingItPretty-ColorTableEditContinuous.png]

Fig. 9.26 The continuous color table editor

There are a handful of controls in the editor portion of the
Color table window, shown in
Figure 9.26, that
are used to change the definition of a color table. To change a color
table definition, you must alter its color control points. This means
adding and removing color control points as well as changing their
colors and locations.

You can change the number of color control points in a color table using
the Number of colors spin box. When a new color control point is
added, it appears to the right of the selected color control point and
to the left of the next color control point. Color control points are
represented as a pointy box just above the color spectrum. The color
control point that has a small triangular mark is the selected color
control point. When a color control point is removed, the color control
point that was created before the deleted color control point becomes
the new selected color control point. Clicking the Align button
makes all color control points have equal spacing.

Clicking on a color control point makes it active. You can also use the
Space bar if the color spectrum has keyboard focus. Clicking and dragging
on a color control point changes its position. Clicking the arrow keys
on the keyboard also moves a color control point. To change a color
control point’s color, right click on it and choose a new color from the
Popup color menu that appears under the mouse cursor. You can also
change the color control point’s color by making the color control point
active and then using the Red, Green and Blue sliders.

The Color table window also has a couple of settings that can be set
to influence a color table’s appearance without having permanent effects
on the color table. The Smoothing menu can be used to select between
no smoothing, linear smoothing and cubic spline smoothing. The Equal
check box can temporarily tell the color table to ignore the positions
of its color control points and use equal spacing instead. The Equal
check box is often used with no smoothing.

9.2.1.6. Editing a discrete color table

[image: ../../_images/MakingItPretty-ColorTableEditDiscrete.png]

Fig. 9.27 The discrete color table editor

The Color table window’s Editor area looks different when you edit
a discrete color table. Instead of showing a spectrum of colors, the
window shows a grid of colors that correspond to the colors in the
discrete color table. The order of the color control points if left to
right, top to bottom. To edit a discrete color table, first left click
on the color that you want to edit and then use the Red, Green,
and Blue sliders to change the color. You can also right click on
a color to select it and open the Popup color menu to choose a new
color.

9.2.1.7. Editing color control point positions numerically

In both of the sections above, the color control points are positioned
graphically using the GUI rather than specifying explicit numerical values.

When a variable is plotted, the variable’s values are mapped to the range
[0...1] to determine the colors to associate with the variable’s values.
A color table defines a 1:1 association of that range with a set of color
control points. Each control point in a color table is assigned a position
in the [0...1] range.

Sometimes, users want specific numerical values to map to specific colors.
There is no way to achieve this through VisIt [https://visit-dav.github.io/visit-website/]’s color table GUI. The only
solution is to edit a color table manually or, if there are a large number
of color control points to edit, to create a script that produces the color
table.

For example, a user wanted a smoothly graded coloring of a variable using
the following logic and colors…

	Variable Value Range

	Hex Color

	<0

	cccccc

	3

	66ccff

	10

	66ff66

	25

	ffffcc

	50

	ffff00

	100

	ff9900

	1000

	ff0000

	>=5000

	9900cc

The above table has 8 colors. The input variable has range [0...5000].
The first step is to normalize the variable’s value transitions to the
[0...1] interval and convert the hexadecimal values to rgb colors
using a
color conversion tool [https://www.w3schools.com/colors/colors_converter.asp].
This information is in the table below.

	Normalized Variable Value

	RGB Color

	<0.0 (0/5000)

	204 204 204

	0.0006 (3/5000)

	102 204 255

	0.002 (10/5000)

	102 255 102

	0.005 (25/5000)

	255 255 204

	0.01 (50/5000)

	255 255 000

	0.02 (100/5000)

	255 153 000

	0.2 (1000/5000)

	255 000 000

	>=1.0 (5000/5000)

	153 000 204

To create this color table, start VisIt [https://visit-dav.github.io/visit-website/]’s GUI and go to
Controls ‣ Color table … . There, enter a name for the
color table in the Name text box. Lets say it is named my8colors.
Clicking the New button adds the named table to the list of color
tables, copying the settings of the currently active color table. For the
example above, we wan the Number of colors to be set to 8 and the
Color table type to be Continuous. To create a file for this color
table that can be edited with a text editor, it needs to be exported by
clicking the Export button. This will create an XML file in
VUSER_HOME/my8colors.ct with 8 color control point
entries in it. At this point, the user should exit VisIt [https://visit-dav.github.io/visit-website/]. With a text editor,
the user can now edit the file my8colors.ct. Starting at the top of the
file where the first color control point is defined (e.g. the one closest to
the zero end of the [0...1] range), edit the position and rgb color
of the first control point to match the values in the above table. Note that
there is a 4th entry for each rgb color. This is for setting transparency of
that color in the range [0...255] where 0 is fully transparent and
255 is fully opaque. If transparancy effects are not needed, this 4th
entry can be ignored and just always set equal to 255.

When VisIt [https://visit-dav.github.io/visit-website/] is restarted, it will load this color table file. The user can then
set this color table as the one to be used in various plots.

One final issue to deal with in this example is how to handle the
user’s goal of having all negative values in the input variable map
to the first color in the color table and all values greater or equal to 5000
to the last color. To do this, the user will have to define a new variable to
plot using a conditional expression of the form
if(lt(var,0),0,if(ge(var,5000),5000,var)) where var is the variable and
then use this new expression variable in place of var for the desired
behavior.

Show/Hide XML color table file

<?xml version="1.0"?>
<Object name="ColorTable">
 <Field name="Version" type="string">3.0.1</Field>
 <Object name="ColorControlPointList">
 <Object name="ColorControlPoint">
 <Field name="colors" type="unsignedCharArray" length="4">204 204 204 255 </Field>
 <Field name="position" type="float">0.0</Field>
 </Object>
 <Object name="ColorControlPoint">
 <Field name="colors" type="unsignedCharArray" length="4">102 204 255 255 </Field>
 <Field name="position" type="float">0.0006</Field>
 </Object>
 <Object name="ColorControlPoint">
 <Field name="colors" type="unsignedCharArray" length="4">102 255 102 255 </Field>
 <Field name="position" type="float">0.002</Field>
 </Object>
 <Object name="ColorControlPoint">
 <Field name="colors" type="unsignedCharArray" length="4">255 255 204 255 </Field>
 <Field name="position" type="float">0.005</Field>
 </Object>
 <Object name="ColorControlPoint">
 <Field name="colors" type="unsignedCharArray" length="4">255 255 0 255 </Field>
 <Field name="position" type="float">0.01</Field>
 </Object>
 <Object name="ColorControlPoint">
 <Field name="colors" type="unsignedCharArray" length="4">255 153 0 255 </Field>
 <Field name="position" type="float">0.02</Field>
 </Object>
 <Object name="ColorControlPoint">
 <Field name="colors" type="unsignedCharArray" length="4">255 0 0 255 </Field>
 <Field name="position" type="float">0.2</Field>
 </Object>
 <Object name="ColorControlPoint">
 <Field name="colors" type="unsignedCharArray" length="4">153 0 204 255 </Field>
 <Field name="position" type="float">1</Field>
 </Object>
 <Field name="category" type="string">UserDefined</Field>
 </Object>
</Object>

9.2.1.8. Numerically Controlled Banded Coloring

Sometimes it is convenient to create numerically controlled banded
coloring of smoothly varying data. A Discrete color table does indeed
wind up banding smoothly varying data. However, the band boundaries are
uniformly spaced in the variable’s range and this may not always be
desirable. Sometimes, it is desirable to have finely tuned banding around
specific portions of the variable’s range. This requires the coordination of
a Discrete color table and an appropriately constructed
conditional expression.

For example, given the a smoothly varying variable, u, in the range
[-1...+1] shown in normal (e.g. hot) Pseudocolor plot in
Fig. 9.28.

[image: ../../_images/MakingItPretty-smooth-coloring.png]

Fig. 9.28 Smoothly colored variable using hot color table.

we would like to produce a 4-color banded plot using the coloring logic in
the table below…

	Values in Range

	Map to this Hex Color

	-inf…-0.95

	blue

	-0.95…0

	cyan

	0…+0.95

	green

	+0.95…+inf

	red

Using a 4-color Discrete color table alone, only the plot in
Fig. 9.29 is produced.

[image: ../../_images/MakingItPretty-uniform-banded-coloring.png]

Fig. 9.29 A 4-color Discrete color table coloring alone

This is because the colors in a Discrete color table are always uniformly
spaced over the variable’s value range. To produce the desired coloring
we need to use a conditional expression that
maps the input variable into 4 distinct values using the range logic from
the table. In this case, the correct expression would be
if(lt(u,-0.95),0, if(lt(u,0),1, if(lt(u,0.95),2,3))). Then, plotting this
expression using the 4-color Discrete color table, the desired coloring is
produced as shown in

[image: ../../_images/MakingItPretty-numerically-banded-coloring.png]

Fig. 9.30 A 4-color Discrete color table coloring combined with a
conditional expression

9.2.1.9. Converting color table types

It is possible to convert a continuous color table to a discrete color
table and vice-versa using the Continuous and Discrete radio
buttons in the editor portion of the Color table window. Changing the
color table type from discrete to continuous does not change the color
table’s color control points; it only changes how they are used. If you
select the levels color table and click the Continuous radio button,
the color table will be changed into a continuous color table and the
Editor area will change to continuous mode and show the color table
in a spectrum but no color control points will have changed. You can
even turn the color table back into a discrete color table and the
Editor area will show the color table in discrete mode, but the
color control points will not have changed.

 9.3. Lighting

9.3. Lighting

Lighting is an important element when producing 3D visualizations because
all areas of interest in the visualization should be lit so they can be
easily seen. To this end, it is often necessary to have multiple light
sources so all of the visualization’s important areas are bright enough.
VisIt can have up to 8 light colored light sources in order to improve
the look of 3D visualizations. Each light source can be positioned and
colored using VisIt’s Lighting Window. It is also possible to have
specular highlights in addition to multiple colored lights. For more
information on specular highlights, which can make visualizations appear
much more realistic, read about specular lighting in the Preferences
chapter.

9.3.1. Lighting Window

You can open the Lighting Window
(see Figure 9.31) by selecting the
Lighting option from the Main Window’s Controls menu. The
Lighting Window has two modes of operation: edit and preview. When
the window is in preview mode, light sources cannot be modified, but they
are all visible and illuminate the Lighting Window’s test sphere so
the cumulative effect of the lights can be observed. When the window is
in edit mode, light sources can be modified one at a time. You set light
properties using the controls in the Properties panel and you can
position lights interactively by moving them around in the lighting panel
to the left of the Properties panel.

[image: ../../_images/MakingItPretty-Lighting.png]

Fig. 9.31 The lighting Window

9.3.1.1. Switching between edit mode and preview mode

Changing the Mode between Edit and Preview switches the
Lighting Window into the desired mode. When the Lighting Window
is in edit mode, one light source at a time is shown in the lighting
panel and the lights properties can be set by moving the light
interactively or by settings its properties by using the controls in
the Properties panel. When the Lighting Window is in preview
mode, all lights are shown in the lighting panel and none of them can
be modified.

9.3.1.2. Choosing the active light

[image: ../../_images/MakingItPretty-ActiveLightMenu.png]

Fig. 9.32 The active light menu

The active light is the light whose properties are shown in the
Lighting Window. Only the active light can be modified so you must
switch active lights each time you want to make changes to a light. To
change the active light, select a new light from the Active light
menu (Figure 9.32). The
Active light menu contains a list of eight possible lights of which
only light 1 is active by default. When a light is active, it has a
small light bulb icon next to it. Inactive lights have no light bulb
icon. Once a new light has been selected from the Active light menu,
its properties are displayed in the Lighting Window’s Properties
panel.

9.3.1.3. Turning a light on

You can turn lights on and off using the Enabled check box that appears
at the bottom of the Lighting Window’s Properties panel. You can only
modify lights when the Lighting Window is in edit mode.

9.3.1.4. Light type

[image: ../../_images/MakingItPretty-LightTypes.png]

Fig. 9.33 The different kinds of lights

VisIt supports three types of lights. The first type is called an ambient
light. An ambient light is a light that has no direction and contributes
brightness to the entire visualization. When an ambient light is present,
the lighting panel displays a small light bulb. The second type of light
and the default light in VisIt is a camera light. A camera light stays
fixed in space and always points the same direction regardless of how the
objects in the visualization are positioned. Camera lights are represented
in the lighting panel as small blue arrows. The third type of light in
VisIt is the object light. An object light has a direction that is relative
to the orientation of the object in the visualization. When the objects
in the visualization are rotated, an object light keeps shining on the
same area of the object. Object lights are represented in the lighting
panel as small yellow cones. To change the light type for the active light,
select a new light type from the Light type menu in the Properties
panel.

9.3.1.5. Positioning a light

There are two ways to position a light. The first, and most intuitive, way
is to interactively position the light by dragging it to the desired
location in the lighting panel. Lights move in a sphere around the test
sphere. Experiment with the motion until you are comfortable moving the
light. The second way to move the light is to type a direction vector into
the Direction text field. The coordinate system for specifying a
direction vector is right-handed. Suppose you want to create a light that
looks directly into the visualization. Since the Z-axis points directly
out of the screen, the negative Z-axis points into the screen. This can
be captured by entering a direction vector of: 0 0 -1. Note that ambient
lights have no direction.

9.3.1.6. Light color and brightness

VisIt allows lights to have color as well as brightness. Colored lighting
can produce interesting effects that may be desirable for presentations.
To change the light color, click on the light Color button and select
a new color from the Color menu. Once a color is picked, you can also
set the brightness for the light. The brightness is essentially a knob
that allows you to dim the light. If the brightness is set completely to
the right then the light will have exactly the color that was picked for
it. If the brightness is not set to full intensity then the light will be
dimmer. You can set the brightness by adjusting the Brightness slider
in the Lighting Window.

 9.4. Rendering Options

9.4. Rendering Options

VisIt provides support for setting various global rendering options that
improve quality and realism of the plots in the visualization. Specifically,
VisIt provides controls that let you smooth the appearance of lines, add
specular highlights, add shadows, and apply depth cueing to plots in your
visualizations. The controls for setting these options are located in the
Rendering options Window
(see Figure 9.34) and
they will be covered here while the other controls in that window will be
covered in the Preferences chapter. To open the
Rendering options Window, click on Rendering in the
Main Window’s Preferences menu.

[image: ../../_images/MakingItPretty-RenderingOptionsBasic.png]

Fig. 9.34 The basic rendering options

9.4.1. Making Lines Look Smoother

Computer monitors contain an array of millions of tiny rectangular pixels
that light up to form patterns which your eyes perceive as images. Lines
tend to look blocky on computer monitors because they are drawn using a
relatively small set of pixels. Lines can be made to look better by
blending the edges of the line with the color of the background image.
This is a form of antialiasing that VisIt can use to make plots which use
lines, such as the Mesh plot, look better
(see Figure 9.35). If
you want to enable antialiasing, which is off by default, you check the
Antialiasing check box located at the top of the Basic tab
(see Figure 9.34).
When antialiasing is enabled, all lines drawn in a visualization window
are blended with the background image so that they look smoother.

[image: ../../_images/MakingItPretty-AntialiasingExample.png]

Fig. 9.35 An example of antialiasing

9.4.2. Specular Lighting

VisIt supports specular lighting, which results in bright highlights on
surfaces that reflect a lot of incident light from VisIt’s light sources.
Specular lighting is not handled in the Lighting Window because specular
lighting is best described as a property of the material reflecting the
light. The controls for specular lighting don’t control any lights but
instead control the amount of specular highlighting caused by the plots.
Specular lighting is not enabled by default. To enable specular lighting,
click the Specular lighting check box near the bottom of the Basic
tab (see Figure 9.34).

[image: ../../_images/MakingItPretty-SpecularExample.png]

Fig. 9.36 The effects of specular lighting on plots

Once specular lighting is enabled, you can change the strength and sharpness
properties of the material reflecting the light. The strength, which you
can set using the Strength slider, influences how glossy the plots are
and how much light is reflected off of the plots. The sharpness, which is
set using the Sharpness slider, controls the locality of the reflections.
Higher sharpness values result in smaller specular highlights. Specular
highlights are a crucial component of lighting models and including specular
lighting in your visualizations enhances their appearance by making them
more realistic. Compare and contrast the plots in
Figure 9.36. The plot on the
left side has no specular highlights and the plot on the right side has
specular highlights.

[image: ../../_images/MakingItPretty-RenderingOptionsAdvanced.png]

Fig. 9.37 The advanced rendering options

9.4.3. Shadows

VisIt supports shadows when scalable rendering is being used. Shadows can
be useful for increasing the realism of your visualization. The controls
to turn on shadows can be found near the bottom of the Advanced tab
(see Figure 9.37).
To turn on shadows, you must turn on scalable rendering by clicking on
the Always radio button under the Use scalable rendering label.
Once scalable rendering has been turned on, the shadows controls become
enabled. The default shadow strength is 50%. If you desire a stronger or
weaker shadow, adjust the Strength slider until you are satisfied
with the amount of shadow that appears in the visualization. The same
plot is shown with and without shadows in
Figure 9.38.

[image: ../../_images/MakingItPretty-ShadowExample.png]

Fig. 9.38 The effects of shadows on plots

9.4.4. Depth Cueing

VisIt supports depth cueing when scalable rendering is being used. Depth
cueing can be useful for increasing the realism of your visualization.
Depth cueing causes objects to be blended with the background with
increasing distance from the camera. The controls to turn on depth
cueing can be found near the bottom of the Advanced tab
(see Figure 9.37).
To turn on depth cueing, you must turn on scalable rendering by
clicking on the Always radio button under the Use scalable rendering
label. Once scalable rendering has been turned on, the depth cueing controls
become enabled. By default, depth cueing is performed along the camera
direction. The depth cueing can be done along a different direction by
unchecking the Cue automatically along camera depth check box and then
entering the coordinates defining the direction to perform the depth cueing
in the Manual start point and Manual end point text fields. The
coordinates are defined in the coordinate system of the simulation data.
The same plot is shown with and without depth cueing in
Figure 9.39.

[image: ../../_images/MakingItPretty-DepthCueingExample.png]

Fig. 9.39 The effects of depth cueing on plots

 9.5. View

9.5. View

The view is one of the most critical properties of a visualization since
it determines what parts of the dataset are seen. The view is also one of
the most difficult properties to set. It is not that the act of setting
the view is difficult. In fact, it is quit the opposite. The problem with
setting the view is finding a flattering view for a database that will
continue to be a good view for the entire life of the visualization. Many
plots will deform or expand over the course of an animation and you have
to decide how to pick a good view. You can pick a view that is zoomed way
out and then let your plots expand and deform until they make good use of
the visualization window. You can also decide to keep changing the view
throughout the animation. A common technique is to interpolate views or
do some sort of fly-by animation when the plots in the animation are
expanding or not behaving in a static manner. The fly-by animation is
used to distract the audience from the fact that you need to change to
a more suitable view.

The view in VisIt can be set in two different ways. The first and best
way to set the view is to navigate to it interactively in the visualization
window. This is the fastest and most direct way of setting the view. The
problem with setting the view in this manner is that it is not very
reproducible. It is often the case that users want to look at the same
feature in their database using the same view. VisIt provides a
View Window that they can use to set the view information exactly
the same every time.

9.5.1. View Window

You can open the View Window by selecting View from the
Main Window’s Controls menu. The View Window is divided into
five tabbed sections. The first tab sets the curve view, the second tab
sets the 2D view, the third tab sets the 3D view, the fourth tab sets
the axis array view, and the last tab sets advanced view options. The
View Window also contains a Command text field at the bottom
for entering view commands.

9.5.1.1. Setting the curve view

Visualization windows that contain Curve plots use a special type of view
known as a curve view. A curve view consists of: viewport, domain, and
range. The viewport is the area of the visualization window that will be
occupied by the plots and is specified using X and Y values in the range
[0,1]. The point (0,0) corresponds to the lower-left corner of the
visualization window while the point (1,1) corresponds to the visualization
window’s upper-right corner. To change the viewport, type new numbers into
the Viewport text field on the Curve view tab of the View Window
(Figure 9.40). The minimum and
maximum X values should come first, followed by the minimum and maximum
Y values.

[image: ../../_images/MakingItPretty-ViewCurve.png]

Fig. 9.40 The curve view options

The domain and range refer to the limits on the X and Y axes. You can set
the domain, which is the range of X values that will be displayed in the
viewport, by typing new minimum and maximum values into the Domain
text field. You should use domain values that use the same dimensions as
the Curve plot that will be plotted in the visualization window. You can
set the range, which is the range of Y values that will be displayed in
the viewport, by typing new values into the Range text field. The
domain and range values may also be log scaled and may be controlled
independently. To log scale the domain, check the Log radio box to
the right of the Domain Scale label. To log scale the range, check
the Log radio box to the right of the Range Scale label.

9.5.1.2. Setting the 2D view

Setting the 2D view is conceptually simple. There are only two pieces of
information that you need to supply. The first piece of information that
you must enter is the viewport, which is an area of the visualization
window in which you want the 2D plots to appear. Imagine that the lower
left corner of the visualization window is the origin of a coordinate
system and that the upper left and lower right corners both have values
of 1. Every point in the visualization window can be characterized as a
Cartesian coordinate where both values in the coordinate are in the range
[0,1]. The viewport is specified by entering four numbers in the form
x0 x1 y0 y1 where x0 is the leftmost X value, x1 is the rightmost X value,
y0 is the lower Y value, and y1 is the upper Y value that will be used in
the viewport. The window is an area in the space occupied by the 2D plots.
You can start with a window that is the same size as the plot’s spatial
extents and then zoom in from there by making the window values smaller
and smaller. The window values are also of the form x0 x1 y0 y1. To change
the 2D view, type new values into the Viewport and Window text
fields on the View Window’s 2D view tab
(Figure 9.41).

[image: ../../_images/MakingItPretty-View2D.png]

Fig. 9.41 The 2D view options

Some databases yield plots that are so long and skinny that they leave
most of the visualization window blank when VisIt displays them. A common
example is equation of state data, which often has at least 1 exponential
dimension. VisIt provides Fullframe mode to stretch long, skinny plots so
they fill more of the visualization window so it is easier to see them. It is
worth noting that Fullframe mode does not preserve a 1:1 aspect ratio for the
displayed plots because they are stretched in each dimension so they fit
better in the visualization window. To activate full frame mode, click
on the Auto or On radio buttons to the left of the Full Frame
label. When full frame mode is set to Auto, VisIt determines the aspect
ratio of the X and Y dimensions for the plots being visualized and
automatically scales the plots to fit the window when extents for one of
the dimensions are much larger than the extents of the other dimension.

[image: ../../_images/MakingItPretty-FullFrame.png]

Fig. 9.42 The effect of full frame mode on an extremely skinny plot

Just like the with the curve view, the x and y values may be log scaled
independently. To log scale the x values, check the Log radio box to
the right of the X Scale label. To log scale the y values, check
the Log radio box to the right of the Y Scale label.

9.5.1.3. Setting the 3D view

[image: ../../_images/MakingItPretty-View3D.png]

Fig. 9.43 The 3D view options

Setting the 3D view using controls in the View Window’s 3D view
tab (see Figure 9.43) demands an
understanding of 3D views. A 3D view is essentially a location in space
(view normal) looking at another location in space (focus) with a cone
of vision (view angle). There are also clipping planes that lie along
the view normal that clip the near and far objects from the view.
Figure 9.44 depicts the various
components
of a 3D view.

[image: ../../_images/MakingItPretty-Perspective3D.png]

Fig. 9.44 The 3D perspective view volume

To set the 3D view, fill in the following fields:

	View normal

	Where you want to look from.

	Focus

	What you want to look at.

	Up axis

	Determines which way is up. A good default value for the up axis is 0 1 0.
VisIt will often calculate a better value to use for the up axis so it is
not too important to figure out the right value.

	View Angle

	Determines how wide the field of view is. The view angle is specified in
degrees and a value around 30 is usually sufficient.

	Near clipping and Far clipping

	Values along the view normal that determine where the near and far clipping
planes are to be placed. It is not easy to know that good values for these
are so you will have to experiment.

	Parallel scale

	Acts like a zoom factor that zooms the camera towards the focus. For a
parallel projection, it is half
the height of an object in the window. For example, if you had a sphere of
radius 10, setting the parallel scale to 10, would result in the top and
bottom of the sphere touching the top and bottom of the image. Where the
sphere touches on the left and right edges depends on the aspect ratio of
the image. If it was 1:1, then the sphere would also touch the left and
right edges of the image. When doing a perspective projection, it attempts
to have the top and bottom of the sphere touch the top and bottom of the
image.

	Perspective

	Applies to 3D visualizations and it causes a more realistic view to be used
where objects that are farther away are drawn smaller than closer objects of
the same size. VisIt uses a perspective view for 3D visualizations by
default.

VisIt supports stereo rendering, during which VisIt draws the image in
the visualization window twice with the camera eye positioned in slightly
different locations to mimic the differences in images seen by your left
eye and your right eye. With the right stereo goggles, the image that you
see appears to hover in 3D space within your monitor since the effect of
the stereo image adds much more depth to the visualization. You can set
the angle that VisIt uses to separate the cameras used to draw the images
by typing a new angle into the Eye angle text field or by using the
Eye angle slider.

The Align to axis menu provides a convenient way to get side, top, and
bottom views of your 3D data. It provides six options corresponding to the
six axis aligned directions and sets both the View normal and the
Up vector.

9.5.1.4. Setting the axis array view

Visualization windows that contain Parallel Coordinate plots use a special
type of view known as an axis array view. An axis array view consists of:
viewport, domain, and range. The viewport is the area of the visualization
window that will be occupied by the plots and is specified using X and Y
values in the range [0,1]. The point (0,0) corresponds to the lower-left
corner of the visualization window while the point (1,1) corresponds to the
visualization window’s upper-right corner. To change the viewport, type new
numbers into the Viewport text field on the Curve view tab of the
View Window (Figure 9.45).
The minimum and maximum X values should come first, followed by the minimum
and maximum Y values.

[image: ../../_images/MakingItPretty-ViewAxisArray.png]

Fig. 9.45 The axis array view options

The Domain and Range settings are not very intuitive and we will
give a short description followed by some examples. The domain controls
the position and spacing of the parallel axes. The larger the value the
more tightly they are spaced or the more axes that will fit in the view. For
example, a domain of 0. to 2. would have room for exactly three coordinate
axes, with the first one at the extreme left edge of the viewport and the
third one at the extreme right edge of the viewport. Changing the domain
to 1. to 3. would shift the second axis to the extreme left edge of the
viewport and move the third axis to the center of the viewport. If there
were only three axes, then the right half of the viewport would be empty.
The range controls the height of the coordinate axes. The larger the value,
the shorter the axes. For example, the default range of 0. to 1. results
in the axes filling the height of the viewport. A range of 0. to 2. results
in the axes filling the bottom half of the viewport. You can play with the
controls to get a better understanding of the domain and range settings.

9.5.1.5. Advanced view features

The View Window’s Advanced tab, shown in
Figure 9.46, contains advanced
features that are not needed by all users.

[image: ../../_images/MakingItPretty-ViewAdvanced.png]

Fig. 9.46 The advanced view options

The View based on menu is used to specify if the view is set based on
the original spatial extents of the plot or the actual current extents
which are the plot’s current extents after it has been subsetted in some
way. By default, VisIt bases the view on the plot’s original extents which
leaves the remaining bits of a plot, after being subsetted, in the same
space as the original plot. This makes it easy to see where the remaining
pieces of the plot were situated relative to the whole plot but it does
not always make best use of the visualization window. To fill up more of
the visualization window, you might want to base the view on the actual
current extents by selecting Actual current extents from the
View based on menu.

When using more than one visualization window, such as when comparing
plots using two different databases side by side, it is often useful for
the plots being compared to have the same view. VisIt allows you to lock
the views together for the multiple visualization windows so that when
you change the view of any window whose view is locked, all other windows
with locked views get the new view. To lock the view for a visualization
window, click the Locked view check box or click on the Toolbar button
to lock views.

Normally, VisIt will adjust the view to match the extents of the data.
For example, if you are looking at data from a simulation whose extents
expand over time, VisIt will automatically adjust the view so that the
data fills roughly the same amount of space as the extents expand. Another
example is when the extents move from left to right, VisIt will adjust
the view so that the extents are always centered in the same portion of
the screen. This behavior is not always desired in certain situations.
To turn off this behavior and fix the view, no matter how the extents of
the data change, click on the Maintain view limits check box.

The Reset view, Recenter view, and Undo view can be used
to reset the view, recenter the view, and undo the last view change.
Resetting the view resets all aspects of the view based on the data
extents. Recentering the view resets all aspects of the view except the
view orientation based on the data extents. Undoing the view returns
the view to the last view setting. The last 10 views are stored so you
can undo the view up to 10 times.

The Locked view check box, the Maintain view limits check box,
the Reset view button, the Recenter view button, and Undo view
buttons behave differently than the rest of the controls in the view
window in that they effects take effect immediately, without having to
press the Apply button.

The Copy view from camera check box and the
Make camera keyframe from view button are deprecated and will be
removed in the next release.

The center of rotation is the point about which plots are rotated when you
set the view. You can type a new center of rotation into the Center
text field and click the User defined center of rotation check box
if you want to specify your own center of rotation. The center of rotation
is, by default, the center of your plots’ bounding box. When you zoom in
to look at smaller plot features and then rotate the plot, the far away
center of rotation causes the changes to the view to be large. Large view
changes when you are zoomed in often make the parts of the plot that you
were inspecting go out of the view frustum. If you are zoomed in, you
should pick a center of rotation that is close to the surface of the plot
that you are inspecting. You can also pick a center of rotation using the
Choose center from the visualization window’s Popup menu.

9.5.1.6. Using view commands

The Commands text field at the bottom of the View Window allows you
to enter one or more semi-colon delimited legacy MeshTV commands to change
the view. The following list has a description of the supported view commands:

	pan x y

	Pans the 3D view to the left/right or up/down. The x, y arguments, which
are floating point fractions of the screen in the range [0,1], determine
how much the view is panned in the X and Y dimensions.

	pan3 x y

	Same as pan.

	panx x

	Pans the 3D view left or right. The x argument is a floating point fraction
of the screen in the range [0,1].

	pany y

	Pans the 3D view up or down. The y-argument is a floating point fraction of
the screen in the range [0,1].

	ytrans y

	Same as pany.

	rotx x

	Rotates the 3D view about the X-axis x degrees.

	rx x

	Same as rotx.

	roty y

	Rotates the 3D view about the Y-axis y degrees.

	rotz z

	Rotates the 3D view about the Z-axis z degrees.

	rz z

	Same as rotz.

	zoom val

	Scales the 3D zoom factor. If you provide a value of 2.0 for the val
argument, the object being viewed will appear twice as large. A value of
0.5 for the val argument will make the object appear only half as large.

	zf

	Same as zoom.

	zoom3

	Same as zoom.

	vp x0 x1 y0 y1

	Sets the window, which is how much space relative to the plot will be
visible inside of the viewport, for the 2D view. All arguments are floating
point numbers that are in the same range as the plot extents. The x0 and x1
arguments are the minimum and maximum values for the edges of the window in
the X dimension. The y0 and y1 arguments are the minimum and maximum values
for the edges of the window in the Y dimension.

	wp x0 x1 y0 y1

	Sets the window, which is how much space relative to the plot will be
visible inside of the viewport, for the 2D view. All arguments are floating
point numbers that are in the same range as the plot extents. The x0 and x1
arguments are the minimum and maximum values for the edges of the window in
the X dimension. The y0 and y1 arguments are the minimum and maximum values
for the edges of the window in the Y dimension.

	reset

	Resets the 2D and 3D views.

	recenter

	Recenters the 3D view.

	undo

	Changes back to the previous view.

 10. Animation

10. Animation

This chapter discusses how to use VisIt to create animations. There are three
ways of creating animations using VisIt: flipbooks, keyframing, and scripting.
For complex animations with perhaps hundreds or thousands of database time
steps, it is often best to use scripting via VisIt [https://visit-dav.github.io/visit-website/]’s
Python command-line interface. VisIt provides Python and
Java language interfaces that allow you to program animation and save image
files that get converted into a movie. The flipbook approach is strictly for
static animations in which only the database time step changes. This method
allows database behavior over time to be quickly inspected without the added
complexity of scripting or keyframing. Keyframed animation can exhibit complex
behavior of the view, plot attributes, and database time states over time.
This chapter emphasizes the flipbook and keyframe approaches and explains how
to create animations both ways.

Scripting is the recommended method of producing animations.
Scripting is more difficult than other methods because users have to
script each event by writing a Python or Java program to control VisIt’s
viewer. One clear strength of scripting is that it is very reproducible and
can be used to generate animation frames in a batch computing environment. For
in-depth information about writing Python scripts for Visit, consult the
Python command-line interface.
Scripting for purposes of animations is not described further here.

	10.1. Animation basics
	10.1.1. The .visit file

	10.1.2. Flipbook animation

	10.1.3. Animation Window

	10.2. Keyframing
	10.2.1. Keyframing Window

	10.3. Movie tools

 10.1. Animation basics

10.1. Animation basics

Animation is used mainly for looking at how scientific databases evolve over
time. Databases usually consist of many discrete time steps that contain the
state of a simulation at a specific instant in time. Creating visualizations
using just one time step from the database does not reveal time-varying
behavior. To be most effective, visualizations must be created for all time
steps in the database.

10.1.1. The .visit file

Since scientific databases usually consist of dozens to thousands of time
states. Those time states can reside in any number of actual files. Some
database file formats support multiple time states in a single file while other
formats require each time state to be located in its own file. When all time
states are in their own file, it is important for VisIt to know which files
comprise the database. VisIt attempts to use automatic file grouping to
determine which files are in a database but sometimes it is better if you
provide the actual list of files in a database when you want to generate an
animation using VisIt. You can create a .visit file that
contains a list of
the files in the database. By having a list of files that make up the database,
VisIt does not have to guess database membership based on file naming
conventions. While this may appear to be inconvenient, it removes the
possibility that VisIt will include a file that is not in the database. It
also frees VisIt from having to know about dozens of ad hoc file naming
conventions. Having a .visit file also allows VisIt to
make certain
optimizations when generating a visualization.

VisIt provides a File grouping combo box in the File open window (see Figure 10.1)
to assist in grouping related time-varying files into a virtual database. A virtual database accomplishes
the same function as a .visit file except that no extra file needs to be created.
Selecting On or Smart will group files into a virtual database. The On setting applies file matching
rules to group files with similar prefixes into a virtual database. VisIt will attempt to generate a pattern
from a filename so sequences of numbers can be abstracted out. Multiple files that match the same pattern are
added to the same virtual database. The Smart setting applies the same logic as well as some extra rules
that permit additional file grouping. For instance, certain file extensions that include numbers such as
.hdf5 are excluded from the pattern generation so the number in the file extension
does not prevent useful file groupings.

[image: ../../_images/fileopen.png]

Fig. 10.1 File open window

10.1.2. Flipbook animation

[image: ../../_images/animationtoolbar.png]

Fig. 10.2 Animation controls

All that is needed to create a flipbook animation is a time-varying database.
To view a flipbook animation, open a time-varying database, create plots as
usual, and click the Play button in the GUI shown in Figure 10.2
highlighted in red or
in the visualization window’s Animation Toolbar . A flipbook animation
repeatedly cycles through all of the time states in the database displaying
the plots for the current time state in the visualization window. The result
is an animation that allows you to see the database evolve over time. The
VCR buttons, shown in Figure 10.2 , allow
you to control how a flipbook animation plays. The animation controls are
are also used for controlling keyframe animations. Clicking the Play
button causes VisIt to advance the database timestep until the Stop
button is clicked. As the plots are generated for each database time state,
the animation proceeds only as fast as the compute engine can generate plots.
As described in the Animation Window section, you have the option of caching
the geometry for each time state so animations will play smoothly according
to the animation playback speed once the plots for each database time state have
been generated.

10.1.2.1. Setting the time state

There are several ways that you can set the time state for an animation.
You can use the VCR controls to play animations or step through them one
state at a time. You can also use the Time slider to access a specific
animation time state. To set the animation time state using the Time slider
, click on the time slider and drag horizontally to a new time state. The
time state to which you drag it will be displayed in the Cycle/Time text
field as you drag the time slider so you will know when to let go of the
Time slider . Once you release the mouse button at a new time state,
VisIt will calculate the visualized plots using the data at the specified
time state.

If you prefer more precise control over the time state, you can type a cycle
or time into the Cycle/Time text field to make VisIt jump to the closest
cycle or time for the active database. You can also highlight a new time state
for the active database in the Selected files list and then click the
Replace button to make VisIt change the time state for the visualization.

10.1.3. Animation Window

[image: ../../_images/animation.png]

Fig. 10.3 Animation window

You can open the Animation Window, shown in
Figure 10.3 , by clicking on the Animation …
option from the Controls menu. The Animation Window
contains controls that allow you to turn off pipeline caching and adjust
the animation playback mode and speed.

10.1.3.1. Animation playback speed

The animation playback speed is used when playing flipbook or keyframe
animations. The playback speed determines how fast VisIt cycles through
the database states that make up the animation. Rather than using states
per second as a measurement for the playback speed, VisIt uses a simple
scale of slower to faster. To set the animation playback speed, use the
Animation speed slider. Moving the slider to the left and slower setting
slows down animations so they change time states once every few seconds.
Moving the slider to the right and faster setting will make VisIt play the
animation as fast as the host graphics hardware allows.

10.1.3.2. Pipeline caching

When pipeline caching is enabled, VisIt tries to retain all of the geometric
primitives that are used to draw a plot. This greatly speeds up animations
once the geometry for all time states is cached. The downside to pipeline
caching is that it can consume large amounts of memory. Pipeline caching is
enabled by default, but sometimes it makes sense to turn it off. The deciding
factors are the size of the database, the number of animation frames, and the
number of plots in each animation frame. Try leaving pipeline caching enabled
until you notice performance degradation. To turn off pipeline caching, uncheck
the Pipeline caching check box in the Animation Window .

10.1.3.3. Animation playback mode

The animation playback mode determines how VisIt gets to the next time state
after playing until the end of the animation. There are three animation
playback modes: looping, play once, and swing. VisIt loops animations by
default so once the end of the animation is reached, it starts playing from the
beginning. When the animation mode is set to play once, VisIt plays the
animation through until the end and then stops playing the animation. When
VisIt reaches the end of the animation in swing mode, the animation starts
playing in reverse until it gets to the start, at which point, it starts
playing forward again. To set the animation mode, click on one of the
Looping, Play once , and Swing radio buttons in the
Animation Window .

 10.2. Keyframing

10.2. Keyframing

Keyframing is an advanced form of animation that allows you create animations
where certain animation attributes such as view or plot attributes can change
as the animation progresses. You can design an entire complex animation
upfront by specifying a number of animation frames to be created and then you
can tell VisIt which plots exist over the animation frames and how their time
states map to the frames. You can also specify the plot attributes so they
remain fixed over time or you can make individual plot and operator attributes
evolve over time. With keyframing, you can make a plot fade out as the
animation progresses, you can make a slice plane move, you can make the view
slowly change, etc. Keyframe animations allow for quite complex animation
behavior.

There is a
video tutorial [https://www.youtube.com/embed/tLm_3Vl9rLg?vq=720hd]
that demonstrates the process of creating a
keyframing animation and saving it as a movie.

10.2.1. Keyframing Window

[image: ../../_images/keyframe1.png]

Fig. 10.4 Keyframing Window

Keyframe animations are designed using VisIt’s Keyframing Window
(see Figure 10.4), which you can open by selecting the
Keyframing option from the Controls menu. The window
is dominated by the Keyframe area , which consists of many vertical
lines that correspond to each frame in the animation and horizontal lines, or
Keyframe lines , that correspond to the state attributes that are being
keyframed. The horizontal lines are the most important because they allow you
to move and delete keyframes and set the plot range, which is the set of
animation frames over which the plot is defined.

10.2.1.1. Keyframing mode

To create a keyframe animation, you must first open the Keyframing Window
and check the Keyframing enabled check box. When VisIt is in keyframing
mode, a keyframe is created for the active animation state each time you set
plot or operator attributes and time is set using the Animation time
slider. The Animation time slider is a special time slider that is made active
when you enter keyframing mode and the animation frame can only be set using
it. Changing time using any other time slider results in a new database state
keyframe instead of changing the animation frame.

If you have created plots before entering keyframing mode, VisIt converts them
into plots that can be keyframed when you enter keyframing mode. When you leave
keyframing mode, extra keyframing attributes associated with plots are deleted,
the animation containing the plots reverts to a flipbook animation, and the
Animation time slider is no longer accessible.

10.2.1.2. Setting the number of frames

When you go into keyframing mode for the first time, having never set a number
of keyframes, VisIt will use the number of states in the active database for
the number of frames in the new keyframe animation. The number of frames in
the keyframe animation will vary with the length of the database with the most
time states unless you manually specify a number of animation frames, which you
can do by entering a new number of frames into the
Keyframing Window’s Number of frames text field. Once you enter a number
of frames, the number of frames will not change unless you change it.

10.2.1.3. Adding a keyframe

[image: ../../_images/keyframearea.png]

Fig. 10.5 Keyframe area

To add a keyframe, you must first have created some plots and put VisIt into
keyframing mode by clicking the Keyframing enabled check box in the
Keyframing Window . After you have plots and VisIt is in keyframing mode,
you can add a keyframe by opening a plot’s attribute window, changing settings,
and clicking its Apply button. To set a keyframe for a later frame in the
animation, move the Keyframe time slider, which is located under the
Keyframe area
(see Figure 10.5), to a later time and change the plot
attributes again. Each time you add a keyframe to the animation, a small
black diamond, called a Keyframe indicator , will appear along the
Keyframe line for the plot. When you play through the animation using any
of VisIt’s animation controls, the plot attributes are calculated for each
animation frame and they are used to influence how the plots look when they
appear in the Viewer window.

10.2.1.4. Adding a database state keyframe

Each plot that exists at a particular animation frame must use a specific
database state so the correct data will be plotted. When VisIt is in keyframing
mode, the database state can also be keyframed so you can control the database
state used for a plot at any given animation frame. The ability to set an
arbitrary database state keyframe for a plot allows you to control the flow of
time in novel ways. You can, for example, slow down time, stop time, or even
make time flow backwards for a little while.

There are two ways to set database state keyframes in VisIt. The first way is
to move the Keyframe time slider to the desired animation frame, enter a
new number into the text field next to the
Keyframe Window’s Add state keyframe button, and the click the
Add state keyframe button. As an alternative, you can use the
** Main Window’s Time slider** to create a database state keyframe, provided
the active time slider is not the Animation time slider. To set a database
state keyframe using the Time slider , select a new database time slider
from the Active time slider combo box and then change time states using the
Time slider . Instead of changing the active state for the plots that use
the specified database, VisIt uses the information to create a new database
state keyframe for the active animation frame.

10.2.1.5. Adding a view keyframe

In addition to being able to add keyframes for plot attributes, operator
attributes, and database states, you can also set view keyframes so you can
create sophisticated flybys of your data. To create a view keyframe, you must
interactively change the view in the Viewer window using the mouse or
specify an exact view in the View Window . Once the view is where you want
it for the active animation frame, open the View Window and click the
Make camera keyframe from view button on the Advanced tab in order to
make a view keyframe. Once the view keyframe has been added, a keyframe
indicator will be drawn in the Keyframing Window .

VisIt will not use view keyframes by default when you are in keyframing mode
because it can be disruptive for VisIt to set the view while you are still
adding view keyframes. Once you are satisfied with your view keyframes, click
the Copy view from camera button on the Advanced tab in the
View Window in order to allow VisIt to set the view using the view
keyframes when you change animation frames.

10.2.1.6. Deleting a keyframe

To delete a keyframe, move the mouse over a Keyframe indicator and right
click on it with the mouse once the indicator becomes highlighted.

10.2.1.7. Moving a keyframe

To move a keyframe, move the mouse over a Keyframe indicator , click the
left mouse button and drag the Keyframe indicator left or right to a
different animation frame. If at any point you drag the Keyframe indicator
outside of the green area, which is the plot time range, and release the
mouse button, moving the keyframe is cancelled and the Keyframe indicator
returns to its former animation frame.

10.2.1.8. Changing the plot time range

The plot time range determines when a plot appears or disappears in a keyframed
animation. Since VisIt allows plots to exist over a subset of the animation
frames, you can set a plot’s plot range in the Keyframe area to make a plot
appear later in an animation or be removed before the animation reaches the
last frame. You may find it useful to set the plot range if you have increased
the number of animation frames but found that the plot range did not expand to
fill the new frames. To change the plot time range, you left-click on the
beginning or ending edges of the Plot time range (the green band on the
Keyframe line) in the Keyframe area and drag it to a new animation
frame.

 10.3. Movie tools

10.3. Movie tools

VisIt provides a command line utility based on VisIt’s Command Line Interface
that is called visit -movie . The visit -movie movie generation utility
is installed with all versions of VisIt and can be used to generate movies
using session files or Python scripts as input. If you want to design movies
based on visualizations that you have created while using VisIt’s GUI then you
might also want to read about the Save movie wizard . If the visit command
is in your path then typing visit -movie at the command prompt, regardless
of the platform that you are using, will launch the visit -movie
utility. The following list provides visit -movie command line arguments:

	-format fmt

	The format option allows you to set the output format for your movie. The
supported values for fmt are:

	mpeg : MPEG 2 movie.

	qt : QuickTime movie.

	sm : Streaming movie format.

	png : Save raw movie frames as individual PNG files.

	ppm : Save raw movie frames as individual PPM files.

	tiff : Save raw movie frames as individual TIFF files.

	jpeg : Save raw movie frames as individual JPEG files.

	bmp : Save raw movie frames as individual BMP (Windows Bitmap) files.

	rgb : Save raw movie frames as individual RGB (SGI format) files.

	-geometry size

	The geometry option allows you to set the movie resolution. The size
argument is of the form WxH where W is the width of the image and H is the
height of the image. For example, if you want an image that is 1024 pixels
wide and 768 pixels tall, you would provide: -geometry 1024x768.

	-sessionfile name

	The sessionfile option lets you pick the name of the VisIt session to use
as input for your movie. The VisIt session is a file that describes the
movie that you want to make and it is created when you save your session
from within VisIt’s GUI after you set up your plots how you want them.

	-scriptfile name

	The scriptfile option lets you pick the name of a VisIt Python script to
use as input for your movie.

	-framestep name

	The number of frames to advance when going to the next frame.

	-start frame

	The frame at which to start.

	-end frame

	The frame at which to end.

	-fps number

	Sets the frames per second at which the movie should be played.

	-output

	The output option lets you set the name of your movie.

The visit -movie
utility always supports creation of series of image files but it does not
always support creation of movie formats such as QuickTime, or Streaming
movie. Support for movie formats varies based on the platform. QuickTime
and Streaming movie formats are currently limited to computers running IRIX
and the appropriate movie conversion tools (makemovie, img2sm) must be in
your path or VisIt will create a series of image files instead of a single
movie file. You can always use visit -movie to generate the individual movie
frames and then use your favorite movie generation software to convert the
frames into a single movie file.

[image: ../../_images/movieoptions.png]

Fig. 10.6 Movie generation options for session files on Windows platform

If you browse the Windows file system and come across a VisIt session file,
which ends with a .session extension, you can right click on the file and
choose from several movie generation options. The movie generation options make
one-click movie generation possible so you don’t have to master the arguments
for visit -movie like you do on other platforms. After selecting a movie
generation option for a VisIt session file, Windows runs visit -movie
implicitly with the right arguments and saves out the movie frames to the same
directory that contains the session file, and will have the same name as the
session file. The movie generation options in a session file’s context menu
are shown in Figure 10.6.

 11. Interactive Tools

11. Interactive Tools

An interactive tool is an object that can be added to a visualization
window to set attributes for certain plots and operators such as the
Parallel Coordinates plot or Slice operator. You can turn interactive tools on
and off by clicking on the tool icons in a visualization window’s
Toolbar or Popup menu (see Figure 11.1).
Note that some tools prefer to operate in visualization windows that
contain plots of a certain dimension so some tools are not always available.

[image: ../../_images/toolmenu.png]

Fig. 11.1 Tools menu

Once you enable a tool, its appears in the visualization window. Tools
have one or more small red rectangles called hot points that cause the
tool to perform an action when you click or drag the hot point with the
mouse. When you use the mouse to manipulate a tool’s hot point, all mouse
events are delivered to the tool so it can respond to the mouse interaction.
When the mouse is outside of a hot point, the mouse responds as it would
if there were no tools activated so you can still rotate and zoom-in on
plots while still having tools enabled.

	11.1. Box Tool

	11.2. Line Tool

	11.3. Plane Tool

	11.4. Point Tool

	11.5. Sphere Tool

	11.6. Axis Restriction Tool

 11.1. Box Tool

11.1. Box Tool

The box tool, which is shown in Figure 11.2, allows you
to move an axis-aligned box around in 3D space. You can use the box tool
with the Box and Clip operators to interactively restrict plots to a certain
volume. The box tool is drawn as a box with five hotpoints that allow you to
move the box in 3D space or resize it in any or all dimensions.

[image: ../../_images/boxtool1.png]

Fig. 11.2 Box tool with a plot restricted to the box

You can move the box tool around the Viewer window by clicking on the origin
hotpoint, which has the word “Origin” next to it, and dragging it around
the Viewer window. When you move the box tool, it moves in a plane that is
parallel to the screen. You can move the box tool backward and forward
along an axis by holding down the keyboard’s Shift key before you click
and drag the origin hotpoint. When the box tool moves, red, green, and
blue boxes appear to give a point of reference for the box with respect
to the X, Y, and Z dimensions (see Figure 11.3).

You can extend one of the box’s faces at a time by clicking on the appropriate
hotpoint and moving the mouse up to extend the box or by moving the mouse
down to shrink the box in the given dimension. Hotpoints for the box’s back
faces are drawn smaller than their front-facing counterparts. When the box
is resized in a single dimension, reference planes are drawn in the dimension
that is changing so you can see where the edges of the box are in relation
to the bounding box for the visible plots. You can also resize all of the
dimensions at the same time by clicking on the “Resize XYZ” hotpoint and
dragging the mouse in an upward motion to scale the box to a larger size in
X,Y, and Z or by dragging the mouse down to shrink the box. When all box
dimensions are resized at the same time, the shape of the box remains the
same but the scale of the box changes.

[image: ../../_images/boxtool2.png]

Fig. 11.3 Box tool while it is resized or moved

 11.2. Line Tool

11.2. Line Tool

It is common to create Curve plots when analyzing a simulation database.
Curve plots are created using VisIt [https://visit-dav.github.io/visit-website/]’s lineout mechanism where reference
lines are drawn in a visualization window and Curve plots are created in
another visualization window using the path described by the reference
lines. VisIt [https://visit-dav.github.io/visit-website/]’s line tool allows reference lines to be moved after they are
initially drawn. The line tool allows the user to see a representation of
a line in a visualization window and position the line relative to plots
that exist in the window.

[image: ../../_images/line1.png]

Fig. 11.4 Line tool with a 2D plot

The line tool is drawn as a thick line with three hot points positioned
along the length of the line. Both of the line tool’s endpoints, as well
as its center, have a hotpoint. Since the line tool can be used for both
2D and 3D databases, the line tool’s behavior is slightly different for
2D than it is for 3D. Clicking and dragging on either endpoint will move
the selected endpoint causing the line to change shape. Another way of
moving an endpoint is to hold down the Ctrl key and then click on the
point and move the mouse up and down to extend or shorten the line.
Clicking and dragging the middle hot point moves the entire line tool.

In 2D, the line endpoints can only be moved in the X-Y plane
(Figure 11.4). In 3D, the line endpoints can be moved in
any dimension. Since it is more difficult to see how the line is oriented
relative to plots in 3D, when the line tool is moved, 3D crosshairs appear.
The crosshairs intersect the bounding box and show the position of the line
endpoint relative to the plots. Clicking and dragging endpoints will move
them in a plane that is perpendicular to the screen. Moving the endpoints,
while first pressing and holding down the Shift key, causes the selected
endpoint to move back and forth in the dimension that most faces the
screen. This allows endpoints to be moved in one dimension at a time. An
example of the line tool in 3D is shown in Figure 11.5.

[image: ../../_images/line2.png]

Fig. 11.5 Line tool in 3D

The line tool can be used to set the attributes for certain VisIt [https://visit-dav.github.io/visit-website/] operators
such as VisIt [https://visit-dav.github.io/visit-website/]’s Lineout operator. If a plot has a Lineout operator
applied to it, the line tool is initialized with that operator’s endpoints
when it is first enabled. As the line tool is repositioned and reoriented, the
line tool’s line endpoints are given to the Lineout operator and and Curve plots
that are fed by the Lineout operator are recalculated.

 11.3. Plane Tool

11.3. Plane Tool

The plane tool allows the user to see a representation of a slice plane in
a visualization window and position the plane relative to plots that may
exist in the window. The plane tool, shown in Figure 11.6,
is represented as a set of 3D axes, a bounding rectangle, and text which
gives the plane equation in origin-normal form. The plane tool provides
several hot points positioned along the 3D axes that are used to position
and orient the tool. The hot point nearest the origin allows the user to move
the plane tool in a plane parallel to the computer screen. The hot point that
lies in the middle of the plane’s Z-axis translates the plane tool along its
normal vector when the hotpoint is dragged up and down. The hot point on the
end of the Z-axis causes the plane tool to rotate freely when the hot point
is moved. When the plane tool is facing into the screen, the Z-axis vector
turns red to indicate which direction the plane tool is pointing. The other
hot points also rotate the plane tool but they restrict the rotation to a
single axis of rotation.

[image: ../../_images/planetool.png]

Fig. 11.6 Plane tool with sliced plot

You can use the plane tool to set the attributes for certain VisIt plots and
operators. The Slice operator, for example, can update its plane equation
from the plane tool’s plane equation. If a plot has a Slice operator applied
to it, the plane tool is initialized with that operator’s slice plane when
it is first enabled. As the plane tool is repositioned and reoriented, the
plane tool’s plane equation is given to the operator and the sliced plot is
recalculated.

 11.4. Point Tool

11.4. Point Tool

The point tool allows you to position a single point relative to plots that
exist in the visualization window. The point tool provides one hot point at the
tool’s origin. Clicking on the hot point and moving the mouse moves the point
tool’s origin in a plane perpendicular to the screen. Holding down the Shift
key before clicking on the hot point moves the point tool’s origin along the
plot axis that most faces the user. Holding down the Ctrl key moves the point
tool along the plot axis that points up. Figure 11.7 shows
the point tool being used to set the origin for the ThreeSlice operator.

[image: ../../_images/pointtool.png]

Fig. 11.7 Point tool

 11.5. Sphere Tool

11.5. Sphere Tool

The sphere tool allows you to position a sphere relative to plots that
exist in the visualization window. The sphere tool, shown in
Figure 11.8, provides several hot points that are
used to position and scale the sphere. The hot point nearest the center
of the sphere is the origin hot point and it is used to translate the
sphere in a plane parallel to the screen. The other hot points are all
used to scale the sphere. To scale the sphere, click on one of the scaling
hot points and move the mouse towards the origin hot point to shrink the
sphere or move the hot point away from the origin to enlarge the sphere.

[image: ../../_images/spheretool.png]

Fig. 11.8 Sphere tool

You can use the sphere tool to set the attributes for certain VisIt plots
and operators. The sphere tool is commonly used to set the attributes for
the SphereSlice operator. After applying a SphereSlice operator to a
plot, enable the Sphere tool to interactively position the sphere that
slices the plot.

 11.6. Axis Restriction Tool

11.6. Axis Restriction Tool

The AxisRestriction tool is used in conjunction with the
Parallel Coordinates plot allowing you to modify the axis restrictions used
by the plot. The Axis Restriction tool, shown in
Figure 11.9, provides triangular hot points that are
originally positioned at the tops and bottoms of each axis in the plot.
As the hot points are moved up or down the axis, the plot is changed to reflect
the new min or max.

[image: ../../_images/axisrestricttool.png]

Fig. 11.9 Axis Restriction tool

 12. Multiple Databases and Windows

12. Multiple Databases and Windows

In this chapter, we discuss how to use VisIt to visualize multiple databases
using either a single window or multiple visualization windows that have
been locked together. After a general discussion of databases, we move to
database correlation, which is used to relate multiple time-varying
databases together in some fashion. The use of database correlations will be
explained in detail followed by a description of database comparisons, then
common useful operations involving multiple visualization windows.

	12.1. Databases
	12.1.1. Active database

	12.1.2. Multiple time sliders

	12.2. Database correlations
	12.2.1. Database correlations and time sliders

	12.2.2. Types of database correlations

	12.2.3. Managing database correlations

	12.3. Database comparison
	12.3.1. Plotting the difference between two databases

	12.3.2. Plotting values relative to the first time state

	12.3.3. Plotting time derivatives

	12.4. Multiple window operations
	12.4.1. Reflection and Translation

	12.4.2. Copying Windows

	12.4.3. Locking Windows

 12.1. Databases

12.1. Databases

One main use of a visualization tool such as VisIt is to compare multiple
related simulation databases. Simulations are often run over and over with
a variety of different settings or physics models and this results in several
versions of a simulation database that all describe essentially the same
object or phenomenon. Simulations are also often run using different
simulation codes and it is important for a visualization tool to compare
the results from both simulations for validation purposes. You can use
VisIt to open any number of databases at the same time so you can create
plots from different simulation databases in the same window or in separate
visualization windows that have been locked together.

12.1.1. Active database

VisIt can have any number of databases open simultaneously but there is
still an active database that is used to create new plots. VisIt calls this the
Active source. Each time you open a database, the newly opened database
becomes the active source for any new plots that you decide to create. If you
want to create a plot using a database that is open but is not your active
source, you must make that database the active source. When a database
becomes the active source, its variables are added to the menus for the
various plot types. To changing the active source, select a database from the
Active source combo box in the Main Window as shown in
Figure 12.1.

[image: ../../_images/changeactivesource.png]

Fig. 12.1 Changing the active source.

12.1.2. Multiple time sliders

When your open databases all have only a single time state, the
Time slider in the Main Window is disabled. When you have one
database that has multiple time states, the Time slider is enabled
and can be used exclusively to change time states for the database
that has multiple time states; the database does not even have to be
the active database. Things get a little more complicated when you have
opened more than one time-varying database - especially if you have
plots from more than one of them.

When you open a database in VisIt, it becomes the active database. If
the database that you open has multiple time states, VisIt creates a new
logical time slider for it so you can end up having a separate time slider
for every open database with multiple time states. When VisIt has to
create a time slider for a newly opened database, it also makes the new
database’s (the active source) be the active time slider. There is
only one Time slider control in the Main Window so when there are
multiple logical time sliders, VisIt displays an Active time slider
combo box (see Figure 12.2) that lets you
choose which logical time slider to affect when you change time using the
Time slider.

[image: ../../_images/activetimeslider0.png]

Fig. 12.2 Time slider and related controls

Since VisIt allows each time-varying database to have its own logical time
slider, you can create plots from more than one time-varying database in
a single visualization window and change time independently for each
database. Another benefit of having multiple logical time sliders is that the
databases plotted in the visualization windows are free to have different
numbers of time states. Suppose you have opened time-varying databases A and
B and created plots from both databases in the same visualization window.
Assuming you opened database A and then database B, database B will be the
active database. If you want to change time states for database A but not
for database B, you can select database A from the Active time slider
combo box and then change the time state using the Time slider. If
you then wanted to change time states for database B, you could select
it in the Active time slider combo box and then change the time state
using the Time slider . If you wanted to change time states for both
A and B at the same time, you have to use database correlations, which
are covered next.

[image: ../../_images/activetimeslider12.png]

[image: ../../_images/activetimeslider4.png]

Fig. 12.3 Active time slider and time slider controls

 12.2. Database correlations

12.2. Database correlations

A database correlation is a map that relates one or more different
time-varying databases so that when accessed with a common time state, the
database correlation can tell VisIt which time state to use for any of the
databases in the database correlation. VisIt supports multiple logical time
sliders, so time states can be changed independently for different
time-varying databases in the same window. No time slider for any database
can have any effect on another database. Sometimes when comparing two
different, but related, time-varying databases, it is useful to make plots
of both databases and see how they behave over time. Since changing time
for each database independently would be tedious, VisIt provides database
correlations to simplify visualizing multiple time-varying databases.

12.2.1. Database correlations and time sliders

When you open a database for the first time, VisIt creates a trivial
database correlation for that single database and creates a new logical
time slider for it. Each database correlation has its own logical time
slider. Figure 12.4 shows a database
correlation as the active time slider.

[image: ../../_images/correlationtimeslider.png]

Fig. 12.4 Database correlation as the active time slider

Suppose you have plots from time-varying database A and database B in the
same visualization window. You can use the logical time slider for database
A to change database A’s time state and you can use the logical time slider
for database B to change database B’s time state. If you want to change the
time state for both databases at the same time using a single logical time
slider, you can create a database correlation involving database A and
database B and then change time states using the database correlation’s
logical time slider. When you change time states using a database
correlation’s time slider, the time state used in each plot is calculated
by using the database correlation’s time slider’s time state to look up
the plot’s expected time state in the database correlation. Thus changing
time states using a database correlation also updates the logical time
slider for each database involved in the database correlation.

12.2.2. Types of database correlations

A database correlation is a map that relates one or more databases. When
there is more than one database involved in a database correlation, the
time states from each database are related using a correlation method.
Database correlations currently have 4 supported correlation methods:
padded index, stretched index, time, and cycle. This section describes
each of the correlation methods and when you might want to use each method.

For illustration purposes, the examples describing each correlation method
use two databases, though database correlations can have any number of
databases. The examples refer to the databases as: database A and database
B. Both databases consist of a rectilinear grid with a material variable.
The material variable is used to identify the database using a large
letter A or B and also to visually indicate progress through the databases’
numbers of time states by sweeping out a red material like a clock in
reverse. At the first time state, there is no red material but as time
progresses, the read material increases and finally totally replaces the
material that was blue. Database A has 10 time states and database B has
20 time states. The tables below list the cycles and times for each time
state in each database so the time and cycle behavior of database A and
database B will make more sense later when time database correlations and
cycle database correlations are covered.

Table 12.1 Database A

	Time state

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	Times

	14

	14.5

	15

	15.5

	16

	16.5

	17

	17.5

	18

	18.5

	Cycles

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

Table 12.2 Database B (part 1)

	Time state

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	Times

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	Cycles

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

Table 12.3 Database B (part 2)

	Time state

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	Times

	26

	27

	28

	29

	30

	31

	32

	33

	34

	35

	Cycles

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

12.2.2.1. Padded index database correlation

A padded index database correlation, like any other database correlation,
involves multiple input databases where each database potentially has a
different number of time states. A padded index database correlation has
as many time states as the input database with the largest number of time
states. All other input databases that have fewer time states than the
longest database have their last time state repeated until they have
the same number of time states as the input database with the largest
number of time states. Using the example databases A and B, since B has
20 time states and A only has 10 time states, database A will have its
last time state repeated 10 times to make up the difference in time
states between A and B. Note how database A’s last time state is repeated
in Figure 12.5.

[image: ../../_images/paddedindex.png]

Fig. 12.5 Padded index database correlation of A and B (every 5th time state)

12.2.2.2. Stretched index database correlation

A stretched index database correlation, like any other database correlation,
involves multiple input databases where each database potentially has a
different number of time states. Like a padded index database correlation,
a stretched index database correlation also has as many time states as
the input database with the largest number of time states. The difference
between the two correlation methods is in how the input databases are mapped
to a larger number of time states. The padded index database correlation
method simply repeated the last frame of the input databases that needed
more time states to be made even with the length of the database correlation.
Stretched index database correlations on the other hand do not repeat only
the last frame; they repeat frames throughout the middle time states until
shorter input databases have the same number of time states as the database
correlation. The effect of repeating time states throughout the middle is
to evenly spread out the time states over a larger number of time states.

Stretched index database correlations are useful for comparing related
related simulation databases where one simulation wrote out data at 2x, 3x,
4x, … the frequency of another simulation. Stretched index database
correlations repeat the data for smaller databases, which makes it easier
to compare the databases. Figure 12.6 shows example
databases A and B related using a stretched index database correlation.
Note how the plots for both databases, even though the databases contain a
different number of time states, remain roughly in sync.

[image: ../../_images/stretchedindex.png]

Fig. 12.6 Stretched index database correlation of A and B (every 5th time state)

12.2.2.3. Time database correlation

A time index database correlation, like any other database correlation,
involves multiple input databases where each database potentially has a
different number of time states. The number of time states in a time
database correlation is not directly related to the number of time states
in each input database. The number of time states in the database
correlation are instead determined by counting the number of unique time
values for every time state in every input database. The times from each
input database are arranged on a number line and each unique time value
is counted as one time state. Time values from different input databases
that happen to have the same time value are counted as a single time
state. Once the time values have been arranged on the number line and
counted, VisIt calculates a list of time state indices for each database
that identify the right time state to use for each database with respect
to the time database correlation’s time state. The first time state for
each database is always the first time state index stored for a database.
The first time state is used until the time exceeds the first time on the
number line, and so on.

Time database correlations are useful in many of the same situations
as stretched index database correlations since they are both used to
align different databases in time. Unlike a stretched index database
correlation, the time database correlation does a better job of
aligning unrelated databases in actual simulation time rather than just
spreading out the time states until each input database has an equal
number. Use a time database correlation when you are correlating two
or more databases that were generated with different dump frequencies
or databases that were generated by totally different simulation codes.
Figure 12.7 shows the behavior of databases
A and B when using a time database correlation.

[image: ../../_images/timecorrelation.png]

Fig. 12.7 Time database correlation of A and B (every 5th time state)

12.2.2.4. Cycle database correlation

Cycle database correlations operate in exactly the same way as time database
correlations except that they correlate using the cycles from each input
database instead of using times. Figure 12.7 shows
the behavior of databases A and B when using a cycle database correlation.

[image: ../../_images/cyclecorrelation.png]

Fig. 12.8 Cycle database correlation of A and B (every 5th time state)

12.2.3. Managing database correlations

If you want to create a new database correlation or edit properties related
to database correlations, you can use the Database Correlation Window.
You can open the Database Correlation Window,
shown in Figure 12.9, by clicking on the
Database correlations option in the Main Window’s Controls menu.
The Database Correlation Window contains the list of database
correlations, along with controls that allow you to create new database
correlations, edit existing database correlations, delete database
correlations, or set global settings that tell VisIt when to automatically
create database correlations.

[image: ../../_images/correlationwindow.png]

Fig. 12.9 Database Correlation Window

12.2.3.1. Creating a new database correlation

If you want to create a new database correlation to relate time-varying
databases that you have opened, you can do so by opening the
Database Correlation Window. The Database Correlation Window
contains a list of trivial database correlations for the time-varying
databases that you have opened. You can create a new, database
correlation by clicking on the New button to the left of the list of
database correlations. Clicking the New button opens a
Database Correlation Properties Window
(Figure 12.10) that you can use to edit
properties for the database correlation.

[image: ../../_images/createcorrelation1.png]

Fig. 12.10 Database Correlation Properties Window

New database correlations are automatically named when you first create
them but you can change the name of the database correlation to something
more memorable by entering a new name into the Name text field. Once
you have entered a name, you should set the correlation method that the
database correlation will use to relate the time states from all of the
input databases. The available choices, shown in
Figure 12.11, are: padded index, stretched
index, time, and cycle.

[image: ../../_images/createcorrelation3.png]

Fig. 12.11 Correlation methods

Once you have chosen a correlation method, it is time to choose the input
databases for the correlation. The input databases, or sources as they are
sometimes called in VisIt, are listed in the Sources list (see
Figure 12.12). The Sources list only
contains the databases that you have opened so far. If you do not see a
database that you would like to have in the database correlation, you can
either click the Cancel button to cancel creating the new database
correlation or you can continue creating the database correlation and
then add the other database to the correlation later after you have opened
it. To add databases to the new database correlation, click on the them in
the Sources list to highlight then and then click on the Right arrow
button to move the highlighted databases into the database correlation’s
Correlated sources list. If you want to remove a database from the
Correlated sources list, highlight the database in the
Correlated sources list and then click the Left arrow button to
move it back to the Sources list. Once you are satisfied with the
new database correlation, click the Create database correlation button
to create a new database correlation.

[image: ../../_images/createcorrelation2.png]

Fig. 12.12 Sources list and Correlated sources list

When you create a new database correlation, VisIt also creates a new time
slider for the new database correlation. The database correlation’s active
time state is initially set to the first time state, which might not match
the time state of individual plots in the vis window. Once you change time
states using the Time slider, the plots in the vis window will be
updated using the correct time state with respect to the correlation’s
active time state. As always, if you want to update the time state for
only one database, you can select a different time slider using the
Active time slider combo box and then change time states using the
Time slider. Any time state changes made to an individual database
that is also an input database for a database correlation has no effect
on the database correlations that involve the changed database. Time
state changes for a database correlation can only happen if you have
selected the database correlation as your active time slider.

12.2.3.2. Altering an existing database correlation

[image: ../../_images/altercorrelation.png]

Fig. 12.13 Altering a database correlation

Once a database correlation has been created, you can alter it at any time
by highlighting it in the Correlation list in the
Database Correlation Window and clicking the Edit button to the
left of the Correlation list. Clicking the Edit button opens the
Database Correlation Properties Window and allows you to change the
correlation method and the input databases. Once the desired changes are
made, clicking the Alter database correlation button will make the
specified database correlation use the new options and all plots in all
vis windows that are subject to the changed database correlation will
update to the new time states prescribed by the altered database correlation.

Using the Database Correlation Properties Window explicitly alters a
database correlation. Reopening a file or refreshing the file list can
implicitly alter a database correlation if after reopening the affected
databases, there are different numbers of time states in the databases.
When reopened databases that are input databases to database correlations
have a new number of time states, VisIt recalculates the indices used to
access the input databases via the time slider and updates any plots that
were affected. In addition to the time state indices changing, the number
of time states in the database correlation and its time slider can also
change.

12.2.3.3. Deleting a database correlation

Database correlations are automatically deleted when you close a database
that you are not using anymore provided that the closed database is not an
input database to any database correlation except for that database’s
trivial database correlation. You can delete non-trivial database
correlations that you have created by highlighting a database correlation
in the Correlation list in the Database Correlation Window and
clicking the Delete button to the left of the Correlation list.
When you delete a database correlation, the new active time slider will
be set to the active database’s time slider if the active database has
more than one time state. Otherwise, the new active time slider, if any,
will be set to the time slider for the first source that has more than
one time state.

12.2.3.4. Automatic database correlation

VisIt can automatically create database correlations when they are needed
if you enable certain global settings to control the creation of database
correlations. By default, VisIt will prompt you when it wants to create a
database correlation. VisIt can automatically create a database correlation
when you add a plot of a multiple time-varying database to a vis window
that already contains a plot from a different time-varying database. VisIt
first looks for the most suitable existing database correlation and if the
one it picks must be modified to accommodate a new input database or if
an entirely new database correlation must be created, VisIt will prompt
you using a Correlation question dialog
(Figure 12.14). If you prevent VisIt from creating
a database correlation or altering the most suitable correlation, you will
no longer be prompted to create a database correlation for the list of
databases listed in the Correlation question dialog.

[image: ../../_images/correlatedialog.png]

Fig. 12.14 Correlation question dialog

By default, VisIt will only attempt to create a database correlation for
you if the new plot’s database has the same number of time states as the
existing plot. You can change when VisIt creates a database correlation for
you by selecting a different option from the When to create correlation
combo box in the Database Correlation Window. The available options
are: Always, Never, and Same number of states. You can change
the default correlation method by selecting a new option from the
Default correlation method combo box. Finally, you can prevent VisIt
from prompting you when it needs to create a database correlation if you
turn off the Prompt before creating new correlation check box.

 12.3. Database comparison

12.3. Database comparison

Comparing the results of multiple related simulation databases is one of
VisIt [https://visit-dav.github.io/visit-website/]’s main uses. Users can plot multiple databases in the same
window or adjacent windows, allowing comparison of plots visually.
In addition to these visual modes of comparison, VisIt [https://visit-dav.github.io/visit-website/] also supports
more direct numerical comparison through the expression system.
Database comparison allows users to plot direct
differences between two databases or between different time states in the
same database including even in the definition of time derivatives.

Numerical database comparisons use special expressions called
Cross-Mesh Field Evaluation (CMFE)
expressions, pos_cmfe() and
conn_cmfe(),
which are capable of mapping a field from one mesh, the donor, onto
another mesh, the target. The name conn_cmfe() stands for
connectivity-based cross mesh field evaluation (CMFE). It is a specialization
of position-based cmfe, pos_cmfe(), for cases in which donor and target
meshes be topologically congruent (e.g. size, connectivity, decomposition,
etc. are identical). More information on CMFE expressions are found in the
Cross-Mesh Field Evaluation (CMFE) section
of the Exprssions chapter. There is also a helpful
wizard, the
Data Level Comparison Wizard, that
simplifies the process of defining comparison expressions. Here, we
walk through a few basic examples of using CMFE
expressions and demonstrate how to use them in comparisons.

12.3.1. Plotting the difference between two databases

The typical case is where two slightly different databases time series
have been generated from the same simulation code and the user wishes to work
with the difference between the two databases and to have this difference
update as the time slider is changed.

<mesh/ireg> - conn_cmfe(</usr/local/visit/data/dbB00.pdb[0]id:mesh/ireg>, <mesh>)

In the above expression, the first argument to conn_cmfe() serves as the donor
field and the second argument is the target mesh. This expression is a simple
difference operation of database A minus database B. Note the special [0]id
time specification syntax before the colon but after the file system path in
the first argument conn_cmfe(). The i means to interpret the number in
brackets, [0] as a time state index. The d means to further interpret that
number as an index difference from the current time slider index. This
syntax is described in greater detail in
the section describing pos_cmfe().

The assumption made by this expression is that database A is
the active database and the user wishes to map database B onto it to
subtract it from database A’s mesh/ireg variable. In this example, database
B’s mesh/ireg field is being mapped onto database A’s mesh and their difference
is then being taken. Figure 12.15 illustrates
the database differencing operation.

[image: ../../_images/a_minus_b.png]

Fig. 12.15 Database B subtracted from database A

12.3.2. Plotting values relative to the first time state

Plotting a variable relative to its initial values can be important for
understanding how the variable has changed over time. The conn_cmfe
expression is also used to plot values from one time state relative to
the values at the current time state. Consider the following expression:

<mesh/ireg> - conn_cmfe(</usr/local/visit/data/dbA00.pdb[0]i:mesh/ireg>, mesh)

The above expression subtracts the value of mesh/ireg at time state zero
(in the [0]i without the d means to always map absolute time index
zero from the donor) from the value of mesh/ireg at the current time
As the time slider is changed, the values for the active database will
change but the part of the expression
using conn_cmfe, which in this case uses the first database time state,
will not change. This allows users to create expressions that compare the
current time state to a fixed time state.

[image: ../../_images/a_minus_a0.png]

Fig. 12.16 Time state 6 minus time state 0

12.3.3. Plotting time derivatives

Plotting time derivatives is much like plotting the difference between the
current time state and a fixed time state except that instead of being
fixed, the second time state being compared is free to move relative to
the current time state. To plot a simple time derivative such as the
current time state minus the last time state, create an expression similar
to the following expression:

<mesh/ireg> - conn_cmfe(</usr/local/visit/data/dbA00.pdb[-1]id:mesh/ireg>, mesh)

The important piece of the above expression is its use of “[-1]id” to
specify a time state delta of -1, which means add -1 to the current time
state to get the time state whose data will be used in the conn_cmfe
calculation. You could provide different values for the time state in the
[] operator. Substituting a value of 3, for example, would make the
conn_cmfe expression consider the data for 3 time states beyond the current
time state. If you use a time state delta, which always uses the “d”
suffix, the time state being considered is always relative to the current
time state. This means that as you change time states for the active
database using the time slider, the plots that use the conn_cmfe expression
will update properly. Figure 12.17 shows an example
plot of a time derivative.

[image: ../../_images/a.png]

[image: ../../_images/a_minus_preva.png]

Fig. 12.17 Plot of a variable and its time derivative plot

 12.4. Multiple window operations

12.4. Multiple window operations

This section focuses on some of the common techniques for exploring multiple
databases when you have multiple visualization windows.

12.4.1. Reflection and Translation

When you visualize multiple related databases, they often occupy the same
space in the visualization window since they may have been generated using
the same computational mesh but with different physics. When this is the
case, you can modify the location of the plots from one of the databases
in two immediately obvious ways. First of all, if you simulated the same
object and it does not make use of any symmetry then you could use the
Transform operator to translate the coordinate system of one of the plots
out of the way of the other plot so you can look at the two plots from the
different databases side by side in the same visualization window. If your
databases make use of symmetry (maybe you only simulated half of the
problem) then you can apply the Reflect operator to one of the plots
to show them side by side but reflected to show the entire problem. Each
method has its merits.

[image: ../../_images/sidebyside.png]

Fig. 12.18 Plots side by side using the Reflect or Transform operator

12.4.2. Copying Windows

If you visualize multiple databases and you want to create identical plots
for each database but have them placed in different visualization windows
then you can either have VisIt copy windows on first reference or you can
clone an existing window and then replace the database used in the new
window’s plots with a different database.

If you have already created multiple visualization windows, perhaps as the
result of a change to VisIt’s layout, then you can make VisIt copy the
attributes of the active window to another visualization window when you
switch active windows by enabling Clone window on first reference in
the Preferences Window. To open the Preferences Window, choose the
Preferences option from the Main Window’s Options menu. This form
of window cloning copies the plots, lights, colors, etc from the active
window to a pre-existing visualization window when you access it for the
first time. If you have already accessed a visualization window but you would
still like to copy plots, lights, colors, etc from another visualization
window, you can make the destination visualization window be the active
window and then copy everything from the source visualization window using
the Copy everything menu option in the Main Window’s Windows menu.

If you have no empty visualization window to contain plots for the another
database, you can click the Clone option in the Main Window’s Windows
menu to create a new visualization window with the same plots and settings
as the active window. Once the new window has been created, you could
visualize a new database by choosing a new database in the
Active source combo box and clicking the Replace button.

12.4.3. Locking Windows

When you visualize databases using multiple visualization windows, it is often
convenient to keep the time state and view in sync between windows so you can
concentrate on comparing plots instead of dealing with the intricacies of
setting the view or time state for each visualization window. VisIt’s
visualization windows can be locked with respect to time, view, or interactive
tools. To lock visualization windows, use the Popup menu, Toolbar, or
the Lock options from the Main Window’s Windows menu as shown in
Figure 12.19.

[image: ../../_images/lockmechanisms.png]

Fig. 12.19 Mechanisms for locking windows

12.4.3.1. Locking views

If you have created plots from related databases in multiple visualization
windows, you can lock the views for the visualization windows together so that
as you change the view in one of the visualization windows with a locked view,
the other visualization windows with locked views also update to have the same
view. There are four types of views in VisIt: curve, 2D, 3D, and AxisArray. If
you have 2D plots in a visualization window, the visualization window is
considered to be 2D. Locking that 2D visualization window’s view will only
update other visualization windows that are also 2D and vice-versa. The same
is true for curve, 3D and AxisArray views.

12.4.3.2. Locking time

If you have created plots from related databases in multiple visualization
windows, you can lock the visualization windows together in time so that as you
change time in one visualization window, it updates in all other visualization
windows that are locked in time.

Locking visualization windows together in time may cause VisIt to prompt
you to create a new database correlation that involves all of the databases
in the visualization windows that are locked in time. VisIt creates a
database correlation because the visualization windows must use a common
time slider to really be locked in time. If the visualization windows did
not use a common time slider then changing time in one visualization window
would not cause other visualization windows to update. Once VisIt creates
a suitable database correlation for all windows, the active time slider is
set to that database correlation in all visualization windows that are
locked in time. If you alter a database correlation at this point, it will
cause the time state in each locked visualization window to change. Since
the same database correlation is used in all locked visualization windows,
changing the time state for the database correlation changes the time state
in all of the locked windows. This frees you to examine time-varying
database behavior without having to set the time state independently in each
visualization window. See Database correlations for more information.

12.4.3.3. Locking tools

In addition to locking visualization windows together with respect to the view
and time, you can also lock their tools. This capability can be useful when
exploring data that often requires the use of an operator whose attributes can
be set interactively using a tool since the same tool can be used to set the
operator attributes for operators in more than one visualization window.
See Interactive Tools for information on the different tools and
how they are used.

Consider the following scenario: you have two related 3D databases and you
want to examine the same slice plane for each database and you want each
database to be plotted in a separate visualization window. You can set up
separate visualization windows and slice the plots from each database
independently but locking tools is easier and requires much less setup.

Start off by opening the first 3D database and create the desired plots
from it. If you want to maintain a 3D view of the plots, you can clone the
visualization window to get a new window with the same plots or you can
apply a Slice operator to the plots. Apply a Slice operator but make sure
the slice is not projected to 2D and also be sure that its Interactive
check box is turned on. Turn on VisIt’s plane tool and make sure that tools
are locked. Clone the visualization window twice and for each of the new
visualization windows, make sure that their Slice operator projects to 2D.
There should now be four visualization windows if you opted to keep a 3D
view of the data. In the last visualization window, replace the database
with another related database that you want to compare to the first database.

Now that all of the setup steps are complete, you can save a session
file so you can get back to this state when you run VisIt next time. Now,
in the window that still has a slice in 3D, use the plane tool to reposition
the slice. Both of the 2D visualization windows should also update so they
use the new slice plane attributes calculated by the plane tool. The four
visualization windows, arranged in a 2x2 window layout are shown in
Figure 12.20.

[image: ../../_images/lockedtools.png]

Fig. 12.20 Multiple visualization windows with locked tools

 13. Client Server

13. Client Server

Scientific simulations are almost always run on a powerful supercomputer and
accessed using desktop workstations. This means that the databases usually
reside on remote computers. In the past, the practice was to copy the
databases to a visualization server, a powerful computer with very fast
computer graphics hardware. With ever increasing database sizes, it no longer
makes sense to copy databases from the computer on which they were generated.
Instead, it makes more sense to examine the data on the powerful supercomputer
and use local graphics hardware to draw the visualization. VisIt can run in a
client-server mode that allows this exact use case. The GUI and viewer run
locally (client) while the database server and parallel compute engine run on
the remote supercomputer (server). Running VisIt in client-server mode is
almost as easy as running all components locally. This chapter explains the
differences between running locally and remotely and describes how to run
VisIt in client-server mode.

	13.1. Client-Server Mode
	13.1.1. Passwords

	13.1.2. Setting Up Password-less SSH

	13.1.3. Environment

	13.1.4. Launch Progress Window

	13.2. Host Profiles
	13.2.1. Host profiles window

	13.2.2. Setting general options

	13.2.3. Managing launch profiles

	13.2.4. Setting parallel options

	13.2.5. Advanced host profile options

	13.2.6. Engine launch options window

 13.1. Client-Server Mode

13.1. Client-Server Mode

When you run VisIt locally, you usually select files and create plots using
the open database. Fortunately, the procedure for running VisIt in
client-server mode is no different than it is for running in single-computer
mode. You begin by launching the File Open Window and typing the name
of the computer where the files are stored into the Host text field.

Once you have told VisIt which host to use when accessing files, VisIt launches
the VisIt Component Launcher (VCL) on the remote computer. The VCL is a VisIt
component that runs on remote computers and is responsible for launching other
VisIt components such as the metadata server (mdserver) and compute engine.
(Figure 13.1). Once you are connected to
the remote computer and VCL is running, you won’t have to enter a password
again for the remote computer because VCL stays active for the life of your
VisIt session and it takes care of launching VisIt components on the remote
computer.

[image: ../../_images/Visit_connectivity_diagram.png]

Fig. 13.1 VisIt’s Architecture

If VCL was able to launch on the remote computer and if it was able to
successfully launch the metadata server, the files for the remote computer
will be listed in the Files pane of the File Open Window, just as if
you were running locally. You then select the file or virtual database and
click OK. Now that you have files from the remote computer at
your disposal, you can create plots as usual.

13.1.1. Passwords

Sometimes when you try to access files on a remote computer, VisIt prompts you
for a password by opening a Password Window
(Figure 13.2). If you are prompted for a
password, type your password into the window and click the Ok button. If
the password window appears and you decide to abort the launch of the remote
component, you can click the Password Window’s Cancel button to stop the
remote component from being launched.

[image: ../../_images/password.png]

Fig. 13.2 Password Window

If your username for the remote machine is not listed correctly, you can
click on the Change username button and a new window will pop up allowing
you to enter the proper username for the remote system.
(Figure 13.3). Enter the correct
username in the text field provided and click Confirm username. Proceed
with entering the password in the Password Window.

[image: ../../_images/changeusername.png]

Fig. 13.3 Change Username Window

VisIt uses ssh for authentication and you can set up ssh so that passwords
are not required. This is called passwordless ssh and once it is set up for a
computer, VisIt will no longer need to prompt for a password.

13.1.2. Setting Up Password-less SSH

The following instructions describe how to set up ssh to allow password-less
authentication among a collection of machines.

13.1.2.1. On the Local Machine

If you do not already have a ~/.ssh/id_rsa.pub file, generate the key:

cd

ssh-keygen -t rsa

Accept default values by pressing <Enter>. This will generate two files,
~/.ssh/id_rsa and ~/.ssh/id_rsa.pub. The ~/.ssh/id_rsa.pub file
contains your public key in one very long line of text. This information needs
to be concatenated to the authorized_keys file on the remote machine, so
copy it to a temp file on the remote machine:

scp ~/.ssh/id_rsa.pub <your-user-name>@<the.remote.machine>:tmp

13.1.2.2. On the Remote Machine

If you do not already have a ~/.ssh directory, create one with r-w-x
permission for the owner only:

cd

mkdir .ssh

chmod 700 .ssh

If you do not already have a ~/.ssh/authorized_keys file, create an empty
one with permission for the owner only:

cd ~/.ssh

touch authorized_keys

chmod 600 authorized_keys

Concatenate the temporary file you copied into authorized_keys:

cd ~/.ssh

cat authorized_keys ~/tmp > authorized_keys

rm ~/tmp

13.1.2.3. Completing the Process

If you have more remote machines you want to access from the same local machine
using passwordless ssh, repeat the process starting with copying the
~/.ssh/id_rsa.pub file from the local machine to the remote, and
continuing from there.

You can also repeat the above sections, reversing the local and remote
machines, in order to allow passwordless ssh to the local machine from the
remote machine.

13.1.3. Environment

It is important to have VisIt in your default search path instead of specifying
the absolute path to VisIt when starting it. This is not as important when you
run VisIt locally, but VisIt may not run properly in client-server mode if it
is not in your default search path on remote machines. If you regularly run
VisIt using the network configurations provided for LLNL computers then VisIt
will have host profiles, which are sets of information that tell VisIt how to
launch its components on a remote computer. The provided host profiles have
special options that tell the remote computer where it can expect to find the
installed version of VisIt so it is not required to be in your path. If you
did not opt to install the provided network configurations or if you are at a
site that requires other network configurations then you will probably not have
host profiles by default and it will be necessary for you to add VisIt to your
path on the remote computer. You can add VisIt to your default search path on
Linux systems by editing the initialization file for your command line shell.

13.1.4. Launch Progress Window

When VisIt launches a compute engine or metadata server, it opens the
Launch Progress Window when the component cannot be launched in under four
seconds. An exception to this rule is that VisIt will always show the
Launch Progress Window when launching a parallel compute engine or any
compute engine on OSX. VisIt’s components frequently launch fast enough
that it is not necessary to show the Launch Progress Window but you will
often see it if you launch compute engines using a batch system.

[image: ../../_images/launchprogress.png]

Fig. 13.4 Launch Progress Window

The Launch Progress Window indicates VisIt is waiting to hear back from the
component being launched on the remote computer and gives you some indication
that VisIt is still alive by animating a set of moving dots representing the
connection from the local computer to the remote computer. The icon used for
the remote computer will vary depending on whether a serial or parallel VisIt
component is being launched. The Launch Progress Window for a parallel
compute engine is shown in Figure 13.4.
The window is visible until the remote compute engine connects back to the
viewer or the connection is cancelled. If you get tired of waiting for a
remote component to launch, you can cancel it by clicking the Cancel
button. Once you cancel the launch of a remote component, you can return to
your VisIt session. Note that if the remote compute is a parallel compute
engine launched via a batch system, the engine will still run when it is
finally scheduled but it will immediately die since VisIt has stopped
listening for it. On heavily saturated batch systems, it might be prudent for
you to manually remove your compute engine job from the queue.

 13.2. Host Profiles

13.2. Host Profiles

When VisIt [https://visit-dav.github.io/visit-website/] launches a component on a remote computer, it looks for something
called a host profile. A host profile contains information that VisIt [https://visit-dav.github.io/visit-website/] uses
to launch components on a remote computer. Host profiles allow you to specify
information like the remote username, the number of processors, the parallel
launch method, etc. You can have multiple launch profiles for any given host,
most often a serial profile and one or more parallel profiles.

13.2.1. Host profiles window

[image: ../../_images/hostprofile.png]

Fig. 13.5 Host profiles window

VisIt [https://visit-dav.github.io/visit-website/] provides a Host profiles window, shown in
Figure 13.5, that you can use to manage
your host profiles. You can open the Host profiles window by choosing
Host profiles from the Options dropdown menu. The
Host profiles window is divided into two main areas. The left
area contains a list of host profiles currently installed, as well as controls
to create, delete, copy and export profiles. The right area contains two
vertical tabs: Remote Profiles, used for installing profiles retrieved
from a remote location; and Machines, which displays all attributes for
the selected host profile. The Remote Profiles tab is useful for
obtaining profiles that were not installed with VisIt [https://visit-dav.github.io/visit-website/]. Machines has
two sections contained in tabs displayed horizontally across the top:
Host Settings and Launch Profiles. The Host Settings tab displays
information for the selected machine, including the nickname, the full host
name, aliases, the username, and connection information. The
Launch Profiles tab displays a list of available profiles in the top
section, and information for the selected launch profile in tabs on the
bottom.

If the Hosts section in the left pane of the Host profiles window
has no hosts listed, you have two options for installing already generated
profiles. The first is to install one or more of the pre-defined host
profiles shipped with VisIt [https://visit-dav.github.io/visit-website/] while the second is to install one or more of
the pre-defined host profiles from the VisIt [https://visit-dav.github.io/visit-website/] repository. See
Installing pre-defined host profiles shipped with VisIt and
Installing pre-defined host profiles from the VisIt repository.

Click Apply when you are finished making changes in this window, and
remember to save your settings (How to Save Settings) before
exiting VisIt [https://visit-dav.github.io/visit-website/] in order for your changes to be available in future sessions of
VisIt [https://visit-dav.github.io/visit-website/].

13.2.1.1. Creating a new host profile

You click the New Host button to create a new host profile.
The host profile will have a default name corresponding to the machine on
which you are running VisIt [https://visit-dav.github.io/visit-website/]. When you change the Host nickname the
new name will be reflected in the Hosts list. See
Setting general options, Managing launch profiles and
Setting parallel options for more information on the available settings.

13.2.1.2. Deleting a host profile

If a host profile is no longer useful, you can click on it in the hosts list
to select it and then click the Delete Host button to delete it.

13.2.1.3. Copying a host profile

To copy a host profile, select the desired source host from the Hosts list,
then click the Copy Host button at the bottom of the Hosts list. A new
host profile called Copy of XXX (where XXX is the name of the host you
chose to copy) will be added to the Hosts list. Select this new host
from the list and modify it’s Host Settings and Launch Profiles
appropriately. Once you change the Host nickname the new name will be
reflected in the Hosts list.

13.2.1.4. Exporting a host profile

The Export Host button is useful for saving a host profile installed on
your machine to share with someone else. Select the host profile you wish to
export, and click the Export Host button. The exported host will be saved
to your user VisIt [https://visit-dav.github.io/visit-website/] directory (~/.visit/hosts on Linux). The name of the host
profile file will start with hosts_, followed by the Host nickname,
where letters are all converted to lower case and blanks are converted to
underscores, followed by “.xml”.

To share the host profile with someone else have them copy the host profile
to their VisIt [https://visit-dav.github.io/visit-website/] directory. It is recommended that you don’t change the name
of the file, but if you do, be aware that VisIt [https://visit-dav.github.io/visit-website/] will only recognize it as
a host profile if it starts with hosts_ of HOSTS_ and ends with
.xml or .XML.

13.2.2. Setting general options

The Host Settings tab allows you to set general attributes for all launch
profiles on the host.

[image: ../../_images/machine_hostsettings.png]

Fig. 13.6 Host Settings tab

13.2.2.1. Host nickname

Change the Host nickname to the name as you would like it to appear in the
Hosts list in the left pane.

13.2.2.2. Remote host name

The Remote host name should be the fully qualified host name (hostname.domain.net).

13.2.2.3. Host name aliases

Some clustered systems have one overall host name but also have names for
the individual compute nodes that comprise the system. The compute nodes
are often named by appending the node number to the host name. For example,
if the clustered system is called cluster, you might be logged into node
cluster023. When you launch a remote component, VisIt [https://visit-dav.github.io/visit-website/] will not find any
host profiles if the host name in the host profiles is: cluster.

To ensure that VisIt [https://visit-dav.github.io/visit-website/] correctly matches a computer’s node name to one of
VisIt [https://visit-dav.github.io/visit-website/]’s host profiles, you should include host name aliases in the host profile
for a clustered system. Host name aliases typically consist of the host name
with different wildcard characters appended to it. Three wildcards are
supported. The ? wildcard character lets any one character replace
it while the * wildcard character lets any character or group of
characters replace it and the # wildcard character lets any numeric
digit replace it. Appropriate host aliases for the previous example would be:
cluster#, cluster## , cluster###, etc. If you need to enter host
name aliases for the host profile, type them into the Host name aliases
text field.

13.2.2.4. Maximum nodes/processors

If the host has a maximum number of nodes and/or processors that can be
allocated, these can be specified by checking the Maximum nodes or
Maximum processors checkboxes and entering a number in the corresponding
text fields.

13.2.2.5. Path to VisIt installation

Most of the host profiles that are installed with VisIt [https://visit-dav.github.io/visit-website/] specify the expected
installation directory for VisIt [https://visit-dav.github.io/visit-website/] so VisIt [https://visit-dav.github.io/visit-website/] does not have to be in your path on
remote computers. Enter the path to VisIt [https://visit-dav.github.io/visit-website/] on the host in the
Path to VisIt installation text field. It should be the full path up-to
but not including the bin directory.

13.2.2.6. Account

The remote user name is the name of the account that you want to use when you
access the remote computer. The remote user name does not have to match your
local user name and it is often the case that your desktop user name will not
match your remote user name. To change the remote user name, type a new user
name into the Username text field.

13.2.2.7. Sharing a compute job

Some computers place restrictions on the number of interactive sessions that
a single user can have on the computer. To allow VisIt [https://visit-dav.github.io/visit-website/] to run on computer
systems that enforce these kinds of restrictions, VisIt [https://visit-dav.github.io/visit-website/] can optionally
force the metadata server and parallel compute engine to share the same job
in the batch system. If you want to make the database server and parallel
compute engine share the same batch job, you can click the
Share batch job with Metadata Server check box.

13.2.2.8. Determining the host name

There are many different network naming schemes and each major operating system
type seems to have its own variant. While being largely compatible, the network
naming schemes sometimes present problems when you attempt to use a computer
that has one idea of what its name is with another computer that may use a
somewhat different network naming scheme. Since VisIt [https://visit-dav.github.io/visit-website/] users are encouraged to
use client-server mode because it provides fast local graphics hardware without
sacrificing computing power, VisIt [https://visit-dav.github.io/visit-website/] must provide a way to reconcile the network
naming schemes when 2 different computer types are used.

Workstations often have a host name that was arbitrarily set when the computer
was installed and that host name has nothing to do with the computer’s network
name, which ultimately resolves to an IP address. This condition is common on
computers running MS Windows though other operating systems can also exhibit
this behavior. When VisIt [https://visit-dav.github.io/visit-website/] launches a component on a remote computer, it passes
information that includes the host name of the local computer so the remote
component will know how to connect back to the local computer. If the local
computer did not supply a valid network name then the remote component will
not be able to connect back to the local computer and VisIt [https://visit-dav.github.io/visit-website/] will wait for the
connection until you click the Cancel button in the
Launch progress window.

By default, VisIt [https://visit-dav.github.io/visit-website/] tunnels data connections through SSH. If you don’t want to
tunnel, or SSH tunneling is not working you can turn it off by unchecking
Tunnel data connections through SSH in the Connection section. If you
want VisIt [https://visit-dav.github.io/visit-website/] to rely on the the name obtained from the local computer, click on
Use local machine name. If you choose the
Parse from SSH_CLIENT environment variable option then VisIt [https://visit-dav.github.io/visit-website/] will not pass
a host name for the local computer but will instead tell the remote computer
to inspect the SSH_CLIENT environment variable to determine the IP address
of the local computer that initiated the connection. This option usually works
if you have a local computer that does not accurately report its host name. If
you don’t trust the output of any implicit scheme for getting the local
computer’s name, you can provide the name of the local computer by typing its
name or IP address into the text field next to the Specify manually radio
button.

13.2.2.9. SSH command

VisIt [https://visit-dav.github.io/visit-website/] uses ssh for its connections to remote computers. On Windows, VisIt [https://visit-dav.github.io/visit-website/]
packages its own putty-based ssh program: qtssh.exe. Regardless of the
system, you can override VisIt [https://visit-dav.github.io/visit-website/]’s SSH by clicking the SSH command checkbox
and entering the full path to the ssh command you want to use in the text box.

13.2.2.10. SSH port

VisIt [https://visit-dav.github.io/visit-website/] uses secure shell (ssh) to launch its components on remote computers.
Secure shell often uses port 22 but if you are attempting to communicate with a
computer that does not use port 22 for ssh then you can specify a port for ssh
by clicking the SSH port check box and then typing a new port number
into the adjacent text field.

In addition to relying on remote computers’ ssh port, VisIt [https://visit-dav.github.io/visit-website/] listens on its
own ports (5600-5605) while launching components. If your desktop computer is
running a firewall that blocks ports 5600-5605 then any remote components that
you launch will be unable to connect back to the viewer running on your local
computer. If you are not able to successfully launch VisIt [https://visit-dav.github.io/visit-website/] components on remote
computers, be sure that you make sure your firewall does not block VisIt [https://visit-dav.github.io/visit-website/]’s
ports. Windows’ default software firewall configurations block VisIt [https://visit-dav.github.io/visit-website/]’s ports so
if you run those software firewall programs, you will have to unblock VisIt [https://visit-dav.github.io/visit-website/]’s
ports if you want to run VisIt [https://visit-dav.github.io/visit-website/] in client-server mode.

13.2.2.11. Gateway

If access to the compute nodes on your remote cluster is controlled by a
gateway computer, then check the Use gateway checkbox, and enter the fully
qualified name of the gateway computer in the text field. In order for VisIt [https://visit-dav.github.io/visit-website/]
to tunnel SSH connections through the gateway computer, passwordless-ssh needs
to be set up from the gateway computer to the hose where you ultimately want
to run VisIt [https://visit-dav.github.io/visit-website/]. See Setting Up Password-less SSH for instructions on how
to do this.

13.2.3. Managing launch profiles

The Launch Profiles tab (Figure 13.7) displays
the launch profiles available for the selected host, generally a serial
profile and one or more parallel profiles. There are controls for creating,
deleting and copying launch profiles as well as tabs for setting the launch
profile attributes.

[image: ../../_images/hostprofile_launchtab.png]

Fig. 13.7 Launch Profiles tab

13.2.3.1. Creating a new launch profile

Click the New Profile button. Give the profile an appropriate name by
filling in the Profile name text box. The new name will be reflected in
the profiles list as soon as it is entered. After filling out all the
necessary attributes, click Apply in the lower left corner of the window
in order to use the new profile immediately. The new profile to be available
in future sessions of VisIt [https://visit-dav.github.io/visit-website/].

13.2.3.2. Deleting a launch profile

Select the profile to be deleted by clicking on its name in the list, then
click the Delete Profile button. If you have made a mistake in deleting
the profile, you must exit VisIt [https://visit-dav.github.io/visit-website/] and restart. Saving your settings will make
the change permanent for future sessions.

13.2.3.3. Activating a launch profile

Only one launch profile can be active for any given host. When VisIt [https://visit-dav.github.io/visit-website/]
launches a remote component, it looks for the active launch profile for the
host where the component is to be launched. The currently active launch
profile is the one with the box to the left of the name checked in the list
of launch profile names. To activate a different launch profile, select it
from the list and click the Apply button. The VCL and the metadata
server use the active launch profile but VisIt [https://visit-dav.github.io/visit-website/] will prompt you for a launch
profile to use before launching a compute engine if you have more than one
launch profile or your only launch profile has parallel options set for the
compute engine.

13.2.3.4. Setting the timeout

The compute engine and metadata server have a timeout mechanism that causes
them to exit if no requests have been made of them for a certain period of
time so they do not run indefinitely if their connection to VisIt [https://visit-dav.github.io/visit-website/]’s viewer
is severed. You can set this period of time, or timeout, by typing in a new
number of minutes into the Timeout text field. You can also increase or
decrease the timeout by clicking on the up and down arrows next to the
Timeout text field.

13.2.3.5. Setting the number of threads

If VisIt [https://visit-dav.github.io/visit-website/] is running in threading mode, the number of threads per task can be
set by typing in the desired number of threads in the
Number of threads per task text field, or by utilizing the up and down
arrows next to the text field.

13.2.3.6. Providing additional command line options

The Launch Profiles tab allows you to provide additional command line
options to the compute engine and metadata server through the
Additional arguments text field. When you provide additional command line
options, you should type them, separated by spaces, into the
Additional arguments text field. Command line options influence how the
compute engine and metadata server are executed. For more information on
VisIt [https://visit-dav.github.io/visit-website/]’s command line options, see Startup Options.

13.2.4. Setting parallel options

[image: ../../_images/parallel.png]

Fig. 13.8 Parallel options

The chief purpose of host profiles is to make launching compute engines easier.
This is even more the case when host profiles are used to launch parallel
compute engines on large computers that often have complex scheduling programs
that determine when parallel jobs can be executed. It is easy to forget how to
use the scheduling programs on a large computer because each scheduling program
requires different arguments. In order to make launching compute engines easy,
VisIt [https://visit-dav.github.io/visit-website/] hides the details of the scheduling program used to launch parallel
compute engines. VisIt [https://visit-dav.github.io/visit-website/] instead allows you to set some common parallel options
and then figures out how to launch the parallel compute engine on the specified
computer using the parallel options specified in the host profile. Furthermore,
once you create a host profile that works for a computer, you rarely need to
modify it.

To enable parallel options open the Parallel tab of the Launch Profiles
tab, and click the Launch parallel engine checkbox.

13.2.4.1. Setting the parallel launch method

The parallel launch method option allows you to specify which launch program
should be used to execute the parallel compute engine. This setting depends on
the computer where you plan to run the compute engine and how the computer is
configured. Some computers have multiple launch programs depending on which
part of the parallel machine you want to use.
Figure 13.9 shows some
common parallel-launch options that VisIt [https://visit-dav.github.io/visit-website/] currently supports.

[image: ../../_images/launch_method_options.png]

Fig. 13.9 Parallel launch method options

13.2.4.2. Setting the partition/pool/queue

Some parallel computers are divided into partitions so that batch processes
might be executed on one part of the computer while interactive processes are
executed on another part of the computer. You can use launch profiles to tell
VisIt [https://visit-dav.github.io/visit-website/] which partition to use when launching the compute engine on systems
that have multiple partitions. To set the partition, check the
Partition/Pool/Queue check box and type a partition name into the text
field.

13.2.4.3. Setting the number of processors

You can set the number of processors by typing a new number of processors into
the Number of processors text field in the Defaults section. When the
number of processors is greater than 1, VisIt [https://visit-dav.github.io/visit-website/] will attempt to run the parallel
version of the compute engine. You can also click on the up and down arrows
next to the text field to increase or decrease the number of processors. If
VisIt [https://visit-dav.github.io/visit-website/] finds a parallel launch profile, you will have the option of changing
the number of processors before the compute engine is actually launched.

13.2.4.4. Setting the number of nodes

The number of nodes refers to the number of compute nodes that you want to
reserve for your parallel job. Each compute node typically contains more than
one processor (often 2, 4, 16) and the number of nodes required is usually the
ceiling of the number of processors divided by the number of processors per
node. It is only necessary to set the number of nodes if you want to use fewer
processors than the number of processors that exist on a compute node. This
option is not available on some computers as it is meant primarily for compute
clusters. To set the number of nodes, check the Number of nodes check
box and type a new number into the text field.

13.2.4.5. Setting the default bank

Some computers, if they are large enough, have scheduling systems that break
up the number of processors into banks, which are usually reserved for
particular projects. Users who contribute to a project take processors from
their default bank of processors. By default, VisIt [https://visit-dav.github.io/visit-website/] uses environment variables
to get your default bank when submitting a parallel job to the batch system.
If you want to override those settings, you can click the Bank/Account
check box to turn it on and then type your desired bank into the text field
next to the check box.

13.2.4.6. Setting the parallel time limit

The parallel time limit is the amount of time given to the scheduling program
to tell it the maximum amount of time, usually in minutes, that your program
will be allowed to run. The parallel time limit is one of the factors that
determines when your compute engine will be run and smaller time limits often
have a greater likelihood of running before jobs with large time limits. To
specify a parallel time limit, click the Time Limit check box and
enter a number of minutes or hours into the text field. If you want to
specify minutes, be sure to append m to the number or append an h
for hours. If you want to specify a timeout of 30 minutes, you would
type: 30m.

13.2.4.7. Specifying a machine file

When using VisIt [https://visit-dav.github.io/visit-website/] with some versions of MPI on some clustered computers, it
may be necessary to specify a machine file, which is a file containing a
list of the compute nodes where the VisIt [https://visit-dav.github.io/visit-website/] compute engine should be executed.
If you want to specify a machine file when you execute VisIt [https://visit-dav.github.io/visit-website/] in parallel
on a cluster that requires a machine file, click on the Machine File
check box and type the name of the machine file that you want to associate
with your host profile into the text field.

13.2.4.8. Specifying constraints

Some machines constrain the processor-to-node ratio. In order to prevent
accidentally requesting nodes/processors outside those constraints, they can be
entered in table form by clicking the Constraints checkbox to enable the
controls. Click Add row to add a new row to the table, and Delete row
to remove a row from the table. For each row, enter number of nodes and
appropriate associated number of processors in appropriate columns. When
the launch engine dialog pops up, users won’t be able to specify node-processor
combinations outside of the constraints.

[image: ../../_images/parallel_launch_constraints.png]

Fig. 13.10 Parallel launch constraints

13.2.5. Advanced host profile options

[image: ../../_images/advancedoptions.png]

Fig. 13.11 Advanced options tab

The Advanced tab
(see Figure 13.11) in the
Launch Profiles tab lets you specify advanced networking options to ensure
that the VisIt [https://visit-dav.github.io/visit-website/] components running on the remote computer use resources
correctly and can connect back to the viewer running on your local workstation.

13.2.5.1. Load balancing

Load balancing refers to how well tasks are distributed among computer
processors. The goal is to make each computer processor have roughly the same
amount of work so they all finish at the same time. VisIt [https://visit-dav.github.io/visit-website/]’s compute engine
supports two forms of load balancing. The first form is static load balancing
where the entire problem is distributed among processors and that distribution
of work never changes. The second form of load balancing is dynamic load
balancing. In dynamic load balancing, the work is redistributed as needed each
time work is done. Idle processors independently ask for work until the entire
task is complete. VisIt [https://visit-dav.github.io/visit-website/] allows you to specify the form of load balancing that
you want to use. You can choose to use static or dynamic load balancing by
clicking the Static or Dynamic radio buttons. There is also a default
setting that uses the most appropriate form of load balancing.

13.2.5.2. Setting up the parallel environment

VisIt [https://visit-dav.github.io/visit-website/] is usually executed by a script called: visit, which sets up the
environment variables required for VisIt [https://visit-dav.github.io/visit-website/] to execute. When the visit script is
told to launch a parallel compute engine, it sets up the environment variables
as it usually does and then invokes an appropriate parallel launch program that
takes care of either spawning the VisIt [https://visit-dav.github.io/visit-website/] parallel compute engine processes or
scheduling them to run in a batch system. When VisIt [https://visit-dav.github.io/visit-website/] is used with some versions
of MPI on some clusters, the parallel launch program does not replicate the
environment
variables that the visit script set up, preventing the VisIt [https://visit-dav.github.io/visit-website/] parallel compute
engine from running. On clusters where the parallel launch program does not
replicate the VisIt [https://visit-dav.github.io/visit-website/] environment variables, VisIt [https://visit-dav.github.io/visit-website/] provides an option to start
each process of the VisIt [https://visit-dav.github.io/visit-website/] compute engine under the visit script. This ensures
that the environment variables that VisIt [https://visit-dav.github.io/visit-website/] requires in order to run are indeed
set up before the parallel compute engine processes are started. To enable this
feature, click on the Use VisIt script to set up parallel environment
check box.

13.2.5.3. Setting launcher arguments

In addition to choosing a launch program, you can also elect to give it
additional command line options to influence how it launches your compute
engine. To give additional command line options to the launch program, click
the Launcher arguments check box and type command line options
into the text field to the right of that check box.

13.2.5.4. Setting sublauncher options

To give additional command line options to the sublauncher program, click
the Sublauncher arguments, Sublauncher pre-mpi command or
Sublauncher post-mpi command check box and type options into the text
field to the right of that check box.

13.2.5.5. Installing pre-defined host profiles shipped with VisIt

The Setup Host Profiles And Configuration window is used to install
pre-defined host profiles that are shipped with VisIt [https://visit-dav.github.io/visit-website/]. It can be accessed
from the Options dropdown. It will list all the pre-defined host
profiles shipped with the installation, listed according to location. From
the list, you can choose one or more locations and all the host profiles
for the selected locations will be installed. However, you will need to exit
and restart VisIt [https://visit-dav.github.io/visit-website/] for them to become available for use. With this window,
you can also specify a default configuration for VisIt [https://visit-dav.github.io/visit-website/] to use. Don’t forget
to click Install before dismissing the window.
(Figure 13.12)

[image: ../../_images/install_remote_profiles_4.png]

Fig. 13.12 The Host Profile Configuration Window

13.2.5.6. Installing pre-defined host profiles from the VisIt repository

The Remote Profiles tab can be used to install pre-defined host
profiles from the VisIt [https://visit-dav.github.io/visit-website/] repository. The advantage to using the VisIt [https://visit-dav.github.io/visit-website/]
repository is that it may have additional host profiles defined after a
particular release of VisIt [https://visit-dav.github.io/visit-website/] was released. To do so, click on the
Remote Profiles vertical tab in the middle of the Host Profiles
window. The top section of the tab allows you to choose the remote location
(currently, only VisIt [https://visit-dav.github.io/visit-website/]’s repository is available).

(Figure 13.13)

[image: ../../_images/install_remote_profiles_1.png]

Fig. 13.13 Remote Profiles tab

If you click the Update button, the list of host profiles available from
the remote location will be displayed.
(Figure 13.14)

[image: ../../_images/install_remote_profiles_2.png]

Fig. 13.14 Remote Profiles tab with updated content

Scroll through the list, clicking on the arrow next to a location to view
the profiles available for that location, then highlight a profile and
click the Import button. (Figure 13.15)
The selected host profile will now show up in the hosts list in the left pane.

[image: ../../_images/install_remote_profiles_3.png]

Fig. 13.15 Remote Profiles tab with host selected for import

It is important to save your settings before exiting VisIt [https://visit-dav.github.io/visit-website/] in order to save
the newly imported host profiles for future sessions.

13.2.6. Engine launch options window

The engine launch options window, shown in
(Figure 13.16), is used to pick a launch
profile to use when there are multiple launch profiles for a host or if
there are any parallel launch profiles. When there is a single serial host
profile or no host profiles, the window is not activated and VisIt [https://visit-dav.github.io/visit-website/] launches
a serial compute engine. The window’s primary purpose is to select a launch
profile and set some parallel options such as the number of processors. This
window is provided as a convenience so host profiles do not have to be
modified each time you want to launch a parallel engine to run with a
different number of processors.

The engine launch options window has a list of launch profiles from which to
choose. The active profile for the host is selected by default though
another profile can be used instead. Once a launch profile is selected, the
parallel options such as the number of processors/nodes, processor count, can
be changed to fine-tune how the compute engine is launched. After making any
changes, click the window’s OK button to launch the compute engine.
Clicking the Cancel button prevents the compute engine from being launched.

[image: ../../_images/optionwindow.png]

Fig. 13.16 Engine launch options window

13.2.6.1. Setting the number of processors

The number of processors determines how many processors are used by VisIt [https://visit-dav.github.io/visit-website/]’s
compute engine. Generally, a higher number of processors yields higher
performance but it depends on the host platform and the database being
visualized. The Num procs text field initially contains the number of
processors used in the active host profile but you can change it by typing a
new number of processors. The number of processors can also be incremented or
decremented by clicking the up/down buttons next to the text field.

13.2.6.2. Setting batch queue options

Many compute environments schedule parallel jobs in batch queues. The engine
launch options window provides a few controls that are useful for batch
queue systems. The first option is the number of nodes which determines the
number of smaller portions of the computer that are allocated to a particular
task. Typically the number of processors is evenly divisible by the number of
nodes but the window allows you to specify the number of nodes such that not
all processors within a node need be active. You can set the number of nodes,
by typing a new number into the Num nodes text field or you can increment
or decrement the number by clicking on the arrow buttons to the right of the
text field. The second option is the bank which is a large collection of nodes
from which nodes can be allocated. To change the bank, you can type a new bank
name into the Bank text field. The final option that the window allows to
be changed is the time limit. The time limit is an important piece of
information to set because it can help to determine when the compute engine is
scheduled to run. A smaller time limit can increase the likelihood that a task
will be scheduled to run sooner than a longer running task. You can change the
time limit by typing a new number of minutes into the Time limit text
field.

13.2.6.3. Setting the machine file

Some compute environments use machine files, text files that contain the names
of the nodes to use for executing a parallel job, when running a parallel job.
If you are running VisIt [https://visit-dav.github.io/visit-website/] in such an environment, the engine launch options
window provides a text field called Machine file. The Machine file
text field allows you to enter the name of a new machine file if you want to
override which machine file is used for the selected host profile.

 14. Compute Engines

14. Compute Engines

VisIt can have many compute engines running at the same time. Much of the time
the compute engines are those that are installed with VisIt but on occasion,
simulation codes may be instrumented to act as VisIt compute engines capable of
performing visualization operations on simulation data as it is created. When a
simulation is used as a VisIt compute engine, VisIt can access data directly
from the simulation without the need to translate data into another format or
write it out to disk. When simulations are instrumented to become VisIt compute
engines, they have all of the capabilities of a standard VisIt compute engine
and more. Specifically, simulations can accept additional simulation-defined
control commands that direct them to perform actions such as writing a
restart file. Since simulations offer extra capabilities over a normal VisIt
compute engine, VisIt provides different windows in order to manage them. To
manage compute engines and check on progress, VisIt provides a
Compute Engine Window. VisIt provides the Simulation Window to
manage simulations, display their progress, and provide extra controls for the
simulations.

14.1. Compute Engines Window

[image: ../../_images/enginewindow.png]

Fig. 14.1 Compute Engines Window

You can open the Compute Engines Window, shown in
Figure 14.1, by selecting the
Compute engines option from the Main Window’s File menu. The main
purpose of the Compute Engines Window is to display the progress of a
compute engine as it completes a task. The window has two status bars. The top
status bar indicates the progress of the overall task. The
bottom status bar indicates that compute engine’s progress through the current
processing stage. The window also provides buttons for interrupting and closing
compute engines, as well as an Engine Information Area that indicates how
many processors the engine uses and its style of load balancing.

14.1.1. Picking a compute engine

The Compute Engines Window has the concept of an active compute engine.
Only the active compute engine’s progress is displayed in the status bars.
The active compute engine is also the engine that is interrupted or closed.
To pick a new active compute engine, choose a compute engine name from the
Engine menu. The Engine menu contains the names of all compute engines
that VisIt is running.

14.1.2. Interrupting a compute engine

Some operations in VisIt may take a long time to complete so most computations
are broken down into stages. In the event that you do not want to wait for an
operation to complete, or if you realize that you made a mistake, you can
interrupt a compute engine. When you click the Interrupt engine button
a signal is sent to the compute engine that tells it to stop its work.
The compute engine handles the interrupt requests after it
completes the current stage so there can be a small delay before the compute
engine is interrupted. Any plots being generated when a compute engine is
interrupted are sent into the error state and are listed in red in the
Plot list until they are regenerated.

14.1.3. Closing a compute engine

[image: ../../_images/reallyclose.png]

Fig. 14.2 Close compute engine confirmation dialog

You can close a compute engine when you no longer need it by clicking the
Close engine button. The compute engine is closed only after you click
Yes in a confirmation dialog window.

14.1.4. Clearing a compute engine’s cache

As the compute engine processes data, it caches calculation results in case
they are needed again. This includes meshes and
variables that have been read from databases as well as the results from
more complicated calculations involving expressions and operators. VisIt’s
compute engine periodically clears the cache of items that it no longer needs
but if you want to explicitly clear the cache to free up more memory, you can
click the Clear cache button in the Compute Engine Window.

14.2. Simulation Window

[image: ../../_images/simulationwindow.png]

Fig. 14.3 Simulation Window

You can open the Simulation Window, shown in
Figure 14.3, by selecting the
Simulations option from the Main Window’s File menu. The main purpose
of the Simulation Window is to display the progress of a simulation that is
acting as a VisIt compute engine as it completes its visualization tasks. The
Simulation Window also provides buttons that direct the simulation to
perform simulation-defined commands such as saving out a restart dump. The list
of commands depends on the functionality that the simulation exposes
to VisIt when instrumented.

The Simulation Window is divided up into two main areas. The top of the
window, called the Simulation attributes area, displays various attributes
of the simulation such as its name, when it was started, the name of the
computer where it is running, the number of processors, etc. Below the
Simulation attributes area, you will find controls that are also present in
the Compute Engines Window such as the Interrupt button and
Clear cache button. The Disconnect button is specific to the
Simulation Window and when you click it, VisIt will detach from the running
simulation, allowing it to continue its calculation. You can reconnect to
the simulation later to check on the its progress or create more visualizations.

Below the Simulation attributes area, you can access Commands,
Messages, and Strip Charts. The Commands tab displays buttons for
simulation-defined commands. When a simulation is instrumented to act as
a VisIt compute engine, it publishes a list of commands that it will accept
when connected to VisIt. This allows the simulation to provide hooks
that allow the user to tell the simulation to execute certain commands
like writing a restart file. Depending on the complexity of the commands
exposed, VisIt could ultimately be used to steer the simulation as well as
visualize its results. The Messages tab displays messages from the
simulation. The Strip Charts tab shows traces of specific quantities
published from the simulation to VisIt.

 15. Command Window

15. Command Window

In this section, we describe the Command Window which provides a convenient
interface from the GUI to VisIt [https://visit-dav.github.io/visit-website/]’s
Python command-line interface.

	15.1. VisIt’s Python Command Line via the Command Window
	15.1.1. Saving the Command Window’s Python scripts

	15.1.2. Clearing a Python script from a tab

	15.1.3. Using the GUI and CLI to design a script

	15.2. Macros
	15.2.1. Recording a macro

	15.3. VisIt Run Commands (RC) File

 15.1. VisIt’s Python Command Line via the Command Window

15.1. VisIt’s Python Command Line via the Command Window

[image: ../../_images/commandwindow.png]

Fig. 15.1 Command Window

It is possible for VisIt’s GUI and Python Interface to share the same viewer
component at runtime. When you invoke visit at the command line, VisIt’s GUI is
launched. When you invoke visit -cli at the command line, VisIt’s CLI
(Python interface) is launched. If you want to use both components
simultaneously then you can use VisIt [https://visit-dav.github.io/visit-website/]’s Command Window . The
Command Window can be opened by clicking on the Command
menu option from the Controls menu. The Command Window
consists of a set of eight tabs in which you can type Python scripts. When
you type a Python script into one of the tabs, you can then click the tab’s
Execute button to make VisIt [https://visit-dav.github.io/visit-website/] try and interpret your Python code. If VisIt [https://visit-dav.github.io/visit-website/]
detects that it has no Python interpreting service available, it will launch
the CLI (connected to the same viewer component) and then tell the CLI to
execute your Python code. Note that the Command Window is just for
editing Python scripts. Any output that results from the Python code’s
execution will be displayed in the CLI program window
(see Figure 15.1).

15.1.1. Saving the Command Window’s Python scripts

The Command Window is meant to be a sandbox for experimenting with small
Python scripts that help you visualize your data. You will often hit upon small
scripts that can be used over and over. The scripts in each of the eight tabs
in the Command Window can be saved for future VisIt [https://visit-dav.github.io/visit-website/] sessions if you save
your settings. Once you save your settings, any Python scripts that are present
in the Command Window are preserved for future use.

15.1.2. Clearing a Python script from a tab

If a Python script in one of the Command Window’s tabs is no longer useful
then you can click that tab’s Clear button to clear out the contents of
the tab so you can begin creating a new script in that tab. If you want VisIt [https://visit-dav.github.io/visit-website/]
to permanently delete the script from the tab then you must save your settings
after clicking the Clear 3button.

15.1.3. Using the GUI and CLI to design a script

Writing a Python script that performs visualization from scratch can be
difficult. The process of setting up a complex visualization can be simplified
by using both the GUI and the CLI at the same time. For example, you can use
VisIt [https://visit-dav.github.io/visit-website/]’s GUI to set up the plots that you initially want to visualize and then
you can save out a session file that captures that setup. Next, you can open
a text editor and create a new Python script. The first line of your Python
script can use VisIt [https://visit-dav.github.io/visit-website/]’s RestoreSession command to restore the session file
that you set up with the GUI from within the Python scripting environment.
For more information on functions and objects available in VisIt [https://visit-dav.github.io/visit-website/]’s Python
interface, see the VisIt_ Python Interface manual. After using the
RestoreSession function to set VisIt [https://visit-dav.github.io/visit-website/] situated with all of the right plots,
you can proceed with more advanced Python scripting to alter the view or move
slice planes, etc. Once you have completed your Python script in a text editor,
you can pasted it into the Command Window to test it or you can pass it
along to VisIt [https://visit-dav.github.io/visit-website/]’s command line movie tools to make a movie.

 15.2. Macros

15.2. Macros

VisIt’s Command window contains controls that allow you to record most
GUI actions and view Python scripting code needed to accomplish those actions.
The Command window provides 8 conventional tabs that serve as
destinations for recorded Python coding. In addition to those 8 tabs, there is
a special tab called Macros that shows the contents of the visitrc
file. If you record Python code to the Macros tab then that Python code
is turned into a function that can be called in response to a button click
from a button in the Macros window.

15.2.1. Recording a macro

Here are the steps involved in recording a macro.

	Open the Command window and choose to Store commands in Macros.

[image: ../../_images/commandwindow.png]

Fig. 15.2 Command Window Macros Tab

	Click the Record button

	Perform any GUI actions that you want to record to a single button click.

	Click the Stop button in the Command window.

	Enter the name of a Python function in which to store your set of recorded commands.

[image: ../../_images/macrorecord1.png]

Fig. 15.3 Setting the Python funtion name

	Enter the text for the macro button as it will appear in the Macro window.

[image: ../../_images/macrorecord2.png]

Fig. 15.4 Setting the Macro Button text

	Now, the Macros tab will contain a function for your recorded commands and
it will call the RegisterMacro function from the VisIt Python Interface to
associate your Python function with the named button. Note: Remembe that you
can edit the recorded Python code to suit your needs. You can generalize the code
so it can, for example, operate on the active database instead of a specific
database. The state information that you need to generalize can often be
returned by the GetGlobalAttributes(), GetWindowInformation(), or GetMetaData() functions.

	Click the Update macros button to make VisIt update the buttons in the
Macros window so it will contain your new button.

[image: ../../_images/macrorecord3.png]

Fig. 15.5 The final Macro Button that is produced

	No further steps need to be taken to save your macro since the macro definitions in
the Macros tab of the Command window will be automatically saved to your
visitrc file.

	Click the new button in the Macros window whenever you want to replay the
recorded set of commands.

 15.3. VisIt Run Commands (RC) File

15.3. VisIt Run Commands (RC) File

VisIt [https://visit-dav.github.io/visit-website/] supports a run commands [https://en.wikipedia.org/wiki/Run_commands]
or an rc file called the visitrc file which is typically
located in ~/.visit. The visitrc file
is a Python source code file that contains Python scripting commands that VisIt [https://visit-dav.github.io/visit-website/]
executes whenever the CLI is started either from the shell or from within the
GUI through the Command Window.

The visitrc file is most often used to define Python functions associated
with VisIt [https://visit-dav.github.io/visit-website/] macros. However, users can use the file to
run whatever Python code they wish during VisIt [https://visit-dav.github.io/visit-website/] CLI startup. This could include
opening a frequently used database, defining a set of frequently used expressions,
etc. See the Python command-line interface manual for more
information about the commands available in VisIt [https://visit-dav.github.io/visit-website/]’s Python interface.

 16. Preferences

16. Preferences

In this chapter, we will discuss how to set and save user preferences.
User preferences affect the default values for plots and operators as well
as window properties like the background color. This chapter reveals where
those settings are saved and how to modify them.

	16.1. How VisIt Uses Preferences

	16.2. Setting Default Values

	16.3. How to Save Settings

	16.4. Appearance Window
	16.4.1. Changing GUI colors

	16.4.2. Changing GUI Style

	16.4.3. Changing GUI Orientation

	16.5. Plugin Manager Window
	16.5.1. Enabling and Disabling Plugins

	16.6. Rendering Options Window
	16.6.1. Basic Rendering Options

	16.6.2. Advanced Rendering Options

	16.6.3. Rendering Information

	16.7. Preferences Window
	16.7.1. Copying Plots On First Reference

	16.7.2. Posting Windows By Default

	16.7.3. Reading Accurate Cycles and Times From Databases

	16.7.4. File Panel Properties

	16.8. File Locations
	16.8.1. Factors Effecting Prescribed File Location and Names

	16.8.2. Files in VUSER_HOME

	16.8.3. Files In Other Locations

	16.8.4. Adjusting Configuration

 16.1. How VisIt Uses Preferences

16.1. How VisIt [https://visit-dav.github.io/visit-website/] Uses Preferences

VisIt [https://visit-dav.github.io/visit-website/]’s preferences are saved into two levels of XML files that are stored
in the user’s home directory and in the global VisIt [https://visit-dav.github.io/visit-website/] installation directory.
The global preferences are read first and they allow the system administrator
to set global preferences for all users. After VisIt [https://visit-dav.github.io/visit-website/] reads the global
preferences, it reads the preferences file for the current user. These
settings include things like the color of the GUI and the initial directory
from which to read files. Most of the attributes that are settable in VisIt [https://visit-dav.github.io/visit-website/]
can be saved to the preferences files for future VisIt [https://visit-dav.github.io/visit-website/] sessions.

 16.2. Setting Default Values

16.2. Setting Default Values

[image: ../../_images/MakeDefault.png]

Fig. 16.1 The make default button

Some windows have a button called Make default that sets the default
attributes for the window. This is typically the case for plot and operator
attribute windows. Other windows that have a Make default button include
the Annotation, Lighting, Material Reconstruction Options,
Mesh Management Options, Pick, QueryOverTime and Interactors
windows. Setting the attributes with the Apply button sets the attributes
for the active plots or operators. Setting the default attributes sets the
attributes for future plots and operators. When saving the settings using
Save Settings from the Options menu, the default attributes are
saved. An example of a Make default button is shown in
Figure 16.1.

 16.3. How to Save Settings

16.3. How to Save Settings

To save preferences in VisIt [https://visit-dav.github.io/visit-website/], select Save settings from the Main
window’s Options menu. When VisIt [https://visit-dav.github.io/visit-website/] saves the current settings to the
users preferences file they are used to set the initial state the next
time the user runs VisIt [https://visit-dav.github.io/visit-website/]. VisIt [https://visit-dav.github.io/visit-website/] does not automatically save settings
when changes are made to the default attributes for plots, operators, or
various control windows. For windows that only have current attributes
(windows without a Make default button), the current attributes are
saved. For windows that have current and default attributes (windows with
a Make default button), the default attributes are saved.

To save the entire state of VisIt [https://visit-dav.github.io/visit-website/], which includes things such as the plots
in the window and the operators applied to the plots for each visualization
window, select either Save session or Save session as from the Main
window’s File menu. When using Save session, if a session has already
been restored or saved, VisIt [https://visit-dav.github.io/visit-website/] will overwrite the existing session file. If
a session has not already been restored or saved, VisIt [https://visit-dav.github.io/visit-website/] will bring up a
dialog window that will allow the user to specify the location and name of
the session file. When using Save session as VisIt [https://visit-dav.github.io/visit-website/] will always bring
up a dialog window that will allow the user to specify the location and name
of the session file and prompt the user to confirm before overwriting an
existing session file.

VisIt [https://visit-dav.github.io/visit-website/] saves two preference files, the first of which stores preferences
for VisIt [https://visit-dav.github.io/visit-website/]’s GUI while the second file stores preferences for VisIt [https://visit-dav.github.io/visit-website/]’s
state. When running VisIt [https://visit-dav.github.io/visit-website/] on UNIX and MacOS X systems, the preference files
are called: guiconfig and config and they are saved in the .visit
directory in the users home directory. The Windows version of the .visit
directory is %USERPROFILE%\Documents\VisIt, which may be something like:
C:\Users\<your-user-name>\Documents\VisIt.

To run VisIt [https://visit-dav.github.io/visit-website/] without reading the saved settings, add -noconfig to the
command line when running VisIt [https://visit-dav.github.io/visit-website/]. The -noconfig argument is often
useful when running an updated version of VisIt [https://visit-dav.github.io/visit-website/] that is incompatible with
the saved settings. VisIt [https://visit-dav.github.io/visit-website/] settings are usually compatible between different
versions but this is not always the case and some users have had trouble
on occasion when transitioning to a newer version. If VisIt [https://visit-dav.github.io/visit-website/] has stability
problems when it starts up after upgrading to a newer version, add the
-noconfig option to the command line and save the settings to write over
any older preference files.

 16.4. Appearance Window

16.4. Appearance Window

The Appearance window is responsible for setting preferences for
the appearance of the GUI windows. The Appearance window shown in
Figure 16.2 is brought up by selecting
Appearance from the main window’s Options menu. It can be used
to set the GUI colors as well as other attributes such as the style and
orientation. In order to change any of the appearance attributes, the
user must first uncheck the Use default system appearance check box.

[image: ../../_images/Appearance.png]

Fig. 16.2 The appearance window

16.4.1. Changing GUI colors

To change the GUI colors using the Appearance window, click on the color
button next to the color to be changed. To change the background color (the
color of the GUI’s windows), click on the GUI background color button
and select a new color from the Popup color menu. To change the
foreground color (the color used to draw text), click the GUI foreground
color button and select a new color from the Popup color menu.

VisIt [https://visit-dav.github.io/visit-website/] will issue an error message if the colors chosen for both the
background and foreground colors are close enough that they cannot be
distinguished so that the user does not accidentally get into a situation
where the controls in VisIt [https://visit-dav.github.io/visit-website/]’s GUI become too difficult to read. Some
application styles, such as Aqua, do not use the background color so
setting the background has no effect unless an application style like
Windows is chosen, which does use the background color.

16.4.2. Changing GUI Style

VisIt [https://visit-dav.github.io/visit-website/]’s GUI adapts its look and feel, or application style, to the
platform on which it is running. It is also possible to make the GUI use
other application styles, although for the most part they look fairly
similar.

To change the style select a new style from the GUI style menu. It is
frequently necessary to change the GUI font by either changing the font
description in the GUI font text box or selecting a new font from the
font selection window, which is brought up by clicking on the …
button to the right of the GUI font text field.

16.4.3. Changing GUI Orientation

By default, VisIt’s Main window appears as a vertical window to the
left of the visualization windows. The default configuration often makes
the best use of the display with wide aspect ratio screens. It has become
very rare to encounter screens where the horizontal orientation makes
better use of the display, so it is not recommended and will most likely
be deprecated in future versions of VisIt [https://visit-dav.github.io/visit-website/].

 16.5. Plugin Manager Window

16.5. Plugin Manager Window

The Plugin Manager window , shown in
Figure 16.3, allows the user to see which
plugins are available for plots, operators, and databases. Not all plugins
have to be loaded, in fact, many operator plugins are not loaded by default.
The Plugin Manager window allows the user to specify which plugins are
loaded when VisIt [https://visit-dav.github.io/visit-website/] is started. The Plugin Manager window is brought up by
selecting Plugin Manager from the Main window’s Options menu.

[image: ../../_images/PluginManager.png]

Fig. 16.3 The plugin manager window

16.5.1. Enabling and Disabling Plugins

All of VisIt [https://visit-dav.github.io/visit-website/]’s plots, operators, and database readers are implemented as
plugins that are loaded when VisIt [https://visit-dav.github.io/visit-website/] first starts up. Some plugins are not
likely to be used by most people so they should not be loaded. The
Plugin Manager window provides a mechanism to turn plugins on and off.
The window has three tabs: Plots , Operators , and Databases.
Each tab displays a list of plugins that can be loaded by VisIt [https://visit-dav.github.io/visit-website/]. If a
plugin is enabled, it has a check by its name.

Plugins can be turned on and off by checking or unchecking the check box
next to a plugin’s name. Plugins are loaded at startup, so enabling or
disabling plugins will not take effect unless the preferences are saved
and VisIt [https://visit-dav.github.io/visit-website/] is restarted.

If plots or operators are disabled, they will not appear in the Add,
Operator, PlotAtts and OpAtts menus. Similarly, disabled
databases will not show up in the list of Open file type as menu in
the File open window.

 16.6. Rendering Options Window

16.6. Rendering Options Window

The Rendering options window (shown in
Figure 16.4) contains controls
that set global options that affect how the plots in the active visualization
window are drawn, as well as, look at information related to the performance
of the graphics hardware VisIt [https://visit-dav.github.io/visit-website/] is running on. The Rendering options
window can be brought up by selecting Rendering from the Main window’s
Preferences menu. The Rendering options window contains three tabs.
The Basic tab contains basic rendering options, the Advanced tab
contains advanced rendering options, and the Information tab contains
information about the rendering performance of the graphics hardware VisIt [https://visit-dav.github.io/visit-website/]
is running on.

16.6.1. Basic Rendering Options

The Antialiasing, and Specular lighting options are covered in the
Making It Pretty chapter.

[image: ../../_images/RenderingOptionsBasic.png]

Fig. 16.4 The basic rendering options

16.6.1.1. Changing surface representations

Sometimes when visualizing large or complex databases, drawing plots with
all of their shaded surfaces can take too long to be interactive, even for
fast graphics hardware. To combat this problem, VisIt [https://visit-dav.github.io/visit-website/] provides an option
to view all of the plots in the visualization window as wireframe outlines
or point clouds instead of as shaded surfaces (see
Figure 16.5). While being less
visually informative, plots drawn as wireframe outlines or as clouds of
points can still be useful for visualizations since it is possible to do
the setup work like setting the view before switching back to a surface
representation that is more costly to draw. To change the surface
representation used to draw plots click on either the Surfaces,
Wireframe or Points radio buttons below the Draw objects as
label.

[image: ../../_images/SurfaceRepresentations.png]

Fig. 16.5 The different surface representations

16.6.1.2. Using display lists

VisIt [https://visit-dav.github.io/visit-website/] benefits from the use of hardware accelerated graphics and one of the
concepts central to hardware accelerated graphics is the display list. A
display list is a sequence of simple graphics commands that are stored in
a computer’s graphics hardware so the hardware can draw the object described
by the display list several times more quickly than it could if the graphics
commands were issued directly. VisIt [https://visit-dav.github.io/visit-website/] tries to make maximum use of display
lists when necessary so it can draw plots as fast as possible.

By default, VisIt [https://visit-dav.github.io/visit-website/] decides when to and when not to use display lists.
Typically, when running VisIt [https://visit-dav.github.io/visit-website/] on a local workstation with plots that result
in fewer than a couple million graphics primitives, VisIt [https://visit-dav.github.io/visit-website/] does not use
display lists because the cost of creating them is more expensive than just
drawing the graphics primitives without display lists. When running on a
Unix version of VisIt [https://visit-dav.github.io/visit-website/] on a remote computer and displaying the results
back to a workstation using an X-server, it is almost always advantageous
to create display lists for plot geometry. Without display lists, VisIt [https://visit-dav.github.io/visit-website/]
must transmit the plot geometry over the network to the X-server every time
it renders an image. VisIt [https://visit-dav.github.io/visit-website/] can be set to either use or not use display
lists all the time. To change the way VisIt [https://visit-dav.github.io/visit-website/] uses display lists click on
either the Auto, Always or Never radio buttons below the
Use display lists label.

16.6.1.3. Stereo images

Stereo images, which are composites of left and right eye images, can
convey additional depth information that cannot be expressed by images
that are generated using a single eye point. VisIt [https://visit-dav.github.io/visit-website/] provides four forms
of stereo images: red/blue, red/green, interlace, and crystal eyes. A
red/blue stereo image (see Figure 16.6) is
similar to frames from early 3D movies in that it appears stereo only
when using red/blue stereo glasses. Unfortunately, red/blue stereo images
are not very useful for visualization because colors are lost since most
of the color ends up in the magenta range when the red and blue color
channels are merged. Red/green stereo suffers a similar color loss. Interlaced
images alternate lines in the image with left and right eye views so that
squinting makes the image look somewhat 3D. VisIt [https://visit-dav.github.io/visit-website/]’s crystal eyes option
requires the use of special virtual reality goggles for images to appear
to be 3D but this option is by far the best since it allows interactive
frame rates with images that really appear to stand out from the computer
monitor. VisIt [https://visit-dav.github.io/visit-website/] does not use stereo imaging by default since it makes
images draw slower because an image must be drawn for both the left eye
and the right eye. To enable stereo images, check the Stereo check
box. To change the type of stereo images generated, click on either the
Red/Blue, Interlace, Crystal Eyes or Red/Green radio boxes
under the Stereo check box.

[image: ../../_images/Stereo.png]

Fig. 16.6 Some various stereo image types

16.6.2. Advanced Rendering Options

The Shadows, and Depth Cueing options are covered in the
Making It Pretty chapter.

[image: ../../_images/RenderingOptionsAdvanced.png]

Fig. 16.7 The advanced rendering options

16.6.2.1. Scalable rendering

VisIt [https://visit-dav.github.io/visit-website/] typically uses graphics hardware on the local computer to very
quickly draw plots once they have been generated by the compute engine.
This becomes impractical for very large databases because the amount of
memory needed to store the graphics commands that draw the plots quickly
exceeds the amount of memory in the graphics hardware. Large sets of
graphics commands can also degrade performance when they must be shipped
over slow networks from the compute engine to the VisIt [https://visit-dav.github.io/visit-website/]’s viewer. VisIt [https://visit-dav.github.io/visit-website/]
provides a scalable rendering option that can improve both of these
situations by creating the actual plot images, in parallel, on the compute
engine, compressing them, and then transmitting only an image to the
viewer where the image can be displayed.

Scalable rendering can be orders of magnitude faster for large databases
than VisIt [https://visit-dav.github.io/visit-website/]’s conventional image drawing strategy because large databases
are typically processed using a parallel compute engine. When using scalable
rendering with a parallel compute engine, VisIt [https://visit-dav.github.io/visit-website/] is able to draw small
pieces of the plot on each processor in parallel and then glue the image
together before sending it to the viewer to be displayed. Not only has the
image likely been created faster, but the size of the image is usually on
the order of a megabyte instead of the tens or hundreds of megabytes needed
to transmit graphics commands, which results in faster transmission of the
image to the viewer. The drawback of scalable rendering is that it is
usually not as interactive as graphics hardware because each time the view
is changed or some other change is made to the plots, the image must be
resent to the viewer over the network.

VisIt [https://visit-dav.github.io/visit-website/] can automatically determine when to stop sending geometry to the
viewer in favor of sending scalably rendered images. The scalable rendering
threshold determines when VisIt [https://visit-dav.github.io/visit-website/] switches between sending geometry and
doing scalable rendering. The threshold is based on the number of polygons
to be rendered. The scalable rendering threshold can be changed by entering
a new number of polygons into the When polygon count exceeds spin box.
The number is specified in thousands of polygons.

It is also possible to have VisIt [https://visit-dav.github.io/visit-website/] always or never use scalable rendering.
To change the scalable rendering mode, click on either the Auto,
Always or Never radio boxes under the Use scalable rendering
label.

16.6.3. Rendering Information

[image: ../../_images/RenderingOptionsInformation.png]

Fig. 16.8 The rendering information

16.6.3.1. Scalable rendering

The scalable rendering indicates if the compute engine used scalable
rendering to render the image displayed in the viewer. The use of scalable
rendering is indicated next to the Use Scalable Rendering: label.

16.6.3.2. Frames per second

The frames per second refers to the number of times that VisIt [https://visit-dav.github.io/visit-website/] can draw
the plots in the visualization window in the course of a second. VisIt [https://visit-dav.github.io/visit-website/]
displays the minimum, average, and maximum frame rates achieved during the
last draw operation, like rotating the image with the mouse. They are
displayed next to the Frames per second: label. Some actions that
force a redraw do not cause the information to update. An example of this
is resizing the visualization window. To make VisIt [https://visit-dav.github.io/visit-website/] update the frame rate
information after each time it draws the plots in the visualization window,
check the Query after each render check box.

16.6.3.3. Polygon count

The polygon count refers to the number of polygons used to represent the
plots in the visualization window. VisIt [https://visit-dav.github.io/visit-website/] displays the polygon count next
to the Approximate polygon count: label.

16.6.3.4. Plot extents

The plot extents are the minimum and maximum locations of the plot in each
spatial dimension. The plot extents are the smallest bounding box that can
contain the plots in the visualization window. VisIt [https://visit-dav.github.io/visit-website/] displays the plot
extents for each dimension next to the X Extents:, Y Extents: and
Z Extents: labels.
.

 16.7. Preferences Window

16.7. Preferences Window

The Preferences window, shown in
Figure 16.9, contains controls that allow
setting global options that influence VisIt [https://visit-dav.github.io/visit-website/]’s behavior. The General tab
contains a collection of miscellaneous options. This is followed by options
that are grouped by functionality. The groups are contained in the
Database, Session file and File panel tabs.

[image: ../../_images/Preferences.png]

Fig. 16.9 The preferences window

16.7.1. Copying Plots On First Reference

The Clone windows on first reference option clones all attributes of
the active window to a new window when a window is made active for the
first time. To control this behavior check or uncheck the
Clone window on first reference check box.

16.7.2. Posting Windows By Default

When a postable window, such as a plot attributes window is brought up,
the window manager is free to show the window wherever it likes. When
using VisIt [https://visit-dav.github.io/visit-website/] on a large display where the windows might pop up very
far away from VisIt [https://visit-dav.github.io/visit-website/]’s Main window, it is sometimes convenient to
make sure that windows that can be posted to the Notepad area are
initially posted to the Notepad area instead of popping up wherever
the window manager puts them. To make postable windows post to the
Notepad area by default when they are shown, check the
Post windows when shown check box.

16.7.3. Reading Accurate Cycles and Times From Databases

Many of the file formats that VisIt [https://visit-dav.github.io/visit-website/] reads contain a single time state,
making accurate cycles and times unavailable in VisIt [https://visit-dav.github.io/visit-website/]’s metadata for
all but the open time state. To get accurate times and cycles for these
types of files, VisIt [https://visit-dav.github.io/visit-website/] would have to open each file in the database,
which can be a costly operation. VisIt [https://visit-dav.github.io/visit-website/] does not go to this extra effort
unless Try harder to get accurate cycles/times option is enabled.
This option allows VisIt [https://visit-dav.github.io/visit-website/] to create meaningful cycle or time-based
database correlations for groups of single time state databases. Note
that databases that are already open will need to be reopened in order
for VisIt to retrieve updated cycles and times.

16.7.4. File Panel Properties

The File panel is a deprecated feature that will be removed in a
future release of VisIt [https://visit-dav.github.io/visit-website/]. The File panel is enabled by checking the
Show selected files check box. It is not recommended for use.

 16.8. File Locations

16.8. File Locations

VisIt [https://visit-dav.github.io/visit-website/] manages various files associated with its operation. In most cases where
VisIt [https://visit-dav.github.io/visit-website/] saves or loads data from files, the user is presented with a file browser
dialog and can explicitly choose arbitrary locations on the file system to look
for or store files. However, this is not universally true. The locations and
names of some files are prescribed. In this section we provide some additional
details about various file locations and names involved with the operation of
VisIt [https://visit-dav.github.io/visit-website/].

16.8.1. Factors Effecting Prescribed File Location and Names

To complicate matters, the prescribed location
of these files depends on a few different factors including

	Which platform is running VisIt [https://visit-dav.github.io/visit-website/].

	How VisIt [https://visit-dav.github.io/visit-website/] was launched.

	Whether VisIt [https://visit-dav.github.io/visit-website/] is running in
client/server mode.

16.8.1.1. The Platform and the User’s Home Directory

Typically, on UNIX and OSX systems, prescribed configuration files
are stored in ~/.visit whereas on Windows systems, they are, by default, in
%USERPROFILE%\Documents\VisIt, which may be something like
C:\Users\<user-name>\Documents\VisIt. Furthermore, on Windows, Visit [https://visit-dav.github.io/visit-website/] honors
the CSIDL_PERSONAL and CSIDL_MYDOCUMENTS
CSIDL environment variables [https://docs.microsoft.com/en-us/windows/win32/shell/csidl].
Depending on the how the system is configured, these might actually resolve to a
networked drive, but most commonly, to the values described previously. Finally,
Windows users can also set the VISITUSERHOME environment variable to point
to whatever location they desire, and VisIt [https://visit-dav.github.io/visit-website/] will use that location instead.
For the rest of this section, we use the symbol VUSER_HOME as a way to refer to
whatever this location happens to be on whatever platform VisIt [https://visit-dav.github.io/visit-website/] is running.

16.8.1.2. The Launch Method and the Current Working Directory

The launch method effects what VisIt [https://visit-dav.github.io/visit-website/] uses as the
current working directory [https://en.wikipedia.org/wiki/Working_directory]
or CWD.
On Windows and OSX it is most common to start VisIt [https://visit-dav.github.io/visit-website/] by clicking an icon. In these
cases, VisIt [https://visit-dav.github.io/visit-website/] uses the user’s $HOME or login directory as the current working
directory.

However, when VisIt [https://visit-dav.github.io/visit-website/] is started by typing a command-line at a shell terminal
prompt, then VisIt [https://visit-dav.github.io/visit-website/] uses whatever that shell’s CWD is at the time of
launch.

16.8.1.3. Client/Server Operation

When running VisIt in client/server mode,
the user will need to be aware of what VisIt [https://visit-dav.github.io/visit-website/] uses as VUSER_HOME and CWD
on both the client and the server. These cases are pointed out in the
descriptions below.

16.8.2. Files in VUSER_HOME

Most of the files associated with VisIt [https://visit-dav.github.io/visit-website/] configuration are managed in
in VUSER_HOME. When running in client/server, it is the configuration files
on the local client that effect behavior. This means it is always the
files on the local machine and not the remote system that effect behavior.
Any configuration files that might also be on the remote server do not play a
role in effecting behavior in client/server mode.

16.8.2.1. Settings/Preferences File

	Location and file name: VUSER_HOME/config

	Purpose: Holds user settings from Preferences Window
plus numerous other settings such as default attributes for operators and plots,
default database read options, default color tables, as well as the
enabled/disabled state of various plot, operator and database plugins.

	Written: When user saves settings.

	Read: On VisIt [https://visit-dav.github.io/visit-website/] startup but this can be overridden by the -noconfig
command-line startup option.

	Format: ASCII XML [https://en.wikipedia.org/wiki/XML]

16.8.2.2. GUI Configuration File

	Location and file name: VUSER_HOME/guiconfig

	Purpose: Holds positions and sizes of various GUI windows. Also holds the list of
recently used paths to open databases.

	Otherwise operates identically to VUSER_HOME/config.

16.8.2.3. Host Profile Files

	Location and file name(s): VUSER_HOME/hosts/host_<site-name>_<resource-name>.xml
where <site-name> is something like ornl, llnl, anl etc. and
<resource-name> is a machine name such as summit, sierra, theta.

	Purpose: Stores information on how to connect to and launch jobs on a specific
compute resource. In many cases, there are separate sets of host profile files
for all the compute resources at a commonly used site such as LLNL CZ or RZ,
ANL, ORNL, etc. Often sites will post VisIt [https://visit-dav.github.io/visit-website/] host profile files in places for
users to easily find and install them. Installing them is just a matter of
copying them to VUSER_HOME. In addition, updated profiles can be downloaded
and installed automatically by VisIt [https://visit-dav.github.io/visit-website/] from the Host Profiles
window.

	Written: When user saves settings or when user
hits the Export Host button from the Host Profiles window.

	Read: On VisIt [https://visit-dav.github.io/visit-website/] startup. All host profiles in VUSER_HOME/hosts/host*.xml are read
on VisIt [https://visit-dav.github.io/visit-website/] startup but this can be overridden by -noconfig. Users should be
aware of this behavior. If the user passes -noconfig for the purposes of
avoiding the loading of preferences, s/he will also be without any host profiles.

	Format: ASCII XML [https://en.wikipedia.org/wiki/XML]

16.8.2.4. VisIt Run Commands (rc) File

	Location and file name: VUSER_HOME/visitrc

	Purpose: Holds Python code to be executed each time VisIt [https://visit-dav.github.io/visit-website/] is launched.

	Written: Whenever user hits the Update Macros button in the
Command Window.

	Read: On VisIt [https://visit-dav.github.io/visit-website/] startup of the CLI.

	Format: Python source code. However, there is no .py file extension in the
file name.

16.8.2.5. Command Window Tabs Script Files

	Location and file name(s): VUSER_HOME/script<K>.py where K is an
integer in the range [1…8].

	Purpose: Hold the python code associated with each tab in the
Command Window.

	Written: When user saves settings.

	Read: On VisIt [https://visit-dav.github.io/visit-website/] startup but this can be overridden by -noconfig.

	Format: Python source code.

16.8.2.6. Color Table Files

	Location and file name(s): VUSER_HOME/<color-table-name>.ct

	Purpose: Store a single color table for easy sharing with other users.

	Written when the user hits the Export button in the
color table window from
Controls -> Color table….

	Read: On VisIt [https://visit-dav.github.io/visit-website/] startup. All color table files in VUSER_HOME/*.ct
are read and loaded into VisIt [https://visit-dav.github.io/visit-website/]. However, this behavior is overridden
by -noconfig.

	Format: ASCII XML [https://en.wikipedia.org/wiki/XML] specifying the
colors and color control points for the color table.

16.8.2.7. Custom Plugin [http://visitusers.org/index.php?title=Building_plugins_using_CMake] Files

	Location and file name(s): There are separate directories in VUSER_HOME
for private, user-specific operator, database and plot plugins. On UNIX/OSX,
these are

	VUSER_HOME/<visit-version>/<visit-arch>/plugins/operators/

	VUSER_HOME/<visit-version>/<visit-arch>/plugins/databases/

	VUSER_HOME/<visit-version>/<visit-arch>/plugins/plots/

where <visit-version> and <visit-arch> are the VisIt [https://visit-dav.github.io/visit-website/] version number
and VisIt [https://visit-dav.github.io/visit-website/] architecture moniker. On Windows, these diretories are

	VUSER_HOME/operators/

	VUSER_HOME/databases/

	VUSER_HOME/plots/

If the -public command-line option to xml2cmake is used when building
a plugin and the user performing this operation has appropriate permissions,
the plugin will instead be installed to the VisIt [https://visit-dav.github.io/visit-website/] public installation
directory for all users of that installation. If a previous version of
this plugin exists there, it will be overwritten by this operation.

A single plugin involves a set of related files for the mdserver, engine and
those common all VisIt [https://visit-dav.github.io/visit-website/] components. For example, on UNIX the files for the
Silo database plugin are libESiloDatabase_par.so,
libESiloDatabase_ser.so, libISiloDatabase.so, and
libMSiloDatabase.so.

	Purpose: Directories to hold custom plugin shared library files.

	Written: When the user makes and installs or copies the shared libraries for
a custom plugin.

	Read: On VisIt [https://visit-dav.github.io/visit-website/] startup, all enabled
plugin info files are read. The remaining plugin files are read only when
the plugin is actually used. In client/server mode, it is important to ensure
that the same plugin files have been installed on both the client and the
server.

	Format: Binary shared library files in the machine format of the host
architecture.

16.8.2.8. Usage Tracking Files

	Location and file name(s): VUSER_HOME/stateA.B.C.txt where A,
B and C form a VisIt [https://visit-dav.github.io/visit-website/] version number.

	Purpose: Holds a single ASCII integer indicating the number of times the
associated VisIt [https://visit-dav.github.io/visit-website/] version has been run. This is to facilitate suppression of
the release notes and help after the first run of a new version of VisIt [https://visit-dav.github.io/visit-website/].

	Written: Each time VisIt [https://visit-dav.github.io/visit-website/] is started, the integer value in the associated
state tracking file is updated.

	Read: Each time VisIt [https://visit-dav.github.io/visit-website/] is started, the value in the associated state tracking
file is read.

	Format: ASCII text

16.8.2.9. Crash Recovery Files

	Location and file name(s): VUSER_HOME/crash_recovery.$pid.session and
VUSER_HOME/crash_recovery.$pid.session.gui where $pid is the process
id of the VisIt [https://visit-dav.github.io/visit-website/] viewer component.

	Purpose: Hold the most recently saved last good state of VisIt [https://visit-dav.github.io/visit-website/] and VisIt [https://visit-dav.github.io/visit-website/]’s
GUI windows prior to a crash.

	Written: Periodically from VisIt [https://visit-dav.github.io/visit-website/] automatically. Disabled if the preference
Periodically save a crash recovery file is unchecked in the
Preferences Window. In client/server mode, crash recovery files are always
written on the client.

	Read: When user starts VisIt [https://visit-dav.github.io/visit-website/] and answers yes when queried whether to
start up from the most recent crash recovery file or when user explicitly
specifies the crash recovery file as an argument to the -sessionfile
command-line startup option.

	Format: ASCII XML [https://en.wikipedia.org/wiki/XML], same as any
other VisIt [https://visit-dav.github.io/visit-website/] session files.

16.8.3. Files In Other Locations

There are several other kinds of files VisIt [https://visit-dav.github.io/visit-website/] reads and writes to locations
other than VUSER_HOME. These are breifly described in this section.

16.8.3.1. Database Files

	Location and file name(s): User uses
File ‣ Open… to bring up a
file browser to select the name and location of database files.

	Purpose: Database files store the data that VisIt [https://visit-dav.github.io/visit-website/] is used to analyze and
visualize for scientific insights.

	Written: By data producers, simulation codes or instruments, upstream of
VisIt [https://visit-dav.github.io/visit-website/] in the scientific analysis workflow.

	Read: On demand when user selects File ‣ Open…. The
-o command-line startup option can be used to
select a database file to open at startup. VisIt [https://visit-dav.github.io/visit-website/] uses the
file’s extension to decide what
type of database [http://visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports]
the file is and then select the appropriate plugin to read it.

	Format: Varies by
database type [http://visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports].

16.8.3.2. VisIt Debug Log [http://visitusers.org/index.php?title=Debug_logs] (.vlog) Files

	Location and file name(s): The location of these files depends on whether
VisIt [https://visit-dav.github.io/visit-website/] is being run in client/server mode.
When running client/server, some logs are written on the client and some on
the server. On Windows, the logs on the client are always located in
VUSER_HOME but on UNIX/OSX the logs on the client are written to whatever
the CWD was when VisIt [https://visit-dav.github.io/visit-website/] was started. If started by
clicking on an icon, this is most
likely the the user’s login directory. If started from a command-line, it is
whatever the shell’s CWD for that command-line was. On
the server, the logs are written to the user’s login (home) directory. In a
typical client/server scenario, the user gets gui and viewer logs locally in
the CWD and mdserver and engine logs on the remote
system in their login (home) directory. In a purely local scenario, all logs
are written to the CWD.

On UNIX/OSX, the names of the log files are of the form
<letter>.<component-name>.<mpi-rank-or-$pid>.<debug-level>.vlog where
<letter> is one of A through E, <component-name> is one of
gui, mdserver, viewer, engine_ser, engine_par,
<mpi-rank-or-$pid> is the MPI rank for a parallel engine (engine_par)
or, optionally if -pid is given as a command-line
startup option) the component’s process id,
and <debug-level> is the integer argument for the -debug
command-line startup option. For example the file
names are A.mdserver.5.vlog or C.engine_par.123.2.vlog.

On Windows, the names of the log files are slightly different and are of the
form <component-name>.exe.<$pid>.<debug-level>.vlog or
<component-name>.exe.<mpi-rank>.<$pid>.<debug-level>.vlog for a parellel
engine. On Windows, the -pid command-line
startup option) is ignored and <$pid> is always
included in the file names.

	Purpose: Capture streaming debugging messages from various VisIt [https://visit-dav.github.io/visit-website/] components.

	Written: Continuously by VisIt if -debug L where L is the debug level
and is an integer in the range [1...5] is given on the command-line that
starts VisIt [https://visit-dav.github.io/visit-website/] or buffered if a b is given immediately afte the debug level
integer. In addition, on UNIX/OSX VisIt [https://visit-dav.github.io/visit-website/] maintains the 5 most recently written
logs from the 5 most recent component executions each beginning with the letters
A through E, A being the most recent.

	Format: Various, ad-hoc ASCII, mostly human readable.

16.8.3.3. Plot and Operator Attribute Files

	Location and file name(s): User is prompted with a file browser to select
the name and location of these files.

	Purpose: Hold the settings for a single, specific plot or operator for easy
sharing with other users.

	Written: Whenever user hits the Save button in a plot or operator
attributes window.

	Read: Whenever user hits the Load button in a plot or operator attributes
window.

	Format: ASCII XML [https://en.wikipedia.org/wiki/XML].

16.8.3.4. Session Files

	Location and file name(s): User is prompted with a file browser to select
the name and location of these files.

	Purpose: Session files are used to save and restore the
entire state of a VisIt [https://visit-dav.github.io/visit-website/] session.

	Written: On demand when user selects File ‣ Save session…

	Read: On demand when user selects File ‣ Restor session…
or when the -sessionfile
command-line startup option is used to specify
a session file to open at startup.

	Format: ASCII XML [https://en.wikipedia.org/wiki/XML].

16.8.3.5. Save Window Files

	Location and file name(s): User uses the
File ‣ Set save options… to specify the name and location
of subsequent saved window files as well as many other properties of a saved
window.

	Purpose: Save the visually relevant aspects of the data displayed in the
currently active window usually but not always to an image file.

	Written: On demand when user selects File ‣ Save Window or
hits the Save button in the Set save options window. In client/server
mode, keep in mind that the files are written only on the client.

	Read: Yes, saved images can be read into VisIt [https://visit-dav.github.io/visit-website/] like any other database.
On demand when user selects File ‣ Open…

	Format: Various, see Set save options window.

16.8.3.6. Export Database Files

	Location and file name(s): User uses
File ‣ Export database… to bring up a
file browser to select the name and location of exported database files.

	Purpose: Exported database files are often used to share computed results
among users, to convert among database formats, or to create a new
more convenient database to load back into VisIt [https://visit-dav.github.io/visit-website/] for further analysis.

	Written: On demand when user selects
File ‣ Export database….
While VisIt [https://visit-dav.github.io/visit-website/] reads over 130 different
types of databases [http://visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports],
only about 20 of those types does it write. And some of those output types
support only limited kinds of data. In client/server mode, keep in mind that
the files are saved only on the server.

	Read: On demand when user selects File ‣ Open…

	Format: Varies by
database type [http://visitusers.org/index.php?title=Detailed_list_of_file_formats_VisIt_supports].

16.8.3.7. Save Window vs. Export Database Files

As far as file location are concerned, the key issue for users to keep in
mind regarding Save Window and Export Database operations
has to do with client/server operation. In client/server mode, Save Window
produces files always on the client whereas Export Database produces files
always on the server.

Apart from file locations, another key issue is understanding when to use
Save Window vs. Export Database. In some circumstances, these
operations can be highly similar and confusing to decide which to use.

In general, the
Save Window operation is used to save visually relevant aspects of the data
most often to an image file whereas the Export Database
operation is to output a wholly new VisIt [https://visit-dav.github.io/visit-website/] database file. The cases where
these two operations can get confused is when non-image formats are used by
Save Window such as STL [https://en.wikipedia.org/wiki/STL_(file_format)],
VTK [https://vtk.org/wp-content/uploads/2015/04/file-formats.pdf],
OBJ [https://en.wikipedia.org/wiki/Wavefront_.obj_file],
PLY [https://en.wikipedia.org/wiki/PLY_(file_format)] (3D formats) and Curve or
Ultra (2D, xy curve formats) formats. These non-image formats support object
and visually relevant object attributes in 2 and 3 dimensions for input to other
high end graphics tools such as for 3D printing or rendering engines. In particular,
these formats typically support aspects of the rendering process such as object
colors, textures, lighting and view. This is the key to what makes a Save Window
in these formats different from Export Database.

16.8.4. Adjusting Configuration

Probably the easiest way to change VisIt [https://visit-dav.github.io/visit-website/] configuration is to start a new VisIt [https://visit-dav.github.io/visit-website/]
session, make the desired changes through the GUI and then
save settings. Sometimes starting the GUI to just
adjust configuration is inconvenient.

Sometimes, users need to temporarily change their configuration either to work
around or diagnose an issue. Since the majority of content in these files is
ASCII, it is possible to manually edit files without having to start VisIt [https://visit-dav.github.io/visit-website/].

The user can also move (or rename) files so that VisIt [https://visit-dav.github.io/visit-website/] will either find or not
find them. For example, a common trick is to change the name of
VUSER_HOME/config to VUSER_HOME/config.orig so that the majority of
settings/preferences are not seen during VisIt [https://visit-dav.github.io/visit-website/] startup but other things
such as host profiles still work. The most dramatic
variation of this approach is to move the whole VUSER_HOME directory which
on UNIX platforms might be a command like mv ~/.visit ~/.visit.old.

 17. Help

17. Help

In this chapter, we will discuss how to use VisIt’s online help. VisIt’s online
help consists of release notes, copyright information, Frequently Asked
Questions (FAQ), and the contents of this manual. The release notes help page
lists the complete set of bug fixes and enhancements for the current version
of VisIt with links to the release notes for older versions. The copyright
information help page lists VisIt’s copyright agreement. The FAQ help page
lists commonly asked questions and the answers to those questions. Beginning
VisIt users should read through the FAQ help page to find the answers to
commonly asked questions. Finally, the contents of this manual are available
as online help.

	17.1. About VisIt

	17.2. Help Window
	17.2.1. Help Window Toolbar

	17.2.2. Selecting a help page

 17.1. About VisIt

17.1. About VisIt

VisIt provides a Splash screen (Figure 17.1)
that appears when the tool is launched. The Splash screen has three
purposes: entertainment, displaying startup progress, and telling the user
about VisIt. As VisIt launches, the Splash screen cycles through a
handful of images that show some of VisIt’s capabilities and it also tells
the user what happens while VisIt is launching. Once VisIt is launched,
you can look at some information about VisIt by selecting the About
option from the Main Window’s Help menu. Choosing that menu option
displays the Splash screen which can be hidden by clicking its
Dismiss button.

[image: ../../_images/splashscreen.png]

Fig. 17.1 Splash screen

 17.2. Help Window

17.2. Help Window

VisIt’s Help Window, shown in Figure 17.2, displays
all of VisIt’s online help content. You can open the Help Window by
choosing the Help option from the Main Window’s Help menu. The
Help Window has a toolbar along the top of the window while the rest
of the window is divided vertically into two main areas. The left side of
the window is used to select online help pages and it is further divided
with tabs for help contents, help index, and bookmarks. The right side of
the window displays the content for the online help pages.

[image: ../../_images/helpwindow.png]

Fig. 17.2 Help window

17.2.1. Help Window Toolbar

The Help Window’s toolbar exposes buttons for navigation, changing font
size, and adding bookmarks. You can hide the toolbar by double-clicking on
the handle located at the far left of the toolbar. The toolbar can also be
moved to other parts of the Help Window by clicking on its handle and
dragging it to the top, sides, or the bottom of the Help Window.

17.2.1.1. Navigation

The toolbar contains buttons that you can use to cycle forward and
backward in the list of visited help pages. The Back button has an
arrow icon that points to the left and the button changes the active help
page to the last visited help page. The Forward button has an arrow
icon that points to the right and it switches the help page to the page
that was active before the Back button was clicked. If have not visited
any help pages, both of these buttons are disabled. The toolbar also
contains a Home button which has a house icon. The Home button
displays the VisIt home page, which describes VisIt’s features.

17.2.1.2. Changing font size

The toolbar contains two buttons that allow you to change the font size
used to display online help. The Larger font button is distinguished
by a large capital `A’ and a small triangle which points up. When the
Larger font button is clicked, the font size is increased and the
active help page is redrawn with the larger font. The Smaller font
button looks similar to the Larger font button except that its
icon’s triangle points down and its `A’ is smaller. The
Smaller font button decreases the font size and immediately redraws
the active help page using the new smaller font.

17.2.1.3. Adding a bookmark

VisIt’s Help Window provides the ability to create and save personal
bookmarks. This allows you to easily come back to frequently-used sections
of the online help. The toolbar contains an Add bookmark button that adds
the current help page to the list of bookmarks. The Bookmarks tab in
the left part of the Help Window also has this feature.

17.2.2. Selecting a help page

The Help Window has three tabs, shown in Figure 17.3,
that allow a help page to be located in different ways. The first tab is the
Contents tab and it lists all of the online help pages and allows them to
be grouped into related topics. The Index tab lists all of the online
help pages in an alphabetized list that can be searched for a particular help
topic. The Bookmarks tab shows all bookmarked help pages which can be
recalled by clicking on a bookmark.

[image: ../../_images/contentstab.png]
[image: ../../_images/indextab.png]

[image: ../../_images/bookmarktab.png]

Fig. 17.3 Help tabs

17.2.2.1. Contents tab

The Contents tab lists all of the online help pages and groups them into
related topics which are sometimes organized in tree format. When items are
organized into a tree, an entry in the list of help pages often has a book
icon next to it indicating that the topic contains other help topics. When
an item has a book icon, it can be opened by double-clicking on its title or
by clicking the check box to the left of the title. Items that have an icon
that looks like a stack of papers contain the actual help content and
clicking on them displays the help page in the right half of the
Help Window.

17.2.2.2. Index tab

The Index tab lists all of the help topics alphabetically in a single
searchable list. Help topics can be selected by clicking on an item in the
list or by typing a help topic into the text field above the list. As words
are typed into the text field, the closest match is found in the list of
help topics and the topic is displayed in the right half of the
Help Window.

17.2.2.3. Bookmarks tab

The Bookmarks tab lists all of the help topics that have been
bookmarked for further use. To view a page that has been previously
bookmarked, simply click on its title in the bookmark list. To add a bookmark
for the current help page, click the Add button in the Bookmarks
tab or in the Help Window’s toolbar. To remove a bookmark, click on its
title in the bookmark list and then click the Remove button.

 18. Startup Options

18. Startup Options

You can get help on starting VisIt with the commands

visit -help
visit -fullhelp

For convenience, the output from visit -fullhelp is shown below.

USAGE: visit [options]:

Interface options

 -gui Run with the Graphical User Interface (default).
 -cli Run with the Command Line Interface.

Movie making options

 -movie Run the CLI in a movie making mode. Must be
 combined with -sessionfile. Will produce a simple
 movie by drawing all the plots in the specified
 session for every timestep of the database.

Startup options

 -o <filename> Open the specified data file at startup.
 -s <filename> Run the specified VisIt script. Note: This
 argument only takes effect with -cli or -movie.
 -sessionfile <filename> Open the specified session file at startup
 Note that this argument only takes effect with
 -gui or -movie.
 -config <filename> Initialize the viewer at startup using the named
 config file. If an absolute path is not given,
 the file is assumed to be in the .visit directory.
 -noconfig Don't process configuration files at startup.
 -launchengine <host> Launch an engine at startup. The <host> parameter
 is optional. If it is not specified, the engine
 will be launched on the local host. If you wish
 to launch an engine on a remote host, specify
 the host's name as the <host> parameter.
 -nosplash Do not display the splash screen at startup.

Window options

 -small Use a smaller desktop area/window size.
 -geometry <spec> What portion of the screen to use. This is a
 standard X Windows geometry specification. This
 option can be used to set the size of images
 generated from scripts and movies.

 -viewer_geometry <spec> What portion of the screen the viewer windows
 will use. This is a standard X Windows geometry
 specification. This option overrides the
 -geometry option that the GUI passes to the
 viewer.

 -window_anchor <x,y> The x,y position on the screen where VisIt's GUI
 will show its windows (Main window excluded).
 -style <style> One of: windows,cde,motif,sgi.
 -locale <locale> The locale that you want VisIt to use when displaying
 translated menus and controls. VisIt will use the
 default locale if the -locale option is not
 provided.
 -background <color> Background color for GUI.
 -foreground <color> Foreground color for GUI.
 -nowin Run with viewer windows off-screen (i.e. OSMesa).
 This is typically used with the -cli option.
 -stereo Enable active stereo, also known as the
 page-flipping, or 'CrystalEyes' mode.
 -nowindowmetrics Prevents X11 from grabbing and moving a test
 widget used in calculating window borders. This
 option can be useful if VisIt hangs when
 displaying to an Apple X-server.

Version options

 -version Do NOT run VisIt. Just print the current version.
 -git_version Do NOT run VisIt. Just print the Git version it
 was built from.
 -beta Run the current beta version.
 -v <version> Run a specified version. Specifying 2 digits,
 such as X.Y, will run the latest patch release
 for that version. Specifying 3 digits, such as
 X.Y.Z, will run that specific version.

Other resources for help

 run-time: While running VisIt, look under the "Help" menu.
 on-line: https://visit.llnl.gov
 email: visit-users@ornl.gov

 ADDITIONAL OPTIONS

Parallel launch options

 Notes: All of these options are ordinarily obtained from host profiles.
 However, the command line options override anything in the profiles.

 When parallel arguments are added but the engine is not the
 component being launched, -launchengine is implied. Explicitly
 add -launchengine to launch a remote parallel engine.

 -setupenv Use the VisIt script to set up the environment
 for the engine on the compute nodes.
 -par Run the parallel version. This option is implied
 by any of the other parallel options listed below.
 -l <method> Launch in parallel using the given method.
 -pl <method> Launch only the engine in parallel as specified.
 -la <args> Additional arguments for the parallel launcher.
 -sla <args> Additional arguments for the parallel sub-launcher.
 -np <# procs> The number of processors to use.
 -nn <# nodes> The number of nodes to allocate.
 -p <part> Partition to run in.
 -n <name> The parallel job name.
 -b <bank> Bank from which to draw resources.
 -t <time> Maximum job run time.
 -machinefile <file> Machine file.
 -expedite Makes DPCS give priority scheduling.

 -icet In scalable rendering mode, use the IceT parallel
 image compositor (default).
 -no-icet Do not use the IceT parallel compositor.

Hardware accelerated parallel (scalable) rendering options

 Notes: These options should only be used with parallel clusters that
 have graphics cards. If you are using a serial version of VisIt, you
 are already getting hardware acceleration and these options are not
 needed. Furthermore, you must be in scalable rendering mode for VisIt
 to utilize a cluster's GPUs. By default, VisIt is configured to
 switch into scalable rendering mode when rendering complexity exceeds
 a predefined limit.

 VisIt can manage the creation and tear down of X servers for you. It
 will do this automatically if you specify the -launch-x parameter,
 but you can customize the process with the -x-args and -display
 parameters, which respect %l and %n format specifiers.

 See the VisIt wiki for more information:

 http://visitusers.org/index.php?title=Parallel_Hardware_Acceleration

 -hw-accel Tells VisIt that it should use graphics cards.
 -n-gpus-per-node <int> Number of GPUs per node of the cluster (1).
 -launch-x Tell VisIt to manage the X servers
 -no-launch-x Let the cluster manager X servers [default]
 -display Tells VisIt which display to use.
 -x-args '<string>' Extra arguments to X server.

Load balance options

 Note: Each time VisIt executes a pipeline the relevant domains for the
 execution are assigned to processors. This list of domains is sorted in
 increasing global domain number. The options below effect how domains
 in this list are assigned to processors. Assuming there are D domains
 and P processors...

 -lb-block Assign the first D/P domains to processor 0, the
 next D/P domains to processor 1, etc.
 -lb-stride Assign every Pth domain starting from the first
 to processor 0, every Pth domain starting from the
 second to processor 1, etc.
 -lb-absolute Assign domains by absolute domain number % P. This
 guarantees a given domain is always processed
 by the same processor but can also lead to poor
 balance when only a subset of domains is selected.
 -lb-random Randomly assign domains to processors.
 -allowdynamic Dedicate one processor to spreading the work
 dynamically among the other processors. This mode
 has limitations in the types of queries it can
 perform. Under development.
 -lb-stream Similar to -lb-block, but have the domains travel
 down the pipeline one at a time, instead of all
 together. Under development.

Database differencing options

 Use the '-diff <ldb> <rdb>' option to run VisIt in a database
 differencing mode. VisIt will generate expressions to facilitate
 visualization and analysis of the difference between the left-database,
 <ldb>, and right-database, <rdb>. VisIt will open windows to display
 both the left and right databases as well as their difference.

 VisIt uses the Cross-Mesh Field Evaluation (CMFE) expression functions
 to help generate these differences. A CMFE function creates an instance
 of a variable from another (source) mesh on the specified (destination)
 mesh. VisIt can use two variants of CMFE expression functions depending
 on how similar the source and destination meshes are; connectivity-based
 (conn_cmfe) which assumes the underlying mesh(s) for the left and right
 databases have identical connectivity and position-based (pos_cmfe) which
 does not make this assumption. VisIt will attempt to automatically select
 which variant of CMFE expression to use based on some simple heuristics.
 For meshes with identical connectivity, conn_cmfe expressions are
 preferrable because they are higher performance and do not require VisIt
 to perform any interpolation. In fact, the conn_cmfe operation is
 perfectly anti-symmetric. That is <ldb> - <rdb> = -(<rdb> - <ldb>).
 The same cannot be said for pos_cmfe expressions. However, pos_cmfe
 expressions will attempt to generate useful results regardless of the
 similarity of the underlying meshes.

 Note that the differences VisIt will compute in this mode are single
 precision. This is true regardless of whether the input data is itself
 double precision. VisIt will convert double precision to single
 precision before processing it. Although this is a result of earlier
 visualization-specific design requirements and constraints, the intention
 is that eventually double precision will be supported.

 Finally, be sure to bring up Controls->Macros in the GUI to find a set
 of useful operations specifically tailored to database differencing. Also,
 typing 'help()' (including the '()') at the python prompt after starting
 'visit -diff' will generate a more detailed help message.

 -diff <ldb> <rdb> Indicate you wish to run VisIt in database
 differencing mode and specify the two databases
 to difference.

 Note: All options occurring on the command-line
 after the '-diff' option are treated as options
 to the differencing script while all options
 occurring *before* the '-diff' option are treated
 as options to VisIt.

 -diffsum <ldb> <rdb> Run only the difference summary method of the
 'visit -diff' script, in nowin mode so its fast,
 print the results, and immediately exit.

 -force_pos_cmfe Force use of position-based CMFE expressions.

Advanced options

 -guesshost Try to guess the client host name from one of
 the SSH_CLIENT, SSH2_CLIENT, or SSH_CONNECTION
 environment variables.
 -noloopback Disable use of the 127.0.0.1 loopback device.
 -sshtunneling Tunnel all remote connections through ssh. NOTE:
 this overrides values set in the host profiles.
 -noint Disable interruption capability.
 -nopty Run without PTYs.
 -verbose Prints status information during pipeline
 execution.
 -dir <directory> Run a version of VisIt in the specified directory.
 The directory argument should specify the
 path to a VisIt installation directory.
 /bin is automatically appended to this path.
 -forceversion <ver> Force the given version. Overrides all
 intelligent version selection logic.
 -publicpluginsonly Disable all plugins but the default ones.
 -compiler <cc> Require version built with the specified compiler.
 -objectmode <mode> Require a specific object file mode.
 -forceinteractivecli Force the CLI to behave interactively, even if run
 with no terminal; similar to python's '-i' flag.
 -fullscreen Create the viewer window in full screen mode.
 May not be compatible with all window managers.
 -viewerdisplay <dpy> Have the viewer use a different display than the
 current value of DISPLAY. Can be useful for
 power wall displays with a separate console.
 -cycleregex <string> A regex-style regular expression to be used
 in extracting cycle numbers from file names. It
 is best to bracket this string in single
 quotes (') to avoid shell interpretation of
 special characters such as star (*). The format
 of the string begins with an opening '<' character,
 followed by the regular expression itself followed
 by a closing '>' character, optionally followed by
 a space ' ' character and sub-expression reference
 to indicate which part of the regular expression is
 the cycle number. Default behavior is as if
 -cycleregex '<([0-9]+)[^0-9]*\$> \\0'
 was specified meaning the last sequence of one
 or more digits before the end of the string found
 is used as the cycle number. Do a 'man 7 regex'
 to get more information on regular expression
 syntax.
 -ui-bcast-thresholds <int1> <int2>
 Two integers controlling behavior of parallel
 engine waiting in a broadcast for the next RPC
 from the viewer. VisIt used to rely solely upon
 MPI_Bcast for this. However, many implementations
 of MPI_Bcast use a polling loop that winds up
 keeping all processors busy and can make them
 unuseable by other processes. This is particularly
 bad for SMPs. So, VisIt implemented its own
 broadcast using MPI's send/receive methods. <int1>
 specifies the number of nanoseconds a processor
 sleeps while polling for completion of the
 broadcast. Specifying a value of zero (0) for <int1>
 results in falling back to older behavior using
 MPI's MPI_Bcast. <int1> effectively controls how
 'busy' processors will be, polling for completion
 of the broadcast. <int2> specifies the number of
 seconds all processors should spin, polling as fast
 as possible, checking for completion of the
 broadcast BEFORE inserting sleeps into their
 polling loops. <int2> effectively controls how
 many seconds VisIt's server will be maximally
 responsive (although also keeping all processors
 occupied) before becoming more 'friendly' to
 other processes on the same node. The defaults
 are <int1> = 50000000 nanoseconds (1/20th of a sec)
 and <int2> = 5 seconds meaning VisIt will spin
 processors maximally for 5 seconds before inserting
 sleeps such that polling happens at the rate of 20
 times per second.
 -idle-timeout <int> An integer representing the number of minutes an
 engine is allowed to idle (e.g. sit there doing no
 execution whatsoever, waiting for commands from
 the viewer). If this timeout is reached, the engine
 will terminate itself. The default is 480 minutes
 (8 hours).
 -exec-timeout <int> An integer representing the number of minutes an
 executing engine is allowed to remain in the
 execution of any single command from the viewer.
 If this timeout is reached, the engine will
 terminate itself. the default is 30 minutes.
 Beware that among other things, this timeout
 effects how long orphaned parallel processes will
 hang around, tying up parallel compute resources,
 following an exit-triggering error condition on
 any one process.

Developer options (most for xml2... tools)

 -public xml2cmake: force install plugins publicly
 -private xml2cmake: force install plugins privately
 -clobber Permit xml2... tools to overwrite old files
 -noprint Silence debugging output from xml2... tools
 -outputtoinputdir Force xml2... tools to write output files to
 the directory containing the input XML file
 -arch print supported architecture(s) and exit

Debugging options

 Note: Debugging options may degrade performance

 -debug <level> Run with <level> levels of output logging.
 <level> must be between 1 and 5. This will generate
 debug logs (called 'vlogs' for ALL components.
 Note that debug logs are unbuffered. However, if
 you also specify 'b' immediately after the digit
 indicating the debug level (e.g. '-debug 3b'), the
 logs will be buffered. This can substantially improve
 performance when a lot of debug output is generated.
 However, also beware that when debug logs are buffered,
 there isn't necessarily any guarantee they will contain
 the most recent debug output just prior to a crash.
 -debug_<compname> <level>
 Run specified component with <level> of output
 logging. For example, '-debug_mdserver 4' will run
 the mdserver with level 4 debugging. Multiple
 '-debug_<compname> <level>' args are allowed.
 -debug_engine_rank <r>
 Restrict debug output to the specified rank.
 -debug-processor-stride N
 Have only every Nth processor output debug logs.
 Prevents overwhelming parallel file systems.
 -clobber_vlogs By default, VisIt maintains debug logs from the 5
 most recent invocations or restarts of each VisIt
 component. They are named something like
 A.mdserver.5.vlog, A.engine_ser.5.vlog, etc with
 the leading letter (A-E) indicating most to least
 recent. The clobber_vlogs flag causes VisIt to remove
 all debug logs and begin creating them anew.
 -vtk-debug Turn on debugging of VTK objects used in pipelines.
 -pid Append process ids to the names of log files.
 -timing Save timing data to files.
 -withhold-timing-output
 Withhold timing output during execution. Prevents
 output of timing information from affecting
 performance.
 -never-output-timings
 Never output timings files. This is used when
 you want the timer to be enabled (for usage by
 developers to measure inner loops), but you
 want to avoid blowing memory with the bookkeeping
 for each and every timing call.
 -timing-processor-stride N
 Have only every Nth processor output timing info.
 Prevents overwhelming parallel file systems.
 -env Print env. variables VisIt will use when run.
 -dump (dump_dir) Dump intermediate results from AVT filters,
 scalably rendered images, and html pages.
 Takes an optional argument that specifies the
 directory for -dump output files.
 -info-dump (dump_dir)
 Dump html pages only.
 Takes an optional argument that specifies the
 directory for -info-dump output files.
 -gdb <args> <comp> Run gdb with <args> on component <comp>.
 Default <args> is whitespace.
 -break <funcname> Add the specified breakpoint in gdb.
 -xterm With -gdb-something, run gdb in an xterm window.
 -newconsole Run any VisIt component in a new console window.
 -totalview <args> <comp>
 Run totalview with <args> on component <comp>.
 Default <args> is whitespace.
 -valgrind <args> <comp>
 Run valgrind with <args> on component <comp>.
 Default <args> is --tool=memcheck --error-limit=no
 --num-callers=50.
 -strace <args> <comp>
 Run strace with <args> on component <comp>.
 Default <args> is -ttt -T.

 In the above, all arguments between the tool name
 and the VisIt component name are treated as args
 to the tool.

 -apitrace <args> <comp>
 Run apitrace with <args> on component <comp>.
 Default <args> is trace --api gl.

 In the above, all arguments between the tool name
 and the VisIt component name are treated as args
 to the tool.

 -debug-malloc <args> <comp>
 Run the component with the libMallocDebug library
 on MacOS X systems. The libMallocDebug library
 lets the MallocDebug application attach to the
 instrumented application and retrieve memory
 allocation statistics. The -debug-malloc flag
 also sets up the environment for the leaks and
 heap tools.

 Printing heap allocations:
 % visit -debug-malloc gui &
 % Get the gui's <pid>
 % heap <pid>

 Printing memory leaks:
 % visit -debug-malloc gui &
 % Get the gui's <pid>
 % leaks <pid>

 Run with MallocDebug:
 Perl does not seem to be happy with libMallocDebug
 so you can run the GUI like this:
 % visit -cli
 >>> OpenGUI('-debug-malloc', 'MallocDebug', 'gui')
 Connect to the gui with MallocDebug and do your
 sampling.

 -numrestarts <#> Number of attempts to restart a failed engine.
 -quiet Don't print the Running message.
 -protocol Print the definitions of the state objects that
 comprise the VisIt protocol so they can be compared
 against the values on other computers.

 19. Building

19. Building

In this chapter, we will discuss how to build visit. The building of VisIt [https://visit-dav.github.io/visit-website/]
is automated with the build_visit script. It will build VisIt [https://visit-dav.github.io/visit-website/] and all of
VisIt [https://visit-dav.github.io/visit-website/]’s third party libraries. It can be configured to build VisIt [https://visit-dav.github.io/visit-website/] with a
minimum of third party libraries to building VisIt [https://visit-dav.github.io/visit-website/] with all of it’s third
party libraries. This chapter describes how to build VisIt [https://visit-dav.github.io/visit-website/], starting with
the most simple case and moving then moving to more complex use cases.

	19.1. Basic Usage
	19.1.1. Doing a minimal build

	19.1.2. Building with multiple cores

	19.1.3. Specifying the third party library install location

	19.1.4. Building with the HDF5 and Silo libraries

	19.1.5. Building the stable optional libraries

	19.1.6. Using a VisIt source code tar file

	19.1.7. If build_visit is interrupted

	19.1.8. Finishing up

	19.2. Advanced Usage
	19.2.1. Building a parallel version

	19.2.2. Building with Mesa as the OpenGL implementation

	19.2.3. The difference between --mesagl and --osmesa

	19.2.4. Building on a system without internet access

	19.2.5. Different versions of build_visit

	19.2.6. Troubleshooting build_visit failures

	19.3. Common Build Scenarios
	19.3.1. Kickit, a RedHat Enterprise Linux 7 system

	19.3.2. Quartz, a Linux X86_64 TOSS3 cluster

	19.3.3. Lassen, a Linux Power9 BlueOS cluster

	19.3.4. Cori, a Cray KNL cluster

	19.3.5. Summit, a Linux Power9 BlueOS cluster

	19.3.6. Trinity, a Cray KNL cluster

 19.1. Basic Usage

19.1. Basic Usage

19.1.1. Doing a minimal build

When using build_visit without any arguments it will do a minimal build
of VisIt [https://visit-dav.github.io/visit-website/] downloading the VisIt [https://visit-dav.github.io/visit-website/] source code by making an anonymous git clone
from GitHub and downloading the source code for the third party libraries
from NERSC. It will build a serial version of the code without any of the
optional I/O libraries. This will result in only the file readers that require
no external dependencies to be built. Buiding VisIt [https://visit-dav.github.io/visit-website/] in this fashion will give
you the highest probability of success.

./build_visit3_0_1

19.1.2. Building with multiple cores

When build_visit is run by default it will build the code using a single
core. This may take a half a day or longer. Modern computers have anywhere
from 4 to 80 cores at the time of the writing of this chapter. You can speed
up the build process by specify that build_visit use more cores. If you
are using a shared resource you probably shouldn’t use all the cores in
consideration of other users of the system. The following example specifies
using 4 cores.

./build_visit3_0_1 --makeflags -j4

19.1.3. Specifying the third party library install location

When build_visit is run by default it will install the third party
libraries in the directory third_party in the current directory. If you
would like to install the libraries in another directory for the purposes
of sharing them with other users of the system, you can have build_visit
install them in a different directory. The following example specifies
installing the third party libraries in a another location.

./build_visit3_0_1 --thirdparty-path /usr/gapps/visit/third_party

19.1.4. Building with the HDF5 and Silo libraries

Some of the more common I/O libraries that will result in building a larger
number of file readers are HDF5 and Silo. The following example specifies
building HDF5 and Silo.

./build_visit3_0_1 --hdf5 --silo

19.1.5. Building the stable optional libraries

If you are feeling lucky you can have build_visit build all of the optional
I/O libraries that have a high probability of building. The following example
specifies building the more reliable of the optional I/O libraries.

./build_visit3_0_1 --optional

19.1.6. Using a VisIt [https://visit-dav.github.io/visit-website/] source code tar file

You can also have visit use the prepackaged source code for a specific version
of VisIt [https://visit-dav.github.io/visit-website/] instead of doing a git download of the source code. The tar file
should be considerably smaller than a git clone. The following example uses
the VisIt [https://visit-dav.github.io/visit-website/] source code corresponding to the official 3.0.1 release of VisIt [https://visit-dav.github.io/visit-website/].

./build_visit3_0_1 --optional --tarball visit3.0.1.tar.gz

19.1.7. If build_visit is interrupted

If build_visit is interrupted while it is executing, it is suggested that
you remove the directories associated with the last package it was in the
process of building. build_visit always leaves directories intact when
it runs to aid with troubleshooting failures. Likewise, build_visit
doesn’t remove existing directories before starting to build a package.
This can sometimes problems when build_visit is interrupted and you
restart the build again.

19.1.8. Finishing up

Once you have successfully built VisIt, there are a couple of directions
you can go. The first option is to use it in the location where it was
built. The executable can run by executing the following command:

visit/build/bin/visit

if you built using a git clone.

visit3.0.1/build/bin/visit

if you built using a tar file.

The second option is to create a distribution file that you can install
using visit-install. This can be done by executing the following
command:

cd visit/build
make package

if you built using a git clone.

cd visit3.0.1/build
make package

if you built using a tar file.

 19.2. Advanced Usage

19.2. Advanced Usage

build_visit comes with many options for features such as building a
parallel version, overcoming issues with OpenGL, a rendering library used
by VisIt [https://visit-dav.github.io/visit-website/] to render images, and controlling precisely what libraries
VisIt [https://visit-dav.github.io/visit-website/] is built with.

19.2.1. Building a parallel version

One of powerful capabilities of VisIt [https://visit-dav.github.io/visit-website/] is running in parallel on large
parallel clusters. VisIt [https://visit-dav.github.io/visit-website/] runs in parallel using a library called MPI, which
stands for Message Passing Interface. There are a couple of ways in which you
can build a parallel version of VisIt [https://visit-dav.github.io/visit-website/] using MPI. If your system doesn’t
already have MPI installed on it, which is typically the case with a desktop
system or small cluster, then you can use MPICH, which is an open source
implementation of MPI. The following example builds a parallel version using
MPICH.

./build_visit3_0_1 --mpich

If your system already has MPI installed on it, which is typically the case
with a large system at a computer center, you can set several environment
variables that specify the location of the MPI libraries and header files.
The following example uses a system installed MPI library.

 env PAR_COMPILER=/usr/packages/mvapich2/bin/mpicc \
 PAR_COMPILER_CXX=/usr/packages/mvapich2/bin/mpicxx \
 PAR_INCLUDE=-I/usr/packages/mvapich2/include \
 PAR_LIBS=-lmpl \
./build_visit3_0_1 --parallel

When running in parallel, the user will typically use scalable rendering for
rendering images in parallel. VisIt does this through the use of the Mesa 3D
graphics library. Because of this you will want to include Mesa 3D when
building a parallel version. In the following example we have included
building with the Mesa 3D library.

./build_visit3_0_1 --mpich --osmesa

19.2.2. Building with Mesa as the OpenGL implementation

Mesa 3D is also an implementation of OpenGL and it can be used in place of
the system OpenGL when building VisIt [https://visit-dav.github.io/visit-website/]. There are a couple of reasons you
would want to use Mesa 3D instead of the system OpenGL. The first is when you
don’t have a system OpenGL, which typically occurs when building in a container
or on a virtual machine. The second is when your system implementation of
OpenGL is too old to support VTK. In the following example we use Mesa 3D
instead of the system OpenGL.

./build_visit3_0_1 --mesagl

19.2.3. The difference between --mesagl and --osmesa

When you specify --mesagl VTK will be built against Mesa 3D. When you
specify --osmesa VTK is built against the system OpenGL and the Mesa 3D
library is substituted at run time for OpenGL when running the parallel
engine to enable scalable rendering. If you specify --mesagl then
--osmesa is unnecessary and ignored if specified.

19.2.4. Building on a system without internet access

When you want to build visit on a system without internet access, you can
use build_visit to download the third party libraries and source code
to a system that has internet access and then move those files to your
machine without access. The following example downloads the optional
libraries, mpich and osmesa.

./build_visit3_0_1 --optional --mpich --osmesa --download-only

Unfortunately, due to the way the code that builds Python is implemented,
some Python libraries will not be downloaded. Here is the list of commands
to download those additional libraries.

wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/Imaging-1.1.7.tar.gz
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/setuptools-28.0.0.tar.gz
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/Cython-0.25.2.tar.gz
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/numpy-1.14.1.zip
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/pyparsing-1.5.2.tar.gz
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/requests-2.5.1.tar.gz
wget http://portal.nersc.gov/project/visit/releases/3.0.1/third_party/seedme-python-client-v1.2.4.zip

It’s possible that the list could change and the above list becomes outdated.
In this case you can run build_visit to just build Python and that will
end up downloading all the files you need. The following command builds only
Python.

./build_visit3_0_1 --no-thirdparty --no-visit --python

19.2.5. Different versions of build_visit

When you use a version of build_visit that has a version number in it,
for example build_visit3_0_1 then it builds that tagged version of
VisIt [https://visit-dav.github.io/visit-website/]. If the version of build_visit was from the develop branch of
VisIt [https://visit-dav.github.io/visit-website/], then it will grab the latest version of VisIt [https://visit-dav.github.io/visit-website/] from the devlop
branch. If the version of build_visit came from a release candidate
branch, for example the v3.0 branch, then it will grab the latest version
of VisIt [https://visit-dav.github.io/visit-website/] from that branch.

19.2.6. Troubleshooting build_visit failures

When build_visit runs, it generates a log file with _log added to
the name of the script. For example, if you are running build_visit3_0_1
then the log file will be named build_visit3_0_1_log. The error that
caused the failure should be near the end of the log file. When build_visit
finishes running, it will leave the directories that it used to build
the packages intact. You can go into the directory of the package that
failed and correct the issue and finish building and installing the package.
You can then execute the build_visit command again to have it continue
the build.

 19.3. Common Build Scenarios

19.3. Common Build Scenarios

Building VisIt [https://visit-dav.github.io/visit-website/] is an involved process and even with build_visit,
just determining the correct selection of options can sometimes be
daunting. To help, here are the steps used to build VisIt [https://visit-dav.github.io/visit-website/] on a collection
of different platforms that may serve as a starting point for your system.

In each of the scenarios below, the result is a distribution file that can
be used with visit-install to install VisIt [https://visit-dav.github.io/visit-website/]. Furthermore, in all these
scenarios, build_visit was used to build the third party libraries and
the initial config site file. VisIt [https://visit-dav.github.io/visit-website/] was then manually built as outlined
by doing an out of source build. The advantage to building VisIt [https://visit-dav.github.io/visit-website/] manually
is that you have more control over the build and its easier to troubleshoot
failures. The advantage to an out of source build is that you can easily
restart the build simply by deleting the build directory.

19.3.1. Kickit, a RedHat Enterprise Linux 7 system

build_visit was run to generate the third party libraries. In this
case all the required and optional libraries build without problem, so
--required --optional could be used. Also, in this case there wasn’t
a system MPI installed so --mpich was specified to use MPICH. The
--osmesa flag was also included so that VisIt could do off screen
rendering.

./build_visit3_0_1 --required --optional --mpich --osmesa --no-visit \
--thirdparty-path /usr/gapps/visit/thirdparty_shared/3.0.1 --makeflags -j4

This built the third party libraries and generated a kickit.cmake
config site file. The Setup VISITHOME & VISITARCH variables. section
was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /usr/gapps/visit/thirdparty_shared/3.0.1)
SET(VISITARCH linux-x86_64_gcc-4.8)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

VisIt [https://visit-dav.github.io/visit-website/] was then manually built with the following steps.

tar zxf visit3.0.1.tar.gz
cp kickit.cmake visit3.0.1/src/config-site
cd visit3.0.1
mkdir build
cd build
/usr/gapps/visit/thirdparty_shared/3.0.1/cmake/3.9.3/linux-x86_64_gcc-4.8/bin/cmake \
../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON \
-DVISIT_ENABLE_XDB:BOOL=ON -DVISIT_PARADIS:BOOL=ON
make -j 4 package

19.3.2. Quartz, a Linux X86_64 TOSS3 cluster

build_visit was run to generate the third party libraries. In this
case the system MPI was used, so information about the system MPI had to
be provided with environment variables and the --parallel flag had
to be specified. In this case, all the required and optional third party
libraries build without problem, so --required --optional could be
used. Also, the system OpenGL implementation was outdated and --mesagl
had to be included to provide an OpenGL implementation suitable for
VisIt [https://visit-dav.github.io/visit-website/]. Lastly, the Uintah library was built to enable building the
Uintah reader.

env PAR_COMPILER=/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/bin/mpicc \
 PAR_COMPILER_CXX=/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/bin/mpicxx \
 PAR_INCLUDE=-I/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/include \
 PAR_LIBS=-lmpl \
./build_visit3_0_1 --required --optional --mesagl --uintah --parallel \
--no-visit --thirdparty-path /usr/workspace/wsa/visit/visit/thirdparty_shared/3.0.1/toss3 \
--makeflags -j16

This built the third party libraries and generated a quartz386.cmake
config site file. The Setup VISITHOME & VISITARCH variables. section
was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /usr/gapps/visit/thirdparty_shared/3.0.1)
SET(VISITARCH linux-x86_64_gcc-4.8)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

The Parallel build Setup. section was changed to

##
Parallel Build Setup.
##
VISIT_OPTION_DEFAULT(VISIT_PARALLEL ON TYPE BOOL)
VISIT_OPTION_DEFAULT(VISIT_MPI_CXX_FLAGS -I/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_C_FLAGS -I/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LD_FLAGS "-L/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/lib -Wl,-rpath=/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/lib" TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LIBS mpich mpl)
VISIT_OPTION_DEFAULT(VISIT_PARALLEL_RPATH "/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/lib")

VisIt [https://visit-dav.github.io/visit-website/] was then manually built with the following steps.

tar zxf visit3.0.1.tar.gz
cp kickit.cmake visit3.0.1/src/config-site
cd visit3.0.1
mkdir build
cd build
/usr/workspace/wsa/visit/visit/thirdparty_shared/3.0.1/toss3/cmake/3.9.3/linux-x86_64_gcc-4.9/bin/cmake \
../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON -DVISIT_PARADIS:BOOL=ON
make -j 16 package

19.3.3. Lassen, a Linux Power9 BlueOS cluster

build_visit was run to generate the third party libraries. In this
case the system MPI was used, so information about the system MPI had to
be provided with environment variables and the --parallel flag had
to be specified. In this case, a few of the optional third party libraries
do not build on the system so all the desired optional third party libraries
had to be explicitly listed. Also, the system OpenGL implementation was
outdated and --mesagl had to be included to provide an OpenGL
implementation suitable for VisIt [https://visit-dav.github.io/visit-website/]. Lastly, the Uintah library was built
to enable building the Uintah reader.

env PAR_COMPILER=/usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release-gcc-4.9.3/bin/mpicc \
 PAR_COMPILER_CXX=/usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release-gcc-4.9.3/bin/mpicxx \
 PAR_INCLUDE=-I/usr/tce/packages/spectrum-mpi/ibm/spectrum-mpi-rolling-release/include \
 ./build_visit3_0_1 \
 --no-thirdparty --no-visit \
 --cmake --python --vtk --qt --qwt \
 --adios --adios2 --advio --boost --cfitsio --cgns --conduit \
 --gdal --glu --h5part --hdf5 --icet --llvm --mfem \
 --mili --moab --mxml --netcdf --openssl --p7zip \
 --silo --szip --vtkm --vtkh --xdmf --zlib \
 --mesagl --uintah --parallel \
 --thirdparty-path /usr/workspace/wsa/visit/visit/thirdparty_shared/3.0.1/blueos \
 --makeflags -j16

This built the third party libraries and generated a lassen708.cmake
config site file. The Setup VISITHOME & VISITARCH variables. section
was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /usr/workspace/wsa/visit/visit/thirdparty_shared/3.0.1/blueos)
SET(VISITARCH linux-ppc64le_gcc-4.9)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

The Parallel build Setup. section was changed to

##
Parallel Build Setup.
##
VISIT_OPTION_DEFAULT(VISIT_PARALLEL ON TYPE BOOL)
VISIT_OPTION_DEFAULT(VISIT_MPI_CXX_FLAGS -I/usr/tce/packages/spectrum-mpi/ibm/spectrum-mpi-rolling-release/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_C_FLAGS -I/usr/tce/packages/spectrum-mpi/ibm/spectrum-mpi-rolling-release/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LD_FLAGS "-L/usr/tce/packages/spectrum-mpi/ibm/spectrum-mpi-rolling-release/lib -Wl,-rpath=/usr/tce/packages/spectrum-mpi/ibm/spectrum-mpi-rolling-release/lib" TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LIBS mpi_ibm)
VISIT_OPTION_DEFAULT(VISIT_PARALLEL_RPATH "/usr/tce/packages/spectrum-mpi/ibm/spectrum-mpi-rolling-release/lib")

VisIt [https://visit-dav.github.io/visit-website/] was then manually built with the following steps.

tar zxf visit3.0.1.tar.gz
cp lassen708.cmake visit3.0.1/src/config-site
cd visit3.0.1
mkdir build
cd build
/usr/workspace/wsa/visit/visit/thirdparty_shared/3.0.1/blueos/cmake/3.9.3/linux-ppc64le_gcc-4.9/bin/cmake \
../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON
make -j 16 package

19.3.4. Cori, a Cray KNL cluster

The system is set up to support the Intel compiler by default so we need
to swap out the Intel environment for the GNU environment.

module swap PrgEnv-intel/6.0.4 PrgEnv-gnu/6.0.4

The Cray compiler wrappers are set up to do static linking, which causes
a problem with building parallel hdf5. The linking can be changed to
link dynamically by setting a couple of environment variables.

export XTPE_LINK_TYPE=dynamic
export CRAYPE_LINK_TYPE=dynamic

The linker has a bug that prevents VTK from building, which is fixed with
the linker in binutils 2.32. Binutils was then manually built with the
following steps.

wget https://mirrors.ocf.berkeley.edu/gnu/binutils/binutils-2.32.tar.gz
mkdir /project/projectdirs/visit/thirdparty_shared/3.0.1/binutils
tar zxf binutils-2.32.tar.gz
cd binutils-2.32
./configure --prefix=/project/projectdirs/visit/thirdparty_shared/3.0.1/binutils
make
make install

The following lines in build_visit

vopts="${vopts} -DCMAKE_C_FLAGS:STRING=\"${C_OPT_FLAGS}\""
vopts="${vopts} -DCMAKE_CXX_FLAGS:STRING=\"${CXX_OPT_FLAGS}\""

were changed to

vopts="${vopts} -DCMAKE_C_FLAGS:STRING=\"${C_OPT_FLAGS} -B/project/projectdirs/visit/thirdparty_shared/3.0.1/binutils/bin\""
vopts="${vopts} -DCMAKE_CXX_FLAGS:STRING=\"${CXX_OPT_FLAGS} -B/project/projectdirs/visit/thirdparty_shared/3.0.1/binutils/bin\""

to build VTK with the linker from binutils 2.32.

build_visit was run to generate the third party libraries. In this
case the system MPI was used, so information about the system MPI had to
be provided with environment variables and the --parallel flag had
to be specified. In this case, all the required and optional third party
libraries built without problem, so --required --optional could be
used. Also, the system OpenGL implementation was outdated and --mesagl
had to be included to provide an OpenGL implementation suitable for
VisIt [https://visit-dav.github.io/visit-website/]. Lastly, the Uintah library was built to enable building the
Uintah reader.

env PAR_COMPILER=/opt/cray/pe/craype/2.5.15/bin/cc \
 PAR_COMPILER_CXX=/opt/cray/pe/craype/2.5.15/bin/CC \
 PAR_INCLUDE=-I/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/include \
 PAR_LIBS="-L/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/lib -Wl,-rpath=/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/lib -lmpich" \
 ./build_visit3_0_1 --required --optional --mesagl --uintah --parallel \
 --no-visit --thirdparty-path /project/projectdirs/visit/thirdparty_shared/3.0.1 \
 --makeflags -j8

This built the third party libraries and generated a cori08.cmake
config site file. The Setup VISITHOME & VISITARCH variables. section
was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /project/projectdirs/visit/thirdparty_shared/3.0.1)
SET(VISITARCH linux-x86_64_gcc-7.3)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

The VISIT_C_FLAGS and VISIT_CXX_FLAGS were changed to

VISIT_OPTION_DEFAULT(VISIT_C_FLAGS " -m64 -fPIC -fvisibility=hidden -B/project/projectdirs/visit/thirdparty_shared/3.0.1/binutils/bin" TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_CXX_FLAGS " -m64 -fPIC -fvisibility=hidden -B/project/projectdirs/visit/thirdparty_shared/3.0.1/binutils/bin" TYPE STRING)

The Parallel build Setup. section was changed to

##
Parallel Build Setup.
##
VISIT_OPTION_DEFAULT(VISIT_PARALLEL ON TYPE BOOL)
VISIT_OPTION_DEFAULT(VISIT_MPI_CXX_FLAGS -I/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_C_FLAGS -I/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LD_FLAGS "-L/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/lib -Wl,-rpath=/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/lib" TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LIBS mpich)
VISIT_OPTION_DEFAULT(VISIT_PARALLEL_RPATH "/opt/cray/pe/mpt/7.7.3/gni/mpich-gnu/7.1/lib")

VisIt [https://visit-dav.github.io/visit-website/] was then manually built with the following steps.

tar zxf visit3.0.1.tar.gz
cp cori08.cmake visit3.0.1/src/config-site
cd visit3.0.1
mkdir build
cd build
/project/projectdirs/visit/thirdparty_shared/3.0.1/cmake/3.9.3/linux-x86_64_gcc-7.3/bin/cmake \
../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON -DVISIT_PARADIS:BOOL=ON
make -j 8 package

19.3.5. Summit, a Linux Power9 BlueOS cluster

The system is set up to support the IBM XL compiler by default so we need
to swap out the XL compiler for the GNU compiler.

module swap xl/16.1.1-3 gcc/6.4.0

There was an error building CMake, so we used the system CMake after
module loading CMake 3.9.2.

module load cmake/3.9.2

build_visit was run to generate the third party libraries. In this
case the system MPI was used, so information about the system MPI had to
be provided with environment variables and the --parallel flag had
to be specified. In this case, a few of the optional third party libraries
do not build on the system so all the desired optional third party libraries
had to be explicitly listed. Also, the system OpenGL implementation was
outdated and --mesagl had to be included to provide an OpenGL
implementation suitable for VisIt [https://visit-dav.github.io/visit-website/]. Lastly, the Uintah library was built
to enable building the Uintah reader.

env PAR_COMPILER=/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-20190611-cyaenjgora6now2nusxzkfli4mzjnudx/bin/mpicc \
 PAR_COMPILER_CXX=/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-20190611-cyaenjgora6now2nusxzkfli4mzjnudx/bin/mpicxx \
 PAR_INCLUDE=-I/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-20190611-cyaenjgora6now2nusxzkfli4mzjnudx/include \
 ./build_visit3_0_1 \
 --no-thirdparty --no-visit \
 --system-cmake --python --vtk --qt --qwt \
 --adios --adios2 --advio --boost --cfitsio --cgns --conduit \
 --gdal --glu --h5part --hdf5 --icet --llvm --mfem \
 --mili --moab --mxml --netcdf --openssl --p7zip \
 --silo --szip --xdmf --zlib \
 --mesagl --uintah --parallel \
 --thirdparty-path /autofs/nccs-svm1_home1/brugger1/visit/thirdparty_shared/3.0.1 \
 --makeflags -j8

This built the third party libraries and generated a login1.cmake
config site file. The Setup VISITHOME & VISITARCH variables. section
was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /autofs/nccs-svm1_home1/brugger1/visit/thirdparty_shared/3.0.1)
SET(VISITARCH linux-ppc64le_gcc-6.4)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

The Parallel build Setup. section was changed to

##
Parallel Build Setup.
##
VISIT_OPTION_DEFAULT(VISIT_PARALLEL ON TYPE BOOL)
VISIT_OPTION_DEFAULT(VISIT_MPI_CXX_FLAGS -I/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-20190611-cyaenjgora6now2nusxzkfli4mzjnudx/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_C_FLAGS -I/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-20190611-cyaenjgora6now2nusxzkfli4mzjnudx/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LD_FLAGS "-L/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-20190611-cyaenjgora6now2nusxzkfli4mzjnudx/lib -Wl,-rpath=/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-20190611-cyaenjgora6now2nusxzkfli4mzjnudx/lib" TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LIBS mpi_ibm)
VISIT_OPTION_DEFAULT(VISIT_PARALLEL_RPATH "/autofs/nccs-svm1_sw/summit/.swci/1-compute/opt/spack/20180914/linux-rhel7-ppc64le/gcc-6.4.0/spectrum-mpi-10.3.0.1-20190611-cyaenjgora6now2nusxzkfli4mzjnudx/lib")

The compiler didn’t like one of the boost header files, so it was manually
patched.

vi /autofs/nccs-svm1_home1/brugger1/visit/thirdparty_shared/3.0.1/boost/1_67_0/linux-ppc64le_gcc-6.4/include/boost/numeric/interval/detail/ppc_rounding_control.hpp

line 99:
 namespace detail {

 typedef union {
- ::boost::long_long_type imode;
+ ::boost::ulong_long_type imode;
 double dmode;
 } rounding_mode_struct;

VisIt [https://visit-dav.github.io/visit-website/] was then manually built with the following steps.

tar zxf visit3.0.1.tar.gz
cp login1.cmake visit3.0.1/src/config-site
cd visit3.0.1
mkdir build
cd build
/autofs/nccs-svm1_sw/summit/.swci/0-core/opt/spack/20171006/linux-rhel7-ppc64le/gcc-4.8.5/cmake-3.9.2-lnpnk356fyio3b6rq5bdhr2djjirtsxk/bin/cmake \
../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON
make -j 8 package

19.3.6. Trinity, a Cray KNL cluster

The system is set up to support the Intel compiler by default so we need
to swap out the Intel environment for the GNU environment.

module swap PrgEnv-intel/6.0.8 PrgEnv-gnu/6.0.8

The Cray compiler wrappers are set up to do static linking, which causes
a problem with building parallel hdf5. The linking can be changed to
link dynamically by setting a couple of environment variables.

export XTPE_LINK_TYPE=dynamic
export CRAYPE_LINK_TYPE=dynamic

build_visit was run to generate the third party libraries. In this
case the system MPI was used, so information about the system MPI had to
be provided with environment variables and the --parallel flag had
to be specified. In this case, all the required and optional third party
libraries built except for Sphinx and Mili, so --no-sphinx --no-mili
in addition to --required --optional could be used. Also, the system
OpenGL implementation was outdated and --mesagl had to be included to
provide an OpenGL implementation suitable for VisIt [https://visit-dav.github.io/visit-website/].

env PAR_COMPILER=/opt/cray/pe/craype/2.7.0/bin/cc \
 PAR_COMPILER_CXX=/opt/cray/pe/craype/2.7.0/bin/CC \
 PAR_INCLUDE=-I/opt/cray/pe/mpt/7.7.15/gni/mpich-gnu/8.2/include \
 PAR_LIBS="-L/opt/cray/pe/mpt/7.7.15/gni/mpich-gnu/8.2/lib -Wl,-rpath=/opt/cray/pe/mpt/7.7.15/gni/mpich-gnu/8.2/lib -lmpich" \
 ./build_visit3_1_3 --required --optional --no-sphinx --no-mili \
 --mesagl --parallel --no-visit \
 --thirdparty-path /usr/projects/views/visit/thirdparty_shared/3.1.3 \
 --makeflags -j6

This built the third party libraries and generated a tr-fe2.cmake
config site file. The Setup VISITHOME & VISITARCH variables. section
was changed to

##
Setup VISITHOME & VISITARCH variables.
##
SET(VISITHOME /usr/projects/views/visit/thirdparty_shared/3.1.3)
SET(VISITARCH linux-x86_64_gcc-9.3)
VISIT_OPTION_DEFAULT(VISIT_SLIVR TRUE TYPE BOOL)

The Parallel build Setup. section was changed to

##
Parallel Build Setup.
##
VISIT_OPTION_DEFAULT(VISIT_PARALLEL ON TYPE BOOL)
VISIT_OPTION_DEFAULT(VISIT_MPI_CXX_FLAGS -I/opt/cray/pe/mpt/7.7.15/gni/mpich-gnu/8.2/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_C_FLAGS -I/opt/cray/pe/mpt/7.7.15/gni/mpich-gnu/8.2/include TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LD_FLAGS "-L/opt/cray/pe/mpt/7.7.15/gni/mpich-gnu/8.2/lib -Wl,-rpath=/opt/cray/pe/mpt/7.7.15/gni/mpich-gnu/8.2/lib" TYPE STRING)
VISIT_OPTION_DEFAULT(VISIT_MPI_LIBS mpich)
VISIT_OPTION_DEFAULT(VISIT_PARALLEL_RPATH "/opt/cray/pe/mpt/7.7.15/gni/mpich-gnu/8.2/lib")

VisIt [https://visit-dav.github.io/visit-website/] was then manually built with the following steps.

tar zxf visit3.1.3.tar.gz
cp tr-fe2.cmake visit3.1.3/src/config-site
cd visit3.1.3
mkdir build
cd build
/usr/projects/views/visit/thirdparty_shared/3.1.3/cmake/3.9.3/linux-x86_64_gcc-9.3/bin/cmake \
../src -DCMAKE_BUILD_TYPE:STRING=Release \
-DVISIT_INSTALL_THIRD_PARTY:BOOL=ON -DVISIT_PARADIS:BOOL=ON
make -j 8 package

 20. Building on Windows

20. Building on Windows

In this chapter, we will discuss how to build visit on Windows.

	20.1. Prerequisites
	20.1.1. VisIt’s Source Code
	20.1.1.1. For a released version

	20.1.1.2. For the latest development version

	20.1.2. Other Software

	20.2. Configuring With CMake GUI
	20.2.1. Locating Source and Build Directories

	20.2.2. Location of windowsbuild Directory

	20.2.3. Limiting Plugins

	20.2.4. Configuring

	20.2.5. Parallel

	20.2.6. Suppressing Regeneration

	20.2.7. Generate

	20.2.8. Compile

 20.1. Prerequisites

20.1. Prerequisites

20.1.1. VisIt’s Source Code

20.1.1.1. For a released version

If you want to build a released version of VisIt, you can download a windows
installer that contains all that is necessary from the source code downloads
page [https://visit.llnl.gov/source]. Look for the VisIt Windows sources
link for the particular version you want.

20.1.1.2. For the latest development version

If you want to build the latest development version from our repository,
you need to obtain source from the
visit repo [https://github.com/visit-dav/visit], and the pre-built third
party dependencies from the
visit-deps repo [https://github.com/visit-dav/visit-deps] on GitHub.

20.1.2. Other Software

	CMake [https://cmake.org/download] version 3.8 or greater.

	Don’t use the CMake included with cygwin if you plan on using the pre-built thirdparty libraries.

	Visual Studio 2017 64-bit

	Needed if you want to use our pre-built thirdparty libraries.

	NSIS [http://www.nsis.sourceforge.net] Optional

	For creating an installer for VisIt. NSIS 2 is known to work. NSIS 3 hasn’t been tested.

	7zip [http://7-zip.org] Optional

	Used to untar testdata files.

	Microsoft MPI [https://www.microsoft.com/en-us/download/details.aspx?id=57467]. Optional

	For building VisIt’s parallel engine. Redistributable binaries and SDK’s are needed, so download and install both msmpisdk.msi and msmpisetup.exe.

 20.2. Configuring With CMake GUI

20.2. Configuring With CMake GUI

Run cmake-gui.exe, which will display this window.
Figure 20.1

[image: ../../_images/cmake_gui_01.png]

Fig. 20.1 CMake-gui

20.2.1. Locating Source and Build Directories

Fill in the location of VisIt’s src directory in the Where is the source
code: section.

Then tell CMake where you want the build to go by filling in Where to build the binaries. It is best to create a new build directory somewhere other than inside the src or windowsbuild directories. This is called out-of-source build and it prevents pollution your src directory.

The Browse buttons come in handy here.

If you are building from a clone of the github repository, it is recommended
to do the build in a directory outside the repo (eg peer to visit) to keep
your checkout clean. Figure 20.2

[image: ../../_images/cmake_gui_02.png]

Fig. 20.2 Setting source and build directories

20.2.2. Location of windowsbuild Directory

For a released version of VisIt’s source code, the windowsbuild directory
containing the pre-built thirdparty binaries is located peer to src. CMake
generation should locate this directory automatically.
Figure 20.3

[image: ../../_images/visit_dirs_from_released_source.png]

Fig. 20.3 Directory structure with source from a released version

For developement build cloned or downloaded from the github repositories, in
order for CMake to locate the directory automatically, visit-deps should be
peer to visit.
Figure 20.4

[image: ../../_images/visit_dirs_from_github_repos.png]

Fig. 20.4 Expected directory structure with source from GitHub repo

If neither of the above is true for your situation, use the CMake gui to set
VISIT_WINDOWS_DIR to the location of the windowsbuild directory.
Figure 20.5

[image: ../../_images/adding_windowsbuild_dir.png]

Fig. 20.5 Setting VISIT_WINDOWS_DIR

20.2.3. Limiting Plugins

By default, most of the supported database reader plugins are built, which can
slow down loading of the solution in the Visual Studio IDE, and slow down the
build. If you want to reduce the number of plugins built, add a CMake var
using the Add Entry Button. If you are producing a version of VisIt that
you plan to distribute, you should skip this step so all database reader
plugins are built.
Figure 20.6

[image: ../../_images/selected_databases.png]

Fig. 20.6 Selecting a limited number of database plugins

To limit the database plugins to a specific set of plugins, set the Name:
to VISIT_SELECTED_DATABASE_PLUGINS. The Type: should be STRING. The
Value: should be a ‘;’ separated list of database plugins names. Case
must match the name of the folder in /src/databases.

The same procedure applies to plots and operators. The VisIt CMake variables
to limit plots and operator plugins are VISIT_SELECTED_PLOT_PLUGINS and VISIT_SELECTED_OPERATOR_PLUGINS, respectively.

Click OK when finished.

20.2.4. Configuring

Before configuring, you may want to suppress warnings. From the Options
menu, choose Warnings. Check the Developer Warnings and Deprecated Warnings in the Supress Warnings section. Click OK.
Figure 20.7

[image: ../../_images/suppress_cmake_warnings.png]

Fig. 20.7 Suppress CMake warnings

In the main CMake Window, click the Configure button.

If the build directory does not exist, you will be prompted to allow its creation.

You will also be prompted to choose a generator. On Windows, this
corresponds to the version of Visual Studio for which you plan to generate a
solution and projects.

Currently, only Visual Studio version 2017 64-bit is supported by the prebuilt
thirdparty libraries. Choose Visual Studio 15 2017 Win64 from the dropdown
and add host=x64 to use the full 64-bit toolset.
Figure 20.8

[image: ../../_images/choose_generator_popup.png]

Fig. 20.8 Choosing the generator

CMakeCache entries will be displayed after the initial configure. All entries
at this point will be highlighted reddish orange – a signal that you may want
to modify some of them. Subsequent clicks of the Configure button
highlight only entries that contain errors or entries that are new since the
last configure.

You can modify how many entries are seen, and how they are viewed by selecting
the: Grouped, and/or Advanced buttons. Grouped option groups
similarly named items, Advanced option shows all the entries. Using both is
probably the easiest to navigate for use with VisIt. Mouse-hover over
individual entries (not groups) will generate a brief description.
Figure 20.9

[image: ../../_images/after_first_configure.png]

Fig. 20.9 After first configure

Most of the default settings should be fine, though you may want to change
CMAKE_INSTALL_PREFIX from its default location within the Build directory.
If you’ve grouped the entries, click the + button next to CMAKE, find
CMAKE_INSTALL_PREFIX and modify it as desired.

20.2.5. Parallel

If you have an MPI implementation installed (Microsoft’s MPI), you can choose
to create a parallel build. Expand the VISIT section within the CMake gui,
then check the box for VISIT_PARALLEL. You will have to scroll to find it.

Click the Configure button again to have CMake check the prerequisites for
building parallel VisIt. If the prerequisites are met then some new cache
entries related to MPI will be created. If not, the MPI entries may have to
be modified by hand.

20.2.6. Suppressing Regeneration

The solution file that CMake creates has a project called ZERO_CHECK that is
occasionally invoked to regenerate the projects. This can be highly undesirable
during development, since it may be triggered during a build and can cause
numerous projects to be reloaded into the VS IDE, wasting time unnecessarily.
To avoid this behavior, you can create a new CMake cache entry named
CMAKE_SUPRESS_REGENERATION, with type BOOL and make sure that it is
checked. If you made this change click Configure again.

	You can automate this step in your host.cmake file by adding this line to your host.cmake file:

	set(CMAKE_SUPPRESS_REGENERATION TRUE)

Note that setting this flag means that CMake won’t automatically reconfigure
from within the VS IDE when changes are made to the build scripts
(CMakeLists.txt) or Cache entries. You will have to manually reconfigure.
Once reconfigured, Visual Studio will notify you the project files have been
modified and prompt you to reload.

20.2.7. Generate

The Generate step creates the Visual Studio project and solution files.
Make sure any changes made to the cache entries have been Configured and
that no entries remain red, then click the Generate button.

20.2.8. Compile

Open the generated VisIt.sln file with Visual Studio (it may take awhile to
load all the project file). Select desired Configuration and Build solution.

 21. Building on macOS with masonry

21. Building on macOS with masonry

In this chapter, we will discuss how to build VisIt [https://visit-dav.github.io/visit-website/] on macOS using masonry.
Masonry is a collection of Python scripts and JSON files that use build_visit, and other
system tools, to create a macOS Disk Image File (DMG).

	21.1. Setup
	21.1.1. Masonry Scripts

	21.1.2. Configuration

	21.1.3. Signing macOS Builds

	21.1.4. App-Specific Password

	21.2. Running Masonry Scripts
	21.2.1. bootstrap_visit.py

	21.2.2. masonry_view_log.py

 21.1. Setup

21.1. Setup

21.1.1. Masonry Scripts

The masonry scripts are bundled with VisIt [https://visit-dav.github.io/visit-website/]’s source code. You will need to download
the source code and extract masonry from visit/src/tools/dev. There are a few options
for downloading the source code. If you want a released version of VisIt [https://visit-dav.github.io/visit-website/] then go to the
source code downloads page [https://visit.llnl.gov/source] and look for the VisIt sources
link. The other option is to download from the git repository [https://github.com/visit-dav/visit].
Once you have the source code, copy visit/src/tools/dev/masonry to a location of your choosing.

21.1.2. Configuration

	In the opts directory copy one of the *.json files and rename it as desired.
For example: cp mb-3.1.1-darwin-10.14-x86_64-release.json mb-3.1.2-darwin-10.14-x86_64-release.json

	Open the JSON configuration file (see Figure 21.1) created in step 1 and modify or add the following options as needed:

	arch: required

	The build architecture (e.g., darwin-x86_64).

	boost_dir: optional

	The path to boost if installed on your system. This also triggers the setting of two CMake options (VISIT_USE_BOOST:BOOL and BOOST_ROOT:PATH).

	branch: required

	The git branch to checkout and build.

	build_dir: optional

	The directory to place all of the files generated from the build process. If this option isn’t specified the build directory will default to build-<json_base> (e.g., build-mb-3.1.2-darwin-10.14-x86_64-release) in your current working directory.

	build_types: required

	A list of builds for masonry to create.

	build_visit: required

	Allows you to set the build_visit options.

cmake_ver: required - the CMake version to use

args: optional - arguments for build_visits

libs: optional - third-party libraries to build

make_flags: optional - Make flags

	build_xdb: optional

	Set the VISIT_ENABLE_XDB:BOOL option to ON if true.

	cert: required for signing/notarization

	The Developer ID signing certificate Common Name.

	cmake_extra_args: optional

	Specify extra arguments for CMake.

	config_site: optional

	Specify a path for the config site file.

	cxx_compiler: optional

	Specify the C++ compiler

	c_compiler: optional

	Specify the C compiler

	entitlements: required for notarization

	Specify the location of VisIt’s entitlements file. The one used for VisIt releases is located in the opts directory and is named visit.entitlements. See Hardened Runtime [https://developer.apple.com/documentation/security/hardened_runtime] for more details on entitlements.

	force_clean: optional

	Removes all files and directories from your build folder.

	git: required

	mode: required - set this option to ssh or https

git_uname: optional - github username

depth: optional - specify an integer value for a shallow clone with a history truncated to the specified number of commits.

	make_nthreads: optional

	The number of parallel threads to use when building the source code.

	notarize: required for notarization

	Specify the options needed for notarization.

username: - Apple ID email

password: - App-specific password or keychain string containing the App-specific password

asc_provider: - Provider short name

bundle_id: - VisIt’s bundle identifier

	platform: optional

	Specify the platform (osx or linux)

	skip_checkout: optional

	if you have to restart masonry and already have the source code checked out you can skip that step by setting this option to yes.

	tarball: optional

	Specify the path to the source tar file. This option is currently not being used.

	version: required

	The version of VisIt you are building.

[image: ../../_images/config.png]

Fig. 21.1 Masonry’s JSON config file

21.1.3. Signing macOS Builds

To code sign [https://developer.apple.com/library/archive/technotes/tn2206/_index.html] your VisIt [https://visit-dav.github.io/visit-website/] build, you must be enrolled in the Apple Developer Program [https://developer.apple.com/programs/] and have a valid Developer ID certificate. Below are simple steps to get started, reference the links for more detailed information.

	Enroll in the Apple Developer Program, if needed, and create your Developer ID certificates.

	Install Apple certificates into your keychain

	From Xcode go to the account preferences (Xcode->Preferences->Account) and select the Manage Certificates… button.

	Click the + to add your certificates (see Figure 21.2).

	Add the Developer ID signing certificate Common Name to the cert option in the masonry JSON configuration file.

[image: ../../_images/certs.png]

Fig. 21.2 Xcode Manage Certificates Dialog

21.1.4. App-Specific Password

To create an app-specific password go to: https://appleid.apple.com/account/manage . Generate the app-specific password by navigating to: Security->App-Specific Password.

To avoid having a plain-text password in your config file, you can add the app-specific password to your macOS keychain. To do this, run the following command:

security add-generic-password -a "apple-id-email" -w "app-specific password" -s "notarizing-name"

The -s parameter is the name that this item will have in your keychain. Apple’s documentation on Customizing the Notarization Workflow [https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_distribution/customizing_the_notarization_workflow] provides a good overview of the notarization process and a link [https://support.apple.com/en-us/HT204397] detailing how to generate and manage app-specific passwords.

 21.2. Running Masonry Scripts

21.2. Running Masonry Scripts

21.2.1. bootstrap_visit.py

The bootstrap_visit.py file contains all of the logic to execute the necessary steps for creating the macOS Disk Image File (DMG).
It takes the JSON configuration file as an argument:

python3 bootstrap_visit.py opts/<file-name>.json

21.2.2. masonry_view_log.py

Once masonry is running, it will produce log files in the _logs directory. To view the logs in HTML format (see Figure 21.3), run the masonry_view_log.py script. This script takes the log file as an argument:

python3 masonry_view_log.py _logs/<log-fle>.json

[image: ../../_images/log.png]

Fig. 21.3 Mansonry Logs in HTML format

The script will launch a web browser to connect to a local web server. If
you already have a web browser running on your system the script will use it.
In this situation that web browser may not be able to connect to the local
web server. If this happens you should exit your existing web browser and
try again.

 22. Acknowledgments

22. Acknowledgments

This document was prepared as an account of work sponsored by an agency of
the United States government. Neither the United States government nor
Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

 23. Glossary

23. Glossary

	AAN	Always, Auto, Never

	Various features in VisIt [https://visit-dav.github.io/visit-website/] support an Always, Auto, Never choice.
A setting of Never means to never enable the the feature and a
setting of Always means to always enable the feature. A setting
of Auto, which is typically the default, means the allow VisIt [https://visit-dav.github.io/visit-website/]
to decide when it thinks it is best to enable or disable the feature.

	Integral Curve

	An integral curve is a curve that begins at a seed location and is
tangent at every point in a vector field. It is computed by numerical
integration of the seed location through the vector field.

	Node	Point	Vertex

	These terms refer to the corners or ends of mesh elements.

	Pathlines

	A path rendered by an integrator that uses the vector field that is
in-step with the integrator, so that as the integrator steps through
time, it uses data from the vector field at each new time step.

	Node-centered	Point-centered

	These terms refer to a piecewise-linear (one degree of freedom at each
of mesh element corner) interpolation scheme used to define a variable
on a mesh. VTK tends to use the point terminology whereas VisIt [https://visit-dav.github.io/visit-website/] tends
to use the node terminology.

	Parallel task

	Although developers are working to enhance VisIt [https://visit-dav.github.io/visit-website/] to support a variety
of fine-grained parallelism methods (e.g. MC or GPU) and although some
portions of VisIt [https://visit-dav.github.io/visit-website/] have supported multi-threaded processing for several
years, in the currently available implementations, a parallel task is an
MPI rank.

	Streamlines

	A path rendered by an integrator that uses the same vector field for
the entire integration.

	SIL	Subset Inclusion Lattice

	A Subset Inclusion Lattice or SIL is a term used to describe
the often complex, graph like relationships among a variety of subsets
defined for a mesh. A SIL describes which subsets and categories
of subsets are contained within other subsets and subset categories.
The Subset Window is the part of VisIt [https://visit-dav.github.io/visit-website/] GUI that displays the
contents of a SIL and allows the user to browse subsets and
subset categories and turn subsets (and trees of subsets) on and off
in visualizations.

	SR	SR mode

	SR is an abbreviation for Scalable Rendering. This is a mode of
operation where the VisIt [https://visit-dav.github.io/visit-website/] engine performs scalable, parallel
rendering and ships the final rendered image (e.g. pixels) to the
viewer. This is in contrast to standard mode where the
engine ships polygons to the viewer to be rendered there.

	Zone	Cell

	These terms refer to the the individual computational elements comprising
a mesh.

	Zone-centered	Cell-centered

	These terms refer to a piecewise-constant (single degree of freedom for
an entire zone) interpolation scheme used to define a field variable on
a mesh. VTK tends to use the cell terminology whereas VisIt [https://visit-dav.github.io/visit-website/] tends to
use the zone terminology.

 24. Contributing

24. Contributing

This is a short contributing guide on the VisIt_ project’s use of
Sphinx [http://www.sphinx-doc.org/en/stable/tutorial.html] for
documentation.

You can check out the Sphinx manual with:

svn co svn+ssh://<USERNAME>@edison.nersc.gov/project/projectdirs/visit/svn/visit/trunk/docs/SphynxDocs

If you have Sphinx [http://www.sphinx-doc.org/en/stable/tutorial.html] You can
build the html manual locally using the command:

sphinx-build -b html . _build -a

You can then browse the root of the manual by pointing your browser to
./_build/index.html. The -a forces a re-build of everything.
Remove it when you are constantly revising and rebuilding.

Your changes to any files in trunk/docs/SphinxDocs will go live
here [https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/]
soon after you push them. If RTD [https://readthedocs.org] resources are
busy, a rebuild of the docs may take as long as 15 minutes. If you are working
on a branch and want to see your branch’s docs rendered and you yourself do
not have access to the RTD account that controls this, you may ask another
developer who does to activate your branch there. Once the branch is merged,
it should be deactivated.

24.1. Quick Reference

Note that the original source of most of the content here is the OpenOffice
document produced with heroic effort by Brad Whitlock. A conversion tool was
used to move most of the content there to Sphinx. As such, most of the Sphinx
usage conventions adopted here were driven by whatever the conversion tool
produced. There are numerous opportunities for adjusting this to make better
use of Sphinx as we move forward. These are discussed at the
end of this section.

	A few documents about reStructuredText and Sphinx are useful:

	reStructuredText Primer [http://docutils.sourceforge.net/docs/user/rst/quickref.html]

	Sphinx Documentation [http://www.sphinx-doc.org/en/stable/contents.html]

	reStructuredText Markup Specification [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html]

	reStructuredText Reference Documentation [http://docutils.sourceforge.net/rst.html#reference-documentation]

	Sphinx uses blank lines as block separators and 2 or 4 spaces of
indentation to guide parsing and interpretation of content. So, be sure
to pay careful attention to blank lines and indentation. They are not
there merely for style. They need to be there for Sphinx to parse and
interpret the content correctly.

	Line breaks within reStructuredText inline markup constructs often cause
build errors.

	Create headings by a sequence of separator characters immediately
underneath and the same length as the heading. Different types of
separator characters define different levels of headings

First Level Heading
===================
This is an example of some text under the heading...

Second Level Heading

This is an example of some text under the heading...

Third Level Heading
~~~~~~~~~~~~~~~~~~~
This is an example of some text under the heading...

Fourth level heading
""""""""""""""""""""
This is an example of some text under the heading...





yields these headings…






[image: ../../_images/headings.png]


	If you want to divide sections and subsections across multiple .rst
files, you can link them together using the .. toctree:: directive
as is done for example in the section on VisIt_ Plots

Plots
=====

This chapter explains the concept of a plot and goes into detail
about each of VisIt's different plot types.

.. toctree::
    :maxdepth: 1

    Working_with_Plots
    PlotTypes/index





Note that the files listed in the .. toctree:: block do not include
their .rst extensions.



	Wherever possible, keep lines in .rst files to 80 columns or less.


	Avoid contractions such as isn't, can't and you've.


	Avoid hyphenation of words.


	Use VisIt_ or VisIt_'s when referring to VisIt_ by name.


	Use upper case for all letters in acronyms (MPI, VTK)


	Use case conventions of product names (QuickTime, TotalView, Valgrind).


	Bracket word(s) with two stars (**some words**) for bold.


	Bracket word(s) with one star (*word*) for italics.


	Bracket word(s) with two backticks (``some words``) for literal.


	Bracketed word(s) should not span line breaks.


	Use bold to refer to VisIt_ Widget names, Operator or Plot
names and other named objects part of VisIt_’s interface.


	Use the following terminology when referring to widget names.





[image: ../../_images/GUIWidgetNames.png]


[image: ../../_images/GUIWidgetNames2.png]


	Avoid use of bold for other purposes. Instead use italics.


	Use literals for code, commands, arguments, file names, etc.


	Use :term:`glossary term` at least for the first use of a
glossary term in a section.


	Use :abbr:`ABR (Long Form)` at least for the first use of an
acronym or abbreviation in a section.


	Subscripting, H2O, and superscripting, E = mc2, are supported:

Subscripting, H\ :sub:`2`\ O, and superscripting, E = mc\ :sup:`2`, are supported





Note the use of backslashed spaces so Sphinx treats it all as one word.



	Use .. figure:: and not .. image::, include captions with figures
and use :scale: P % to adjust image size where needed
(see more below).


	LaTeX style equations can be included too
(see below).


	Spell checking is supported too (see below) but
you need to have
PyEnchant [https://pypi.org/project/pyenchant/] and
sphinx-contrib.spelling [http://sphinxcontrib-spelling.readthedocs.io/en/latest/index.html]
installed.


	Link checking is also supported (see link checking).


	Begin a line with .. followed by space for single line comments:

.. this is a single line comment

..
    This is a multi-line
    comment










	Define anchors ahead of sections or paragraphs you want to cross reference:

.. _my_anchor:

Section Heading
---------------





Note that the leading underscore is not part of the anchor name.



	Make anchor names unique over all pages of documentation by using
the convention of prepending heading and subheading names.


	Link to anchors within this documentation like this one:

Link to anchors *within* this documentation like :ref:`this one <my_anchor>`







	Link to other documents elsewhere online like
visitusers.org [https://www.visitusers.org/]:

Link to other documents elsewhere online like
`visitusers.org <https://www.visitusers.org/>`_







	Link to numbered figures or tables within this documentation like
Fig. 24.2:

Link to *numbered* figures or tables *within* this documentation like
:numref:`Fig. %s <my_figure2>`







	Link to a downloadable file within this documentation like
this one:

Link to a downloadable file *within* this documentation like
:download:`this one <../Quantitative/VerdictManual-revA.pdf>`







	Link to different URLs with same link text in same .rst file.
Sometimes you might wind up using the same phrase in a .rst file
that is linked to different URLs. When you do, you will get a warning
such as WARNING: Duplicate explicit target name.... For example if
you have one example [http://www.llnl.gov] and another
example [http://www.llnl.gov]. To correct this, you need to add an
extra underscore to the end of the link as in:

For example, if you have one `example <http://www.llnl.gov>`__ and
another `example <http://www.llnl.gov>`__.







	If you are having trouble getting the formatting for a section worked
out and the time involved to re-gen the documentation is too much, you
could try an
on-line, real-time reStructuredText Renderer [http://rst.ninjs.org]
to quickly try different things and see how they work.






24.2. More on Images

Try to use PNG formatted images. We plan to use the Sphinx generated
documentation both for online HTML and for printed PDF. So, images sizes
cannot be too big or they will slow HTML loads but not so small they are
unusable in PDF.

Some image formats wind up enforcing physical dimensions instead of
just pixel dimensions. This can have the effect of causing a nicely sized
image (from pixel dimensions perspective anyways), to either be unusually
large or unusually small in HTML or PDF output. In these cases, you can
use the Sphinx :scale: and :width: or :height: options for
a .. figure:: block. Also, be sure to use a .. figure:: directive
instead of an .. image:: directive for embedding images. This is because
the .. figure:: directive also supports anchoring for cross referencing.

Although all images get copied into a common directory during generation,
Sphinx takes care of remapping names so there is no need to worry about
collisions in image file names potentially used in different subdirectories
within the source tree.

An ordinary image…

.. figure:: images/array_compose_with_bins.png






[image: ../../_images/array_compose_with_bins.png]

Same image with :scale: 50% option

.. figure:: images/array_compose_with_bins.png
   :scale: 50%






[image: ../../_images/array_compose_with_bins.png]

Same image with an anchor for cross referencing…

.. _my_figure:

.. figure:: images/array_compose_with_bins.png
   :scale: 50%






[image: ../../_images/array_compose_with_bins.png]

which can now be cross referenced using an inline Fig. 24.1
like so…

Which can now be cross referenced using an inline :numref:`Fig. %s <my_figure>`
like so...





Note the anchor has a leading underscore which the reference does not include.

Same image (different anchor though because anchors need to be unique) with
a caption.

.. _my_figure2:

.. figure:: images/array_compose_with_bins.png
   :scale: 50%

   Here is a caption for the figure.






[image: ../../_images/array_compose_with_bins.png]

Fig. 24.2 Here is a caption for the figure.



Note that the figure label (e.g. Fig 20.2) will not appear if there is no
caption.



24.3. Tables

Sphinx supports a variety of mechanisms for defining
tables [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#tables].
The conversion
tool used to convert this documentation from its original OpenOffice format
converted all tables to the grid style of table which is kinda sorta like
ascii art. Large tables can result in individual lines that span many widths of
the editor window. It is cumbersome to deal with but rich in capabilities.
Often, the best answer is to NOT use tables and instead use
definition lists [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#definition-lists]
as is used in the documentation on expressions.



24.4. Math

We add the Sphinx builtin extension sphinx.ext.mathjax to the
extensions variable in conf.py. This allows Sphinx to use
mathjax [https://www.mathjax.org] to do LaTeX like math equations in our
documentation. For example, this LaTeX code

:math:`x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}`





produces…

\(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)

You can find a few examples in Expressions. Search
there for :math:. Also, this
LaTeX Wiki page [https://oeis.org/wiki/List_of_LaTeX_mathematical_symbols]
has a lot of useful information on various math symbols available in LaTeX
and this wiki book [https://en.wikibooks.org/wiki/LaTeX/Mathematics] has
a lot of guidance on constructing math equations with LaTeX.



24.5. Spell Checking Using Aspell

You can do a pretty good job of spell checking using the Unix/Linux aspell
command.


	Run aspell looking for candidate miss-spelled words.

find . -name '*.rst' -exec cat {} \; | \
grep -v '^ *.. image:\|figure:\|code:\|_' | \
tr '`' '@' | sed -e 's/\(@.*@\)//' | \
aspell -p ./aspell.en.pws list | \
sort | uniq > maybe_bad.out





The find command will find all .rst files. Succeeding grep,
tr and sed pipes filter some of the .rst syntax away. The final
pipe through aspell uses the
personal word list (also called the personal dictionary) [http://aspell.net/man-html/Format-of-the-Personal-and-Replacement-Dictionaries.html#Format-of-the-Personal-Dictionary-1]
option, -p ./aspell.en.pws (note: the ./ is critical so don’t
ignore it), to specify a file containing a list of words we allow that
aspell would otherwise flag as incorrect. The sort and uniq
pipes ensure the result doesn’t contain duplicates. But, be aware that a
given miss-spelling can have multiple occurrences. The whole process produces
a list of candidate miss-spelled words in maybe_bad.out.



	Examine maybe_bad.out for words that you think are correctly spelled.
If you find any, remove them from maybe_bad.out and add them to the end
of aspell.en.pws being careful to update the total word count in the
first line of file where, for example 572 is the word count shown in
that line, personal_ws-1.1 en 572 when this was written.


	To find instances of remaining (miss-spelled words), use the following
command.

find . -name '*.rst' -exec grep -wnHFf maybe_bad.out {} \;







	It may be necessary to iterate through these steps a few times to find
and correct all the miss-spellings.




It would be nice to create a make spellcheck target that does much of
the above automatically. However, that involves implementing the above
steps as a cmake program and involves more effort than available when
this was implemented.



24.6. Link checking using Sphinx linkcheck builder

You can run checks on links in all files using Sphinx builtin
linkcheck [https://www.sphinx-doc.org/en/master/usage/configuration.html?highlight=linkcheck#options-for-the-linkcheck-builder]
builder by running the command:

sphinx-build -b linkcheck . _links -a





This will produce a file, output.txt, in the _links output directory.
There will be a lot of output regarding various links and the results of
checking those links. You want to find those cases where a link’s status is
reported as broken and then try to correct them.

For some reason, Sphinx’ linkcheck builder winds up actually downloading
links to .tar.gz and .zip files. This causes the linkcheck to take much
more time to run than it ordinarily would. We have filed an issue ticket
about this and for the time being are using the linkcheck_ignore option
in conf.py to temporarily skip links to data files.

In addition depending on where you run the linkcheck (e.g. behind a
firewall or other cyber-security apparatus), you may get different results
due to any cyber-security IP filtering.

All of the above is automated with the linkcheck make target also.



24.7. Things To Consider Going Forward


	Decide what to do about compound words such as timestep, time step or
time-step. There are many instances to consider such as keyframe,
checkbox, pulldown, submenu, sublauncher, etc.


	Need to populate glossary with more VisIt_ specific terms such as…






	Mixed materials, Species, OnionPeel,  Mesh, Viewer, cycle, timestep
Client-server, CMFE, Zone-centering, Node-centering, etc.








	Decide upon and then make consistent the usage of terms like
zone/cell/element and node/point/vertex


	We will need to support versions of the manual with each release.
RTD can do that. We just need to implement it.


	If we have tagged content, then those would also represent different
versions of the manual.






	All VisIt_ manuals should probably be hosted at a URL like
visit.readthedocs.io and from there users can find manuals for GUI, CLI
Getting Data Into VisIt_, etc.


	Change name of docs dir to Sphinx and not Sphynx.


	Add at least another LLNL person to RTD project so we have coverage to fix
issues as they come up.


	Additional features of Sphinx to consider adopting…


	:guilable: role for referring to GUI widgets.


	:command: role for OS level commands.


	:file: role for referring to file names.


	:menuselection: role for referring to widget paths in GUI menus.
Example: Controls ‣ View ‣ Advanced.


	:kbd: role for specifying a sequence of key strokes.


	.. deprecated:: directive for deprecated functionality


	.. versionadded:: directive for new functionality


	.. versionchanged:: directive for when functionality changed


	.. note::, .. warning:: and/or .. danger:: directives to call
attention to the reader.


	.. only:: directives for audience specific (e.g. tagged) content


	Could use to also include developer related content but have it
not appear in the user manual output






	.. seealso:: directive for references


	Substitutions for names of products and projects we refer to frequently
such as VTK [https://www.vtk.org] or VisIt_ (as is used throughout this section) or for
frequently used text such as Viewer Window:

Substitutions for names of products and projects we refer to frequently
such as VTK_ or VisIt_ (as is used throughout this section) or for
frequently used text such as |viswin|.





with the following substitutions defined:

.. _VisIt: https://visit.llnl.gov
.. _VTK: https://www.vtk.org
.. |viswin| replace:: **Viewer Window**





Note that the .. _VisIt: ... substitution is already defined for the whole
doctree in the rst_prolog variable in conf.py.










	Possible method for embedding python code to generate and capture images
(both of the GUI and visualization images produced by VisIt_) automatically


	With the following pieces….


	VisIt_ python CLI


	pyscreenshot [https://pypi.org/project/pyscreenshot/]


	A minor adjustment to VisIt_ GUI to allow a python CLI instance
which used OpenGUI(args...) to inform the GUI that widgets
are to be raised/mapped on state changes.






	We can include python code directly in these .rst documents
(prefaced by .. only:: directives to ensure the code does
not actually appear in the generated manual) that does the work
and just slurp this code out of these documents to actually run
for automatic image generation.


	Generate and save VisIt_ visualization images.


	Use diffs on screen captured images to grab and even annotate images
of GUI widgets.












import pyscreenshot
import PIL

# The arg (not yet implemented) sets flag in GUI to map windows
# on state changes
OpenGUI(MapWidgetsOnStateChanges=True)
base_gui_image = pyscreenshot.grab()

OpenDatabase('visit_data_path()/silo_hdf5_test_data/globe.silo')
AddPlot("Pseudocolor","dx")
DrawPlots()

# Save VisIt rendered image for manual
SaveWindow('Plots/PlotTypes/Pseudocolor/images/figure15.png')
ClearPlots()

# Change something in PC atts to force it to map
pcatts = PseudocolorAttributes()
pcatts.colorTableName = 'Blue'
SetPlotOptions(pcatts) # Causes widget to map due to state change
pcatts.colorTableName = 'hot'
SetPlotOptions(pcatts) # Causes widget to map due to state change
gui_image = pyscreenshot.grab()

# Save image of VisIt PC Attr window
#   - computes diff between gui_image and base_gui_image, bounding box
#   - around it and then saves that bounding box from gui_image
diff_bbox = BBoxedDiffImage(gui_image, gui_image_base)
SaveBBoxedImage(gui_image, diff_bbox, 'Plots/PlotTypes/Pseudocolor/images/pcatts_window.png')

# Make a change to another PC att, capture and save it
pcatts.limitsMode = pcatts.CurrentPlot
SetPlotOptions(pcatts) # Causes widget to map due to state change
gui_image = pyscreenshot.grab()
SaveBBoxedImage(gui_image, diff_bbox, 'Plots/PlotTypes/Pseudocolor/images/pcatts_limit_mode_window.png')









          

      

      

    

 


  

  
    

    VisIt Python (CLI) Interface Manual
    

    

    
 
  

    
      
          
            
  
VisIt Python (CLI) Interface Manual

[image: ../_images/teaser.png]


	Introduction to VisIt
	Overview

	Manual chapters

	Understanding how VisIt works

	Starting VisIt

	Python 3 vs Python 2

	Getting started





	Python
	Overview

	Indentation

	Comments

	Identifiers

	Data types

	Control flow

	Functions





	Quick Recipes
	Overview

	How to start

	Saving images

	Working with databases

	Opening a compute engine

	Working with plots

	Operators

	Quantitative operations

	Subsetting

	View

	Working with annotations





	Functions
	ActivateDatabase

	AddArgument

	AddMachineProfile

	AddOperator

	AddPlot

	AddWindow

	AlterDatabaseCorrelation

	ApplyNamedSelection

	ChangeActivePlotsVar

	CheckForNewStates

	ChooseCenterOfRotation

	ClearAllWindows

	ClearCache

	ClearCacheForAllEngines

	ClearMacros

	ClearPickPoints

	ClearReferenceLines

	ClearViewKeyframes

	ClearWindow

	CloneWindow

	Close

	CloseComputeEngine

	CloseDatabase

	ColorTableNames

	ConstructDataBinning

	CopyAnnotationsToWindow

	CopyLightingToWindow

	CopyPlotsToWindow

	CopyViewToWindow

	CreateAnnotationObject

	CreateDatabaseCorrelation

	CreateNamedSelection

	DatabasePlugins

	DeIconifyAllWindows

	DefineArrayExpression

	DefineCurveExpression

	DefineMaterialExpression

	DefineMeshExpression

	DefinePythonExpression

	DefineScalarExpression

	DefineSpeciesExpression

	DefineTensorExpression

	DefineVectorExpression

	DeleteActivePlots

	DeleteAllPlots

	DeleteDatabaseCorrelation

	DeleteExpression

	DeleteNamedSelection

	DeletePlotDatabaseKeyframe

	DeletePlotKeyframe

	DeleteViewKeyframe

	DeleteWindow

	DemoteOperator

	DisableRedraw

	DrawPlots

	EnableTool

	EvalCubic

	EvalCubicSpline

	EvalLinear

	EvalQuadratic

	ExecuteMacro

	ExportDatabase

	Expressions

	GetActiveContinuousColorTable

	GetActiveDiscreteColorTable

	GetActiveTimeSlider

	GetAnimationAttributes

	GetAnimationTimeout

	GetAnnotationAttributes

	GetAnnotationObject

	GetAnnotationObjectNames

	GetCallbackArgumentCount

	GetCallbackNames

	GetDatabaseNStates

	GetDebugLevel

	GetDefaultFileOpenOptions

	GetDomains

	GetEngineList

	GetEngineProperties

	GetGlobalAttributes

	GetGlobalLineoutAttributes

	GetInteractorAttributes

	GetKeyframeAttributes

	GetLastError

	GetLight

	GetLocalHostName

	GetLocalUserName

	GetMachineProfile

	GetMachineProfileNames

	GetMaterialAttributes

	GetMaterials

	GetMeshManagementAttributes

	GetMetaData

	GetNumPlots

	GetOperatorOptions

	GetPickAttributes

	GetPickOutput

	GetPickOutputObject

	GetPipelineCachingMode

	GetPlotInformation

	GetPlotList

	GetPlotOptions

	GetPreferredFileFormats

	GetQueryOutputObject

	GetQueryOutputString

	GetQueryOutputValue

	GetQueryOutputXML

	GetQueryOverTimeAttributes

	GetQueryParameters

	GetRenderingAttributes

	GetSaveWindowAttributes

	GetSelection

	GetSelectionList

	GetSelectionSummary

	GetTimeSliders

	GetUltraScript

	GetView2D

	GetView3D

	GetViewAxisArray

	GetViewCurve

	GetWindowInformation

	HideActivePlots

	HideToolbars

	IconifyAllWindows

	InitializeNamedSelectionVariables

	InvertBackgroundColor

	Launch

	LaunchNowin

	Lineout

	ListDomains

	ListMaterials

	ListPlots

	LoadAttribute

	LoadNamedSelection

	LoadUltra

	LocalNameSpace

	LongFileName

	MoveAndResizeWindow

	MovePlotDatabaseKeyframe

	MovePlotKeyframe

	MovePlotOrderTowardFirst

	MovePlotOrderTowardLast

	MoveViewKeyframe

	MoveWindow

	NodePick

	NumColorTableNames

	NumOperatorPlugins

	NumPlotPlugins

	OpenComputeEngine

	OpenDatabase

	OpenMDServer

	OperatorPlugins

	OverlayDatabase

	PickByGlobalNode

	PickByGlobalZone

	PickByNode

	PickByNodeLabel

	PickByZone

	PickByZoneLabel

	PlotPlugins

	PointPick

	PrintWindow

	PromoteOperator

	PythonQuery

	Queries

	QueriesOverTime

	Query

	QueryOverTime

	ReOpenDatabase

	ReadHostProfilesFromDirectory

	RecenterView

	RedoView

	RedrawWindow

	RegisterCallback

	RegisterMacro

	RemoveAllOperators

	RemoveLastOperator

	RemoveMachineProfile

	RemoveOperator

	RemovePicks

	RenamePickLabel

	ReplaceDatabase

	ResetLineoutColor

	ResetOperatorOptions

	ResetPickLetter

	ResetPlotOptions

	ResetView

	ResizeWindow

	RestoreSession

	RestoreSessionWithDifferentSources

	SaveAttribute

	SaveNamedSelection

	SaveSession

	SaveWindow

	SendSimulationCommand

	SetActiveContinuousColorTable

	SetActiveDiscreteColorTable

	SetActivePlots

	SetActiveTimeSlider

	SetActiveWindow

	SetAnimationTimeout

	SetAnnotationAttributes

	SetBackendType

	SetCenterOfRotation

	SetColorTexturingEnabled

	SetCreateMeshQualityExpressions

	SetCreateTimeDerivativeExpressions

	SetCreateVectorMagnitudeExpressions

	SetDatabaseCorrelationOptions

	SetDebugLevel

	SetDefaultAnnotationAttributes

	SetDefaultFileOpenOptions

	SetDefaultInteractorAttributes

	SetDefaultMaterialAttributes

	SetDefaultMeshManagementAttributes

	SetDefaultOperatorOptions

	SetDefaultPickAttributes

	SetDefaultPlotOptions

	SetGlobalLineoutAttributes

	SetInteractorAttributes

	SetKeyframeAttributes

	SetLight

	SetMachineProfile

	SetMaterialAttributes

	SetMeshManagementAttributes

	SetNamedSelectionAutoApply

	SetOperatorOptions

	SetPickAttributes

	SetPipelineCachingMode

	SetPlotDatabaseState

	SetPlotDescription

	SetPlotFollowsTime

	SetPlotFrameRange

	SetPlotOptions

	SetPlotOrderToFirst

	SetPlotOrderToLast

	SetPlotSILRestriction

	SetPrecisionType

	SetPreferredFileFormats

	SetPrinterAttributes

	SetQueryFloatFormat

	SetQueryOutputToObject

	SetQueryOutputToString

	SetQueryOutputToValue

	SetQueryOverTimeAttributes

	SetRemoveDuplicateNodes

	SetRenderingAttributes

	SetSaveWindowAttributes

	SetTimeSliderState

	SetTreatAllDBsAsTimeVarying

	SetTryHarderCyclesTimes

	SetUltraScript

	SetView2D

	SetView3D

	SetViewAxisArray

	SetViewCurve

	SetViewExtentsType

	SetViewKeyframe

	SetWindowArea

	SetWindowLayout

	SetWindowMode

	ShowAllWindows

	ShowToolbars

	Source

	SuppressMessages

	SuppressQueryOutputOff

	SuppressQueryOutputOn

	TimeSliderGetNStates

	TimeSliderNextState

	TimeSliderPreviousState

	TimeSliderSetState

	ToggleBoundingBoxMode

	ToggleCameraViewMode

	ToggleFullFrameMode

	ToggleLockTime

	ToggleLockTools

	ToggleLockViewMode

	ToggleMaintainViewMode

	ToggleSpinMode

	TurnDomainsOff

	TurnDomainsOn

	TurnMaterialsOff

	TurnMaterialsOn

	UndoView

	UpdateNamedSelection

	Version

	WriteConfigFile

	WriteScript

	ZonePick





	Attribute Reference
	AMRStitchCell: AMRStitchCellAttributes()

	Animation: AnimationAttributes()

	Annotation: AnnotationAttributes()

	Axis: AxisAttributes()

	AxisAlignedSlice4D: AxisAlignedSlice4DAttributes()

	Boundary: BoundaryAttributes()

	BoundaryOp: BoundaryOpAttributes()

	Box: BoxAttributes()

	CartographicProjection: CartographicProjectionAttributes()

	Clip: ClipAttributes()

	Cone: ConeAttributes()

	ConnectedComponents: ConnectedComponentsAttributes()

	ConstructDataBinning: ConstructDataBinningAttributes()

	Contour: ContourAttributes()

	CoordSwap: CoordSwapAttributes()

	CreateBonds: CreateBondsAttributes()

	Curve: CurveAttributes()

	Cylinder: CylinderAttributes()

	DataBinning: DataBinningAttributes()

	DeferExpression: DeferExpressionAttributes()

	Displace: DisplaceAttributes()

	DualMesh: DualMeshAttributes()

	Edge: EdgeAttributes()

	Elevate: ElevateAttributes()

	EllipsoidSlice: EllipsoidSliceAttributes()

	Explode: ExplodeAttributes()

	ExportDB: ExportDBAttributes()

	ExternalSurface: ExternalSurfaceAttributes()

	Extrude: ExtrudeAttributes()

	FFT: FFTAttributes()

	FilledBoundary: FilledBoundaryAttributes()

	Flux: FluxAttributes()

	Font: FontAttributes()

	Global: GlobalAttributes()

	Histogram: HistogramAttributes()

	IndexSelect: IndexSelectAttributes()

	IntegralCurve: IntegralCurveAttributes()

	InverseGhostZone: InverseGhostZoneAttributes()

	Isosurface: IsosurfaceAttributes()

	Isovolume: IsovolumeAttributes()

	Keyframe: KeyframeAttributes()

	LCS: LCSAttributes()

	Label: LabelAttributes()

	Lagrangian: LagrangianAttributes()

	Light: LightAttributes()

	LimitCycle: LimitCycleAttributes()

	Lineout: LineoutAttributes()

	Material: MaterialAttributes()

	Mesh: MeshAttributes()

	MeshManagement: MeshManagementAttributes()

	Molecule: MoleculeAttributes()

	MultiCurve: MultiCurveAttributes()

	MultiresControl: MultiresControlAttributes()

	OnionPeel: OnionPeelAttributes()

	ParallelCoordinates: ParallelCoordinatesAttributes()

	PersistentParticles: PersistentParticlesAttributes()

	Poincare: PoincareAttributes()

	Printer: PrinterAttributes()

	Process: ProcessAttributes()

	Project: ProjectAttributes()

	Pseudocolor: PseudocolorAttributes()

	RadialResample: RadialResampleAttributes()

	Reflect: ReflectAttributes()

	Remap: RemapAttributes()

	Rendering: RenderingAttributes()

	Replicate: ReplicateAttributes()

	Resample: ResampleAttributes()

	Revolve: RevolveAttributes()

	SPHResample: SPHResampleAttributes()

	SaveWindow: SaveWindowAttributes()

	Scatter: ScatterAttributes()

	Slice: SliceAttributes()

	SmoothOperator: SmoothOperatorAttributes()

	SphereSlice: SphereSliceAttributes()

	Spreadsheet: SpreadsheetAttributes()

	Stagger: StaggerAttributes()

	StatisticalTrends: StatisticalTrendsAttributes()

	SubdivideQuads: SubdivideQuadsAttributes()

	Subset: SubsetAttributes()

	SurfaceNormal: SurfaceNormalAttributes()

	Tensor: TensorAttributes()

	ThreeSlice: ThreeSliceAttributes()

	Threshold: ThresholdAttributes()

	Transform: TransformAttributes()

	TriangulateRegularPoints: TriangulateRegularPointsAttributes()

	Truecolor: TruecolorAttributes()

	Tube: TubeAttributes()

	Vector: VectorAttributes()

	View: ViewAttributes()

	View2D: View2DAttributes()

	View3D: View3DAttributes()

	ViewAxisArray: ViewAxisArrayAttributes()

	ViewCurve: ViewCurveAttributes()

	Volume: VolumeAttributes()





	VisIt CLI Events

	Contributing To VisIt CLI Documentation
	Steps to update the CLI Manual





	Acknowledgments








          

      

      

    

 


  

  
    

    Introduction to VisIt
    

    

    
 
  

    
      
          
            
  
Introduction to VisIt


Overview

VisIt [https://visit-dav.github.io/visit-website/] is a distributed, parallel, visualization tool for visualizing
data defined on two and three-dimensional structured and unstructured
meshes. VisIt [https://visit-dav.github.io/visit-website/]’s distributed architecture allows it to leverage both the
compute power of a large parallel computer and the graphics acceleration
hardware of a local workstation. Another benefit of the distributed
architecture is that VisIt [https://visit-dav.github.io/visit-website/] can visualize the data where it is generated,
eliminating the need to move data. VisIt [https://visit-dav.github.io/visit-website/] can be controlled by a
Graphical User Interface (GUI) or through the Python scripting language.
More information about VisIt [https://visit-dav.github.io/visit-website/]’s Graphical User Interface can be found in
the VisIt User’s Manual.



Manual chapters

This manual is broken down into the following chapters:







	Chapter title

	Chapter description





	Introduction to VisIt

	This chapter.



	Python

	Describes the basic features of the



	
	Python programming language.



	Quick Recipes

	Describes common patterns for scripting



	
	using the VisIt Python Interface.



	Functions

	Describes functions in the VisIt Python



	
	Interface.



	Attributes References

	Describes attributes for setting common



	
	operations, as well as for VisIt’s plugins



	CLI Events

	Describes possible events for callbacks.








Understanding how VisIt works

VisIt visualizes data by creating one or more plots in a visualization
window, also known as a vis window. Examples of plots include Mesh
plots, Contour plots and Pseudocolor plots. Plots take as input one or
more mesh, material, scalar, or tensor variables. It is possible to
modify the variables by applying one or more operators to the variables
before passing them to a plot. Examples of operators include arithmetic
operations or taking slices through the mesh. It is also possible to
restrict the visualization of the data to subsets of the mesh. VisIt
provides Python bindings to all of its plots and operators so they may
be controlled through scripting. Each plot or operator plugin provides a
function, which is added to the VisIt namespace, to create the right
type of plot or operator attributes. The attribute object can then be
modified by setting its fields and then it can be passed to a
general-purpose function to set the plot or operator attributes. To
display a complete list of functions in the VisIt Python Interface, you
can type dir() at the Python prompt. Similarly, to inspect the contents
of any object, you can type its name at the Python prompt. VisIt
supports up to 16 visualization windows, also called vis windows. Each
vis window is independent of the other vis windows and VisIt Python
functions generally apply only to the currently active vis window. This
manual explains how to use the VisIt Python Interface which is a Python
extension module that controls VisIt [https://visit-dav.github.io/visit-website/]’s viewer. In that way, the VisIt
Python Interface fulfills the same role as VisIt [https://visit-dav.github.io/visit-website/]’s GUI. The difference
is that the viewer is totally controlled through Python scripting, which
makes it easy to write scripts to create visualizations and even movies.
Since the VisIt module controls VisIt [https://visit-dav.github.io/visit-website/]’s viewer, the Python interpreter
currently has no direct mechanism for passing data to the compute engine
(see Figure 1). If you want to
write a script that generates simulation data and have that script pass
data to the compute engine, you must pass the data through a file on
disk. The VisIt Python Interface comes packaged in two varieties: the
extension module and the Command Line Interface (CLI). The extension
module version of the VisIt Python Interface is imported into a standard
Python interpreter using the import directive. VisIt [https://visit-dav.github.io/visit-website/]’s command line
interface (CLI) is essentially a Python interpreter where the VisIt
Python Interface is built-in. The CLI is provided to simplify the
process of running VisIt Python scripts.


[image: VisIt_'s architecture]

Fig. 1 VisIt [https://visit-dav.github.io/visit-website/]’s architecture





Starting VisIt

You can invoke VisIt [https://visit-dav.github.io/visit-website/]’s command line interface from the command line by
typing:

visit -cli





VisIt provides a separate Python module if you instead wish to include
VisIt functions in an existing Python script. In that case, you must
first import the VisIt module into Python and then call the Launch()
function to make VisIt launch and dynamically load the rest of the VisIt
functions into the Python namespace. VisIt adopts this somewhat unusual
approach to module loading since the lightweight “visit” front-end
module can be installed as one of your Python’s site packages yet still
dynamically load the real control functions from different versions of
VisIt selected by the user.

If you do not install the visit.so module as a Python site package, you
can tell the Python interpreter where it is located by appending a new
path to the sys.path variable. Be sure to substitute the correct path to
visit.so on your system.

import sys
sys.path.append("/path/to/visit/<version>/<architecture>/lib/site-packages")





Here is how to import all functions into the global Python namespace:

from visit import *
Launch()





Here is how to import all functions into a “visit” module namespace:

import visit
visit.Launch()







Python 3 vs Python 2

Python 2 has reached end of life and Python 3 is now preferred.
VisIt was ported to use Python 3 as part of VisIt’s 3.2 release.
Some Python 2 syntax and common patterns no longer work in Python 3.

For example, this is no longer valid in Python 3:

print "Hello from VisIt"





In Python 3 you must call print like a function:

print("Hello from VisIt")





Since many VisIt scripts in the wild are written for Python 2 we provide
limited on-the-fly support to convert Python 2 style scripts to valid
Python 3 and execute them. The CLI command line option -py2to3 enables
this automatic conversion logic.

When -py2to3 is used, VisIt will attempt to convert the input script
passed with -s and any scripts run using visit.Source() on-the-fly.
For example, if you create script called hello_visit.py
that includes the Python 2 style print above and run it as follows:

visit -nowin -cli -py2to3 -s hello_visit.py





On-the-fly conversion and execution will succeed and you will see:

Running: cli -dv -nowin -py2to3 -s hello_visit.py
VisIt CLI: Automatic Python 2to3 Conversion Enabled
Running: viewer -dv -nowin -noint -host 127.0.0.1 -port 5600
Hello from VisIt





You can also toggle this support in VisIt’s CLI using:

visit_utils.builtin.SetAutoPy2to3(True) # or False





You can check the current value using:

visit_utils.builtin.GetAutoPy2to3()





We want to emphasize the limited aspect of the automatic support.
The best long term path is to port your Python 2 style scripts to Python 3.

Python 3 installs provide a utility called 2to3 that you can use to
help automate porting, see https://docs.python.org/3/library/2to3.htm
for more details.

If you need help porting your trusty (or favorite) VisIt script, please
reach out to the VisIt team.



Getting started

VisIt is a tool for visualizing 2D and 3D scientific databases. The
first thing to do when running VisIt is select databases to visualize.
To select a database, you must first open the database using the
OpenDatabase function. After a window has an open database, any number
of plots and operators can be added. To create a plot, use the AddPlot
function. After adding a plot, call the DrawPlots function to make sure
that all of the new plots are drawn.

Example:

OpenDatabase("/usr/local/visit/data/multi_curv3d.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()





To see a list of the available plots and operators when you use the
VisIt Python Interface, use the Operator Plugins and Plot Plugins
functions. Each of those functions returns a tuple of strings that
contain the names of the currently loaded plot or operator plugins. Each
plot and operator plugin provides a function for creating an attributes
object to set the plot or operator attributes. The name of the function
is the name of the plugin in the tuple returned by the OperatorPlugins
or PlotPlugins functions plus the word “Attributes”. For example, the
“Pseudocolor” plot provides a function called PseudocolorAttributes. To
set the plot attributes or the operator attributes, first use the
attributes creation function to create an attributes object. Assign the
newly created object to a variable name and set the fields in the
object. Each object has its own set of fields. To see the available
fields in an object, print the name of the variable at the Python prompt
and press the Enter key. This will print the contents of the object so
you can see the fields contained by the object. After setting the
appropriate fields, pass the object to either the SetPlotOptions
function or the SetOperatorAttributes function.

Example:

OpenDatabase("/usr/local/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddOperator("Slice")
p = PseudocolorAttributes()
p.colorTableName = "rainbow"
p.opacity = 0.5
SetPlotOptions(p)
a = SliceAttributes()
a.originType = a.Point
a.normal, a.upAxis = (1,1,1), (-1,1,-1)
SetOperatorOptions(a)
DrawPlots()





That’s all there is to creating a plot using VisIt [https://visit-dav.github.io/visit-website/]’s Python Interface.
For more information on creating plots and performing specific actions
in VisIt, refer to the documentation for each function later in this
manual.





          

      

      

    

 


  

  
    

    Python
    

    

    
 
  

    
      
          
            
  
Python


Overview

Python is a general purpose, interpreted, extensible, object-oriented
scripting language that was chosen for VisIt’s scripting language due to
its ease of use and flexibility. VisIt’s Python interface was
implemented as Python module and it allows you to enhance your Python
scripts with coding to control VisIt. This chapter explains some of
Python’s syntax so it will be more familiar when you examine the
examples found in this document. For more information on programming in
Python, there are a number of good references, including on the Internet
at http://www.python.org.



Indentation

One of the most obvious features of Python is its use of indentation for
new scopes. You must take special care to indent all program logic
consistently or else the Python interpreter may halt with an error, or
worse, not do what you intended. You must increase indentation levels
when you define a function, use an if/elif/else statement, or use any
loop construct.

Note the different levels of indentation:

def example_function(n):
  v = 0
  if n > 2:
    print "n greater than 2."
  else:
    v = n * n
  return v







Comments

Like all good programming languages, Python supports the addition of
comments in the code. Comments begin with a pound character (#) and
continue to the end of the line.

# This is a comment
a = 5 * 5







Identifiers

The Python interpreter accepts any identifier that contains letters
’A’-’Z’, ’a’-’z’ and numbers ’0’-’9’ as long as the identifier does not
begin with a number. The Python interpreter is case-sensitive so the
identifier “case” would not be the same identifier as “CASE”. Be sure to
case consistently throughout your Python code since the Python
interpreter will instantiate any identifier that it has not seen before
and mixing case would cause the interpreter to use multiple identifiers
and cause problems that you might not expect. Identifiers can be used to
refer to any type of object since Python is flexible in its treatment of
types.



Data types

Python supports a wide variety of data types and allows you to define
your own data types readily. Most types are created from a handful of
building-block types such as integers, floats, strings, tuples, lists,
and dictionaries.


Strings

Python has built-in support for strings and you can create them using
single quotes or double quotes. You can even use both types of quotes so
you can create strings that include quotes in case quotes are desired in
the output. Strings are sequence objects and support operations that can
break them down into characters.

s = 'using single quotes'
s2 = "using double quotes"
s3 = 'nesting the "spiffy" double quotes'







Tuples

Python supports tuples, which can be thought of as a read-only set of
objects. The members of a tuple can be of different types. Tuples are
commonly used to group multiple related items into a single object that
can be passed around more easily. Tuples support a number of operations.
You can subscript a tuple like an array to access its individual
members. You can easily determine whether an object is a member of a
tuple. You can iterate over a tuple. There are many more uses for
tuples. You can create tuples by enclosing a comma-separated list of
objects in parenthesis.

# Create a tuple
a = (1,2,3,4,5)
print "The first value in a is:", a[0]
# See if 3 is in a using the "in" operator.
print "3 is in a:", 3 in a
# Create another tuple and add it to the first one to create c.
b = (6,7,8,9)
c = a + b
# Iterate over the items in the tuple
for value in c:
  print "value is: ", value







Lists

Lists are just like tuples except they are not read-only and they use
square brackets [] to enclose the items in the list instead of using
parenthesis.

# Start with an empty list.
L = []
for i in range(10):
  # Add i to the list L
  L = L + [i]
print L
# Assign a value into element 6
L[5] = 1000
print L







Dictionaries

Dictionaries are Python containers that allow you to store a value that
is associated with a key. Dictionaries are convenient for mapping 1 set
to another set since they allow you to perform easy lookups of values.
Dictionaries are declared using curly braces and each item in the
dictionary consists of a key: value pair with the key and values being
separated by a colon. To perform a lookup using a dictionary, provide
the key whose value you want to look up to the subscript [] operator.

colors = {"red" : "rouge", "orange" : "orange", \
"yellow" : "jaune", "green" : "vert", "blue" : "bleu"}
# Perform lookups using the keys.
for c in colors.keys():
   print "%s in French is: %s" % (c, colors[c])








Control flow

Python, like other general-purpose programming languages provides
keywords that implement control flow. Control flow is an important
feature to have in a programming language because it allows complex
behavior to be created using a minimum amount of scripting.


if/elif/else

Python provides if/elif/else for conditional branching. The if statement
takes any expression that evaluates to an integer and it takes the if
branch if the integer value is 1 other wise it takes the else branch if
it is present.

# Example 1
if condition:
     do_something()

# Example 2
if condition:
     do_something()
else:
     do_something_else()

# Example 3
if condition:
     do_domething()
elif conditionn:
     do_something_n()
else:
     do_something_else()







For loop

Python provides a for loop that allows you to iterate over all items
stored in a sequence object (tuples, lists, strings). The body of the
for loop executes once for each item in the sequence object and allows
you to specify the name of an identifier to use in order to reference
the current item.

# Iterating through the characters of a string
for c in "characters":
   print c

# Iterating through a tuple
for value in ("VisIt", "is", "coolness", "times", 100):
   print value

# Iterating through a list
for value in ["VisIt", "is", "coolness", "times", 100]:
   print value

# Iterating through a range of numbers [0,N) created with range(N).
N = 100
for i in range(N):
   print i, i*i







While loop

Python provides a while loop that allows you to execute a loop body
indefinitely based on some condition. The while loop can be used for
iteration but can also be used to execute more complex types of loops.

token = get_next_token()
while token != "":
  do_something(token)
  token = get_next_token()








Functions

Python comes with many built-in functions and modules that implement
additional functions. Functions can be used to execute bodies of code
that are meant to be re-used. Functions can optionally take arguments
and can optionally return values. Python provides the def keyword, which
allows you to define a function. The def keyword is followed by the name
of the function and its arguments, which should appear as a tuple next
to the name of the function.

# Define a function with no arguments and no return value.
def my_function():
    print "my function prints this..."

# Define a function with arguments and a return value.
def n_to_the_d_power(n, d):
    value = 1
    if d > 0:
        for i in range(d):
            value = value * n
    elif d < 0:
        value = 1. / float(n_to_the_d_power(n, -d))

return value









          

      

      

    

 


  

  
    

    Quick Recipes
    

    

    
 
  

    
      
          
            
  
Quick Recipes


Overview

This manual contains documentation for over two hundred functions and
several dozen extension object types. Learning to combine the right
functions in order to accomplish a visualization task without guidance
would involve hours of trial and error. To maximize productivity and
start creating visualizations using Visit [https://visit-dav.github.io/visit-website/]’s Python Interface as fast as
possible, this chapter provides some common patterns, or “quick recipes”
that you can combine to quickly create complex scripts.



How to start

The most important question when developing a script is: “Where do I
start?”. You can either use session files that you used to save the
state of your visualization to initialize the plots before you start
scripting or you can script every aspect of plot initialization.


Using session files

VisIt [https://visit-dav.github.io/visit-website/]’s session files contain all of the information required to
recreate plots that have been set up in previous interactive VisIt
sessions. Since session files contain all of the information about
plots, etc., they are natural candidates to make scripting easier since
they can be used to do the hard part of setting up the complex
visualization, leaving the bulk of the script to animate through time or
alter the plots in some way. To use session files within a script, use
the RestoreSession function.

# Import a session file from the current working directory.
RestoreSesssion("my_visualization.session", 0)
# Now that VisIt has restored the session, animate through time.
for state in range(TimeSliderGetNStates()):
  SetTimeSliderState(state)
  SaveWindow()







Getting something on the screen

If you don’t want to use a session file to begin the setup for your
visualization then you will have to dive into opening databases,
creating plots, and animating through time. This is where all of
hand-crafted scripts begin. The first step in creating a visualization
is opening a database. VisIt provides the OpenDatabase function to open
a database. Once a database has been opened, you can create plots from
its variables using the AddPlot function. The AddPlot function takes a
plot plugin name and the name of a variable from the open database. Once
you’ve added a plot, it is in the new state, which means that it has not
yet been submitted to the compute engine for processing. To make sure
that the plot gets drawn, call the DrawPlots function.

# Step 1: Open a database
OpenDatabase("/usr/local/visit/data/wave.visit")

# Step 2: Add plots
AddPlot("Pseudocolor", "pressure")
AddPlot("Mesh", "quadmesh")

# Step 3: Draw the plots
DrawPlots()

# Step 4: Animate through time and save images
for states in range(TimeSliderGetNStates()):
  SetTimeSliderState(state)
  SaveWindow()








Saving images

Much of the time, the entire purpose of using VisIt [https://visit-dav.github.io/visit-website/]’s Python Interface
is to create a script that can save out images of a time-varying
database for the purpose of making movies. Saving images using VisIt [https://visit-dav.github.io/visit-website/]’s
Python Interface is a straight-forward process, involving just a few
functions.


Setting the output image characteristics

VisIt provides a number of options for saving files, including:
format, fileName, and image width and height, to name a few. These attributes
are grouped into the SaveWindowAttributes object. To set the options
that VisIt uses to save files, you must create a SaveWindowAttributes
object, change the necessary attributes, and call the
SetSaveWindowAttributes function. Note that if you want to create images
using a specific image resolution, the best way is to use the
-geometry command line argument with VisIt [https://visit-dav.github.io/visit-website/]’s Command Line Interface
and tell VisIt to use screen capture. If you instead require your script
to be capable of saving several different image sizes then you can turn
off screen capture and set the image resolution in the
SaveWindowAttributes object.

# Save a BMP file at 1024x768 resolution
s = SaveWindowAttributes()
s.format = s.BMP
s.fileName = "mybmpfile"
s.width, s.height = 1024,768
s.screenCapture = 0
SetSaveWindowAttributes(s)







Saving an image

Once you have set the SaveWindowAttributes to your liking, you can call
the SaveWindow function to save an image. The SaveWindow function
returns the name of the image that is saved so you can use that for
other purposes in your script.

# Save images of all timesteps and add each image filename to a list.
names = []
for state in range(TimeSliderGetNStates()):
  SetTimeSliderState(state)
  # Save the image
  n = SaveWindow()
  names = names + [n]
print names








Working with databases

VisIt allows you to open a wide array of databases both in terms of
supported file formats and in terms how databases treat time. Databases
can have a single time state or can have multiple time states. Databases
can natively support multiple time states or sets of single time states
files can be grouped into time-varying databases using .visit files or
using virtual databases. Working with databases gets even trickier if
you are using VisIt to visualize a database that is still being
generated by a simulation. This section describes how to interact with
databases.


Opening a database

Opening a database is a relatively simple operation - most complexities
arise in how the database treats time. If you only want to visualize a
single time state or if your database format natively supports multiple
timestates per file then opening a database requires just a single call
to the OpenDatabase function.

# Open a database at time state 0
OpenDatabase("/usr/local/visit/data/allinone00.pdb")







Opening a database at late time

Opening a database at a later timestate is done just the same as opening
a database at time state zero except that you must specify the time
state at which you want to open the database. There are a number of
reasons for opening a database at a later time state. The most common
reason for doing so, as opposed to just changing time states later, is
that VisIt uses the metadata from the first opened time state to
describe the contents of the database for all timestates (except for
certain file formats that don’t do this, i.e. SAMRAI). This means that
the list of variables found for the first time state that you open is
used for all timestates. If your database contains a variable at a later
timestate that does not exist at earlier time states, you must open the
database at a later time state to gain access to the transient variable.

# Open a database at a later time state to pick up transient variables
OpenDatabase("/usr/local/visit/data/wave.visit", 17)







Opening a virtual database

VisIt provides two ways for accessing a set of single time-state files
as a single time- varying database. The first method is a .visit file,
which is a simple text file that contains the names of each file to be
used as a time state in the time-varying database. The second method
uses “virtual databases”, which allow VisIt to exploit the file naming
conventions that are often employed by simulation codes when they create
their dumps. In many cases, VisIt can scan a specified directory and
determine which filenames look related. Filenames with close matches are
grouped as individual time states into a virtual database whose name is
based on the more abstract pattern used to create the filenames.

# Opening first file in series wave0000.silo, wave0010.silo, ...
OpenDatabase("/usr/local/visit/data/wave0000.silo")

# Opening a virtual database representing all wave*.silo files.
OpenDatabase("/usr/local/visit/data/wave*.silo database.)







Opening a remote database

VisIt supports running the client on a local computer while also
allowing you to process data in parallel on a remote computer. If you
want to access databases on a remote computer using VisIt [https://visit-dav.github.io/visit-website/]’s Python
Interface, the only difference to accessing a database on a local
computer is that you must specify a host name as part of the database
name.

# Opening a file on a remote computer by giving a host name
# Also, open the database to a later time slice (17)
OpenDatabase("thunder:/usr/local/visit/data/wave.visit", 17)








Opening a compute engine

Sometimes it is advantageous to open a compute engine before opening a
database. When you tell VisIt to open a database using the OpenDatabase
function, VisIt also launches a compute engine and tells the compute
engine to open the specified database. When the VisIt Python Interface
is run with a visible window, the Engine Chooser Window will present
itself so you can select a host profile. If you want to design a script
that must specify parallel options, etc in batch mode where there is no
Engine ChooserWindow then you have few options other than to open a
compute engine before opening a database. To open a compute engine, use
the OpenComputeEngine function. You can pass the name of the host on
which to run the compute engine and any arguments that must be used to
launch the engine such as the number of processors.

# Open a local, parallel compute engine before opening a database
# Use 4 processors on 2 nodes
OpenComputeEngine("localhost", ("-np", "4", "-nn", "2"))
OpenDatabase("/usr/local/visit/data/multi_ucd3d.silo")





The options for starting the compute engine are the same as the ones used
on the command line. Here are the most common options for launching a
compute engine.

-l    <method>       Launch in parallel using the given method.
-np   <# procs>      The number of processors to use.
-nn   <# nodes>      The number of nodes to allocate.
-p    <part>         Partition to run in.
-b    <bank>         Bank from which to draw resources.
-t    <time>         Maximum job run time.
-machinefile <file>  Machine file.





The full list of parallel launch options can be obtained by typing
visit --fullhelp. Here is a more complex example of launching a compute
engine.

# Use the "srun" job launcher, the "batch" partition, the "mybank" bank,
# 72 processors on 2 nodes and a time limit of 1 hour
OpenComputeEngine("localhost",("-l", "srun",
                               "-p", "batch",
                               "-b", "mybank",
                               "-np", "72",
                               "-nn", "2",
                               "-t", "1:00:00"))





You can also launch a compute engine using one of the existing host
profiles defined for your system. In this particular case we know that
the third profile is for the “parallel batch pbatch” profile. If you
didn’t know this you could print “p” to get all the properties.

# Set the user name to "user1" and use the third profile,
# overriding a few of its properties
p = GetMachineProfile("quartz.llnl.gov")
p.userName="user1"
p.activeProfile = 2
p.GetLaunchProfiles(2).numProcessors = 72
p.GetLaunchProfiles(2).numNodes = 2
p.GetLaunchProfiles(2).timeLimit = "00:30:00"
OpenComputeEngine(p)







Working with plots

Plots are viewable objects, created from a database, that can be
displayed in a visualization window. VisIt provides several types of
plots and each plot allows you to view data using different
visualization techniques. For example, the Pseudocolor plot allows you
to see the general shape of a simulated object while painting colors on
it according to the values stored in a variable’s scalar field. The most
important functions for interacting with plots are covered in this
section.


Creating a plot

The function for adding a plot in VisIt is: AddPlot. The AddPlot
function takes the name of a plot type and the name of a variable that
is to be plotted and creates a new plot and adds it to the plot list.
The name of the plot to be created corresponds to the name of one of
VisIt [https://visit-dav.github.io/visit-website/]’s plot plugins, which can be queried using the PlotPlugins
function. The variable that you pass to the AddPlot function must be a
valid variable for the opened database. New plots are not realized,
meaning that they have not been submitted to the compute engine for
processing. If you want to force VisIt to process the new plot you must
call the DrawPlots function.

# Names of all available plot plugins
print PlotPlugins()
# Create plots
AddPlot("Pseudocolor", "pressure")
AddPlot("Mesh", "quadmesh")
# Draw the plots
DrawPlots()







Plotting materials

Plotting materials is a common operation in VisIt. The Boundary and
FilledBoundary plots enable you to plot material boundaries and
materials, respectively.

# Plot material boundaries
AddPlot("Boundary", "mat1")
# Plot materials
AddPlot("FilledBoundary", "mat1")







Setting plot attributes

Each plot type has an attributes object that controls how the plot
generates its data or how it looks in the visualization window. The
attributes object for each plot contains different fields. You can view
the individual object fields by printing the object to the console. Each
plot type provides a function that creates a new instance of one of its
attribute objects. The function name is always of the form: plotname +
“Attributes”. For example, the attributes object creation function for
the Pseudocolor plot would be: PseudocolorAttributes. To change the
attributes for a plot, you create an attributes object using the
appropriate function, set the properties in the returned object, and
tell VisIt to use the new plot attributes by passing the object to the
SetPlotOptions function. Note that you should set a plot’s attributes
before calling the DrawPlots method to realize the plot since setting a
plot’s attributes can cause the compute engine to recalculate the plot.

# Creating a Pseudocolor plot and setting min/max values.
AddPlot("Pseudocolor", "pressure")
p = PseudocolorAttributes()
# Look in the object
print p
# Set the min/max values
p.min, p.minFlag = 0.0, 1
p.max, p.maxFlag = 10.0, 1
SetPlotOptions(p)







Working with multiple plots

When you work with more than one plot, it is sometimes necessary to set
the active plots because some of VisIt [https://visit-dav.github.io/visit-website/]’s functions apply to all of the
active plots. The active plot is usually the last plot that was created
unless you’ve changed the list of active plots. Changing which plots are
active is useful when you want to delete or hide certain plots or set
their plot attributes independently. When you want to set which plots
are active, use the SetActivePlots function. If you want to list the
plots that you’ve created, call the ListPlots function.

# Create more than 1 plot of the same type
AddPlot("Pseudocolor", "pressure")
AddPlot("Pseudocolor", "density")

# List the plots. The second plot should be active.
ListPlots()

# Draw the plots
DrawPlots()

# Hide the first plot
SetActivePlots(0)
HideActivePlots()

# Set both plots' color table to "hot"
p = PseudocolorAttributes()
p.colorTableName = "hot"
SetActivePlots((0,1))
SetPlotOptions(p)

# Show the first plot again.
SetActivePlots(0)
HideActivePlots()

# Delete the second plot
SetActivePlots(1)
DeleteActivePlots()
ListPlots()







Plots in the error state

When VisIt’s compute engine cannot process a plot, the plot is put into
the error state. Once a plot is in the error state, it no longer is
displayed in the visualization window. If you are generating a movie,
plots entering the error state can be a serious problem because you most
often want all of the plots that you have created to animate through
time and not disappear in the middle of the animation. You can add extra
code to your script to prevent plots from disappearing (most of the
time) due to error conditions by adding a call to the DrawPlots
function.

# Save an image and take care of plots that entered the error state.
drawThePlots = 0
for state in range(TimeSliderGetNStates()):
  if SetTimeSliderState(state) == 0:
    drawThePlots = 1
  if drawThePlots == 1:
    if DrawPlots() == 0:
      print "VisIt could not draw plots for state: %d" % state
    else:
      drawThePlots = 0
  SaveWindow()








Operators

Operators are filters that are applied to database variables before the
compute engine uses them to create plots. Operators can be linked one
after the other to form chains of operators that can drastically
transform the data before plotting it.


Adding operators

Adding an operator is similar to adding a plot in that you call a
function with the name of the operator to be added. The list of
available operators is returned by the OperatorPlugins function. Any of
the names returned in that plugin can be used to add an operator using
the AddOperator function. Operators are added to the active plots by
default but you can also force VisIt to add them to all plots in the
plot list.

# Print available operators
print OperatorPlugins()
# Create a plot
AddPlot("Pseudocolor")
# Add an Isovolume operator and a Slice operator
AddOperator("Isovolume")
AddOperator("Slice")
DrawPlots()







Setting operator attributes

Each plot gets its own instance of an operator which means that you can
set each plot’s operator attributes independently. Like plots, operators
use objects to set their attributes. These objects are returned by
functions whose names are of the form: operatorname + “Attributes”. Once
you have created an operator attributes object, you can pass it to the
SetOperatorOptions to set the options for an operator. Note that setting
the attributes for an operator nearly always causes the compute engine
to recalculate the operator. You can use the power of VisIt’s Python
Interface to create complex operator behavior such as in the following
code example, which moves slice planes through a Pseudocolor plot.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
AddOperator("Slice")
s = SliceAttributes()
s.originType = s.Percent
s.project2d = 0
SetOperatorOptions(s)
DrawPlots()

nSteps = 20
for axis in (0,1,2):
  s.axisType = axis
  for step in range(nSteps):
    t = float(step) / float(nSteps - 1)
    s.originPercent = t * 100.
    SetOperatorOptions(s)
    SaveWindow()








Quantitative operations

This section focuses on some of the operations that allow you to examine
your data more quantitatively.


Defining expressions

VisIt allows you to create derived variables using its powerful
expressions language. You can plot or query variables created using
expressions just as you would if they were read from a database. VisIt [https://visit-dav.github.io/visit-website/]’s
Python Interface allows you to create new scalar, vector, tensor
variables using the DefineScalarExpression, DefineVectorExpression, and
DefineTensorExpression functions.

# Creating a new expression
OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
DrawPlots()
DefineScalarExpression("newvar", "sin(hardyglobal) + cos(shepardglobal")
ChangeActivePlotsVar("newvar")







Pick

VisIt allows you to pick on cells, nodes, and points within a database
and return information for the item of interest. To that end, VisIt
provides several pick functions. Once a pick function has been called,
you can call the GetPickOutput function to get a string that contains
the pick information. The information in the string could be used for a
multitude of uses such as building a test suite for a simulation code.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
s = []
# Pick by a node id
PickbyNode(300)
s = s + [GetPickOutput()]
# Pick by a cell id
PickByZone(250)
s = s + [GetPickOutput()]
# Pick on a cell using a 3d point
Pick((-2., 2., 0.))
s = s + [GetPickOutput()]
# Pick on the node closest to (-2,2,0)
NodePick((-2,2,0))
s = s + [GetPickOutput()]
# Print all pick results
print s







Lineout

VisIt allows you to extract data along a line, called a lineout, and
plot the data using a Curve plot.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
Lineout((-5,-3), (5,8))
# Specify a number of sample points
Lineout((-5,-4), (5,7))







Query

VisIt can perform a number of different queries based on values
calculated about plots or their originating database.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
DrawPlots()
Query("NumNodes")
print "The float value is: %g" % GetQueryOutputValue()
Query("NumNodes")







Finding the min and the max

A common operation in debugging a simulation code is examining the min
and max values. Here is a pattern that allows you to print out the min
and the max values and their locations in the database and also see them
visually.

# Define a helper function to get the id's of the MinMax query.
def GetMinMaxIds():
  Query("MinMax")
  import string
  s = string.split(GetQueryOutputString(), " ")
  retval = []
  nextGood = 0
  idType = 0
  for token in s:
    if token == "(zone" or token == "(cell":
      idType = 1
      nextGood = 1
      continue
    elif token == "(node":
      idType = 0
      nextGood = 1
      continue
    if nextGood == 1:
       nextGood = 0
       retval = retval + [(idType, int(token))]
  return retval

# Set up a plot
OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()

# Do picks on the ids that were returned by MinMax.
for ids in GetMinMaxIds():
  idType = ids[0]
  id = ids[1]
  if idType == 0:
    PickByNode(id)
  else:
    PickByZone(id)








Subsetting

VisIt allows the user to turn off subsets of the visualization using a
number of different methods. Databases can be divided up any number of
ways: domains, materials, etc. This section provides some details on how
to remove materials and domains from your visualization.


Turning off domains

VisIt [https://visit-dav.github.io/visit-website/]’s Python Interface provides the TurnDomainsOn and TurnDomainsOff
functions to make it easy to turn domains on and off.

OpenDatabase("/usr/local/visit/data/multi_rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Turning off all but the last domain
d = GetDomains()
for dom in d[:-1]:
  TurnDomainsOff(dom)
# Turn all domains off
TurnDomainsOff()
# Turn on domains 3,5,7
TurnDomainsOn((d[3], d[5], d[7]))







Turning off materials

VisIt [https://visit-dav.github.io/visit-website/]’s Python Interface provides the TurnMaterialsOn and
TurnMaterialsOff functions to make it easy to turn materials on and off.

OpenDatabase("/usr/local/visit/data/multi_rect2d.silo")
AddPlot("FilledBoundary", "mat1")
DrawPlots()
# Print the materials are:
GetMaterials()
# Turn off material 2
TurnMaterialsOff("2")








View

Setting up the view in your Python script is one of the most important
things you can do to ensure the quality of your visualization because
the view concentrates attention on an object of interest. VisIt provides
different methods for setting the view, depending on the dimensionality
of the plots in the visualization window but despite differences in how
the view is set, the general procedure is basically the same.


Setting the 2D view

The 2D view consists of a rectangular window in 2D space and a 2D
viewport in the visualization window. The window in 2D space determines
what parts of the visualization you will look at while the viewport
determines where the images will appear in the visualization window. It
is not necessary to change the viewport most of the time.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
AddPlot("Mesh", "Mesh2D")
AddPlot("Label", "hgslice")
DrawPlots()
print "The current view is:", GetView2D()
# Get an initialized 2D view object.
v = GetView2D()
v.windowCoords = (-7.67964, -3.21856, 2.66766, 7.87724)
SetView2D(v)







Setting the 3D view

The 3D view is much more complex than the 2D view. For information on
the actual meaning of the fields in the View3DAttributes object, refer
to page 214 or the VisIt User Manual. VisIt automatically computes a
suitable view for 3D objects and it is best to initialize new
View3DAttributes objects using the GetView3D function so most of the
fields will already be initialized. The best way to get new views to use
in a script is to interactively create the plot and repeatedly call
GetView3D() after you finish rotating the plots with the mouse. You can
paste the printed view information into your script and modify it
slightly to create sophisticated view transitions.

OpenDatabase("/usr/local/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
AddPlot("Mesh", "Mesh")
DrawPlots()
v = GetView3D()
print "The view is: ", v
v.viewNormal = (-0.571619, 0.405393, 0.713378)
v.viewUp = (0.308049, 0.911853, -0.271346)
SetView3D(v)







Flying around plots

Flying around plots is a commonly requested feature when making movies.
Fortunately, this is easy to script. The basic method used for flying
around plots is interpolating the view. VisIt provides a number of
functions that can interpolate View2DAttributes and View3DAttributes
objects. The most useful of these functions is the EvalCubicSpline
function. The EvalCubicSpline function uses piece-wise cubic polynomials
to smoothly interpolate between a tuple of N like items. Scripting
smooth view changes using EvalCubicSpline is rather like keyframing in
that you have a set of views that are mapped to some distance along the
parameterized space [0., 1.]. When the parameterized space is sampled
with some number of samples, VisIt calculates the view for the specified
parameter value and returns a smoothly interpolated view. One benefit
over keyframing, in this case, is that you can use cubic interpolation
whereas VisIt [https://visit-dav.github.io/visit-website/]’s keyframing mode currently uses linear interpolation.

# Do a pseudocolor plot of u.
OpenDatabase("/usr/local/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()

# Create the control points for the views.
c0 = View3DAttributes()
c0.viewNormal = (0, 0, 1)
c0.focus = (0, 0, 0)
c0.viewUp = (0, 1, 0)
c0.viewAngle = 30
c0.parallelScale = 17.3205
c0.nearPlane = 17.3205
c0.farPlane = 81.9615
c0.perspective = 1

c1 = View3DAttributes()
c1.viewNormal = (-0.499159, 0.475135, 0.724629)
c1.focus = (0, 0, 0)
c1.viewUp = (0.196284, 0.876524, -0.439521)
c1.viewAngle = 30
c1.parallelScale = 14.0932
c1.nearPlane = 15.276
c1.farPlane = 69.917
c1.perspective = 1

c2 = View3DAttributes()
c2.viewNormal = (-0.522881, 0.831168, -0.189092)
c2.focus = (0, 0, 0)
c2.viewUp = (0.783763, 0.556011, 0.27671)
c2.viewAngle = 30
c2.parallelScale = 11.3107
c2.nearPlane = 14.8914
c2.farPlane = 59.5324
c2.perspective = 1

c3 = View3DAttributes()
c3.viewNormal = (-0.438771, 0.523661, -0.730246)
c3.focus = (0, 0, 0)
c3.viewUp = (-0.0199911, 0.80676, 0.590541)
c3.viewAngle = 30
c3.parallelScale = 8.28257
c3.nearPlane = 3.5905
c3.farPlane = 48.2315
c3.perspective = 1

c4 = View3DAttributes()
c4.viewNormal = (0.286142, -0.342802, -0.894768)
c4.focus = (0, 0, 0)
c4.viewUp = (-0.0382056, 0.928989, -0.36813)
c4.viewAngle = 30
c4.parallelScale = 10.4152
c4.nearPlane = 1.5495
c4.farPlane = 56.1905
c4.perspective = 1

c5 = View3DAttributes()
c5.viewNormal = (0.974296, -0.223599, -0.0274086)
c5.focus = (0, 0, 0)
c5.viewUp = (0.222245, 0.97394, -0.0452541)
c5.viewAngle = 30
c5.parallelScale = 1.1052
c5.nearPlane = 24.1248
c5.farPlane = 58.7658
c5.perspective = 1

c6 = c0

# Create a tuple of camera values and x values. The x values
# determine where in [0,1] the control points occur.
cpts = (c0, c1, c2, c3, c4, c5, c6)
x=[]
for i in range(7):
  x = x + [float(i) / float(6.)]

# Animate the view using EvalCubicSpline.
nsteps = 100
for i in range(nsteps):
  t = float(i) / float(nsteps - 1)
  c = EvalCubicSpline(t, x, cpts)
  c.nearPlane = -34.461
  c.farPlane = 34.461
  SetView3D(c)








Working with annotations

Adding annotations to your visualization improve the quality of the
final visualization in that you can refine the colors that you use, add
logos, or highlight features of interest in your plots. This section
provides some recipes for creating annotations using scripting.


Using gradient background colors

VisIt [https://visit-dav.github.io/visit-website/]’s default white background is not necessarily the best looking
background color for presentations. Adding a gradient background under
your plots is an easy way to add a small professional touch to your
visualizations. VisIt provides a few different styles of gradient
background: radial, top to bottom, bottom to top, left to right, and
right to left. The gradient style is set using the
gradientBackgroundStyle member of the AnnotationAttributes object. The
before and after results are shown in Figure 2.

# Set a blue/black, radial, gradient background.
a = AnnotationAttributes()
a.backgroundMode = a.Gradient
a.gradientBackgroundStyle = a.Radial
a.gradientColor1 = (0,0,255,255) # Blue
a.gradientColor2 = (0,0,0,255) # Black
SetAnnotationAttributes(a)






[image: Before and after image of adding a gradient background.]

Fig. 2 Before and after image of adding a gradient background.





Adding a banner

Banners are useful for providing titles for a visualization or for
marking its content (see Figure 3).
To add an “Unclassified” banner to a visualization, use the following bit of
Python code:

# Create a text object that we'll use to indicate that our
# visualization is unclassified.
banner = CreateAnnotationObject("Text2D")
banner.text = "Unclassified"
banner.position = (0.37, 0.95)
banner.fontBold = 1
# print the attributes that you can set in the banner object.
print banner






[image: Adding a banner]

Fig. 3 Adding a banner





Adding a time slider

Time sliders are important annotations for movies since they convey how
much progress an animation has made as well as how many more frames have
yet to be seen. The time slider is also important for showing the
simulation time as the animation progresses so users can get a sense of
when in the simulation important events occur. VisIt [https://visit-dav.github.io/visit-website/]’s time slider
annotation object is shown in Figure 4.

# Add a time slider in the lower left corner
slider = CreateAnnotationObject("TimeSlider")
slider.height = 0.07
# Print the options that are available in the time slider object
print slider






[image: Time slider annotation in the lower left corner]

Fig. 4 Time slider annotation in the lower left corner





Adding a logo

Adding a logo to a visualization is an important part of project
identification for movies and other visualizations created with VisIt.
If you have a logo image file stored in TIFF, JPEG, BMP, or PPM format
then you can use it with VisIt as an image annotation (see
Figure 5). Note that this approach can
also be used to insert images of graphs, plots, portraits, diagrams, or
any other form of image data into a visualization.

# Incorporate LLNL logo image (llnl.jpeg) as an annotation
image = CreateAnnotationObject("Image")
image.image = "llnl.jpeg"
image.position = (0.02, 0.02)
# Print the other image annotation options
print image






[image: Image annotation used to incorporate LLNL logo]

Fig. 5 Image annotation used to incorporate LLNL logo





Modifying a legend

VisIt [https://visit-dav.github.io/visit-website/]’s plot legends can be customized. To obtain the proper annotation
object, you must use the name of the plot, which is a unique name that
identifies the plot. Once you have the plot’s name, you can obtain a
reference to its legend annotation object and start setting properties to
modify the legend.

# Open a file and make a plot
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Mesh", "Mesh")
AddPlot("Pseudocolor", "hardyglobal")
DrawPlots()
# Get the legend annotation object for the Pseudocolor plot, the second
# plot in the list (0-indexed).
plotName = GetPlotList().GetPlots(1).plotName
legend = GetAnnotationObject(plotName)
# See if we can scale the legend.
legend.xScale = 3.
legend.yScale = 3.
# the bounding box.
legend.drawBoundingBox = 1
legend.boundingBoxColor = (180,180,180,230)
# Make it horizontal
legend.orientation = legend.HorizontalBottom
# moving the legend
legend.managePosition = 0
legend.position = (0.7,0.15)
# text color
InvertBackgroundColor()
legend.useForegroundForTextColor = 0
legend.textColor = (255, 0, 0, 255)
# number format
legend.numberFormat = "%1.4e"
# the font.
legend.fontFamily = legend.Arial
legend.fontBold = 1
legend.fontItalic = 1
# turning off the labels.
legend.fontItalic = 0
legend.drawLabels = legends.None
legend.drawMinMax = 0
# turning off the title.
legend.drawTitle = 0
# Use user-supplied labels, rather than numeric values.
legend.controlTicks=0
legend.drawLabels = legend.Labels
# suppliedLabels must be strings, only valid when controlTicks is 0
legend.suppliedLabels=("A", "B", "C", "D", "E")
# Print the legend object so you can see the other properties
# that you can set in order to modify the legend.
print(legend)










          

      

      

    

 


  

  
    

    Functions
    

    

    
 
  

    
      
          
            
  
Functions

Many functions return an integer where 1 means success and 0 means failure.
This behavior is represented by the type CLI_return_t in an attempt to
distinguish it from functions that may utilize the full range of integers.


ActivateDatabase

Synopsis:

ActivateDatabase(argument) -> integer






	argumentstring

	The name of the database to be activated.



	return typeCLI_return_t

	ActivateDatabase returns 1 on success and 0 on failure.





Description:


The ActivateDatabase function is used to set the active database to a
database that has been previously opened. The ActivateDatabase function
only works when you are using it to activate a database that you have
previously opened. You do not need to use this function unless you
frequently toggle between more than one database when making plots or
changing time states. While the OpenDatabase function can also be used
to set the active database, the ActivateDatabase function does not have any
side effects that would cause the time state for the new active database
to be changed.




Example:

#% visit -cli
dbs = ("/usr/gapps/visit/data/wave.visit", "/usr/gapps/visit/data/curv3d.silo")
OpenDatabase(dbs[0], 17)
AddPlot("Pseudocolor", "u")
DrawPlots()
OpenDatabase(dbs[1])
AddPlot("Pseudocolor", "u")
DrawPlots()
# Let's add another plot from the first database.
ActivateDatabase(dbs[0])
AddPlot("Mesh", "quadmesh")
DrawPlots()







AddArgument

Synopsis:

AddArgument(argument)






	argumentstring

	A string object that is added to the viewer’s command line argument list.





Description:


The AddArgument function is used to add extra command line arguments to
VisIt’s viewer. This is only useful when VisIt’s Python interface is
imported into a stand-alone Python interpreter because the AddArgument
function must be called before the viewer is launched. The AddArgument
function has no effect when used in VisIt’s cli program because the viewer
is automatically launched before any commands are processed.




Example:

import visit
visit.AddArgument("-nowin") # Add the -nowin argument to the viewer.







AddMachineProfile

Synopsis:

AddMachineProfile(MachineProfile) -> integer





MachineProfile : MachineProfile object

Description:


Sets the input machine profile in the HostProfileList, replaces if one already exists
Otherwise adds to the list






AddOperator

Synopsis:

AddOperator(operator) -> integer
AddOperator(operator, all) -> integer






	operatorstring

	The name of the operator to be applied.



	allinteger

	This is an optional integer argument that applies the operator to all
plots if the value of the argument is not zero.



	return typeCLI_return_t

	The AddOperator function returns an integer value of 1 for success and 0
for failure.





Description:


The AddOperator function adds a VisIt operator to the active plots. The
operator argument is a string containing the name of the operator to be
added to the active plots. The operatore name must be a valid operator
plugin name that is a member of the tuple returned by the OperatorPlugins
function. The all argument is an integer that determines
whether or not the operator is applied to all plots. If the all argument is
not provided, the operator is only added to active plots. Once the
AddOperator function is called, the desired operator is added to all
active plots unless the all argument is a non-zero value. When the all
argument is a non-zero value, the operator is applied to all plots
regardless of whether or not they are selected. Operator attributes are set
through the SetOperatorOptions function.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddPlot("Mesh", "mesh1")
AddOperator("Slice", 1) # Slice both plots
DrawPlots()







AddPlot

Synopsis:

AddPlot(plotType, variableName) -> integer
AddPlot(plotType, variableName, inheritSIL) -> integer
AddPlot(plotType, variableName, inheritSIL, applyOperators) -> integer






	plotTypestring

	The name of a valid plot plugin type.



	variableNamestring

	A valid variable name for the open database.



	inheritSILinteger

	An integer flag indicating whether the plot should inherit the
active plot’s SIL restriction.



	applyOperatorsinteger

	An integer flag indicating whether the operators from the active
plot should be applied to the new plot.



	return typeCLI_return_t

	The AddPlot function returns an integer value of 1 for success and 0 for
failure.





Description:


The AddPlot function creates a new plot of the specified type using a
variable from the open database. The plotType argument is a string that
contains the name of a valid plot plugin type which must be a member of the
string tuple that is returned by the PlotPlugins function.
The variableName argument is a string that contains the name of a variable
in the open database. After the AddPlot function is called, a new plot is
created and it is made the sole active plot.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Subset", "mat1") # Create a subset plot
DrawPlots()







AddWindow

Synopsis:

AddWindow()





Description:


The AddWindow function creates a new visualization window and makes it the
active window. This function can be used to create up to 16 visualization
windows. After that, the AddWindow function has no effect.




Example:

import visit
visit.Launch()
visit.AddWindow() # Create window #2
visit.AddWindow() # Create window #3







AlterDatabaseCorrelation

Synopsis:

AlterDatabaseCorrelation(name, databases, method) -> integer






	namestring

	The name of the database correlation to be altered.



	databasestuple or list of strings

	The databases argument must be a tuple or list of strings containing the
fully qualified database names to be used in the database correlation.



	methodinteger

	The method argument must be an integer in the range [0,3].







	Correlation method

	Value





	IndexForIndexCorrelation

	0



	StretchedIndexCorrelation

	1



	TimeCorrelation

	2



	CycleCorrelation

	3








	return typeCLI_return_t

	The AlterDatabaseCorrelation function returns 1 on success and 0 on
failure.





Description:


The AlterDatabaseCorrelation method alters an existing database
correlation. A database correlation is a VisIt construct that relates the
time states for two or more databases in some way. You would use the
AlterDatabaseCorrelation function if you wanted to change the list of
databases used in a database correlation or if you wanted to change how the
databases are related - the correlation method. The name argument is a
string that is the name of the database correlation to be altered. If the
name that you pass is not a valid database correlation then the
AlterDatabaseCorrelation function fails. The databases argument is a list
or tuple of string objects containing the fully-qualified
(host:/path/filename) names of the databases to be involved in the database
query. The method argument allows you to specify a database correlation
method.




Example:

dbs = ("/usr/gapps/visit/data/wave.visit", "/usr/gapps/visit/data/wave*.silo database")
OpenDatabase(dbs[0])
AddPlot("Pseudocolor", "pressure")
OpenDatabase(dbs[1])
AddPlot("Pseudocolor", "d")
# VisIt created an index for index database correlation but we
# want a cycle correlation.
AlterDatabaseCorrelation("Correlation01", dbs, 3)







ApplyNamedSelection

Synopsis:

ApplyNamedSelection(name) -> integer






	namestring

	The name of a named selection.  (This should have been previously created
with a CreateNamedSelection call.)



	return typeCLI_return_t

	The ApplyNamedSelection function returns 1 for success and 0 for failure.





Description:


Named Selections allow you to select a group of elements (or particles).
One typically creates a named selection from a group of elements and then
later applies the named selection to another plot (thus reducing the
set of elements displayed to the ones from when the named selection was
created).




Example:

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
AddOperator("Clip")
c = ClipAttributes()
c.plane1Origin = (0,0.6,0)
c.plane1Normal = (0,-1,0)
SetOperatorOption(c)
DrawPlots()
CreateNamedSelection("els_above_at_time_0")
SetTimeSliderState(40)
RemoveLastOperator()
ApplyNamedSelection("els_above_at_time_0")







ChangeActivePlotsVar

Synopsis:

ChangeActivePlotsVar(variableName) -> integer






	variableNamestring

	The name of the new plot variable.



	return typeCLI_return_t

	The ChangeActivePlotsVar function returns an integer value of 1 for
success and 0 for failure.





Description:


The ChangeActivePlotsVar function changes the plotted variable for the
active plots. This is a useful way to change what is being visualized
without having to delete and recreate the current plots. The variableName
argument is a string that contains the name of a variable in the open
database.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
SaveWindow()
ChangeActivePlotsVar("v")







CheckForNewStates

Synopsis:

CheckForNewStates(name) -> integer






	namestring

	The name of a database that has been opened previously.



	return typeCLI_return_t

	The CheckForNewStates function returns 1 for success and 0 for failure.





Description:


Calculations are often run at the same time as some of the preliminary
visualization work is being performed. That said, you might be visualizing
the leading time states of a database that is still being created. If you
want to force VisIt to add any new time states that were added since you
opened the database, you can use the CheckForNewStates function. The name
argument must contain the name of a database that has been opened before.




Example:

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
DrawPlots()
SetTimeSliderState(TimeSliderGetNStates() - 1)
# More files appear on disk
CheckForNewStates(db)
SetTimeSliderState(TimeSliderGetNStates() - 1)







ChooseCenterOfRotation

Synopsis:

ChooseCenterOfRotation() -> integer
ChooseCenterOfRotation(screenX, screenY) -> integer






	screenXdouble

	A double that is the X coordinate of the pick point in normalized [0,1]
screen space.



	screenYdouble

	A double that is the Y coordinate of the pick point in normalized [0,1]
screen space.



	return typeCLI_return_t

	The ChooseCenterOfRotation function returns 1 if successful and 0 if it
fails.





Description:


The ChooseCenterOfRotation function allows you to pick a new center of
rotation, which is the point about which plots are rotated when you
interactively rotate plots. The function can either take zero arguments, in
which case you must interactively pick on plots, or it can take two
arguments that correspond to the X and Y coordinates of the desired pick
point in normalized screen space. When using the two argument version of
the ChooseCenterOfRotation function, the X and Y values are floating point
values in the range [0,1]. If the ChooseCenterOfRotation function is able
to actually pick on plots, yes there must be plots in the vis window, then
the center of rotation is updated and the new value is printed to the
console.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlots("Pseudocolor", "u")
DrawPlots()
# Interactively choose the center of rotation
ChooseCenterOfRotation()
# Choose a center of rotation using normalized screen
# coordinates and print the value.
ResetView()
ChooseCenterOfRotation(0.5, 0.3)
print("The new center of rotation is:{}".format(GetView3D().centerOfRotation))







ClearAllWindows

Synopsis:

ClearAllWindows() -> integer






	return typeCLI_return_t

	1 on success, 0 on failure.





Description:


The ClearWindow function is used to clear out the plots from the active
visualization window. The plots are removed from the visualization window
but are left in the plot list so that subsequent calls to the DrawPlots
function regenerate the plots in the plot list. The ClearAllWindows
function preforms the same work as the ClearWindow function except that all
windows are cleared of their plots.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()
SetActiveWindow(2) # Make window 2 active
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Subset", "mat1")
DrawPlots()
ClearWindow() # Clear the plots in window 2.
DrawPlots() # Redraw the plots in window 2.
ClearAllWindows() # Clear the plots from all windows.







ClearCache

Synopsis:

ClearCache(host) -> integer
ClearCache(host, simulation) -> integer






	hoststring

	The name of the computer where the compute engine is running.



	simulationstring

	The name of the simulation being processed by the compute engine.



	return typeCLI_return_t

	1 on success and 0 on failure.





Description:


Sometimes during extended VisIt runs, you might want to periodically clear
the compute engine’s network cache to reduce the amount of memory being
used by the compute engine. Clearing the network cache is also useful when
you want to change what the compute engine is working on. For example, you
might process a large database and then decide to process another large
database. Clearing the network cache beforehand will free up more resources
for the compute engine so it can more efficiently process the new database.
The host argument is a string object containing the name of the computer on
which the compute engine is running. The simulation argument is optional
and only applies to when you want to instruct a simulation that is acting
as a VisIt compute engine to clear its network cache. If you want to tell
more than one compute engine to clear its cache without having to call
ClearCache multiple times, you can use the ClearCacheForAllEngines function.




Example:

#%visit -cli
OpenDatabase("localhost:very_large_database")
# Do a lot of work
ClearCache("localhost")
OpenDatabase("localhost:another_large_database")
# Do more work
OpenDatabase("remotehost:yet_another_database")
# Do more work
ClearCacheForAllEngines()







ClearCacheForAllEngines

Synopsis:

ClearCacheForAllEngines() -> integer






	return typeCLI_return_t

	1 on success and 0 on failure.





Description:


Sometimes during extended VisIt runs, you might want to periodically clear
the compute engine’s network cache to reduce the amount of memory being
used by the compute engine. Clearing the network cache is also useful when
you want to change what the compute engine is working on. For example, you
might process a large database and then decide to process another large
database. Clearing the network cache beforehand will free up more resources
for the compute engine so it can more efficiently process the new database.
The host argument is a string object containing the name of the computer on
which the compute engine is running. The simulation argument is optional
and only applies to when you want to instruct a simulation that is acting
as a VisIt compute engine to clear its network cache. If you want to tell
more than one compute engine to clear its cache without having to call
ClearCache multiple times, you can use the ClearCacheForAllEngines function.




Example:

#%visit -cli
OpenDatabase("localhost:very_large_database")
# Do a lot of work
ClearCache("localhost")
OpenDatabase("localhost:another_large_database")
# Do more work
OpenDatabase("remotehost:yet_another_database")
# Do more work
ClearCacheForAllEngines()







ClearMacros

Synopsis:

ClearMacros()





Description:


The ClearMacros function clears out the list of registered macros and sends
a message to the gui to clear the buttons from the Macros window.




Example:

ClearMacros()







ClearPickPoints

Synopsis:

ClearPickPoints()





Description:


The ClearPickPoints function removes pick points from the active
visualization window. Pick points are the letters that are added to the
visualization window where the mouse is clicked when the visualization
window is in pick mode.




Example:

#% visit -cli
# Put the visualization window into pick mode using the popup
# menu and add some pick points.
# Clear the pick points.
ClearPickPoints()







ClearReferenceLines

Synopsis:

ClearReferenceLines()





Description:


The ClearReferenceLines function removes reference lines from the active
visualization window. Reference lines are the lines that are drawn on a
plot to show where you have performed lineouts.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
Lineout((-3.0, 2.0), (2.0, 4.0), ("default", "u", "v"))
ClearReferenceLines()







ClearViewKeyframes

Synopsis:

ClearViewKeyframes() -> integer






	return typeCLI_return_t

	The ClearViewKeyframes function returns 1 on success and 0 on failure.





Description:


The ClearViewKeyframes function clears any view keyframes that may have
been set. View keyframes are used to create complex view behavior such as
fly-throughs when VisIt is in keyframing mode.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
k = KeyframeAttributes()
k.enabled, k.nFrames, k.nFramesWasUserSet = 1,10,1
SetKeyframeAttributes(k)
DrawPlots()
SetViewKeyframe()
v1 = GetView3D()
v1.viewNormal = (-0.66609, 0.337227, 0.665283)
v1.viewUp = (0.157431, 0.935425, -0.316537)
SetView3D(v1)
SetTimeSliderState(9)
SetViewKeyframe()
ToggleCameraViewMode()
for i in range(10):
    SetTimeSliderState(i)
ClearViewKeyframes()







ClearWindow

Synopsis:

ClearWindow() -> integer






	return typeCLI_return_t

	1 on success, 0 on failure.





Description:


The ClearWindow function is used to clear out the plots from the active
visualization window. The plots are removed from the visualization window
but are left in the plot list so that subsequent calls to the DrawPlots
function regenerate the plots in the plot list. The ClearAllWindows
function preforms the same work as the ClearWindow function except that all
windows are cleared of their plots.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()
SetActiveWindow(2) # Make window 2 active
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Subset", "mat1")
DrawPlots()
ClearWindow() # Clear the plots in window 2.
DrawPlots() # Redraw the plots in window 2.
ClearAllWindows() # Clear the plots from all windows.







CloneWindow

Synopsis:

CloneWindow() -> integer






	return typeCLI_return_t

	The CloneWindow function returns an integer value of 1 for success and 0
for failure.





Description:


The CloneWindow function tells the viewer to create a new window, based on
the active window, that contains the same plots, annotations, lights, and
view as the active window. This function is useful for when you have a
window set up like you want and then want to do the same thing in another
window using a different database. You can first clone the window and then
replace the database.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
v = ViewAttributes()
v.camera = (-0.505893, 0.32034, 0.800909)
v.viewUp = (0.1314, 0.946269, -0.295482)
v.parallelScale = 14.5472
v.nearPlane = -34.641
v.farPlane = 34.641
v.perspective = 1
SetView3D() # Set the view
a = AnnotationAttributes()
a.backgroundColor = (0, 0, 255, 255)
SetAnnotationAttributes(a) # Set the annotation properties
CloneWindow() # Create a clone of the active window
DrawPlots() # Make the new window draw its plots







Close

Synopsis:

Close()





Description:


The Close function terminates VisIt’s viewer. This is useful for Python
scripts that only need access to VisIt’s capabilties for a short time
before closing VisIt.




Example:

import visit
visit.Launch()
visit.Close() # Close the viewer







CloseComputeEngine

Synopsis:

CloseComputeEngine() -> integer
CloseComputeEngine(hostName) -> integer
CloseComputeEngine(hostName, simulation) -> integer






	hostNamestring

	Optional name of the computer on which the compute engine is running.



	simulationstring

	Optional name of a simulation.



	return typeCLI_return_t

	The CloseComputeEngine function returns an integer value of 1 for success
and 0 for failure.





Description:


The CloseComputeEngine function tells the viewer to close the compute
engine running a specified host. The hostName argument is a string that
contains the name of the computer where the compute engine is running. The
hostName argument can also be the name “localhost” if you want to close
the compute engine on the local machine without having to specify its name.
It is not necessary to provide the hostName argument. If the argument is
omitted, the first compute engine in the engine list will be closed. The
simulation argument can be provided if you want to close a connection to a
simulation that is acting as a VisIt compute engine. A compute engine can
be launched again by creating a plot or by calling the OpenComputeEngine
function.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo") # Launches an engine
AddPlot("Pseudocolor", "u")
DrawPlots()
CloseComputeEngine() # Close the compute engine







CloseDatabase

Synopsis:

CloseDatabase(name) -> integer






	namestring

	The name of the database to close.



	return typeCLI_return_t

	The CloseDatabase function returns 1 on success and 0 on failure.





Description:


The CloseDatabase function is used to close a specified database and free
all resources that were devoted to keeping the database open. This function
has an effect similar to ClearCache but it does more in that
in addition to clearing the compute engine’s cache, which it only does for
the specified database, it also removes all references to the specified
database from tables of cached metadata, etc. Note that the CloseDatabase
function will fail and the database will not be closed if any plots
reference the specified database.




Example:

#% visit -cli
db = "/usr/gapps/visit/data/globe.silo"
OpenDatabase(db)
AddPlot("Pseudocolor", "u")
DrawPlots()
print("This won't work: retval = %d" % CloseDatabase(db))
DeleteAllPlots()
print("Now it works: retval = %d" % CloseDatabase(db))







ColorTableNames

Synopsis:

ColorTableNames() -> tuple






	return typetuple

	The ColorTableNames function returns a tuple of strings containing the
names of the color tables that have been defined.





Description:


The ColorTableNames function returns a tuple of strings containing the
names of the color tables that have been defined. This method can be used
in case you want to iterate over several color tables.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
for ct in ColorTableNames():
    p = PseudocolorAttributes()
    p.colorTableName = ct
    SetPlotOptions(p)







ConstructDataBinning

Synopsis:

ConstructDataBinning(options) -> integer






	optionsConstructDataBinningAttributes object

	An object of type ConstructDataBinningAttributes. This object specifies
the options for constructing a data binning.



	return typeCLI_return_t

	Returns 1 on success, 0 on failure.





Description:


The ConstructDataBinning function creates a data binning function for the active
plot. Data Binnings place data from a data set into bins and reduce that data.
They are used to either be incorporated with expressions to make new derived quantities
or to be directly visualized.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set the construct data binning attributes.
i = ConstructDataBinningAttributes()
i.name = "db1"
i.binningScheme = i.Uniform
i.varnames = ("u", "w")
i.binBoundaries = (-1, 1, -1, 1) # minu, maxu, minw, maxw
i.numSamples = (25, 25)
i.reductionOperator = i.Average
i.varForReductionOperator = "v"
ConstructDataBinning(i)
# Example of binning using spatial coordinates
i.varnames = ("X", "u") # X is added as a placeholder to maintain indexing
i.binType = (1, 0) # 1 = X, 2 = Y, 3 = Z, 0 = variable







CopyAnnotationsToWindow

Synopsis:

CopyAnnotationsToWindow(source, dest) -> integer






	sourceinteger

	The index (an integer from 1 to 16) of the source window.



	destinteger

	The index (an integer from 1 to 16) of the destination window.



	return typeCLI_return_t

	1 for success and 0 for failure.





Description:


The Copy functions copy attributes from one visualization window to
another visualization window. The CopyAnnotationsToWindow function copies
the annotations from a source visualization window to a destination
visualization window.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()
SetActiveWindow(2)
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
# Copy window 1's Pseudocolor plot to window 2.
CopyPlotsToWindow(1, 2)
DrawPlots() # Window 2 will have 2 plots
# Spin the plots around in window 2 using the mouse.
CopyViewToWindow(2, 1) # Copy window 2's view to window 1.







CopyLightingToWindow

Synopsis:

CopyLightingToWindow(source, dest) -> integer






	sourceinteger

	The index (an integer from 1 to 16) of the source window.



	destinteger

	The index (an integer from 1 to 16) of the destination window.



	return typeCLI_return_t

	1 for success and 0 for failure.





Description:


The Copy functions copy attributes from one visualization window to
another visualization window. The CopyLightingAttributes function copies
lighting.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()
SetActiveWindow(2)
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
# Copy window 1's Pseudocolor plot to window 2.
CopyPlotsToWindow(1, 2)
DrawPlots() # Window 2 will have 2 plots
# Spin the plots around in window 2 using the mouse.
CopyViewToWindow(2, 1) # Copy window 2's view to window 1.







CopyPlotsToWindow

Synopsis:

CopyPlotsToWindow(source, dest) -> integer






	sourceinteger

	The index (an integer from 1 to 16) of the source window.



	destinteger

	The index (an integer from 1 to 16) of the destination window.



	return typeCLI_return_t

	1 for success and 0 for failure.





Description:


The Copy functions copy attributes from one visualization window to
another visualization window. The CopyPlotsToWindow function copies
the plots from one visualization window to another visualization
window but does not also force plots to generate so after copying
plots with the CopyPlotsToWindow function, you should also call the
DrawPlots function.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()
SetActiveWindow(2)
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
# Copy window 1's Pseudocolor plot to window 2.
CopyPlotsToWindow(1, 2)
DrawPlots() # Window 2 will have 2 plots
# Spin the plots around in window 2 using the mouse.
CopyViewToWindow(2, 1) # Copy window 2's view to window 1.







CopyViewToWindow

Synopsis:

CopyViewToWindow(source, dest) -> integer






	sourceinteger

	The index (an integer from 1 to 16) of the source window.



	destinteger

	The index (an integer from 1 to 16) of the destination window.



	return typeCLI_return_t

	The Copy functions return an integer value of 1 for success and 0 for
failure.





Description:


The Copy functions copy attributes from one visualization window to
another visualization window. The CopyViewToWindow function copies
the view.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddWindow()
SetActiveWindow(2)
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
# Copy window 1's Pseudocolor plot to window 2.
CopyPlotsToWindow(1, 2)
DrawPlots() # Window 2 will have 2 plots
# Spin the plots around in window 2 using the mouse.
CopyViewToWindow(2, 1) # Copy window 2's view to window 1.







CreateAnnotationObject

Synopsis:

CreateAnnotationObject(annotType[,annotName,visibleFlag]) -> annotation object






	annotTypestring

	The name of the type of annotation object to create.







	Annotation type

	String





	2D text annotation

	Text2D



	3D text annotation

	Text3D



	Time slider annotation

	TimeSlider



	Image annotation

	Image



	Line/arrow annotation

	Line2D








	annotNamestring

	A user-defined name of the annotation object to create.
By default, VisIt creates names like ‘newObject0’, ‘newObject1’, ….



	visibleFlaginteger

	An optional integer to indicate if the annotation object should be created
with initial visibility on or off. Pass 0 for off and non-zero for on.
By default, VisIt creates annotation objects with visibility on. If you
wish only to pass the visibleFlag argument, there is no need to also pass
the annotName argument.



	return typeannotation object

	CreateAnnotationObject is a factory function that creates annotation
objects of different types. The return value, if a valid annotation type is
provided, is an annotation object. If the function fails, VisItException is
raised.





Description:


CreateAnnotationObject is a factory function that creates different kinds
of annotation objects. The annotType argument is a string containing the
name of the type of annotation object to create. Each type of annotation
object has different properties that can be set. Setting the different
properties of an Annotation objects directly modifes annotations in the vis
window. Currently there are 5 types of annotation objects:




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit", 17)
AddPlot("Pseudocolor", "pressure")
DrawPlots()
slider = CreateAnnotationObject("TimeSlider")
print(slider)
slider.startColor = (255,0,0,255)
slider.endColor = (255,255,0,255)







CreateDatabaseCorrelation

Synopsis:

CreateDatabaseCorrelation(name, databases, method) -> integer






	namestring

	The name of the database correlation to be created.



	databasestuple or list of strings

	Tuple or list of strings containing the names of the databases to involve
in the database correlation.



	methodinteger

	An integer in the range [0,3] that determines the correlation method.







	Correlation method

	Value





	IndexForIndexCorrelation

	0



	StretchedIndexCorrelation

	1



	TimeCorrelation

	2



	CycleCorrelation

	3








	return typeCLI_return_t

	The CreateDatabaseCorrelation function returns 1 on success and 0 on
failure.





Description:


The CreateDatabaseCorrelation function creates a database correlation,
which is a VisIt construct that relates the time states for two or more
databases in some way. You would use the CreateDatabaseCorrelation function
if you wanted to put plots from more than one time-varying database in the
same vis window and then move them both through time in some synchronized
way. The name argument is a string that is the name of the database
correlation to be created. You will use the name of the database
correlation to set the active time slider later so that you can change time
states. The databases argument is a list or tuple of string objects
containing the fully-qualified (host:/path/filename) names of the databases
to be involved in the database query. The method argument allows you to
specify a database correlation method.
Each database correlation has its own time slider that can be used to set
the time state of databases that are part of a database correlation.
Individual time-varying databases have their own trivial database
correlation, consisting of only 1 database. When you call the
CreateDatabaseCorrelation function, VisIt creates a new time slider with
the same name as the database correlation and makes it be the active time
slider.




Example:

#% visit -cli
dbs = ("/usr/gapps/visit/data/dbA00.pdb",
"/usr/gapps/visit/data/dbB00.pdb")
OpenDatabase(dbs[0])
AddPlot("FilledBoundary", "material(mesh)")
OpenDatabase(dbs[1])
AddPlot("FilledBoundary", "material(mesh)")
DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
# Creating a new database correlation also creates a new time
# slider and makes it be active.
w = GetWindowInformation()
print("Active time slider: %s" % w.timeSliders[w.activeTimeSlider])
# Animate through time using the "common" database correlation's
# time slider.
for i in range(TimeSliderGetNStates()):
    SetTimeSliderState(i)







CreateNamedSelection

Synopsis:

CreateNamedSelection(name) -> integer
CreateNamedSelection(name, properties) -> integer






	namestring

	The name of a named selection.



	propertiesSelectionProperties object

	This optional argument lets you pass a SelectionProperties object containing
the properties that will be used to create the named selection. When this
argument is omitted, the named selection will always be associated with
the active plot. You can use this argument to set up more complex named
selections that may be associated with plots or databases.



	return typeCLI_return_t

	The CreateNamedSelection function returns 1 for success and 0 for failure.





Description:


Named Selections allow you to select a group of elements (or particles).
One typically creates a named selection from a group of elements and then
later applies the named selection to another plot (thus reducing the
set of elements displayed to the ones from when the named selection was
created).




Example:

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
AddOperator("Clip")
c = ClipAttributes()
c.plane1Origin = (0,0.6,0)
c.plane1Normal = (0,-1,0)
SetOperatorOption(c)
DrawPlots()
CreateNamedSelection("els_above_at_time_0")
SetTimeSliderState(40)
RemoveLastOperator()
ApplyNamedSelection("els_above_at_time_0")







DatabasePlugins

Synopsis:

DatabasePlugins() -> dictionary
DatabasePlugins(host) -> dictionary






	hoststring

	The name of the host for which we want database plugins.



	return typedictionary

	The DatabasePlugins functions returns a dictionary.





Description:


The DatabasePlugins function returns a dictionary containing the names of
the database plugins for the specified host. If no host is given, localhost
is assumed. The dictionary contains two keys: “host” and “plugins”.




Example:

#% visit -cli
dbp = DatabasePlugins("localhost")
print(dbp["host"])
print(dbp["plugins"])







DeIconifyAllWindows

Synopsis:

DeIconifyAllWindows()





Description:


The DeIconifyAllWindows function unhides all of the hidden visualization
windows. This function is usually called after IconifyAllWindows as a way
of making all of the hidden visualization windows visible.




Example:

#% visit -cli
SetWindowLayout(4) # Have 4 windows
IconifyAllWindows()
DeIconifyAllWindows()







DefineArrayExpression

Synopsis:

DefineArrayExpression(variableName, expression) -> integer






	variableNamestring

	The name of the variable to be created.



	expressionstring

	The expression definition as a string.



	return typeCLI_return_t

	The DefineExpression functions return 1 on success and 0 on failure.





Description:


DefineArrayExpression creates new array variables.
Expression variables can be plotted like any other variable.
The variableName argument is a string that contains the name of the new
variable. You can pass the name of an existing expression if you want
to provide a new expression definition.
The expression argument is a string that contains the definition of the
new variable in terms of math operators and pre-existing variable names
Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in
expression functions.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()







DefineCurveExpression

Synopsis:

DefineCurveExpression(variableName, expression) -> integer






	variableNamestring

	The name of the variable to be created.



	expressionstring

	The expression definition as a string.



	return typeCLI_return_t

	The DefineExpression functions return 1 on success and 0 on failure.





Description:


DefineCurveExpression creates new curve variables.
Expression variables can be plotted like any other variable.
The variableName argument is a string that contains the name of the new
variable. You can pass the name of an existing expression if you want
to provide a new expression definition.
The expression argument is a string that contains the definition of the
new variable in terms of math operators and pre-existing variable names
Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in
expression functions.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()







DefineMaterialExpression

Synopsis:

DefineMaterialExpression(variableName, expression) -> integer






	variableNamestring

	The name of the variable to be created.



	expressionstring

	The expression definition as a string.



	return typeCLI_return_t

	The DefineExpression functions return 1 on success and 0 on failure.





Description:


The DefineMaterialExpression function creates new material variables.
Expression variables can be plotted like any other variable.
The variableName argument is a string that contains the name of the new
variable. You can pass the name of an existing expression if you want
to provide a new expression definition.
The expression argument is a string that contains the definition of the
new variable in terms of math operators and pre-existing variable names
Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in
expression functions.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()







DefineMeshExpression

Synopsis:

DefineMeshExpression(variableName, expression) -> integer






	variableNamestring

	The name of the variable to be created.



	expressionstring

	The expression definition as a string.



	return typeCLI_return_t

	The DefineExpression functions return 1 on success and 0 on failure.





Description:


The DefineMeshExpression creates new mesh variables.
Expression variables can be plotted like any other variable.
The variableName argument is a string that contains the name of the new
variable. You can pass the name of an existing expression if you want
to provide a new expression definition.
The expression argument is a string that contains the definition of the
new variable in terms of math operators and pre-existing variable names
Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in
expression functions.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()







DefinePythonExpression

Synopsis:

DefinePythonExpression(myvar,args,source)
DefinePythonExpression(myvar,args,source,type)
DefinePythonExpression(myvar,args,file)






	myvarstring

	The name of the variable to be created.



	argstuple

	A tuple (or list) of strings providing the variable names of the
arguments to the Python Expression.



	sourcestring

	A string containing the source code for a Python Expression Filter .



	filestring

	A string containing the path to a Python Expression Filter script file.



	typestring

	An optional string defining the output type of the expression.
Default type - ‘scalar’
Avalaible types - ‘scalar’,’vector’,’tensor’,’array’,’curve’
Note - Use only one of the ‘source’ or ‘file’ arguments.
If both are used the ‘source’ argument overrides ‘file’.





Description:


Used to define a Python Filter Expression.






DefineScalarExpression

Synopsis:

DefineScalarExpression(variableName, expression) -> integer






	variableNamestring

	The name of the variable to be created.



	expressionstring

	The expression definition as a string.



	return typeCLI_return_t

	The DefineExpression functions return 1 on success and 0 on failure.





Description:


The DefineScalarExpression function creates a new scalar variable based on
other variables from the open database.
Expression variables can be plotted like any other variable.
The variableName argument is a string that contains the name of the new
variable. You can pass the name of an existing expression if you want
to provide a new expression definition.
The expression argument is a string that contains the definition of the
new variable in terms of math operators and pre-existing variable names
Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in
expression functions.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()







DefineSpeciesExpression

Synopsis:

DefineSpeciesExpression(variableName, expression) -> integer






	variableNamestring

	The name of the variable to be created.



	expressionstring

	The expression definition as a string.



	return typeCLI_return_t

	The DefineExpression functions return 1 on success and 0 on failure.





Description:


The DefineSpeciesExpression creates new species variables.
Expression variables can be plotted like any other variable.
The variableName argument is a string that contains the name of the new
variable. You can pass the name of an existing expression if you want
to provide a new expression definition.
The expression argument is a string that contains the definition of the
new variable in terms of math operators and pre-existing variable names
Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in
expression functions.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()







DefineTensorExpression

Synopsis:

DefineTensorExpression(variableName, expression) -> integer






	variableNamestring

	The name of the variable to be created.



	expressionstring

	The expression definition as a string.



	return typeCLI_return_t

	The DefineExpression functions return 1 on success and 0 on failure.





Description:


The DefineTensorExpression creates new tensor variables.
Expression variables can be plotted like any other variable.
The variableName argument is a string that contains the name of the new
variable. You can pass the name of an existing expression if you want
to provide a new expression definition.
The expression argument is a string that contains the definition of the
new variable in terms of math operators and pre-existing variable names
Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in
expression functions.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()







DefineVectorExpression

Synopsis:

DefineVectorExpression(variableName, expression) -> integer






	variableNamestring

	The name of the variable to be created.



	expressionstring

	The expression definition as a string.



	return typeCLI_return_t

	The DefineExpression functions return 1 on success and 0 on failure.





Description:


The DefineVectorExpression creates new vector variables
Expression variables can be plotted like any other variable.
The variableName argument is a string that contains the name of the new
variable. You can pass the name of an existing expression if you want
to provide a new expression definition.
The expression argument is a string that contains the definition of the
new variable in terms of math operators and pre-existing variable names
Reference the VisIt User’s Manual if you want more information on
creating expressions, such as expression syntax, or a list of built-in
expression functions.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
# Plot the scalar expression variable.
AddPlot("Pseudocolor", "myvar")
DrawPlots()
# Plot a vector expression variable.
DefineVectorExpression("myvec", "{u,v,w}")
AddPlot("Vector", "myvec")
DrawPlots()







DeleteActivePlots

Synopsis:

DeleteActivePlots() -> integer






	return typeCLI_return_t

	The Delete functions return an integer value of 1 for success and 0 for
failure.





Description:


The Delete functions delete plots from the active window’s plot list. The
DeleteActivePlots function deletes all of the active plots from the plot
list. There is no way to retrieve a plot once it has been deleted from the
plot list. The active plots are set using the SetActivePlots function. The
DeleteAllPlots function deletes all plots from the active window’s plot
list regardless of whether or not they are active.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
AddPlot("Contour", "u")
AddPlot("Mesh", "curvmesh2d")
DrawPlots()
DeleteActivePlots() # Delete the mesh plot
DeleteAllPlots() # Delete the pseudocolor and contour plots.







DeleteAllPlots

Synopsis:

DeleteAllPlots() -> integer






	return typeCLI_return_t

	The Delete functions return an integer value of 1 for success and 0 for
failure.





Description:


The Delete functions delete plots from the active window’s plot list. The
DeleteActivePlots function deletes all of the active plots from the plot
list. There is no way to retrieve a plot once it has been deleted from the
plot list. The active plots are set using the SetActivePlots function. The
DeleteAllPlots function deletes all plots from the active window’s plot
list regardless of whether or not they are active.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
AddPlot("Contour", "u")
AddPlot("Mesh", "curvmesh2d")
DrawPlots()
DeleteActivePlots() # Delete the mesh plot
DeleteAllPlots() # Delete the pseudocolor and contour plots.







DeleteDatabaseCorrelation

Synopsis:

DeleteDatabaseCorrelation(name) -> integer






	namestring

	The name of the database correlation to delete.



	return typeCLI_return_t

	The DeleteDatabaseCorrelation function returns 1 on success and 0 on
failure.





Description:


The DeleteDatabaseCorrelation function deletes a specific database
correlation and its associated time slider. If you delete a database
correlation whose time slider is being used for the current time slider,
the time slider will be reset to the time slider of the next best suited
database correlation. You can use the DeleteDatabaseCorrelation function to
remove database correlations that you no longer need such as when you
choose to examine databases that have nothing to do with your current
databases.




Example:

#% visit -cli
dbs = ("dbA00.pdb", "dbB00.pdb")
OpenDatabase(dbs[0])
AddPlot("FilledBoundary", "material(mesh)")
OpenDatabase(dbs[1])
AddPlot("FilledBoundary", "material(mesh)")
DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
SetTimeSliderState(10)
DeleteAllPlots()
DeleteDatabaseCorrelation("common")
CloseDatabase(dbs[0])
CloseDatabase(dbs[1])







DeleteExpression

Synopsis:

DeleteExpression(variableName) -> integer






	variableNamestring

	The name of the expression variable to be deleted.



	return typeCLI_return_t

	The DeleteExpression function returns 1 on success and 0 on failure.





Description:


The DeleteExpression function deletes the definition of an expression. The
variableName argument is a string containing the name of the variable
expression to be deleted. Any plot that uses an expression that has been
deleted will fail to regenerate if its attributes are changed.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
DefineScalarExpression("myvar", "sin(u) + cos(w)")
AddPlot("Pseudocolor", "myvar") # Plot the expression variable.
DrawPlots()
DeleteExpression("myvar") # Delete the expression variable myvar.







DeleteNamedSelection

Synopsis:

DeleteNamedSelection(name) -> integer






	namestring

	The name of a named selection.



	return typeCLI_return_t

	The DeleteNamedSelection function returns 1 for success and 0 for failure.





Description:


Named Selections allow you to select a group of elements (or particles).
One typically creates a named selection from a group of elements and then
later applies the named selection to another plot (thus reducing the
set of elements displayed to the ones from when the named selection was
created).  If you have created a named selection that you are no longer
interested in, you can delete it with the DeleteNamedSelection function.




Example:

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
AddOperator("Clip")
c = ClipAttributes()
c.plane1Origin = (0,0.6,0)
c.plane1Normal = (0,-1,0)
SetOperatorOption(c)
DrawPlots()
CreateNamedSelection("els_above_y")
SetTimeSliderState(40)
DeleteNamedSelection("els_above_y")
CreateNamedSelection("els_above_y")







DeletePlotDatabaseKeyframe

Synopsis:

DeletePlotDatabaseKeyframe(plotIndex, frame)






	plotIndexinteger

	A zero-based integer value corresponding to a plot’s index in the plot
list.



	frameinteger

	A zero-based integer value corresponding to a database keyframe at a
particular animation frame.





Description:


The DeletePlotDatabaseKeyframe function removes a database keyframe from a
specific plot. A database keyframe represents the database time state that
will be used at a given animation frame when VisIt’s keyframing mode is
enabled. The plotIndex argument is a zero-based integer that is used to
identify a plot in the plot list. The frame argument is a zero-based
integer that is used to identify the frame at which a database keyframe is
to be removed for the specified plot.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
k = GetKeyframeAttributes()
k.enabled,k.nFrames,k.nFramesWasUserSet = 1,20,1
SetKeyframeAttributes(k)
AddPlot("Pseudocolor", "pressure")
SetPlotDatabaseState(0, 0, 60)
# Repeat time state 60 for the first few animation frames by adding a
# keyframe at frame 3.
SetPlotDatabaseState(0, 3, 60)
SetPlotDatabaseState(0, 19, 0)
DrawPlots()
ListPlots()
# Delete the database keyframe at frame 3.
DeletePlotDatabaseKeyframe(0, 3)
ListPlots()







DeletePlotKeyframe

Synopsis:

DeletePlotKeyframe(plotIndex, frame)






	plotIndexinteger

	A zero-based integer value corresponding to a plot’s index in the plot
list.



	frameinteger

	A zero-based integer value corresponding to a plot keyframe at a
particular animation frame.





Description:


The DeletePlotKeyframe function removes a plot keyframe from a specific
plot. A plot keyframe is the set of plot attributes at a specified frame.
Plot keyframes are used to determine what plot attributes will be used at a
given animation frame when VisIt’s keyframing mode is enabled. The
plotIndex argument is a zero-based integer that is used to identify a plot
in the plot list. The frame argument is a zero-based integer that is used
to identify the frame at which a keyframe is to be removed.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
k = GetKeyframeAttributes()
k.enabled,k.nFrames,k.nFramesWasUserSet = 1,20,1
SetKeyframeAttributes(k)
AddPlot("Pseudocolor", "pressure")
# Set up plot keyframes so the Pseudocolor plot's min will change
# over time.
p0 = PseudocolorAttributes()
p0.minFlag,p0.min = 1,0.0
p1 = PseudocolorAttributes()
p1.minFlag,p1.min = 1, 0.5
SetPlotOptions(p0)
SetTimeSliderState(19)
SetPlotOptions(p1)
SetTimeSliderState(0)
DrawPlots()
ListPlots()
# Iterate over all animation frames and wrap around to the first one.
for i in list(range(TimeSliderGetNStates())) + [0]:
    SetTimeSliderState(i)
# Delete the plot keyframe at frame 19 so the min won't
# change anymore.
DeletePlotKeyframe(19)
ListPlots()
SetTimeSliderState(10)







DeleteViewKeyframe

Synopsis:

DeleteViewKeyframe(frame)






	frameinteger

	A zero-based integer value corresponding to a view keyframe at a
particular animation frame.





Description:


The DeleteViewKeyframe function removes a view keyframe at a specified
frame. View keyframes are used to determine what view will be used at a
given animation frame when VisIt’s keyframing mode is enabled. The frame
argument is a zero-based integer that is used to identify the frame at
which a keyframe is to be removed.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
k = KeyframeAttributes()
k.enabled, k.nFrames, k.nFramesWasUserSet = 1,10,1
SetKeyframeAttributes(k)
AddPlot("Pseudocolor", "u")
DrawPlots()
# Set some view keyframes
SetViewKeyframe()
v1 = GetView3D()
v1.viewNormal = (-0.66609, 0.337227, 0.665283)
v1.viewUp = (0.157431, 0.935425, -0.316537)
SetView3D(v1)
SetTimeSliderState(9)
SetViewKeyframe()
ToggleCameraViewMode()
# Iterate over the animation frames to watch the view change.
for i in list(range(10)) + [0]:
    SetTimeSliderState(i)
# Delete the last view keyframe, which is on frame 9.
DeleteViewKeyframe(9)
# Iterate over the animation frames again. The view should stay
# the same.
for i in range(10):
    SetTimeSliderState(i)







DeleteWindow

Synopsis:

DeleteWindow() -> integer






	return typeCLI_return_t

	The DeleteWindow function returns an integer value of 1 for success and 0
for failure.





Description:


The DeleteWindow function deletes the active visualization window and
makes the visualization window with the smallest window index the new
active window. This function has no effect when there is only one remaining
visualization window.




Example:

#% visit -cli
DeleteWindow() # Does nothing since there is only one window
AddWindow()
DeleteWindow() # Deletes the new window.







DemoteOperator

Synopsis:

DemoteOperator(opIndex) -> integer
DemoteOperator(opIndex, applyToAllPlots) -> integer






	opIndexinteger

	A zero-based integer corresponding to the operator that should be demoted.



	applyToAllPlotsinteger

	An integer flag that causes all plots in the plot list to be affected when
it is non-zero.



	return typeCLI_return_t

	DemoteOperator returns 1 on success and 0 on failure.





Description:


The DemoteOperator function moves an operator closer to the database in
the visualization pipeline. This allows you to change the order of
operators that have been applied to a plot without having to remove them
from the plot. For example, consider moving a Slice to before a Reflect
operator when it had been the other way around. Changing the order of
operators can result in vastly different results for a plot. The opposite
function is PromoteOperator.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
AddOperator("Slice")
s = SliceAttributes()
s.project2d = 0
s.originPoint = (0,5,0)
s.originType=s.Point
s.normal = (0,1,0)
s.upAxis = (-1,0,0)
SetOperatorOptions(s)
AddOperator("Reflect")
DrawPlots()
# Now reflect before slicing. We'll only get 1 slice plane
# instead of 2.
DemoteOperator(1)
DrawPlots()







DisableRedraw

Synopsis:

DisableRedraw()





Description:


The DisableRedraw function prevents the active visualization window from
ever redrawing itself. This is a useful function to call when performing
many operations that would cause unnecessary redraws in the visualization
window. The effects of this function are undone by calling the RedrawWindow
function.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Contour", "u")
AddPlot("Pseudocolor", "w")
DrawPlots()
DisableRedraw()
AddOperator("Slice")
# Set the slice operator attributes
# Redraw now that thw operator attributes are set. This will
# prevent 1 redraw.
RedrawWindow()







DrawPlots

Synopsis:

DrawPlots() -> integer






	return typeCLI_return_t

	The DrawPlots function returns an integer value of 1 for success and 0 for
failure.





Description:


The DrawPlots function forces all new plots in the plot list to be drawn.
Plots are added and then their attributes are modified. Finally, the
DrawPlots function is called to make sure all of the new plots draw
themselves in the visualization window. This function has no effect if all
of the plots in the plot list are already drawn.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots() # Draw the new pseudocolor plot.







EnableTool

Synopsis:

EnableTool(toolIndex, activeFlag)






	toolIndexinteger

	This is an integer that corresponds to an interactive tool.
(Plane tool = 0, Line tool = 1, Plane tool = 2, Box tool = 3,
Sphere tool = 4, Axis Restriction tool = 5)



	activeFlaginteger

	An integer value of 1 enables the tool while a value of 0 disables the tool.



	returnCLI_return_t

	The EnableToole function returns 1 on success and 0 on failure.





Description:


The EnableTool function is used to set the enabled state of an interactive
tool in the active visualization window. The toolIndex argument is an
integer index that corresponds to a certain tool. The activeFlag argument
is an integer value (0 or 1) that indicates whether to turn the tool on or
off.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
EnableTool(0, 1) # Turn on the line tool.
EnableTool(1,1) # Turn on the plane tool.
EnableTool(2,1) # Turn on the sphere tool.
EnableTool(2,0) # Turn off the sphere tool.







EvalCubic

Synopsis:

EvalCubic(t, c0, c1, c2, c3) -> f(t)






	tdouble

	A floating point number in the range [0., 1.] that represents the distance
from c0 to c3.



	c0arithmetic expression object

	The first control point. f(0) = c0. Any object that can be used in an
arithmetic expression can be passed for c0.



	c1arithmetic expression object

	The second control point. Any object that can be used in an arithmetic
expression can be passed for c1.



	c2arithmetic expression object

	The third control point. Any object that can be used in an arithmetic
expression can be passed for c2.



	c3arithmetic expression object

	The last control point. f(1) = c3. Any object that can be used in an
arithmetic expression can be passed for c3.



	returndouble

	The EvalCubic function returns the interpolated value for t taking into
account the control points that were passed in.





Description:


The EvalCubic function takes in four objects and blends them using a cubic
polynomial and returns the blended value.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
v0 = GetView3D()
# rotate the plots
v1 = GetView3D()
# rotate the plots again.
v2 = GetView3D()
# rotate the plots one last time.
v3 = GetView3D()
# Fly around the plots using the views that have been specified.
nSteps = 100
for i in range(nSteps):
    t = float(i) / float(nSteps - 1)
    newView = EvalCubic(t, v0, v1, v2, v3)
    SetView3D(newView)







EvalCubicSpline

Synopsis:

EvalCubicSpline(t, weights, values) -> f(t)






	tdouble

	A floating point number in the range [0., 1.] that represents the distance
from the first control point to the last control point.



	weightstuple of doubles

	A tuple of N floating point values in the range [0., 1.] that represent
how far along in parameterized space, the values will be located.



	valuestuple of arithmetic expression object

	A tuple of N objects to be blended. Any objects that can be used in
arithmetic expressions can be passed in.



	returndouble

	The EvalCubicSpline function returns the interpolated value for t
considering the objects that were passed in.



	Description:

	The EvalCubicSpline function takes in N objects to be blended and blends
them using piece-wise cubic polynomials and returns the blended value.







EvalLinear

Synopsis:

EvalLinear(t, value1, value2) -> f(t)






	tdouble

	A floating point value in the range [0., 1.] that represents the distance
between the first and last control point in parameterized space.



	value1arithmetic expression object

	Any object that can be used in an arithmetic expression. f(0) = value1.



	value2arithmetic expression object

	Any object that can be used in an arithmetic expression. f(1) = value2.



	returndouble

	The EvalLinear function returns an interpolated value for t based on the
objects that were passed in.



	Description:

	The EvalLinear function linearly interpolates between two values and
returns the result.





Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
c0 = GetView3D()
c1 = GetView3D()
c1.viewNormal = (-0.499159, 0.475135, 0.724629)
c1.viewUp = (0.196284, 0.876524, -0.439521)
nSteps = 100
for i in range(nSteps):
    t = float(i) / float(nSteps - 1)
    v = EvalLinear(t, c0, c1)
    SetView3D(v)







EvalQuadratic

Synopsis:

EvalQuadratic(t, c0, c1, c2) -> f(t)






	tdouble

	A floating point number in the range [0., 1.] that represents the distance
from c0 to c3.



	c0arithmetic expression object

	The first control point. f(0) = c0. Any object that can be used in an
arithmetic expression can be passed for c0.



	c1arithmetic expression object

	The second control point. Any object that can be used in an arithmetic
expression can be passed for c1.



	c2arithmetic expression object

	The last control point. f(1) = c2. Any object that can be used in an
arithmetic expression can be passed for c2.



	returndouble

	The EvalQuadratic function returns the interpolated value for t taking
into account the control points that were passed in.



	Description:

	The EvalQuadratic function takes in four objects and blends them using a
cubic polynomial and returns the blended value.





Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
v0 = GetView3D()
# rotate the plots
v1 = GetView3D()
# rotate the plots one last time.
v2 = GetView3D()
# Fly around the plots using the views that have been specified.
nSteps = 100
for i in range(nSteps):
    t = float(i) / float(nSteps - 1)
    newView = EvalQuadratic(t, v0, v1, v2)
    SetView3D(newView)







ExecuteMacro

Synopsis:

ExecuteMacro(name) -> value






	namestring

	The name of the macro to execute.



	return typevalue

	The ExecuteMacro function returns the value returned from the user’s macro function.





Description:


The ExecuteMacro function lets you call a macro function that was previously
registered using the RegisterMacro method. Once macros are registered with a
name, this function can be called whenever the macro function associated with
that name needs to be called. The VisIt gui uses this function to tell the
Python interface when macros need to be executed in response to user button
clicks.




Example:

def SetupMyPlots():
    OpenDatabase('noise.silo')
    AddPlot('Pseudocolor', 'hardyglobal')
    DrawPlots()

RegisterMacro('Setup My Plots', SetupMyPlots)
ExecuteMacro('Setup My Plots')







ExportDatabase

Synopsis:

ExportDatabase(e) -> integer
ExportDatabase(e, o) -> integer






	eExportDBAttributes object

	An object of type ExportDBAttributes.  This object specifies the options
for exporting the database.



	odictionary

	A dictionary containing a key/value mapping to set options needed by the
database exporter.  The default values can be obtained in the appropriate
format using GetExportOptions(‘plugin’).



	return typeCLI_return_t

	Returns 1 on success, 0 on failure.





Description:


The ExportDatabase function exports the active plot for the current window
to a file.  The format of the file, name, and variables to be saved are
specified using the ExportDBAttributes argument.
Note that this functionality is distinct from the geometric formats of
SaveWindow, such as STL.  SaveWindow can only save surfaces (triangle
meshes), while ExportDatabase can export an entire three dimensional data
set.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set the export database attributes.
e = ExportDBAttributes()
e.db_type = "Silo"
e.variables = ("u", "v")
e.filename = "test_ex_db"
ExportDatabase(e)







Expressions

Synopsis:

Expressions() -> tuple of expression tuples






	return typetuple of expression tuples

	The Expressions function returns a tuple of tuples that contain two
strings that give the expression name and definition.





Description:


The Expressions function returns a tuple of tuples that contain two
strings that give the expression name and definition. This function is
useful for listing the available expressions or for iterating through a
list of expressions in order to create plots.




Example:

#% visit -cli
SetWindowLayout(4)
DefineScalarExpression("sin_u", "sin(u)")
DefineScalarExpression("cos_u", "cos(u)")
DefineScalarExpression("neg_u", "-u")
DefineScalarExpression("bob", "sin_u + cos_u")
for i in range(1,5):
    SetActiveWindow(i)
    OpenDatabase("/usr/gapps/visit/data/globe.silo")
    exprName = Expressions()[i-1][0]
    AddPlot("Pseudocolor", exprName)
    DrawPlots()







GetActiveContinuousColorTable

Synopsis:

GetActiveContinuousColorTable() -> string






	return typestring

	Both functions return a string object containing the name of a color table.





Description:


A color table is a set of color values that are used as the colors for
plots. VisIt supports two flavors of color table: continuous and discrete.
A continuous color table is defined by a small set of color control points
and the colors specified by the color control points are interpolated
smoothly to fill in any gaps. Continuous color tables are used for plots
that need to be colored smoothly by a variable (e.g. Pseudocolor plot). A
discrete color table is a set of color control points that are used to
color distinct regions of a plot (e.g. Subset plot). VisIt supports the
notion of default continuous and default discrete color tables so plots can
just use the “default” color table. This lets you change the color table
used by many plots by just changing the “default” color table. The
GetActiveContinuousColorTable function returns the name of the default
continuous color table. The GetActiveDiscreteColorTable function returns
the name of the default discrete color table.




Example:

#% visit -cli
print("Default continuous color table: %s" % GetActiveContinuousColorTable())
print("Default discrete color table: %s" % GetActiveDiscreteColorTable())







GetActiveDiscreteColorTable

Synopsis:

GetActiveDiscreteColorTable() -> string






	return typestring

	Both functions return a string object containing the name of a color table.





Description:


A color table is a set of color values that are used as the colors for
plots. VisIt supports two flavors of color table: continuous and discrete.
A continuous color table is defined by a small set of color control points
and the colors specified by the color control points are interpolated
smoothly to fill in any gaps. Continuous color tables are used for plots
that need to be colored smoothly by a variable (e.g. Pseudocolor plot). A
discrete color table is a set of color control points that are used to
color distinct regions of a plot (e.g. Subset plot). VisIt supports the
notion of default continuous and default discrete color tables so plots can
just use the “default” color table. This lets you change the color table
used by many plots by just changing the “default” color table. The
GetActiveContinuousColorTable function returns the name of the default
continuous color table. The GetActiveDiscreteColorTable function returns
the name of the default discrete color table.




Example:

#% visit -cli
print("Default continuous color table: %s" % GetActiveContinuousColorTable())
print("Default discrete color table: %s" % GetActiveDiscreteColorTable())







GetActiveTimeSlider

Synopsis:

GetActiveTimeSlider() -> string






	return typestring

	The GetActiveTimeSlider function returns a string containing the name of
the active time slider.





Description:


VisIt can support having multiple time sliders when you have opened more
than one time-varying database. You can then use each time slider to
independently change time states for each database or you can use a
database correlation to change time states for all databases
simultaneously. Every time-varying database has a database correlation and
every database correlation has its own time slider. If you want to query to
determine which time slider is currently the active time slider, you can
use the GetActiveTimeSlider function.




Example:

#% visit -cli
OpenDatabase("dbA00.pdb")
AddPlot("FilledBoundary", "material(mesh)")
OpenDatabase("dbB00.pdb")
AddPlot("FilledBoundary", "materials(mesh)")
print("Active time slider: %s" % GetActiveTimeSlider())
CreateDatabaseCorrelation("common", ("dbA00.pdb", "dbB00.pdb"), 2)
print("Active time slider: %s" % GetActiveTimeSlider())







GetAnimationAttributes

Synopsis:

GetAnimationAttributes() -> AnimationAttributes object






	return typeAnimationAttributes object

	The GetAnimationAttributes function returns an AnimationAttributes object.





Description:


This function returns the current animation attributes, which contain the
animation mode, increment, and playback speed.




Example:

a = GetAnimationAttributes()
print(a)







GetAnimationTimeout

Synopsis:

GetAnimationTimeout() -> integer






	return typeCLI_return_t

	The GetAnimationTimeout function returns an integer that contains the time
interval, measured in milliseconds, between the rendering of animation
frames.





Description:


The GetAnimationTimeout returns an integer that contains the time
interval, measured in milliseconds, between the rendering of animation
frames.




Example:

#% visit -cli
print("Animation timeout = %d" % GetAnimationTimeout())







GetAnnotationAttributes

Synopsis:

GetAnnotationAttributes() -> AnnotationAttributes object






	return typeAnnotationAttributes object

	The GetAnnotationAttributes function returns an AnnotationAttributes
object that contains the annotation settings for the active visualization
window.





Description:


The GetAnnotationAttributes function returns an AnnotationAttributes
object that contains the annotation settings for the active visualization
window. It is often useful to retrieve the annotation settings and modify
them to suit the visualization.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
a = GetAnnotationAttributes()
print(a)
a.backgroundMode = a.BACKGROUNDMODE_GRADIENT
a.gradientColor1 = (0, 0, 255)
SetAnnotationAttributes(a)







GetAnnotationObject

Synopsis:

GetAnnotationObject(objectName) -> Annotation object






	objectNamestring

	The name of the annotation object as returned by GetAnnotationObjectNames.



	return typeAnnotation object

	GetAnnotationObject returns a reference to an annotation object that was
created using the CreateAnnotationObject function, or a legend object
created when a plot is added.





Description:


GetAnnotationObject returns a reference to an annotation object that was
created using the CreateAnnotationObject function. The string
argument specifies the name of the desired annotation object. It must be
one of the names returned by GetAnnotationObjectNames. This function is not
currently necessary unless the annotation object that you used to create an
annotation has gone out of scope and you need to create another reference
to the object to set its properties.

GetAnnotationObject can also return a reference to a legend, which is
automatically created when a plot is added.  It is associated with the name
of the plot. While the plot’s name can be seen in the list obtained from
GetAnnotationObjectNames, it is better to get the plot’s name from the
PlotList, especially when multiple plots are present.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Mesh", "quadmesh")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
a = CreateAnnotationObject("TimeSlider")
GetAnnotationObjectNames()
["Plot0000", "Plot0001", "TimeSlider1"]
ref = GetAnnotationObject("TimeSlider1")
print(ref)
# Get the name of the Pseudocolor plot for legend retrieval.
# It is the second plot in the plot list (which is 0-indexed)
plotName = GetPlotList().GetPlots(1).plotName
legend = GetAnnotationObject(plotName)







GetAnnotationObjectNames

Synopsis:

GetAnnotationObjectNames() -> tuple of strings






	return typetuple of strings

	GetAnnotationObjectNames returns a tuple of strings of the names of all
annotation objects defined for the currently active window.





Example:

names = GetAnnotationObjectNames()
names
["plot0000", "Line2D1", "TimeSlider1"]







GetCallbackArgumentCount

Synopsis:

GetCallbackArgumentCount(callbackName) -> integer






	callbackNamestring

	The name of a callback function. This name is a member of the tuple
returned by GetCallbackNames().



	return typeCLI_return_t

	The GetCallbackArgumentCount function returns the number of arguments
associated with a particular callback function.





Example:

cbName = 'OpenDatabaseRPC'
count = GetCallbackArgumentCount(cbName)
print('The number of arguments for %s is: %d' % (cbName, count))







GetCallbackNames

Synopsis:

GetCallbackNames() -> tuple of string objects






	return typetuple of string objects

	GetCallbackNames returns a tuple containing the names of valid callback
function identifiers for use in RegisterCallback().





Description:


The GetCallbackNames function returns a tuple containing the names of valid
callback function identifiers for use in RegisterCallback().




Example:

import visit
print(visit.GetCallbackNames())







GetDatabaseNStates

Synopsis:

GetDatabaseNStates() -> integer






	return typeCLI_return_t

	Returns the number of time states in the active database or 0 if there is
no active database.





Description:


GetDatabaseNStates returns the number of time states in the active
database, which is not the same as the number of states in the active time
slider. Time sliders can have different lengths due to database
correlations and keyframing. Use this function when you need the actual
number of time states in the active database.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave*.silo database")
print("Number of time states: %d" % GetDatabaseNStates())







GetDebugLevel

Synopsis:

GetDebugLevel() -> integer






	return typeCLI_return_t

	The GetDebugLevel function returns the debug level of the VisIt module.





Description:


The GetDebugLevel and SetDebugLevel functions are used when debugging
VisIt Python scripts. The GetDebugLevel function can be used in Python
scripts to alter the behavior of the script. For instance, the debug
level can be used to selectively print values to the console.




Example:

#% visit -cli -debug 2
print("VisIt's debug level is: %d" % GetDebugLevel())







GetDefaultFileOpenOptions

Synopsis:

GetDefaultFileOpenOptions(pluginName) -> dictionary






	pluginNamestring

	The name of a plugin.



	return typedictionary

	Returns a dictionary containing the options.





Description:


GetDefaultFileOpenOptions returns the current options used to open new
files when a specific plugin is triggered.




Example:

#% visit -cli
OpenMDServer()
opts = GetDefaultFileOpenOptions("VASP")
opts["Allow multiple timesteps"] = 1
SetDefaultFileOpenOptions("VASP", opts)
OpenDatabase("CHGCAR")







GetDomains

Synopsis:

GetDomains() -> tuple of strings






	return typetuple of strings

	GetDomains returns a tuple of strings.





Description:


GetDomains returns a tuple containing the names of all of the domain
subsets for a plot that was created using a database with multiple domains.
This function can be used in specialized logic that iterates over domains
to turn them on or off in some programmed way.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_ucd3d.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
doms = GetDomains()
print(doms)
# Turn off all but the last domain, one after the other.
for d in doms[:-1]:
    TurnDomainsOff(d)







GetEngineList

Synopsis:

GetEngineList() -> tuple of strings
GetEngineList(flag) -> tuple of tuples of strings






	flaginteger

	If flag is a non-zero integer then the function returns a tuple of tuples
with information about simulations.



	return typetuple of strings

	GetEngineList returns a tuple of strings that contain the names of the
computers on which compute engines are running. If flag is a non-zero
integer argument then the function returns a tuple of tuples where each
tuple is of length 2. Element 0 contains the names of the computers where
the engines are running. Element 1 contains the names of the simulations
being run.





Description:


The GetEngineList function returns a tuple of strings containing the names
of the computers on which compute engines are running. This function can be
useful if engines are going to be closed and opened explicitly in the
Python script. The contents of the tuple can be used to help determine
which compute engines should be closed or they can be used to determine if
a compute engine was successfully launched.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
OpenDatabase("mcr:/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
DrawPlots()
for name in GetEngineList():
    print("VisIt has a compute engine running on %s" % name)
    CloseComputeEngine(GetEngineList()[1])







GetEngineProperties

Synopsis:

GetEngineProperties()            -> EngineProperties object
GetEngineProperties(engine)      -> EngineProperties object
GetEngineProperties(engine, sim) -> EngineProperties object






	engine

	When engine is passed and it matches one of the computer names returned
from GetEngineList() then the EngineProperties object for that engine is
returned.



	sim

	When both engine and sim arguments are passed, then the EngineProperties
object for the simulation is returned.



	return typeEngineProperties object

	The EngineProperties object for the specified compute engine/sim.





Description:


GetEngineProperties returns an EngineProperties object containing the properties
for the specified compute engine/sim. The EngineProperties let you discover
information such as number of processors, etc for a compute engine/sim.




Example:

#% visit -cli
db = "/usr/gapps/visit/data/globe.silo"
OpenDatabase(db)
props = GetEngineProperties(GetEngineList()[0])







GetGlobalAttributes

Synopsis:

GetGlobalAttributes() -> GlobalAttributes object






	return typeGlobalAttributes object

	Returns a GlobalAttributes object that has been initialized.





Description:


The GetGlobalAttributes function returns a GlobalAttributes object that
has been initialized with the current state of the viewer proxy’s
GlobalAttributes object. The GlobalAttributes object contains read-only
information about the list of sources, the list of windows, and various
flags that can be queried.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
g = GetGlobalAttributes()
print(g)







GetGlobalLineoutAttributes

Synopsis:

GetGlobalLineoutAttributes() -> GlobalLineoutAttributes object






	return typeGlobalLineoutAttributes object

	Returns an initialized GlobalLineoutAttributes object.





Description:


The GetGlobalLineoutAttributes function returns an initialized
GlobalLineoutAttributes object. The GlobalLineoutAttributes, as suggested
by its name, contains global properties that apply to all lineouts. You can
use the GlobalLineoutAttributes object to turn on lineout sampling, specify
the destination window, etc. for curve plots created as a result of
performing lineouts. Once you make changes to the object by setting its
properties, use the SetGlobalLineoutAttributes function to make VisIt use
the modified global lineout attributes.




Example:

#% visit -cli
SetWindowLayout(4)
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
g = GetGlobalLineoutAttributes()
print(g)
g.samplingOn = 1
g.windowId = 4
g.createWindow = 0
g.numSamples = 100
SetGlobalLineoutAttributes(g)
Lineout((-3,2),(3,3),("default"))







GetInteractorAttributes

Synopsis:

GetInteractorAttributes() -> InteractorAttributes object






	return typeInteractorAttributes object

	Returns an initialized InteractorAttributes object.





Description:


The GetInteractorAttributes function returns an initialized
InteractorAttributes object. The InteractorAttributes object can be used to
set certain interactor properties. Interactors, can be thought of as how
mouse clicks and movements are translated into actions in the vis window.
To set the interactor attributes, first get the interactor attributes using
the GetInteractorAttributes function. Once you’ve set the object’s
properties, call the SetInteractorAttributes function to make VisIt use the
new interactor attributes.




Example:

#% visit -cli
ia = GetInteractorAttributes()
print(ia)
ia.showGuidelines = 0
SetInteractorAttributes(ia)







GetKeyframeAttributes

Synopsis:

GetKeyframeAttributes() -> KeyframeAttributes object






	return typeKeyframeAttributes object

	GetKeyframeAttributes returns an initialized KeyframeAttributes object.





Description:


Use the GetKeyframeAttributes function when you want to examine a
KeyframeAttributes object so you can determine VisIt’s state when it is in
keyframing mode. The KeyframeAttributes object allows you to see whether
VisIt is in keyframing mode and, if so, how many animation frames are in
the current keyframe animation.




Example:

#% visit -cli
k = GetKeyframeAttributes()
print(k)
k.enabled,k.nFrames,k.nFramesWasUserSet = 1, 100, 1
SetKeyframeAttributes(k)







GetLastError

Synopsis:

GetLastError() -> string






	return typestring

	GetLastError returns a string containing the last error message that VisIt
issued.





Description:


The GetLastError function returns a string containing the last error
message that VisIt issued.




Example:

#% visit -cli
OpenDatabase("/this/database/does/not/exist")
print("VisIt Error: %s" % GetLastError())







GetLight

Synopsis:

GetLight(index) -> LightAttributes object






	indexinteger

	A zero-based integer index into the light list. Index can be in the range
[0,7].



	return typeLightAttributes object

	GetLight returns a LightAttributes object.





Description:


The GetLight function returns a LightAttributes object containing the
attributes for a specific light. You can use the LightAttributes object
that GetLight returns to set light properties and then you can pass the
object to SetLight to make VisIt use the light properties that you’ve set.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "w")
p = PseudocolorAttributes()
p.colorTableName = "xray"
SetPlotOptions(p)
DrawPlots()
InvertBackgroundColor()
light = GetLight(0)
print(light)
light.enabledFlag = 1
light.direction = (0,-1,0)
light.color = (255,0,0,255)
SetLight(0, light)
light.color,light.direction = (0,255,0,255), (-1,0,0)
SetLight(1, light)







GetLocalHostName

Synopsis:

GetLocalHostName() -> string






	return typestring

	Both functions return a string.





Description:


The GetLocalHostName function returns a string that contains the name of
the local computer.




Example:

#% visit -cli
print("Local machine name is: %s" % GetLocalHostName())
print("My username: %s" % GetLocalUserName())







GetLocalUserName

Synopsis:

GetLocalUserName() -> string






	return typestring

	Both functions return a string.





Description:


The GetLocalUserName function returns a string containing the name of
the user running VisIt.




Example:

#% visit -cli
print("Local machine name is: %s" % GetLocalHostName())
print("My username: %s" % GetLocalUserName())







GetMachineProfile

Synopsis:

GetMachineProfile(hostname) -> MachineProfile object





hostname : string


	return typeMachineProfile object

	MachineProfile for hostname.





Description:


Gets the MachineProfile for a given hostname






GetMachineProfileNames

Synopsis:

GetMachineProfileNames() -> [hostname1, hostname2, ...]






	return typelist of strings

	A list of MachineProfile hostnames





Description:


Returns a list of hostnames that can be used to get a specific MachineProfile






GetMaterialAttributes

Synopsis:

GetMaterialAttributes() -> MaterialAttributes object






	return typeMaterialAttributes object

	Returns a MaterialAttributes object.





Description:


The GetMaterialAttributes function returns a MaterialAttributes object
that contains VisIt’s current material interface reconstruction settings.
You can set properties on the MaterialAttributes object and then pass it to
SetMaterialAttributes to make VisIt use the new material attributes that
you’ve specified:




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
p = PseudocolorAttributes()
p.min,p.minFlag = 4.0, 1
p.max,p.maxFlag = 13.0, 1
SetPlotOptions(p)
DrawPlots()
# Tell VisIt to always do material interface reconstruction.
m = GetMaterialAttributes()
m.forceMIR = 1
SetMaterialAttributes(m)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()







GetMaterials

Synopsis:

GetMaterials() -> tuple of strings






	return typetuple of strings

	The GetMaterials function returns a tuple of strings.





Description:


The GetMaterials function returns a tuple of strings containing the names
of the available materials for the current plot’s database. Note that the
active plot’s database must have materials for this function to return a
tuple that has any string objects in it. Also, you must have at least one
plot. You can use the materials returned by the GetMaterials function for a
variety of purposes including turning materials on or off.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
DrawPlots()
mats = GetMaterials()
for m in mats[:-1]:
    TurnMaterialOff(m)







GetMeshManagementAttributes

Synopsis:

GetMeshManagementAttributes() -> MeshmanagementAttributes object






	return typeMeshmanagementAttributes object

	Returns a MeshmanagementAttributes object.





Description:


The GetMeshmanagementAttributes function returns a MeshmanagementAttributes object
that contains VisIt’s current mesh discretization settings.
You can set properties on the MeshManagementAttributes object and then pass it to
SetMeshManagementAttributes to make VisIt use the new material attributes that
you’ve specified:




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/csg.silo")
AddPlot("Mesh", "csgmesh")
DrawPlots()
# Tell VisIt to always do material interface reconstruction.
mma = GetMeshManagementAttributes()
mma.discretizationTolernace = (0.01, 0.025)
SetMeshManagementAttributes(mma)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()







GetMetaData

Synopsis:

GetMetaData(db) -> avtDatabaseMetaData object
GetMetaData(db, ts) -> avtDatabaseMetaData object






	dbstring

	The name of the database for which to return metadata.



	tsinteger

	An optional integer indicating the time state at which to open the database.



	return typeavtDatabaseMetaData object

	The GetMetaData function returns an avtDatabaseMetaData object.





Description:


VisIt relies on metadata to populate its variable menus and make important
decisions. Metadata can be used to create complex scripts whose behavior
adapts based on the contents of the database.




Example:

md = GetMetaData('noise.silo')
for i in range(md.GetNumScalars()):
    AddPlot('Pseudocolor', md.GetScalars(i).name)
DrawPlots()







GetNumPlots

Synopsis:

GetNumPlots() -> integer






	return typeCLI_return_t

	Returns the number of plots in the active window.





Description:


The GetNumPlots function returns the number of plots in the active window.




Example:

#% visit -cli
print("Number of plots", GetNumPlots())
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
print("Number of plots", GetNumPlots())
AddPlot("Mesh", "curvmesh2d")
DrawPlots()
print("Number of plots", GetNumPlots())







GetOperatorOptions

Synopsis:

GetOperatorOptions(index) -> operator attributes object






	indexinteger

	The integer index of the operator within the plot’s list of operators.



	return typeoperator attributes object

	The GetOperatorOptions function returns an operator attributes object.





Description:


This function is provided to make it easy to probe the current attributes for
a specific operator on the active plot.




Example:

AddPlot('Pseudocolor', 'temperature')
AddOperator('Transform')
AddOperator('Transform')
t = GetOperatorOptions(1)
print('Attributes for the 2nd Transform operator:', t)







GetPickAttributes

Synopsis:

GetPickAttributes() -> PickAttributes object






	return typePickAttributes object

	GetPickAttributes returns a PickAttributes object.





Description:


The GetPickAttributes object returns the pick settings that VisIt is
currently using when it performs picks. These settings mainly determine
which pick information is displayed when pick results are printed out but
they can also be used to select auxiliary variables and generate time
curves. You can examing the settings and you can set properties on the
returned object. Once you’ve changed pick settings by setting properties on
the object, you can pass the altered object to the SetPickAttributes
function to force VisIt to use the new pick settings.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/ireg")
DrawPlots()
p = GetPickAttributes()
print(p)
p.variables = ("default", "mesh/a", "mesh/mixvar")
SetPickAttributes(p)
# Now do some interactive picks and you'll see pick information
# for more than 1 variable.
p.doTimeCurve = 1
SetPickAttributes(p)
# Now do some interactive picks and you'll get time-curves in
# a new window.







GetPickOutput

Synopsis:

GetPickOutput() -> string






	return typestring

	GetPickOutput returns a string containing the output from the last pick.





Description:


The GetPickOutput returns a string object that contains the output from
the last pick.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
ZonePick(coord=(0.4, 0.6, 0), vars=("default", "u", "v"))
s = GetPickOutput()
print(s)







GetPickOutputObject

Synopsis:

GetPickOutputObject() -> dictionary






	return typedictionary

	GetPickOutputObject returns a dictionary produced by the last pick.





Description:


GetPickOutputObject returns a dictionary object containing output from the
last pick.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
ZonePick(coord=(0.4, 0.6, 0), vars=("default", "u", "v"))
o = GetPickOutputObject()
print(o)







GetPipelineCachingMode

Synopsis:

GetPipelineCachingMode() -> integer






	return typeCLI_return_t

	The GetPipelineCachingMode function returns 1 if pipelines are being
cached and 0 otherwise.





Description:


The GetPipelineCachingMode function returns whether or not pipelines are
being cached in the viewer. For animations of long time sequences, it is
often useful to turn off pipeline caching so the viewer does not run out of
memory.




Example:

#%visit -cli
offon = ("off", "on")
print("Pipeline caching is %s" % offon[GetPipelineCachingMode()])







GetPlotInformation

Synopsis:

GetPlotInformation() -> dictionary






	return typedictionary

	GetPlotInformation returns a dictionary.





Description:


The GetPlotInformation function returns information about the active plot.
For example, a Curve plot will return the xy pairs that comprise the
curve.  The tuple is arranged <x1, y1, x2, y2, …, xn, yn>.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
Lineout((0, 0), (1, 1))
SetActiveWindow(2)
info = GetPlotInformation()
lineout = info["Curve"]
print("The first lineout point is: [%g, %g] " % lineout[0], lineout[1])







GetPlotList

Synopsis:

GetPlotList() -> PlotList object






	return typePlotList object

	The GetPlotList function returns a PlotList object.





Description:


The GetPlotList function returns a copy of the plot list that gets exchanged
between VisIt’s viewer and its clients. The plot list object contains the list
of plots, along with the databases, and any operators that are applied to each
plot. Changing this object has NO EFFECT but it can be useful when writing
complex functions that need to know about the plots and operators that exist
within a visualization window




Example:

# Copy plots (without operators to window 2)
pL = GetPlotList()
AddWindow()
for i in range(pL.GetNumPlots()):
    AddPlot(PlotPlugins()[pL.GetPlots(i).plotType], pL.GetPlots(i).plotVar)
DrawPlots()







GetPlotOptions

Synopsis:

GetPlotOptions() -> plot attributes object






	return typeplot attributes object

	The GetPlotOptions function returns a plot attributes object whose type varies
depending the selected plots.





Description:


This function is provided to make it easy to probe the current attributes for
the selected plot.




Example:

pc = GetPlotOptions()
pc.legend = 0
SetPlotOptions(pc)







GetPreferredFileFormats

Synopsis:

GetPreferredFileFormats() -> tuple of strings






	return typetuple of strings

	The GetPreferredFileFormats returns the current list of preferred plugins.





Description:


The GetPreferredFileFormats method is a way to get the list of
file format reader plugins which are tried before any others.
These IDs are full IDs, not just names, and are tried in order.




Example:

GetPreferredFileFormats()
# returns ('Silo_1.0',)







GetQueryOutputObject

Synopsis:

GetQueryOutputObject() -> dictionary or value






	return typedictionary or value

	GetQueryOutputObject returns an xml string produced by the last query.





Description:


Both the GetQueryOutputString and GetQueryOutputValue functions return
information about the last query to be executed but the type of information
returns differs. GetQueryOutputString returns a string containing the
output of the last query. GetQueryOutputValue returns a single number or
tuple of numbers, depending on the nature of the last query to be executed.
GetQueryOutputXML and GetQueryOutputObject expose more complex query output.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
Query("MinMax")
print(GetQueryOutputString())
print("The min is: %g and the max is: %g" % GetQueryOutputValue())







GetQueryOutputString

Synopsis:

GetQueryOutputString() -> string






	return typestring

	GetQueryOutputString returns a string.





Description:


Both the GetQueryOutputString and GetQueryOutputValue functions return
information about the last query to be executed but the type of information
returns differs. GetQueryOutputString returns a string containing the
output of the last query. GetQueryOutputValue returns a single number or
tuple of numbers, depending on the nature of the last query to be executed.
GetQueryOutputXML and GetQueryOutputObject expose more complex query output.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
Query("MinMax")
print(GetQueryOutputString())
print("The min is: %g and the max is: %g" % GetQueryOutputValue())







GetQueryOutputValue

Synopsis:

GetQueryOutputValue() -> double, tuple of doubles






	return typedouble, tuple of doubles

	GetQueryOutputValue returns a single double precision number or a tuple of
double precision numbers.





Description:


Both the GetQueryOutputString and GetQueryOutputValue functions return
information about the last query to be executed but the type of information
returns differs. GetQueryOutputString returns a string containing the
output of the last query. GetQueryOutputValue returns a single number or
tuple of numbers, depending on the nature of the last query to be executed.
GetQueryOutputXML and GetQueryOutputObject expose more complex query output.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
Query("MinMax")
print(GetQueryOutputString())
print("The min is: %g and the max is: %g" % GetQueryOutputValue())







GetQueryOutputXML

Synopsis:

GetQueryOutputXML() -> string






	return typestring

	GetQueryOutputXML returns an xml string produced by the last query.





Description:


Both the GetQueryOutputString and GetQueryOutputValue functions return
information about the last query to be executed but the type of information
returns differs. GetQueryOutputString returns a string containing the
output of the last query. GetQueryOutputValue returns a single number or
tuple of numbers, depending on the nature of the last query to be executed.
GetQueryOutputXML and GetQueryOutputObject expose more complex query output.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
Query("MinMax")
print(GetQueryOutputString())
print("The min is: %g and the max is: %g" % GetQueryOutputValue())







GetQueryOverTimeAttributes

Synopsis:

GetQueryOverTimeAttributes() -> QueryOverTimeAttributes object






	return typeQueryOverTimeAttributes object

	GetQueryOverTimeAttributes returns a QueryOverTimeAttributes object.





Description:


The GetQueryOverTimeAttributes function returns a QueryOverTimeAttributes
object containing the settings that VisIt currently uses for query over
time. You can use the returned object to change those settings by first
setting object properties and then by passing the modified object to the
SetQueryOverTimeAttributes function.




Example:

#% visit -cli
SetWindowLayout(4)
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
DrawPlots()
qot = GetQueryOverTimeAttributes()
print(qot)
# Make queries over time go to window 4.
qot.createWindow,q.windowId = 0, 4
SetQueryOverTimeAttributes(qot)
QueryOverTime("Min")
# Make queries over time only use half of the number of time states.
endTime = GetDatabaseNStates() / 2
QueryOverTime("Min", end_time=endTime)
ResetView()







GetQueryParameters

Synopsis:

GetQueryParameters(name) -> dictionary






	return typedictionary

	A python dictionary.





Description:


The GetQueryParameters function returns a Python dictionary containing
the default parameters for the named query, or None if the query does
not accept additional parameters.  The returned dictionary (if any) can
then be modified if necessary and passed back as an argument to the
Query function.




Example:

#% visit -cli
minMaxInput = GetQueryParameters("MinMax")
minMaxInput["use_actual_data"] = 1
Query("MinMax", minMaxInput)
xrayInput = GetQueryParameters("XRay Image")
xrayInput["origin"]=(0.5, 2.5, 0.)
xrayInput["image_size"]=(300,300)
xrayInput["vars"]=("p", "d")
Query("XRay Image", xrayInput)







GetRenderingAttributes

Synopsis:

GetRenderingAttributes() -> RenderingAttributes object






	return typeRenderingAttributes object

	Returns a RenderingAttributes object.





Description:


The GetRenderingAttributes function returns a RenderingAttributes object
that contains the rendering settings that VisIt currently uses. The
RenderingAttributes object contains information related to rendering such
as whether or not specular highlights or shadows are enabled. The
RenderingAttributes object also contains information scalable rendering
such as whether or not it is currently in use and the scalable rendering
threshold.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Surface", "hgslice")
DrawPlots()
v = GetView3D()
v.viewNormal = (-0.215934, -0.454611, 0.864119)
v.viewUp = (0.973938, -0.163188, 0.157523)
v.imageZoom = 1.64765
SetView3D(v)
light = GetLight(0)
light.direction = (0,1,-1)
SetLight(0, light)
r = GetRenderingAttributes()
r.scalableActivationMode = r.Always
r.doShadowing = 1
SetRenderingAttributes(r)







GetSaveWindowAttributes

Synopsis:

GetSaveWindowAttributes() -> SaveWindowAttributes object






	return typeSaveWindowAttributes object

	This function returns a VisIt SaveWindowAttributes object that contains
the attributes used in saving windows.





Description:


The GetSaveWindowAttributes function returns a SaveWindowAttributes object
that is a structure containing several fields which determine how windows
are saved to files. The object that us returned can be modified and used to
set the save window attributes.




Example:

#% visit -cli
s = GetSaveWindowAttributes()
print(s)
s.width = 600
s.height = 600
s.format = s.RGB
print(s)







GetSelection

Synopsis:

GetSelection(name) -> SelectionProperties object






	namestring

	The name of the selection whose properties we want to retrieve.



	return typeSelectionProperties object

	The GetSelection function returns a SelectionProperties object.





Description:


Named selections have properties that describe how the selection is defined.
This function lets you query those selection properties.




Example:

CreateNamedSelection('selection1')
s = GetSelection('selection1')
s.selectionType = s.CumulativeQuerySelection
s.histogramType = s.HistogramMatches
s.combineRule = s.CombineOr
s.variables = ('temperature',)
s.variableMins = (2.9,)
s.variableMaxs = (3.1,)
UpdateNamedSelection('selection1', s)







GetSelectionList

Synopsis:

GetSelectionList() -> SelectionList object






	return typeSelectionList object

	The GetSelectionList function returns a SelectionList object.





Description:


VisIt maintains a list of named selections, which are sets of cells that are
used to restrict the cells processed by other plots. This function returns a
list of the selections that VisIt knows about, including their properties.




Example:

s = GetSelectionList()







GetSelectionSummary

Synopsis:

GetSelectionSummary(name) -> SelectionSummary object






	namestring

	The name of the selection whose summary we want to retrieve.



	return typeSelectionSummary object

	The GetSelectionSummary function returns a SelectionSummary object.





Description:


Named selections have both properties, which describe how the selection is
defined, and a summary that desribes the data that was processed while creating
the selection. The selection summary object contains some statistics about
the selection such as how many cells it contains and histograms of the various
variables that were used in creating the selection.




Example:

print(GetSelectionSummary('selection1'))







GetTimeSliders

Synopsis:

GetTimeSliders() -> tuple of strings






	return typetuple of strings

	GetTimeSliders returns a tuple of strings.





Description:


The GetTimeSliders function returns a tuple of strings containing the
names of each of the available time sliders. The list of time sliders
contains the names of any open time-varying database, all database
correlations, and the keyframing time slider if VisIt is in keyframing mode.




Example:

#% visit -cli
path = "/usr/gapps/visit/data/"
dbs = (path + "/dbA00.pdb", path + "dbB00.pdb", path + "dbC00.pdb")
for db in dbs:
    OpenDatabase(db)
    AddPlot("FilledBoundary", "material(mesh)")
    DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
print("The list of time sliders is: ", GetTimeSliders())







GetUltraScript

Synopsis:

GetUltraScript() -> string






	return typestring

	The GetUltraScript function returns a filename.





Description:


Return the name of the file in use by the LoadUltra function. Normal users do
not need to use this function.






GetView2D

Synopsis:

GetView2D() -> View2DAttributes object






	return typeView2DAttributes object

	Object that represents the 2D view information.





Description:


The GetView functions return ViewAttributes objects which describe the
current camera location. The GetView2D function should be called if the
active visualization window contains 2D plots.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Change the view interactively using the mouse.
v0 = GetView3D()
# Change the view again using the mouse
v1 = GetView3D()
print(v0)
for i in range(0,20):
    t = float(i) / 19.
    v2 = (1. - t) * v1 + t * v0
    SetView3D(v2) # Animate the view back to the first view.







GetView3D

Synopsis:

GetView3D() -> View3DAttributes object






	return typeView3DAttributes object

	Object that represents the 3D view information.





Description:


The GetView functions return ViewAttributes objects which describe the
current camera location. The GetView3D function should be called to get
the view if the active visualization window contains 3D plots.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Change the view interactively using the mouse.
v0 = GetView3D()
# Change the view again using the mouse
v1 = GetView3D()
print(v0)
for i in range(0,20):
    t = float(i) / 19.
    v2 = (1. - t) * v1 + t * v0
    SetView3D(v2) # Animate the view back to the first view.







GetViewAxisArray

Synopsis:

GetViewAxisArray() -> ViewAxisArrayAttributes object






	return typeViewAxisArrayAttributes object

	Object that represents the AxisArray view information.





Description:


The GetView functions return ViewAttributes objects which describe the
current camera location. The GetViewAxisArray function should be called
if the active visualization window contains axis-array plots.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Change the view interactively using the mouse.
v0 = GetView3D()
# Change the view again using the mouse
v1 = GetView3D()
print(v0)
for i in range(0,20):
    t = float(i) / 19.
    v2 = (1. - t) * v1 + t * v0
    SetView3D(v2) # Animate the view back to the first view.







GetViewCurve

Synopsis:

GetViewCurve() -> ViewCurveAttributes object






	return typeViewCurveAttributes object

	Object that represents the curve view information.





Description:


The GetView functions return ViewAttributes objects which describe the
current camera location. The GetViewCurve function should be called if
the active visualization window contains 1D curve plots.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Change the view interactively using the mouse.
v0 = GetView3D()
# Change the view again using the mouse
v1 = GetView3D()
print(v0)
for i in range(0,20):
    t = float(i) / 19.
    v2 = (1. - t) * v1 + t * v0
    SetView3D(v2) # Animate the view back to the first view.







GetWindowInformation

Synopsis:

GetWindowInformation() -> WindowInformation object






	return typeWindowInformation object

	The GetWindowInformation object returns a WindowInformation object.





Description:


The GetWindowInformation object returns a WindowInformation object that
contains information about the active visualization window. The
WindowInformation object contains the name of the active source, the active
time slider index, the list of available time sliders and their current
states, as well as certain window flags that determine whether a window’s
view is locked, etc. Use the WindowInformation object if you need to query
any of these types of information in your script to influence how it
behaves.




Example:

path = "/usr/gapps/visit/data/"
dbs = (path + "dbA00.pdb", path + "dbB00.pdb", path + "dbC00.pdb")
for db in dbs:
    OpenDatabase(db)
    AddPlot("FilledBoundary", "material(mesh)")
    DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
# Get the list of available time sliders.
tsList = GetWindowInformation().timeSliders
# Iterate through "time" on each time slider.
for ts in tsList:
    SetActiveTimeSlider(ts)
for state in range(TimeSliderGetNStates()):
    SetTimeSliderState(state)
# Print the window information to examine the other attributes
# that are available.
GetWindowInformation()







HideActivePlots

Synopsis:

HideActivePlots() -> integer






	return typeCLI_return_t

	The HideActivePlots function returns an integer value of 1 for success and
0 for failure.





Description:


The HideActivePlots function tells the viewer to hide the active plots in
the active visualization window.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddPlot("Mesh", "mesh1")
DrawPlots()
SetActivePlots(0)
HideActivePlots()
AddPlot("FilledBoundary", "mat1")
DrawPlots()







HideToolbars

Synopsis:

HideToolbars() -> integer
HideToolbars(allWindows) -> integer






	allWindowsinteger

	An optional integer value that tells VisIt to hide the toolbars for
all windows when it is non-zero.



	return typeCLI_return_t

	The HideToolbars function returns 1 on success and 0 on failure.





Description:


The HideToolbars function tells VisIt to hide the toolbars for the active
visualization window or for all visualization windows when the optional
allWindows argument is provided and is set to a non-zero value.




Example:

#% visit -cli
SetWindowLayout(4)
HideToolbars()
ShowToolbars()
# Hide the toolbars for all windows.
HideToolbars(1)







IconifyAllWindows

Synopsis:

IconifyAllWindows()





Description:


The IconifyAllWindows function minimizes all of the hidden visualization
windows to get them out of the way.




Example:

#% visit -cli
SetWindowLayout(4) # Have 4 windows
IconifyAllWindows()
DeIconifyAllWindows()







InitializeNamedSelectionVariables

Synopsis:

InitializeNamedSelectionVariables(name) -> integer






	namestring

	The name of the named selection to initialize.



	return typeCLI_return_t

	The InitializeNamedSelectionVariables function returns 1 on success and 0 on failure.





Description:


Complex thresholds are often defined using the Parallel Coordinates plot
or the Threshold operator. This function can copy variable ranges from
compatible plots and operators into the specified named selection’s
properties. This can be useful when setting up Cumulative
Query selections.




Example:

InitializeNamedSelectionVariables('selection1')







InvertBackgroundColor

Synopsis:

InvertBackgroundColor()





Description:


The InvertBackgroundColor function swaps the background and foreground
colors in the active visualization window. This function is a cheap
alternative to setting the foreground and background colors though the
AnnotationAttributes in that it is a simple no-argument function call. It
is not adequate to set new colors for the background and foreground, but in
the event where the two colors can be exchanged favorably, it is a good
function to use. An example of when this function is used is after the
creation of a Volume plot.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Volume", "u")
DrawPlots()
InvertBackgroundColor()







Launch

Synopsis:

Launch() -> integer
Launch(program) -> integer






	programstring

	The complete path as a string to the top level ‘visit’ script.



	return typeCLI_return_t

	The Launch functions return 1 for success and 0 for failure





Description:


The Launch function is used to launch VisIt’s viewer when the VisIt module
is imported into a stand-alone Python interpreter. The Launch function has
no effect when a viewer already exists. The difference between Launch and
LaunchNowin is that LaunchNowin prevents the viewer from ever creating
onscreen visualization windows. The LaunchNowin function is primarily used
in Python scripts that want to generate visualizations using VisIt without
the use of a display such as when generating movies.




Example:

import visit
import visit
visit.AddArgument("-nowin")
visit.Launch()







LaunchNowin

Synopsis:

LaunchNowin() -> integer
LaunchNowin(program) -> integer






	programstring

	The complete path as a string to the top level ‘visit’ script.



	return typeCLI_return_t

	The LaunchNowin functions return 1 for success and 0 for failure





Description:


The Launch function is used to launch VisIt’s viewer when the VisIt module
is imported into a stand-alone Python interpreter. The Launch function has
no effect when a viewer already exists. The difference between Launch and
LaunchNowin is that LaunchNowin prevents the viewer from ever creating
onscreen visualization windows. The LaunchNowin function is primarily used
in Python scripts that want to generate visualizations using VisIt without
the use of a display such as when generating movies.




Example:

import visit
visit.AddArgument("-geometry")
visit.AddArgument("1024x1024")
visit.LaunchNowin()







Lineout

Synopsis:

Lineout(start, end) -> integer
Lineout(start, end, variables) -> integer
Lineout(start, end, samples) -> integer
Lineout(start, end, variables, samples) -> integer
Lineout(keywordarg1=arg1, keywrdarg2=arg2,...,keywordargn=argn ) -> integer






	starttuple of doubles

	A 2 or 3 item tuple containing the coordinates of the starting point.
keyword arg - start_point



	endtuple of doubles

	A 2 or 3 item tuple containing the coordinates of the end point.
keyword arg - end_point



	variablestuple of strings

	A tuple of strings containing the names of the variables for which
lineouts should be created.
keyword arg - vars



	samplesinteger

	An integer value containing the number of sample points along the lineout.
keyword arg - num_samples
keyword arg - use_sampling



	return typeCLI_return_t

	The Lineout function returns 1 on success and 0 on failure.





Description:


The Lineout function extracts data along a given line segment and creates
curves from it in a new visualization window. The start argument is a tuple
of numbers that make up the coordinate of the lineout’s starting location.
The end argument is a tuple of numbers that make up the coordinate of the
lineout’s ending location. The optional variables argument is a tuple of
strings that contain the variables that should be sampled to create
lineouts. The optional samples argument is used to determine the number of
sample points that should be taken along the specified line. If the samples
argument is not provided then VisIt will sample the mesh where it
intersects the specified line instead of using the number of samples to
compute a list of points to sample.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "ascii")
DrawPlots()
Lineout((0.2,0.2), (0.8,1.2))
Lineout((0.2,1.2), (0.8,0.2), ("default", "d", "u"))
Lineout((0.6, 0.1), (0.6, 1.2), 100)
Lineout(start_point=(0.6, 0.1), end_point=(0.6, 1.2), use_sampling=1, num_samples=100)







ListDomains

Synopsis:

ListDomains()





Description:


ListDomains  prints a list of the domains for the active plots, which
indicates which domains are on and off. The list functions are used
mostly to print the results of restricting the SIL.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
ListMaterials() # List the materials in the SIL restriction







ListMaterials

Synopsis:

ListMaterials()





Description:


ListMaterials prints a list of the materials for the active plots, which
indicates which materials are on and off. The list functions are used
mostly to print the results of restricting the SIL.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
ListMaterials() # List the materials in the SIL restriction







ListPlots

Synopsis:

ListPlots() -> string
ListPlots(stringOnly) -> string






	return typestring

	The ListPlots function returns a string containing a representation of the.
plot list.





Description:


Sometimes it is difficult to remember the order of the plots in the active
visualization window’s plot list. The ListPlots function prints the
contents of the plot list to the output console and returns that string as well.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "u")
AddPlot("Contour", "d")
DrawPlots()
ListPlots()







LoadAttribute

Synopsis:

LoadAttribute(filename, object)






	filenamestring

	The name of the XML file to load the attribute from or save the attribute to.



	object

	The object to load or save.





Description:


The LoadAttribute and SaveAttribute methods save a single
attribute, such as a current plot or operator python object,
to a standalone XML file.  Note that LoadAttribute requires
that the target attribute already be created by other means;
it fills, but does not create, the attribute.




Example:

#% visit -cli
a = MeshPlotAttributes()
SaveAttribute('mesh.xml', a)
b = MeshPlotAttributes()
LoadAttribute('mesh.xml', b)







LoadNamedSelection

Synopsis:

LoadNamedSelection(name) -> integer
LoadNamedSelection(name, engineName) -> integer
LoadNamedSelection(name, engineName, simName) -> integer






	namestring

	The name of a named selection.



	engineNamestring

	(optional) The name of the engine where the selection was saved.



	simNamestring

	(optional) The name of the simulation that saved the selection.



	return typeCLI_return_t

	The LoadNamedSelection function returns 1 for success and 0 for failure.





Description:


Named Selections allow you to select a group of elements (or particles).
One typically creates a named selection from a group of elements and then
later applies the named selection to another plot (thus reducing the
set of elements displayed to the ones from when the named selection was
created).  Named selections only last for the current session.  However,
if you find a named selection that is particularly interesting, you can
save it to a file for use in later sessions.  You would use
LoadNamedSelection to do the loading.




Example:

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
LoadNamedSelection("selection_from_previous_session")
ApplyNamedSelection("selection_from_previous_session")







LoadUltra

Synopsis:

LoadUltra()





Description:


LoadUltra launches the Ultra command parser, allowing you to enter Ultra
commands and have VisIt process them.  A new command prompt is presented,
and only Ultra commands will be allowed until ‘end’ or ‘quit’ is entered,
at which time, you will be returned to VisIt’s cli prompt.  For information
on currently supported commands, type ‘help’ at the Ultra prompt
Please note that filenames/paths must be surrounded by quotes, unlike with
Ultra.




Example:

#% visit -cli
#>>> LoadUltra()
#U-> rd "../../data/distribution.ultra"
#U-> select 1
#U-> end
#>>>







LocalNameSpace

Synopsis:

LocalNameSpace()





Description:


The LocalNameSpace function tells the VisIt module to add plugin functions
to the global namespace when the VisIt module is imported into a
stand-alone Python interpreter. This is the default behavior when using
VisIt’s cli program.




Example:

import visit
visit.LocalNameSpace()
visit.Launch()







LongFileName

Synopsis:

LongFileName(filename) -> string






	filenamestring

	A string object containing the short filename to expand.



	return typestring

	The LongFileName function returns a string. This function returns the
input argument unless you are on the Windows platform.





Description:


On Windows, filenames can have two different sizes: traditional 8.3
format, and long format. The long format, which lets you name files
whatever you want, is implemented using the traditional 8.3 format under
the covers. Sometimes filenames are given to VisIt in the traditional 8.3
format and must be expanded to long format before it is possible to open
them. If you ever find that you need to do this conversion, such as when
you process command line arguments, then you can use the LongFileName
function to return the longer filename.






MoveAndResizeWindow

Synopsis:

MoveAndResizeWindow(win, x, y, w, h) -> integer






	wininteger

	The integer id of the window to be moved [1..16].



	xinteger

	The new integer x location for the window being moved.



	yinteger

	The new integer y location for the window being moved.



	winteger

	The new integer width for the window being moved.



	hinteger

	The new integer height for the window being moved.



	return typeCLI_return_t

	MoveAndResizeWindow returns 1 on success and 0 on failure.





Description:


MoveAndResizeWindow moves and resizes a visualization window.




Example:

#% visit -cli
MoveAndResizeWindow(1, 100, 100, 300, 600)







MovePlotDatabaseKeyframe

Synopsis:

MovePlotDatabaseKeyframe(index, oldFrame, newFrame)






	indexinteger

	An integer representing the index of the plot in the plot list.



	oldFrameinteger

	An integer that is thhe old animation frame where the keyframe is located.



	newFrameinteger

	An integer that is the new animation frame where the keyframe will be moved.





Description:


MovePlotDatabaseKeyframe moves a database keyframe for a specified plot to
a new animation frame, which changes the list of database time states that
are used for each animation frame when VisIt is in keyframing mode.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
AddPlot("Pseudocolor", "pressure")
SetPlotFrameRange(0, 0, nFrames-1)
SetPlotDatabaseKeyframe(0, 0, 70)
SetPlotDatabaseKeyframe(0, nFrames/2, 35)
SetPlotDatabaseKeyframe(0, nFrames-1, 0)
DrawPlots()
for state in list(range(TimeSliderGetNStates())) + [0]:
    SetTimeSliderState(state)
MovePlotDatabaseKeyframe(0, nFrames/2, nFrames/4)
for state in list(range(TimeSliderGetNStates())) + [0]:
    SetTimeSliderState(state)







MovePlotKeyframe

Synopsis:

MovePlotKeyframe(index, oldFrame, newFrame)






	indexinteger

	An integer representing the index of the plof in the plot list.



	oldFrameinteger

	An integer that is the old animation frame where the keyframe is located.



	newFrameinteger

	An integer that is the new animation frame where the keyframe will be moved.





Description:


MovePlotKeyframe moves a keyframe for a specified plot to a new animation
frame, which changes the plot attributes that are used for each animation
frame when VisIt is in keyframing mode.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Contour", "hgslice")
DrawPlots()
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
SetKeyframeAttributes(k)
SetPlotFrameRange(0, 0, nFrames-1)
c = ContourAttributes()
c.contourNLevels = 5
SetPlotOptions(c)
SetTimeSliderState(nFrames/2)
c.contourNLevels = 10
SetPlotOptions(c)
c.contourLevels = 25
SetTimeSliderState(nFrames-1)
SetPlotOptions(c)
for state in range(TimeSliderGetNStates()):
    SetTimeSliderState(state)
    SaveWindow()
temp = nFrames-2
MovePlotKeyframe(0, nFrames/2, temp)
MovePlotKeyframe(0, nFrames-1, nFrames/2)
MovePlotKeyframe(0, temp, nFrames-1)
for state in range(TimeSliderGetNStates()):
    SetTimeSliderState(state)
    SaveWindow()







MovePlotOrderTowardFirst

Synopsis:

MovePlotOrderTowardFirst(index) -> integer






	indexinteger

	The integer index of the plot that will be moved within the plot list.



	return typeCLI_return_t

	The MovePlotOrderTowardFirst function returns 1 on success and 0 on failure.





Description:


This function shifts the specified plot one slot towards the start of the plot list.




Example:

MovePlotOrderTowardFirst(2)







MovePlotOrderTowardLast

Synopsis:

MovePlotOrderTowardLast(index) -> integer






	indexinteger

	The integer index of the plot that will be moved within the plot list.



	return typeCLI_return_t

	The MovePlotOrderTowardLast function returns 1 on success and 0 on failure.





Description:


This function shifts the specified plot one slot towards the end of the plot list.




Example:

MovePlotOrderTowardLast(0)







MoveViewKeyframe

Synopsis:

MoveViewKeyframe(oldFrame, newFrame) -> integer






	oldFrameinteger

	An integer that is the old animation frame where the keyframe is located.



	newFrameinteger

	An integer that is the new animation frame where the keyframe will be moved.



	return typeCLI_return_t

	MoveViewKeyframe returns 1 on success and 0 on failure.





Description:


MoveViewKeyframe moves a view keyframe to a new animation frame, which
changes the view that is used for each animation frame when VisIt is in
keyframing mode.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Contour", "hardyglobal")
DrawPlots()
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
SetKeyframeAttributes(k)
SetViewKeyframe()
SetTimeSliderState(nFrames/2)
v = GetView3d()
v.viewNormal = (-0.616518, 0.676972, 0.402014)
v.viewUp = (0.49808, 0.730785, -0.466764)
SetViewKeyframe()
SetTimeSliderState(0)
# Move the view keyframe to the last animation frame.
MoveViewKeyframe(nFrames/2, nFrames-1)







MoveWindow

Synopsis:

MoveWindow(win, x, y) -> integer






	wininteger

	The integer id of the window to be moved [1..16].



	xinteger

	The new integer x location for the window being moved.



	yinteger

	The new integer y location for the window being moved.



	return typeCLI_return_t

	MoveWindow returns 1 on success and 0 on failure.





Description:


MoveWindow moves a visualization window.




Example:

#% visit -cli
MoveWindow(1, 100, 100)







NodePick

Synopsis:

NodePick(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary






	coordtuple

	A tuple of doubles containing the spatial coordinate (x, y, z).



	xinteger

	An integer containing the screen X location (in pixels) offset
from the left side of the visualization window.



	yinteger

	An integer containing the screen Y location (in pixels) offset
from the bottom of the visualization window.



	vars (optional)tuple

	A tuple of strings with the variable names for which to return
results. Default is the currently plotted variable.



	do_time (optional)integer

	An integer indicating whether to do a time pick. 1 -> do a time pick,
0 (default) -> do not do a time pick.



	start_time (optional)integer

	An integer with the starting frame index. Default is 0.



	end_time (optional)integer

	An integer with the ending frame index. Default is num_timestates-1.



	stride (optional)integer

	An integer with the stride for advancing in time. Default is 1.



	preserve_coord (optional)integer

	An integer indicating whether to pick an element or a coordinate.
0 -> used picked element (default), 1-> used picked coordinate.
Note: enabling this option may substantially slow down the speed with
which the query can be performed.



	curve_plot_type (optional)integer

	An integer indicating whether the output should be on a single
axis or with multiple axes. 0 -> single Y axis (default),
1 -> multiple Y Axes.



	return typedictionary

	NodePick returns a python dictionary of the pick results,
unless do_time is specified, then a time curve is created
in a new window.





Description:


The NodePick function prints pick information for the node closest to the
specified point. The point can be specified as a 2D or 3D point in world
space or it can be specified as a pixel location in screen space. If the
point is specified as a pixel location then VisIt finds the node closest to
a ray that is projected into the mesh. Once the nodal pick has been
calculated, you can use the GetPickOutput function to retrieve the printed
pick output as a string which can be used for other purposes.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
# Perform node pick in screen space
pick_out = NodePick(x=200,y=200)
# Perform node pick in world space.
pick_out = NodePick(coord=(-5.0, 5.0, 0))







NumColorTableNames

Synopsis:

NumColorTableNames() -> integer






	return typeCLI_return_t

	The NumColorTableNames function return an integer.





Description:


The NumColorTableNames function returns the number of color tables that
have been defined.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
p = PseudocolorAttributes()
p.colorTableName = "default"
SetPlotOptions(p)
DrawPlots()
print("There are %d color tables." % NumColorTableNames())
for ct in ColorTableNames():
    SetActiveContinuousColorTable(ct)
    SaveWindow()







NumOperatorPlugins

Synopsis:

NumOperatorPlugins() -> integer






	return typeCLI_return_t

	The NumOperatorPlugins function returns an integer.





Description:


The NumOperatorPlugins function returns the number of available operator
plugins.




Example:

#% visit -cli
print("The number of operator plugins is: ", NumOperatorPlugins())
print("The names of the plugins are: ", OperatorPlugins())







NumPlotPlugins

Synopsis:

NumPlotPlugins() -> integer






	return typeCLI_return_t

	The NumPlotPlugins function returns an integer.





Description:


The NumPlotPlugins function returns the number of available plot plugins.




Example:

#% visit -cli
print("The number of plot plugins is: ", NumPlotPlugins())
print("The names of the plugins are: ", PlotPlugins())







OpenComputeEngine

Synopsis:

OpenComputeEngine() -> integer
OpenComputeEngine(hostName) -> integer
OpenComputeEngine(hostName, simulation) -> integer
OpenComputeEngine(hostName, args) -> integer
OpenComputeEngine(MachineProfile) -> integer






	hostNamestring

	The name of the computer on which to start the engine.



	argstuple

	Optional tuple of command line arguments for the engine.
Alternative arguments - MachineProfile object to load with
OpenComputeEngine call



	return typeCLI_return_t

	The OpenComputeEngine function returns an integer value of 1 for success
and 0 for failure.





Description:


The OpenComputeEngine function is used to explicitly open a compute engine
with certain properties. When a compute engine is opened implicitly, the
viewer relies on sets of attributes called host profiles. Host profiles
determine how compute engines are launched. This allows compute engines to
be easily launched in parallel. Since the VisIt Python Interface does not
expose VisIt’s host profiles, it provides the OpenComputeEngine function to
allow users to launch compute engines. The OpenComputeEngine function must
be called before opening a database in order to prevent any latent host
profiles from taking precedence.




Example:

#% visit -cli
# Launch parallel compute engine remotely.
args = ("-np", "16", "-nn", "4")
OpenComputeEngine("thunder", args)
OpenDatabase("thunder:/usr/gapps/visit/data/multi_ucd3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()







OpenDatabase

Synopsis:

OpenDatabase(databaseName) -> integer
OpenDatabase(databaseName, timeIndex) -> integer
OpenDatabase(databaseName, timeIndex, dbPluginName) -> integer






	databaseNamestring

	The name of the database to open.



	timeIndexinteger

	This is an optional integer argument indicating the time index at which
to open the database. If it is not specified, a time index of zero is
assumed.



	dbPluginIndexstring

	An optional string containing the name of the plugin to use. Note that
this string must also include the plugin’s version number (with few
exceptions, almost all plugins’ version numbers are 1.0). Note also
that you must capitalize the spelling identically to what the plugin’s
GetName() method returns. For example, “XYZ_1.0” is the string you would
use for the XYZ plugin.



	return typeCLI_return_t

	The OpenDatabase function returns an integer value of 1 for success and 0
for failure.





Description:


The OpenDatabase function is one of the most important functions in the
VisIt Python Interface because it opens a database so it can be plotted.
The databaseName argument is a string containing the full name of the
database to be opened. The database name is of the form:
computer:/path/filename. The computer part of the filename can be omitted
if the database to be opened resides on the local computer.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
OpenDatabase("mcr:/usr/gapps/visit/data/multi_ucd3d.silo")
OpenDatabase("file.visit")
OpenDatabase("file.visit", 4)
OpenDatabase("mcr:/usr/gapps/visit/data/multi_ucd3d.silo",0,"Silo_1.0")







OpenMDServer

Synopsis:

OpenMDServer() -> integer
OpenMDServer(host) -> integer
OpenMDServer(host, args) -> integer
OpenMDServer(MachineProfile) -> integer






	hoststring

	The optional host argument determines the host on which the metadata
server is to be launched. If this argument is not provided, “localhost”
is assumed.



	argstuple

	A tuple of strings containing command line flags for the metadata server.







	Argument

	Description





	-debug #

	The -debug argument allows you to specify a debug level.



	-dir visitdir

	The -dir argument allows you to specify where VisIt is.








	MachineProfileMachineProfile object

	MachineProfile object to load with OpenMDServer call



	return typeCLI_return_t

	The OpenMDServer function returns 1 on success and 0 on failure.





Description:


The OpenMDServer explicitly launches a metadata server on a specified
host. This allows you to provide command line options that influence how
the metadata server will run.
range [1,5] that VisIt uses to write debug logs to disk.
located on a remote computer. This allows you to successfully
connect to a remote computer in the absence of host profiles.
It also allows you to debug VisIt in distributed mode.
-fallback_format <format>
The -fallback_format argument allows you to specify the
database plugin that will be used to open files if all
other guessing failed. This is useful when the files
that you want to open do not have file extensions.
-assume_format <format>
The -assume_format argument allows you to specify the
database plugin that will be used FIRST when attempting
to open files. This is useful when the files that you
want to open have a file extension which may match
multiple file format readers.




Example:

#% visit -cli -assume_format PDB
#args = ("-dir", "/my/private/visit/version/", "-assume_format", "PDB", "-debug", "4")
# Open a metadata server before the call to OpenDatabase so we
# can launch it how we want.
OpenMDServer("thunder", args)
OpenDatabase("thunder:/usr/gapps/visit/data/allinone00.pdb")
# Open a metadata server on localhost too.
OpenMDServer()







OperatorPlugins

Synopsis:

OperatorPlugins() -> tuple of strings






	return typetuple of strings

	The OperatorPlugins function returns a tuple of strings.





Description:


The OperatorPlugins function returns a tuple of strings that contain the
names of the loaded operator plugins. This can be useful for the creation
of scripts that alter their behavior based on the available operator
plugins.




Example:

#% visit -cli
for plugin in OperatorPlugins():
    print("The %s operator plugin is loaded." % plugin)







OverlayDatabase

Synopsis:

OverlayDatabase(databaseName) -> integer
OverlayDatabase(databaseName, state) -> integer






	databaseNamestring

	The name of the new plot database.



	state

	The time state at which to open the database.



	return typeCLI_return_t

	The OverlayDatabase function returns an integer value of 1 for success and
0 for failure.





Description:


VisIt has the concept of overlaying plots which, in the nutshell, means
that the entire plot list is copied and a new set of plots with exactly the
same attributes but a different database is appended to the plot list of
the active window. The OverlayDatabase function allows the VisIt Python
Interface to overlay plots. OverlayDatabase takes a single string argument
which contains the name of the database. After calling the OverlayDatabase
function, the plot list is larger and contains plots of the specified
overlay database.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
OverlayDatabase("riptide:/usr/gapps/visit/data/curv3d.silo")







PickByGlobalNode

Synopsis:

PickByGlobalNode(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary






	elementinteger

	An integer with the global node id.



	vars (optional)tuple

	A tuple of strings with the variable names for which to return
results. Default is the currently plotted variable.



	do_time (optional)integer

	An integer indicating whether to do a time pick. 1 -> do a time pick,
0 (default) -> do not do a time pick.



	start_time (optional)integer

	An integer with the starting frame index. Default is 0.



	end_time (optional)integer

	An integer with the ending frame index. Default is num_timestates-1.



	stride (optional)integer

	An integer with the stride for advancing in time. Default is 1.



	preserve_coord (optional)integer

	An integer indicating whether to pick an element or a coordinate.
0 -> used picked element (default), 1-> used picked coordinate.
Note: enabling this option may substantially slow down the speed with
which the query can be performed.



	curve_plot_type (optional)integer

	An integer indicating whether the output should be on a single
axis or with multiple axes. 0 -> single Y axis (default),
1 -> multiple Y Axes.



	return typedictionary

	PickByGlobalNode returns a python dictionary of pick results.





Description:


The PickByGlobalNode function tells VisIt to perform pick using a specific
global node index for the entire problem. Some meshes are broken up into
smaller “domains” and then these smaller domains can employ a global
indexing scheme to make it appear as though the mesh was still one large
mesh. Not all meshes that have been decomposed into domains provide
sufficient information to allow global node indexing. You can use the
GetPickOutput function to retrieve a string containing the pick information
once you’ve called PickByGlobalNode.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/global_node.silo")
AddPlot("Pseudocolor", "dist")
DrawPlots()
# Pick on global node 236827
pick_out = PickByGlobalNode(element=246827)
# examine output
print('value of dist at global node 246827: %g' % pick_out['dist'])
print('local domain/node: %d/%d' % (pick_out['domain_id'], pick_out['node_id']))
# get last pick output as string
print('Last pick = ', GetPickOutput())







PickByGlobalZone

Synopsis:

PickByGlobalZone(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary






	elementinteger

	An integer with the global zone id.



	vars (optional)tuple

	A tuple of strings with the variable names for which to return
results. Default is the currently plotted variable.



	do_time (optional)integer

	An integer indicating whether to do a time pick. 1 -> do a time pick,
0 (default) -> do not do a time pick.



	start_time (optional)integer

	An integer with the starting frame index. Default is 0.



	end_time (optional)integer

	An integer with the ending frame index. Default is num_timestates-1.



	stride (optional)integer

	An integer with the stride for advancing in time. Default is 1.



	preserve_coord (optional)integer

	An integer indicating whether to pick an element or a coordinate.
0 -> used picked element (default), 1-> used picked coordinate.
Note: enabling this option may substantially slow down the speed with
which the query can be performed.



	curve_plot_type (optional)integer

	An integer indicating whether the output should be on a single
axis or with multiple axes. 0 -> single Y axis (default),
1 -> multiple Y Axes.



	return typedictionary

	PickByGlobalZone returns a python dictionary of pick results.





Description:


The PickByGlobalZone function tells VisIt to perform pick using a specific
global cell index for the entire problem. Some meshes are broken up into
smaller “domains” and then these smaller domains can employ a global
indexing scheme to make it appear as though the mesh was still one large
mesh. Not all meshes that have been decomposed into domains provide
sufficient information to allow global cell indexing. You can use the
GetPickOutput function to retrieve a string containing the pick information
once you’ve called PickByGlobalZone.




Example:

OpenDatabase("/usr/gapps/visit/data/global_node.silo")
AddPlot("Pseudocolor", "p")
DrawPlots()
# Pick on global zone 237394
pick_out = PickByGlobalZone(element=237394)
# examine output
print('value of p at global zone 237394: %g' % pick_out['p'])
print('local domain/zone: %d/%d' % (pick_out['domain_id'], pick_out['zone_id']))
# get last pick output as string
print('Last pick = ', GetPickOutput())







PickByNode

Synopsis:

PickByNode(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary






	domaininteger

	An integer with the domain id.



	elementinteger

	An integer with the node id.



	vars (optional)tuple

	A tuple of strings with the variable names for which to return
results. Default is the currently plotted variable.



	do_time (optional)integer

	An integer indicating whether to do a time pick. 1 -> do a time pick,
0 (default) -> do not do a time pick.



	start_time (optional)integer

	An integer with the starting frame index. Default is 0.



	end_time (optional)integer

	An integer with the ending frame index. Default is num_timestates-1.



	stride (optional)integer

	An integer with the stride for advancing in time. Default is 1.



	preserve_coord (optional)integer

	An integer indicating whether to pick an element or a coordinate.
0 -> used picked element (default), 1-> used picked coordinate.
Note: enabling this option may substantially slow down the speed with
which the query can be performed.



	curve_plot_type (optional)integer

	An integer indicating whether the output should be on a single
axis or with multiple axes. 0 -> single Y axis (default),
1 -> multiple Y Axes. Currently, this is only available when performing
a pick range.



	return typedictionary

	PickByNode returns a python dictionary of the pick results,
unless do_time is specified, then a time curve is created in a
new window. If the picked variable is zone centered, the variable
values are grouped according to incident zone ids.





Description:


The PickByNode function tells VisIt to perform pick using a specific node
index in a given domain. Other pick by node variants first determine the
node that is closest to some user-specified 3D point but the PickByNode
functions cuts out this step and allows you to directly pick on the node of
your choice. You can use the GetPickOutput function to retrieve a string
containing the pick information once you’ve called PickByNode.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_curv2d.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Pick on node 200 in the first domain.
pick_out = PickByNode(element=200, domain=1)
# examine output
print('value of u at node 200: %g' % pick_out['u'])
# Pick on node 100 in domain 5 and return information for two additional
# variables.
pick_out = PickByNode(domain=5, element=100, vars=("u", "v", "d"))
# examine output
print('incident zones for node 100: ', pick_out['incident_zones'])
print('value of d at incident zone %d: %g' % (pick_out['incident_zones'][0], pick_out['d'][str(pick_out['incident_zones'][0])]))
# print results formatted as string
print("Last pick = ", GetPickOutput())







PickByNodeLabel

Synopsis:

PickByNodeLabel(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary






	element_labelstring

	An string with the label of the node to pick.



	vars (optional)tuple

	A tuple of strings with the variable names for which to return
results. Default is the currently plotted variable.



	do_time (optional)integer

	An integer indicating whether to do a time pick. 1 -> do a time pick,
0 (default) -> do not do a time pick.



	start_time (optional)integer

	An integer with the starting frame index. Default is 0.



	end_time (optional)integer

	An integer with the ending frame index. Default is num_timestates-1.



	stride (optional)integer

	An integer with the stride for advancing in time. Default is 1.



	preserve_coord (optional)integer

	An integer indicating whether to pick an element or a coordinate.
0 -> used picked element (default), 1-> used picked coordinate.
Note: enabling this option may substantially slow down the speed with
which the query can be performed.



	curve_plot_type (optional)integer

	An integer indicating whether the output should be on a single
axis or with multiple axes. 0 -> single Y axis (default),
1 -> multiple Y Axes.



	return typedictionary

	PickByNodeLabel returns a python dictionary of the pick results,
unless do_time is specified, then a time curve is created in a
new window. If the picked variable is node centered, the variable
values are grouped according to incident node ids.





Description:


The PickByNodeLabel function tells VisIt to perform pick using a specific cell
label. Other pick by zone variants first determine the
cell that contains some user-specified 3D point but the PickByZone
functions cuts out this step and allows you to directly pick on the cell of
your choice. You can use the GetPickOutput function to retrieve a string
containing the pick information once you’ve called PickByZone.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_curv2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Pick on node labeled "node 4".
pick_out = PickByNodeLabel(element_label="node 4")
# Pick on cell labeled "node 4" using a python dictionary.
opts = {}
opts["element_label"] ="node 4"
pick_out = PickByNodeLabel(opts)
# examine output
print('value of d at "node 4": %g' % pick_out['d'])
# Pick on node labeled "node 12" return information for two additional
# variables.
pick_out = PickByNodeLabel(element_label="node 12", vars=("d", "u", "v"))
# examine output
print('incident nodes for "node 12": ', pick_out['incident_nodes'])
print('values of u at incident node %d: %g' % (pick_out['incident_nodes'][0], pick_out['u'][str(pick_out['incident_zones'][0])]))
# print results formatted as string
print("Last pick = ", GetPickOutput())







PickByZone

Synopsis:

PickByZone(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary






	domaininteger

	An integer with the domain id.



	elementinteger

	An integer with the zone id.



	vars (optional)tuple

	A tuple of strings with the variable names for which to return
results. Default is the currently plotted variable.



	do_time (optional)integer

	An integer indicating whether to do a time pick. 1 -> do a time pick,
0 (default) -> do not do a time pick.



	start_time (optional)integer

	An integer with the starting frame index. Default is 0.



	end_time (optional)integer

	An integer with the ending frame index. Default is num_timestates-1.



	stride (optional)integer

	An integer with the stride for advancing in time. Default is 1.



	preserve_coord (optional)integer

	An integer indicating whether to pick an element or a coordinate.
0 -> used picked element (default), 1-> used picked coordinate.
Note: enabling this option may substantially slow down the speed with
which the query can be performed.



	curve_plot_type (optional)integer

	An integer indicating whether the output should be on a single
axis or with multiple axes. 0 -> single Y axis (default),
1 -> multiple Y Axes. Currently, this is only available when performing
a pick range.



	return typedictionary

	PickByZone returns a python dictionary of the pick results,
unless do_time is specified, then a time curve is created in a
new window. If the picked variable is node centered, the variable
values are grouped according to incident node ids.





Description:


The PickByZone function tells VisIt to perform pick using a specific cell
index in a given domain. Other pick by zone variants first determine the
cell that contains some user-specified 3D point but the PickByZone
functions cuts out this step and allows you to directly pick on the cell of
your choice. You can use the GetPickOutput function to retrieve a string
containing the pick information once you’ve called PickByZone.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_curv2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Pick on cell 200 in the second domain.
pick_out = PickByZone(element=200, domain=2)
# examine output
print('value of d at zone 200: %g' % pick_out['d'])
# Pick on cell 100 in domain 5 and return information for two additional
# variables.
pick_out = PickByZone(element=100, domain=5, vars=("d", "u", "v"))
# examine output
print('incident nodes for zone 100: ', pick_out['incident_nodes'])
print('values of u at incident zone %d: %g' % (pick_out['incident_nodes'][0], pick_out['u'][str(pick_out['incident_zones'][0])]))
# print results formatted as string
print("Last pick = ", GetPickOutput())







PickByZoneLabel

Synopsis:

PickByZoneLabel(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary






	element_labelstring

	An string with the label of the zone to pick.



	vars (optional)tuple

	A tuple of strings with the variable names for which to return
results. Default is the currently plotted variable.



	do_time (optional)integer

	An integer indicating whether to do a time pick. 1 -> do a time pick,
0 (default) -> do not do a time pick.



	start_time (optional)integer

	An integer with the starting frame index. Default is 0.



	end_time (optional)integer

	An integer with the ending frame index. Default is num_timestates-1.



	stride (optional)integer

	An integer with the stride for advancing in time. Default is 1.



	preserve_coord (optional)integer

	An integer indicating whether to pick an element or a coordinate.
0 -> used picked element (default), 1-> used picked coordinate.
Note: enabling this option may substantially slow down the speed with
which the query can be performed.



	curve_plot_type (optional)integer

	An integer indicating whether the output should be on a single
axis or with multiple axes. 0 -> single Y axis (default),
1 -> multiple Y Axes.



	return typedictionary

	PickByZoneLabel returns a python dictionary of the pick results,
unless do_time is specified, then a time curve is created in a
new window. If the picked variable is node centered, the variable
values are grouped according to incident node ids.





Description:


The PickByZoneLabel function tells VisIt to perform pick using a specific cell
label. Other pick by zone variants first determine the
cell that contains some user-specified 3D point but the PickByZone
functions cuts out this step and allows you to directly pick on the cell of
your choice. You can use the GetPickOutput function to retrieve a string
containing the pick information once you’ve called PickByZone.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_curv2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Pick on cell labeled "brick 4".
pick_out = PickByZoneLabel(element_label="brick 4")
# Pick on cell labeled "brick 4" using a python dictionary.
opts = {}
opts["element_label"] ="brick 4"
pick_out = PickByZoneLabel(opts)
# examine output
print('value of d at "brick 4": %g' % pick_out['d'])
# Pick on cell labeled "shell 12" return information for two additional
# variables.
pick_out = PickByZoneLabel(element_label="shell 12", vars=("d", "u", "v"))
# examine output
print('incident nodes for "shell 12": ', pick_out['incident_nodes'])
print('values of u at incident zone %d: %g' % (pick_out['incident_nodes'][0], pick_out['u'][str(pick_out['incident_zones'][0])]))
# print results formatted as string
print("Last pick = ", GetPickOutput())







PlotPlugins

Synopsis:

PlotPlugins() -> tuple of strings






	return typetuple of strings

	The PlotPlugins function returns a tuple of strings.





Description:


The PlotPlugins function returns a tuple of strings that contain the names
of the loaded plot plugins. This can be useful for the creation of scripts
that alter their behavior based on the available plot plugins.




Example:

#% visit -cli
for plugin in PluginPlugins():
    print("The %s plot plugin is loaded." % plugin)







PointPick

Synopsis:

PointPick(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary






	coordtuple

	A tuple of doubles containing the spatial coordinate (x, y, z).



	xinteger

	An integer containing the screen X location (in pixels) offset from the
left side of the visualization window.



	yinteger

	An integer containing the screen Y location (in pixels) offset from the
bottom of the visualization window.



	vars (optional)tuple

	A tuple of strings with the variable names for which to return
results. Default is the currently plotted variable.



	do_time (optional)integer

	An integer indicating whether to do a time pick. 1 -> do a time pick,
0 (default) -> do not do a time pick.



	start_time (optional)integer

	An integer with the starting frame index. Default is 0.



	end_time (optional)integer

	An integer with the ending frame index. Default is num_timestates-1.



	stride (optional)integer

	An integer with the stride for advancing in time. Default is 1.



	preserve_coord (optional)integer

	An integer indicating whether to pick an element or a coordinate.
0 -> used picked element (default), 1-> used picked coordinate.
Note: enabling this option may substantially slow down the speed with
which the query can be performed.



	curve_plot_type (optional)integer

	An integer indicating whether the output should be on a single
axis or with multiple axes. 0 -> single Y axis (default),
1 -> multiple Y Axes.



	return typedictionary

	PointPick returns a python dictionary of the pick results,
unless do_time is specified, then a time curve is created in a new window.





Description:


The PointPick function prints pick information for the node closest to the
specified point. The point can be specified as a 2D or 3D point in world
space or it can be specified as a pixel location in screen space. If the
point is specified as a pixel location then VisIt finds the node closest to
a ray that is projected into the mesh. Once the nodal pick has been
calculated, you can use the GetPickOutput function to retrieve the printed
pick output as a string which can be used for other purposes.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
# Perform node pick in screen space
pick_out = PointPick(x=200,y=200)
# Perform node pick in world space.
pick_out = PointPick(coord=(-5.0, 5.0, 0))







PrintWindow

Synopsis:

PrintWindow() -> integer






	return typeCLI_return_t

	The PrintWindow function returns an integer value of 1 for success and 0
for failure.





Description:


The PrintWindow function tells the viewer to print the image in the active
visualization window using the current printer settings.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
AddPlot("Contour", "u")
DrawPlots()
PrintWindow()







PromoteOperator

Synopsis:

PromoteOperator(opIndex) -> integer
PromoteOperator(opIndex, applyToAllPlots) -> integer






	opIndexinteger

	A zero-based integer corresponding to the operator that should be promoted.



	applyToAllPlotsinteger

	An integer flag that causes all plots in the plot list to be affected when
it is non-zero.



	return typeCLI_return_t

	PromoteOperator returns 1 on success and 0 on failure.





Description:


The PromoteOperator function moves an operator closer to the end of the
visualization pipeline. This allows you to change the order of operators
that have been applied to a plot without having to remove them from the
plot. For example, consider moving a Slice to after a Reflect operator when
it had been the other way around. Changing the order of operators can
result in vastly different results for a plot. The opposite function is
DemoteOperator.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hardyglobal")
AddOperator("Slice")
s = SliceAttributes()
s.project2d = 0
s.originPoint = (0,5,0)
s.originType=s.Point
s.normal = (0,1,0)
s.upAxis = (-1,0,0)
SetOperatorOptions(s)
AddOperator("Reflect")
DrawPlots()
# Now slice after reflect. We'll only get 1 slice plane instead of 2.
PromoteOperator(0)
DrawPlots()







PythonQuery

Synopsis:

PythonQuery(source='python filter source ...') -> integer
PythonQuery(file='path/to/python_filter_script.py') -> integer






	sourcestring

	A string containing the source code for a Python Query Filter .



	filestring

	A string containing the path to a Python Query Filter script file.
Note - Use only one of the ‘source’ or ‘file’ arguments. If both are
used the ‘source’ argument overrides ‘file’.



	return typeCLI_return_t

	The PythonQuery function returns 1 on success and 0 on failure.





Description:


Used to execute a Python Filter Query.






Queries

Synopsis:

Queries() -> tuple of strings






	return typetuple of strings

	The Queries function returns a tuple of strings.





Description:


The Queries function returns a tuple of strings that contain the names of
all of VisIt’s supported queries.




Example:

#% visit -cli
print("supported queries: ", Queries())







QueriesOverTime

Synopsis:

QueriesOverTime() -> tuple of strings






	return typetuple of strings

	Returns a tuple of strings.





Description:


The QueriesOverTime function returns a tuple of strings that contains the
names of all of the VisIt queries that can be executed over time.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allineone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
DrawPlots()
# Execute each of the queries over time on the plots.
for q in QueriesOverTime():
    QueryOverTime(q)
# You can control timestates used in the query via start_time,
# end_time, and stride as follows:
QueryOverTime("Volume", start_time=5, end_time=250, stride=5)
# (Defaults used if not specified are 0, nStates, 1)







Query

Synopsis:

Query(name) -> string
Query(name, dict) -> string
Query(name, namedarg1=arg1, namedarg2=arg2, ...) -> string
Query(name) -> double, tuple of double
Query(name, dict) -> double, tuple of double
Query(name, namedarg1=arg1, namedarg2=arg2, ...) -> double, tuple of double
Query(name) -> dictionary
Query(name, dict) -> dictionary
Query(name, namedarg1=arg1, namedarg2=arg2, ...) -> dictionary






	namestring

	The name of the query to execute.



	dictdictionary

	An optional dictionary containing additional query arguments.
namedarg1, namedarg2,…
An optional list of named arguments supplying additional query parameters.



	return typesee SetQueryOutputToXXX() functions

	The Query function returns either a String (default), Value(s), or Object.
The return type can be customized via calls to SetQueryOutputToXXX(), where
‘XXX’ is ‘String’, ‘Value’, or ‘Object’. For more information on these
return types, see ‘GetQueryOutput’.





Description:


The Query function is used to execute any of VisIt’s predefined queries.
The list of queries can be found in theVisIt User’s Manual in the
Quantitative Analysis chapter. You can get also get a list of queries
using ‘Queries’ function.
Since queries can take a wide array of arguments, the Query function takes
either a python dictorary or a list of named arguments specific to the
given query.  To obtain the possible options for a given query, use the
GetQueryParameters(name) function.  If the query accepts additional
arguments beyond its name, this function will return a python dictionary
containing the needed variables and their default values.  This can be
modified and passed back to the Query method, or named arguments can be
used instead.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
Query("Volume")
Query("MinMax")
Query("MinMax", use_actual_data=1)
hohlraumArgs = GetQueryParameters("Hohlraum Flux")
hohlraumArgs["ray_center"]=(0.5,0.5,0)
hohlraumArgs["vars"]=("a1", "e1")
Query("Hohlraum Flux", hohlraumArgs)







QueryOverTime

Synopsis:

QueryOverTime(name) -> integer
QueryOverTime(name, dict) -> integer
QueryOverTime(name, namedarg1=val1, namedarg2=val2, ...) -> integer






	namestring

	The name of the query to execute.



	dictdictionary

	An optional dictionary containing additional query arguments.
namedarg1, namedarg2, …
An optional list of named arguments supplying additional query parameters.



	return typeCLI_return_t

	The QueryOverTime function returns 1 on success and 0 on failure.





Description:


The QueryOverTime function is used to execute any of VisIt’s predefined
queries.
The list of queries can be found in the VisIt User’s Manual in the
Quantitative Analysis chapter. You can get also get a list of queries that
can be executed over time using ‘QueriesOverTime’ function.
Since queries can take a wide array of arguments, the Query function takes
either a python dictionary or a list of named arguments specific to the
given query.  To obtain the possible options for a given query, use the
GetQueryParameters(name) function.  If the query accepts additional
arguments beyond its name, this function will return a python dictionary
containing the needed variables and their default values.  This can be
modified and passed back to the QueryOverTime method, or named arguments
can be used instead.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
for q in QueriesOverTime():
    QueryOverTime(q)







ReOpenDatabase

Synopsis:

ReOpenDatabase(databaseName) -> integer






	databaseNamestring

	The name of the database to open.



	return typeCLI_return_t

	The ReOpenDatabase function returns an integer value of 1 for success and
0 for failure.





Description:


The ReOpenDatabase function reopens a database that has been opened
previously with the OpenDatabase function. The ReOpenDatabase function is
primarily used for regenerating plots whose database has been rewritten on
disk. ReOpenDatabase allows VisIt to access new variables and new time
states that have been added since the database was opened using the
OpenDatabase function. Note that ReOpenDatabase is expensive since it
causes all plots that use the specified database to be regenerated. If you
want to ensure that a time-varying database has all of its time states as
they are being created by a simulation, try the CheckForNewStates function
instead.
The databaseName argument is a string containing the full name of the
database to be opened. The database name is of the form:
host:/path/filename. The host part of the filename can be omitted if the
database to be reopened resides on the local computer.




Example:

#% visit -cli
OpenDatabase("edge:/usr/gapps/visit/data/wave*.silo database")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
last = TimeSliderGetNStates()
for state in range(last):
    SetTimeSliderState(state)
    SaveWindow()
ReOpenDatabase("edge:/usr/gapps/visit/data/wave*.silo database")
for state in range(last, TimeSliderGetNStates()):
    SetTimeSliderState(state)
    SaveWindow()







ReadHostProfilesFromDirectory

Synopsis:

ReadHostProfilesFromDirectory(directory, clear) -> integer






	directorystring

	The name of the directory that contains the host profile XML files.



	clearinteger

	An integer flag indicating whether the host profile list should cleared first.



	return typeCLI_return_t

	The ReadHostProfilesFromDirectory function returns an integer value of 1 for success and
0 for failure.





Description:


The ReadHostProfilesFromDirectory provides a way to tell VisIt to load host
profiles from the XML files in a specified directory. This is needed because
the machine profile for host profiles contains client/server options that
sometimes cannot be specified via the VisIt command line.




Example:

ReadHostProfilesFromDirectory("/usr/gapps/visit/2.8.2/linux-x86_64/resources/hosts/llnl", 1)







RecenterView

Synopsis:

RecenterView() -> integer






	return typeCLI_return_t

	The RecenterView function returns 1 on success and 0 on failure.





Description:


After adding plots to a visualization window or applying operators to
those plots, it is sometimes necessary to recenter the view. When the view
is recentered, the orientation does not change but the view is shifted to
make better use of the screen.




Example:

OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
RecenterView()







RedoView

Synopsis:

RedoView() -> integer






	return typeCLI_return_t

	The RedoView function returns 1 on success and 0 on failure.





Description:


When the view changes in the visualization window, it puts the old view on
a stack of views. VisIt provides the UndoView function that lets you undo
view changes. The RedoView function re-applies any views that have been
undone by the UndoView function.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Subset", "mat1")
DrawPlots()
v = GetView2D()
v.windowCoords = (-2.3,2.4,0.2,4.9)
SetView2D(v)
UndoView()
RedoView()







RedrawWindow

Synopsis:

RedrawWindow() -> integer






	return typeCLI_return_t

	The RedrawWindow function returns 1 on success and 0 on failure.





Description:


The RedrawWindow function allows a visualization window to redraw itself
and then forces the window to redraw. This function does the opposite of
the DisableRedraw function and is used to recover from it.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Contour", "u")
AddPlot("Pseudocolor", "w")
DrawPlots()
DisableRedraw()
AddOperator("Slice")
# Set the slice operator attributes
# Redraw now that the operator attributes are set. This will
# prevent 1 redraw.
RedrawWindow()







RegisterCallback

Synopsis:

RegisterCallback(callbackname, callback) --> integer






	callbacknamestring

	A string object designating the callback that we’re installing. Allowable
values are returned by the GetCallbackNames() function.



	callbackpython function

	A Python function, typically with one argument by which VisIt passes the
object that caused the callback to be called.



	return typeCLI_return_t

	RegisterCallback returns 1 on success.





Description:


The RegisterCallback function is used to associate a user-defined callback
function with the updating of a state object or execution of a particular
rpc




Example:

import visit
def print_sliceatts(atts):
    print("SLICEATTS=", atts)

visit.RegisterCallback("SliceAttributes", print_sliceatts)







RegisterMacro

Synopsis:

RegisterMacro(name, callable)






	namestring

	The name of the macro.



	callablepython function

	A Python function that will be associated with the macro name.





Description:


The RegisterMacro function lets you associate a Python function with a name
so when VisIt’s gui calls down into Python to execute a macro, it ends up
executing the registered Python function. Macros let users define complex
new behaviors using Python functions yet still call them simply by clicking
a button within VisIt’s gui. When a new macro function is registered, a
message is sent to the gui that adds the known macros as buttons in the
Macros window.




Example:

def SetupMyPlots():
    OpenDatabase('noise.silo')
    AddPlot('Pseudocolor', 'hardyglobal')
    DrawPlots()

RegisterMacro('Setup My Plots', SetupMyPlots)







RemoveAllOperators

Synopsis:

RemoveAllOperators() -> integer
RemoveAllOperators(all) -> integer






	allinteger

	An optional integer argument that tells the function to ignore the
active plots and use all plots in the plot list if the value of
the argument is non-zero.



	return typeCLI_return_t

	All functions return an integer value of 1 for success and 0 for failure.





Description:


The RemoveAllOperators function removes all operators from the active
plots in the active visualization window. If the all argument is
provided and contains a non-zero value, all plots in the active
visualization window are affected. If the value is zero or if the argument
is not provided, only the active plots are affected.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddOperator("Threshold")
AddOperator("Slice")
AddOperator("SphereSlice")
DrawPlots()
RemoveLastOperator() # Remove SphereSlice
RemoveOperator(0) # Remove Threshold
RemoveAllOperators() # Remove the rest of the operators







RemoveLastOperator

Synopsis:

RemoveLastOperator() -> integer
RemoveLastOperator(all) -> integer






	allinteger

	An optional integer argument that tells the function to ignore the active
plots and use all plots in the plot list if the value of the argument is
non-zero.



	return typeCLI_return_t

	All functions return an integer value of 1 for success and 0 for failure.





Description:


The RemoveLastOperator function removes the operator that was last applied
to the active plots. If the all argument is provided and contains a
non-zero value, all plots in the active visualization window are affected.
If the value is zero or if the argument is not provided, only the active
plots are affected.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddOperator("Threshold")
AddOperator("Slice")
AddOperator("SphereSlice")
DrawPlots()
RemoveLastOperator() # Remove SphereSlice
RemoveOperator(0) # Remove Threshold
RemoveAllOperators() # Remove the rest of the operators







RemoveMachineProfile

Synopsis:

RemoveMachineProfile(hostname) -> integer





hostname : string

Description:


Removes machine profile with hostname from HostProfileList






RemoveOperator

Synopsis:

RemoveOperator(index) -> integer
RemoveOperator(index, all) -> integer






	allinteger

	An optional integer argument that tells the function to ignore the
active plots and use all plots in the plot list if the value of the
argument is non-zero.



	indexinteger

	The zero-based integer index into a plot’s operator list that specifies
which operator is to be deleted.



	return typeCLI_return_t

	All functions return an integer value of 1 for success and 0 for failure.





Description:


The RemoveOperator functions allow operators to be removed from plots.
If the all argument is provided and contains a non-zero value, all
plots in the active visualization window are affected. If the value
is zero or if the argument is not provided, only the active plots
are affected.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddOperator("Threshold")
AddOperator("Slice")
AddOperator("SphereSlice")
DrawPlots()
RemoveLastOperator() # Remove SphereSlice
RemoveOperator(0) # Remove Threshold
RemoveAllOperators() # Remove the rest of the operators







RemovePicks

Synopsis:

RemovePicks()





Description:


The RemovePicks function removes a list of pick points from the active
visualization window. Pick points are the letters that are added to the
visualization window where the mouse is clicked when the visualization
window is in pick mode.




Example:

#% visit -cli
# Put the visualization window into pick mode using the popup
# menu and add some pick points (let's say A -> G).
# Clear the pick points.
RemovePicks('A, B, D')







RenamePickLabel

Synopsis:

RenamePickLabel(oldLabel, newLabel) -> integer






	oldLabelstring

	A string that is the old pick label to replace. (e.g. ‘A’, ‘B’).



	newLabelstring

	A string that is the new label to display in place of the old label.



	return typeCLI_return_t

	The RenamePickLabel function returns 1 on success and 0 on failure.





Description:


The RenamePickLabel function can be used to replace an automatically generated
pick label such as ‘A’ with a user-defined string.




Example:

RenamePickLabel('A', 'Point of interest')







ReplaceDatabase

Synopsis:

ReplaceDatabase(databaseName) -> integer
ReplaceDatabase(databaseName, timeState) -> integer






	databaseNamestring

	The name of the new database.



	timeStateinteger

	A zero-based integer containing the time state that should be made active
once the database has been replaced.



	return typeCLI_return_t

	The ReplaceDatabase function returns an integer value of 1 for success and
0 for failure.





Description:


The ReplaceDatabase function replaces the database in the current plots
with a new database. This is one way of switching timesteps if no
“.visit” file was ever created. If two databases have the same variable
name then replace is usually a success. In the case where the new database
does not have the desired variable, the plot with the variable not
contained in the new database does not get regenerated with the new
database.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
ReplaceDatabase("/usr/gapps/visit/data/curv3d.silo")
SaveWindow()
# Replace with a time-varying database and change the time
# state to 17.
ReplaceDatabase("/usr/gapps/visit/data/wave.visit", 17)







ResetLineoutColor

Synopsis:

ResetLineoutColor() -> integer






	return typeCLI_return_t

	ResetLineoutColor returns 1 on success and 0 on failure.





Description:


Lineouts on VisIt cause reference lines to be drawn over the plot where
the lineout was being extracted. Each reference line uses a different color
in a discrete color table. Once the colors in the discrete color table are
used up, the reference lines start using the color from the start of the
discrete color table and so on. ResetLineoutColor forces reference lines to
start using the color at the start of the discrete color table again thus
resetting the lineout color.






ResetOperatorOptions

Synopsis:

ResetOperatorOptions(operatorType) -> integer
ResetOperatorOptions(operatorType, all) -> integer






	operatorTypestring

	The name of a valid operator type.



	allinteger

	An optional integer argument that tells the function to reset the operator
options for all plots regardless of whether or not they are active.



	return typeCLI_return_t

	The ResetOperatorOptions function returns an integer value of 1 for
success and 0 for failure.





Description:


The ResetOperatorOptions function resets the operator attributes of the
specified operator type for the active plots back to the default values.
The operatorType argument is a string containing the name of the type of
operator whose attributes are to be reset. The all argument is an optional
flag that tells the function to reset the operator attributes for the
indicated operator in all plots regardless of whether the plots are
active. When non-zero values are passed for the all argument, all plots
are reset. When the all argument is zero or not provided, only the
operators on active plots are modified.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
AddOperator("Slice")
a = SliceAttributes()
a.normal,a.upAxis = (0,0,1),(0,1,0)
SetOperatorOptions(a)
ResetOperatorOptions("Slice")







ResetPickLetter

Synopsis:

ResetPickLetter() -> integer






	return typeCLI_return_t

	ResetPickLetter returns 1 on success and 0 on failure.





Description:


The ResetPickLetter function resets the pick marker back to “A” so that
the next pick will use “A” as the pick letter and then “B” and so on.






ResetPlotOptions

Synopsis:

ResetPlotOptions(plotType) -> integer






	plotTypestring

	The name of the plot type.



	return typeCLI_return_t

	The ResetPlotOptions function returns an integer value of 1 for success
and 0 for failure.





Description:


The ResetPlotOptions function resets the plot attributes of the specified
plot type for the active plots back to the default values. The plotType
argument is a string containing the name of the type of plot whose
attributes are to be reset.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
p = PseudocolorAttributes()
p.colorTableName = "calewhite"
p.minFlag,p.maxFlag = 1,1
p.min,p.max = -5.0, 8.0
SetPlotOptions(p)
ResetPlotOptions("Pseudocolor")







ResetView

Synopsis:

ResetView() -> integer






	return typeCLI_return_t

	The ResetView function returns 1 on success and 0 on failure.





Description:


The ResetView function resets the camera to the initial view.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Mesh", "curvmesh3d")
v = ViewAttributes()
v.camera = (-0.45396, 0.401908, 0.79523)
v.focus = (0, 2.5, 15)
v.viewUp = (0.109387, 0.910879, -0.397913)
v.viewAngle = 30
v.setScale = 1
v.parallelScale = 16.0078
v.nearPlane = -32.0156
v.farPlane = 32.0156
v.perspective = 1
SetView3D(v) # Set the 3D view
DrawPlots()
ResetView()







ResizeWindow

Synopsis:

ResizeWindow(win, w, h) -> integer






	wininteger

	The integer id of the window to be moved [1..16].



	winteger

	The new integer width for the window.



	hinteger

	The new integer height for the window.



	return typeCLI_return_t

	ResizeWindow returns 1 on success and 0 on failure.





Description:


ResizeWindow resizes a visualization window.




Example:

#% visit -cli
ResizeWindow(1, 300, 600)







RestoreSession

Synopsis:

RestoreSession(filename, visitDir) -> integer






	filenamestring

	The name of the session file to restore.



	visitDirinteger

	An integer flag that indicates whether the filename to be restored is
located in the user’s VisIt directory. If the flag is set to 1 then the
session file is assumed to be located in the user’s VisIt directory
otherwise the filename must contain an absolute path.



	return typeCLI_return_t

	RestoreSession returns 1 on success and 0 on failure.





Description:


The RestoreSession function is important for setting up complex
visualizations because you can design a VisIt session file, which is an XML
file that describes exactly how plots are set up, using the VisIt GUI and
then use that same session file in the CLI to generate movies in batch. The
RestoreSession function takes 2 arguments. The first argument specifies the
filename that contains the VisIt session to be restored. The second
argument determines whether the session file is assumed to be in the user’s
VisIt directory. If the visitDir argument is set to 0 then the filename
argument must contain the absolute path to the session file.




Example:

#% visit -cli
# Restore my session file for a time-varying database from
# my .visit directory.
RestoreSessionFile("visit.session", 1)
for state in range(TimeSliderGetNStates()):
    SetTimeSliderState(state)
    SaveWindow()







RestoreSessionWithDifferentSources

Synopsis:

RestoreSessionWithDifferentSources(filename, visitDir, mapping) -> integer






	filenamestring

	The name of the session file to restore.



	visitDirinteger

	An integer flag that indicates whether the filename to be restored is
located in the user’s VisIt directory. If the flag is set to 1 then the
session file is assumed to be located in the user’s VisIt directory
otherwise the filename must contain an absolute path.



	mappingtuple

	A tuple of strings representing the maping from sources as specified
in the original session file to new sources. Sources in the original
session file are numbered starting from 0. So, this tuple of strings
simply contains the new names for each of the sources, in order.



	return typeCLI_return_t

	RestoreSession returns 1 on success and 0 on failure.





Description:


The RestoreSession function is important for setting up complex
visualizations because you can design a VisIt session file, which is an XML
file that describes exactly how plots are set up, using the VisIt GUI and
then use that same session file in the CLI to generate movies in batch. The
RestoreSession function takes 2 arguments. The first argument specifies the
filename that contains the VisIt session to be restored. The second
argument determines whether the session file is assumed to be in the user’s
VisIt directory. If the visitDir argument is set to 0 then the filename
argument must contain the absolute path to the session file.




Example:

#% visit -cli
# Restore my session file for a time-varying database from
# my .visit directory.
RestoreSessionFile("visit.session", 1)
for state in range(TimeSliderGetNStates()):
    SetTimeSliderState(state)
    SaveWindow()







SaveAttribute

Synopsis:

SaveAttribute(filename, object)






	filenamestring

	The name of the XML file to load the attribute from or save the attribute to.



	object

	The object to load or save.





Description:


The LoadAttribute and SaveAttribute methods save a single
attribute, such as a current plot or operator python object,
to a standalone XML file.  Note that LoadAttribute requires
that the target attribute already be created by other means;
it fills, but does not create, the attribute.




Example:

#% visit -cli
a = MeshPlotAttributes()
SaveAttribute('mesh.xml', a)
b = MeshPlotAttributes()
LoadAttribute('mesh.xml', b)







SaveNamedSelection

Synopsis:

SaveNamedSelection(name) -> integer






	namestring

	The name of a named selection.



	return typeCLI_return_t

	The SaveNamedSelection function returns 1 for success and 0 for failure.





Description:


Named Selections allow you to select a group of elements (or particles).
One typically creates a named selection from a group of elements and then
later applies the named selection to another plot (thus reducing the
set of elements displayed to the ones from when the named selection was
created).  Named selections only last for the current session.  If you
create a named selection that you want to use over and over, you can save
it to a file with the SaveNamedSelection function.




Example:

#% visit -cli
db = "/usr/gapps/visit/data/wave*.silo database"
OpenDatabase(db)
AddPlot("Pseudocolor", "pressure")
AddOperator("Clip")
c = ClipAttributes()
c.plane1Origin = (0,0.6,0)
c.plane1Normal = (0,-1,0)
SetOperatorOption(c)
DrawPlots()
CreateNamedSelection("els_above_at_time_0")
SaveNamedSelection("els_above_at_time_0")







SaveSession

Synopsis:

SaveSession(filename) -> integer






	filenamestring

	The filename argument is the filename that is used to save the session
file. The filename is relative to the current working directory.



	return typeCLI_return_t

	The SaveSession function returns 1 on success and 0 on failure.





Description:


The SaveSession function tells VisIt to save an XML session file that
describes everything about the current visualization. Session files are
very useful for creating movies and also as shortcuts for setting up
complex visualizations.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
# Set up a keyframe animation of view and save a session file of it.
k = GetKeyframeAttributes()
k.enabled,k.nFrames,k.nFramesWasUserSet = 1,20,1
SetKeyframeAttributes(k)
AddPlot("Surface", "hgslice")
DrawPlots()
v = GetView3D()
v.viewNormal = (0.40823, -0.826468, 0.387684)
v.viewUp, v.imageZoom = (-0.261942, 0.300775, 0.917017), 1.60684
SetView3D(v)
SetViewKeyframe()
SetTimeSliderState(TimeSliderGetNStates() - 1)
v.viewNormal = (-0.291901, -0.435608, 0.851492)
v.viewUp = (0.516969, 0.677156, 0.523644)
SetView3D(v)
SetViewKeyframe()
ToggleCameraViewMode()
SaveSession("~/.visit/keyframe.session")







SaveWindow

Synopsis:

SaveWindow() -> string






	return typestring

	The SaveWindow function returns a string containing the name of the file
that was saved.





Description:


The SaveWindow function saves the contents of the active visualization
window. The format of the saved window is dictated by the
SaveWindowAttributes which can be set using the SetSaveWindowAttributes
function. The contents of the active visualization window can be saved as
TIFF, JPEG, RGB, PPM, PNG images or they can be saved as curve, Alias
Wavefront Obj, or VTK geometry files.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set the save window attributes.
s = SaveWindowAttributes()
s.fileName = "test"
s.format = s.JPEG
s.progressive = 1
s.fileName = "test"
SetSaveWindowAttributes(s)
name = SaveWindow()
print("name = %s" % name)







SendSimulationCommand

Synopsis:

SendSimulationCommand(host, simulation, command)
SendSimulationCommand(host, simulation, command, argument)






	hoststring

	The name of the computer where the simulation is running.



	simulationstring

	The name of the simulation being processed at the specified host.



	commandstring

	A string that is the command to send to the simulation.



	argument

	An argument to the command.





Description:


The SendSimulationCommand method tells the viewer to send a command to a
simulation that is running on the specified host. The host argument is a
string that contains the name of the computer where the simulation is
running. The simulation argument is a string that contains the name of the
simulation to send the command to.






SetActiveContinuousColorTable

Synopsis:

SetActiveContinuousColorTable(name) -> integer






	namestring

	The name of the color table to use for the active color table. The name
must be present in the tuple returned by the ColorTableNames function.



	return typeCLI_return_t

	Both functions return 1 on success and 0 on failure.





Description:


VisIt supports two flavors of color tables: continuous and discrete. Both
types of color tables have the same underlying representation but each type
of color table is used a slightly different way. Continuous color tables
are made of a small number of color control points and the gaps in the
color table between two color control points are filled by interpolating
the colors of the color control points. Discrete color tables do not use
any kind of interpolation and like continuous color tables, they are made
up of control points. The color control points in a discrete color table
repeat infinitely such that if we have 4 color control points: A, B, C, D
then the pattern of repetition is: ABCDABCDABCD… Discrete color tables
are mainly used for plots that have a discrete set of items to display
(e.g. Subset plot). Continuous color tables are used in plots that display
a continuous range of values (e.g. Pseudocolor).




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Contour", "hgslice")
DrawPlots()
SetActiveDiscreteColorTable("levels")







SetActiveDiscreteColorTable

Synopsis:

SetActiveDiscreteColorTable(name) -> integer






	namestring

	The name of the color table to use for the active color table. The name
must be present in the tuple returned by the ColorTableNames function.



	return typeCLI_return_t

	Both functions return 1 on success and 0 on failure.





Description:


VisIt supports two flavors of color tables: continuous and discrete. Both
types of color tables have the same underlying representation but each type
of color table is used a slightly different way. Continuous color tables
are made of a small number of color control points and the gaps in the
color table between two color control points are filled by interpolating
the colors of the color control points. Discrete color tables do not use
any kind of interpolation and like continuous color tables, they are made
up of control points. The color control points in a discrete color table
repeat infinitely such that if we have 4 color control points: A, B, C, D
then the pattern of repetition is: ABCDABCDABCD… Discrete color tables
are mainly used for plots that have a discrete set of items to display
(e.g. Subset plot). Continuous color tables are used in plots that display
a continuous range of values (e.g. Pseudocolor).




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Contour", "hgslice")
DrawPlots()
SetActiveDiscreteColorTable("levels")







SetActivePlots

Synopsis:

SetActivePlots(plots) -> integer






	plotstuple of integers

	A tuple of integer plot indices starting at zero. A single integer is
also accepted



	return typeCLI_return_t

	The SetActivePlots function returns an integer value of 1 for success and
0 for failure.





Description:


Any time VisIt sets the attributes for a plot, it only sets the attributes
for plots which are active. The SetActivePlots function must be called to
set the active plots. The function takes one argument which is a tuple of
integer plot indices that start at zero. If only one plot is being
selected, the plots argument can be an integer instead of a tuple.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Subset", "mat1")
AddPlot("Mesh", "mesh1")
AddPlot("Contour", "u")
DrawPlots()
SetActivePlots((0,1,2)) # Make all plots active
SetActivePlots(0) # Make only the Subset plot active







SetActiveTimeSlider

Synopsis:

SetActiveTimeSlider(tsName) -> integer






	tsNamestring

	The name of the time slider that should be made active.



	return typeCLI_return_t

	SetActiveTimeSlider returns 1 on success and 0 on failure.





Description:


Sets the active time slider, which is the time slider that is used to
change time states.




Example:

#% visit -cli
path = "/usr/gapps/visit/data/"
dbs = (path + "dbA00.pdb", path + "dbB00.pdb", path + "dbC00.pdb")
for db in dbs:
    OpenDatabase(db)
    AddPlot("FilledBoundary", "material(mesh)")
    DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
tsNames = GetWindowInformation().timeSliders
for ts in tsNames:
    SetActiveTimeSlider(ts)
for state in list(range(TimeSliderGetNStates())) + [0]:
    SetTimeSliderState(state)







SetActiveWindow

Synopsis:

SetActiveWindow(windowIndex) -> integer
SetActiveWindow(windowIndex, raiseWindow) -> integer






	windowIndexinteger

	An integer window index starting at 1.



	raiseWindowinteger

	This is an optional integer argument that raises and activates the window if
set to 1. If omitted, the default behavior is to raise and activate the window.



	return typeCLI_return_t

	The SetActiveWindow function returns an integer value of 1 for success and
0 for failure.





Description:


Most of the functions in the VisIt Python Interface operate on the
contents of the active window. If there is more than one window, it is very
important to be able to set the active window. To set the active window,
use the SetActiveWindow function. The SetActiveWindow function takes a
single integer argument which is the index of the new active window. The
new window index must be an integer greater than zero and less than or
equal to the number of open windows.




Example:

#% visit -cli
SetWindowLayout(2)
SetActiveWindow(2)
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Mesh", "mesh1")
DrawPlots()







SetAnimationTimeout

Synopsis:

SetAnimationTimeout(milliseconds) -> integer






	return typeCLI_return_t

	The SetAnimationTimeout function returns 1 for success and 0 for failure.





Description:


The SetAnimationTimeout function sets the animation timeout which is a
value that governs how fast animations play. The timeout is specified in
milliseconds and has a default value of 1 millisecond. Larger timeout
values decrease the speed at which animations play.




Example:

#%visit -cli
# Play a new frame every 5 seconds.
SetAnimationTimeout(5000)
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
# Click the play button in the toolbar







SetAnnotationAttributes

Synopsis:

SetAnnotationAttributes(atts) -> integer






	attsAnnotationAttributes object

	An AnnotationAttributes object containing the annotation settings.



	return typeCLI_return_t

	Both functions return 1 on success and 0 on failure.





Description:


The annotation settings control what bits of text are drawn in the
visualization window. Among the annotations are the plot legends, database
information, user information, plot axes, triad, and the background style
and colors. Setting the annotation attributes is important for producing
quality visualizations. The annotation settings are stored in
AnnotationAttributes objects. To set the annotation attributes, first
create an AnnotationAttributes object using the AnnotationAttributes
function and then pass the object to the SetAnnotationAttributes function.
To set the default annotation attributes, also pass the object to the
SetDefaultAnnotationAttributes function.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
a = AnnotationAttributes()
a.gradientBackgroundStyle = a.GRADIENTSTYLE_RADIAL
a.gradientColor1 = (0,255,255)
a.gradientColor2 = (0,0,0)
a.backgroundMode = a.BACKGROUNDMODE_GRADIENT
SetAnnotationAttributes(a)







SetBackendType

Synopsis:

SetBackendType(name) -> integer






	namestring

	VTK, VTKM.



	return typeCLI_return_t

	Both functions return 1 on success and 0 on failure.





Description:


The compute back end determines the compute library that is used for
processing plots in VisIt. The default is VTK, which supports all VisIt
operations. VTKm can be used too but it only supports a fraction
of VisIt’s functionality. Filters that support VTKm will use those
libraries when their compute back end is selected using this function.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
SetBackendType("VTKm")
AddPlot("Contour", "radial")
DrawPlots()







SetCenterOfRotation

Synopsis:

SetCenterOfRotation(x,y,z) -> integer






	xdouble

	A double that is the x component of the center of rotation.



	ydouble

	A double that is the y component of the center of rotation.



	zdouble

	A double that is the z component of the center of rotation.



	return typeCLI_return_t

	The SetCenterOfRotation function returns 1 on success and 0 on failure.





Description:


The SetCenterOfRotation function sets the center of rotation for plots in
a 3D visualization window. The center of rotation, is the point about which
plots are rotated when you interactively spin the plots using the mouse. It
is useful to set the center of rotation if you’ve zoomed in on any 3D plots
so in the event that you rotate the plots, the point of interest remains
fixed on the screen.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddPlot("Mesh", "mesh1")
DrawPlots()
v = GetView3D()
v.viewNormal = (-0.409139, 0.631025, 0.6591)
v.viewUp = (0.320232, 0.775678, -0.543851)
v.imageZoom = 4.8006
SetCenterOfRotation(-4.755280, 6.545080, 5.877850)
# Rotate the plots interactively.







SetColorTexturingEnabled

Synopsis:

SetColorTexturingEnabled(enabled) -> integer






	enabledinteger

	A integer value. Non-zero values enable color texturing and zero disables it.



	return typeCLI_return_t

	The SetColorTexturingEnabled function returns 1 on success and 0 on failure.





Description:


Node-centered variables are drawn on plots such as the Pseudocolor plot such
that the nodal value looks interpolated throughout the zone. This can be done
by interpolating colors, which can produce some colors that do not appear in
a color table. Alternatively, the nodal values can be mapped to a texture
coordinate in a 1D texture and those values can be interpolated, with colors
being selected after interpolating the texture coordinate. This method always
uses colors that are defined in the color table.




Example:

SetColorTexturingEnabled(1)







SetCreateMeshQualityExpressions

Synopsis:

SetCreateMeshQualityExpressions(val) -> integer






	valinteger

	Either a zero (false) or non-zero (true) integer value to indicate ifMesh Quality expressions should be automatically created when a database is opened.



	return typeCLI_return_t

	The SetCreateMeshQualityExpressions function returns 1 on success and 0 on failure.





Description:


The SetCreateMeshQualityExpressions function sets a boolean in the
global attributes indicating whether or not Mesh Quality expressions
should be automatically created. The default behavior is for the
expressions to be created, which may slow down VisIt’s performance
if there is an extraordinary large number of meshes.  Turning this
feature off tells VisIt to skip automatic creation of the Mesh Quality
expressions.




Example:

#% visit -cli
SetCreateMeshQualityExpressions(1) # turn this feature on
SetCreateMeshQualityExpressions(0) # turn this feature off







SetCreateTimeDerivativeExpressions

Synopsis:

SetCreateTimeDerivativeExpressions(val) -> integer






	valinteger

	Either a zero (false) or non-zero (true) integer value to indicate if
Time Derivative expressions should be automatically created when a
database is opened.



	return typeCLI_return_t

	The SetCreateTimeDerivativeExpressions function returns 1 on success
and 0 on failure.





Description:


The SetCreateTimeDerivativeExpressions function sets a boolean in the
global attributes indicating whether or not Time Derivative expressions
should be automatically created. The default behavior is for the
expressions to be created, which may slow down VisIt’s performance
if there is an extraordinary large number of variables.  Turning this
feature off tells VisIt to skip automatic creation of the Time Derivative
expressions.




Example:

#% visit -cli
SetCreateTimeDerivativeExpressions(1) # turn this feature on
SetCreateTimeDerivativeExpressions(0) # turn this feature off







SetCreateVectorMagnitudeExpressions

Synopsis:

SetCreateVectorMagnitudeExpressions(val) -> integer






	valinteger

	Either a zero (false) or non-zero (true) integer value to indicate if
Vector magnitude expressions should be automatically created when a database is opened.



	return typeCLI_return_t

	The SetCreateVectorMagnitudeExpressions function returns 1 on success
and 0 on failure.





Description:


The SetCreateVectorMagnitudeExpressions function sets a boolean in the
global attributes indicating whether or not vector magnitude expressions
should be automatically created. The default behavior is for the
expressions to be created, which may slow down VisIt’s performance
if there is an extraordinary large number of vector variables. Turning this
feature off tells VisIt to skip automatic creation of the vector
magnitude expressions.




Example:

#% visit -cli
SetCreateVectorMagnitudeExpressions(1) # turn this feature on
SetCreateVectorMagnitudeExpressions(0) # turn this feature off







SetDatabaseCorrelationOptions

Synopsis:

SetDatabaseCorrelationOptions(method, whenToCreate) -> integer






	methodinteger

	An integer that tells VisIt what default method to use when automatically
creating a database correlation. The value must be in the range [0,3].







	method

	Description





	0

	IndexForIndexCorrelation



	1

	StretchedIndexCorrelation



	2

	TimeCorrelation



	3

	CycleCorrelation








	whenToCreateinteger

	An integer that tells VisIt when to automatically create database correlations.







	whenToCreate

	Description





	0

	Always create database correlation



	1

	Never create database correlation



	2

	Create database correlation only if
the new time-varying database has








	return typeCLI_return_t

	SetDatabaseCorrelationOptions returns 1 on success and 0 on failure.





Description:


VisIt provides functions to explicitly create and alter database
correlations but there are also a number of occasions where VisIt can
automatically create a database correlation. The
SetDatabaseCorrelationOptions function allows you to tell VisIt the default
correlation method to use when automatically creating a new database
correlation and it also allows you to tell VisIt when database correlations
can be automatically created.
the same length as another time-varying database already being used in a
plot.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/dbA00.pdb")
AddPlot("FilledBoundary", "material(mesh)")
DrawPlots()
# Always create a stretched index correlation.
SetDatabaseCorrelationOptions(1, 0)
OpenDatabase("/usr/gapps/visit/data/dbB00.pdb")
AddPlot("FilledBoundary", "material(mesh)")
# The AddPlot caused a database correlation to be created.
DrawPlots()
wi = GetWindowInformation()
print("Active time slider: " % wi.timeSliders[wi.activeTimeSlider])
# This will set time for both databases since the database correlation is
# the active time slider.
SetTimeSliderState(5)







SetDebugLevel

Synopsis:

SetDebugLevel(level)






	levelstring

	A string ‘1’, ‘2’, ‘3’, ‘4’, ‘5’ with an optional ‘b’ suffix to indicate
whether the output should be buffered. A value of ‘1’ is a low debug
level, which should be used to produce little output while a value of 5
should produce a lot of debug output.





Description:


The GetDebugLevel and SetDebugLevel functions are used when debugging
VisIt Python scripts. The SetDebugLevel function sets the debug level for
VisIt’s viewer thus it must be called before a Launch method. The debug
level determines how much detail is written to VisIt’s execution logs when
it executes.




Example:

#% visit -cli -debug 2
print("VisIt's debug level is: %d" % GetDebugLevel())







SetDefaultAnnotationAttributes

Synopsis:

SetDefaultAnnotationAttributes(atts) -> integer






	attsAnnotationAttributes object

	An AnnotationAttributes object containing the annotation settings.



	return typeCLI_return_t

	Both functions return 1 on success and 0 on failure.





Description:


The annotation settings control what bits of text are drawn in the
visualization window. Among the annotations are the plot legends, database
information, user information, plot axes, triad, and the background style
and colors. Setting the annotation attributes is important for producing
quality visualizations. The annotation settings are stored in
AnnotationAttributes objects. To set the annotation attributes, first
create an AnnotationAttributes object using the AnnotationAttributes
function and then pass the object to the SetAnnotationAttributes function.
To set the default annotation attributes, also pass the object to the
SetDefaultAnnotationAttributes function.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
a = AnnotationAttributes()
a.gradientBackgroundStyle = a.GRADIENTSTYLE_RADIAL
a.gradientColor1 = (0,255,255)
a.gradientColor2 = (0,0,0)
a.backgroundMode = a.BACKGROUNDMODE_GRADIENT
SetAnnotationAttributes(a)







SetDefaultFileOpenOptions

Synopsis:

SetDefaultFileOpenOptions(pluginName, options) -> integer






	pluginNamestring

	The name of a plugin.



	optionsdictionary

	A dictionary containing the new default options for that plugin.



	return typeCLI_return_t

	The SetDefaultFileOpenOptions function returns 1 on success and 0 on
failure.





Description:


SetDefaultFileOpenOptions sets the current options used to open new
files when a specific plugin is triggered.




Example:

#% visit -cli
OpenMDServer()
opts = GetDefaultFileOpenOptions("VASP")
opts["Allow multiple timesteps"] = 1
SetDefaultFileOpenOptions("VASP", opts)
OpenDatabase("CHGCAR")







SetDefaultInteractorAttributes

Synopsis:

SetDefaultInteractorAttributes(atts) -> integer






	attsInteractorAttributes object

	An InteractorAttributes object that contains the new interactor attributes
that you want to use.



	return typeCLI_return_t

	SetInteractorAttributes returns 1 on success and 0 on failure.





Description:


The SetInteractorAttributes function is used to set certain interactor
properties. Interactors, can be thought of as how mouse clicks and
movements are translated into actions in the vis window. To set the
interactor attributes, first get the interactor attributes using the
GetInteractorAttributes function. Once you’ve set the
object’s properties, call the SetInteractorAttributes function to make
VisIt use the new interactor attributes.
The SetDefaultInteractorAttributes function sets the default interactor
attributes, which are used for new visualization windows. The default
interactor attributes can also be saved to the VisIt configuration file to
ensure that future VisIt sessions have the right default interactor
attributes.




Example:

#% visit -cli
ia = GetInteractorAttributes()
print(ia)
ia.showGuidelines = 0
SetInteractorAttributes(ia)







SetDefaultMaterialAttributes

Synopsis:

SetDefaultMaterialAttributes(atts) -> integer






	attsMaterialAttributes object

	A MaterialAttributes object containing the new settings.



	return typeCLI_return_t

	Both functions return 1 on success and 0 on failure.





Description:


The SetMaterialAttributes function takes a MaterialAttributes object and
makes VisIt use the material settings that it contains. You use the
SetMaterialAttributes function when you want to change how VisIt performs
material interface reconstruction. The SetDefaultMaterialAttributes
function sets the default material attributes, which are saved to the
config file and are also used by new visualization windows.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
p = PseudocolorAttributes()
p.min,p.minFlag = 4.0, 1
p.max,p.maxFlag = 13.0, 1
SetPlotOptions(p)
DrawPlots()
# Tell VisIt to always do material interface reconstruction.
m = GetMaterialAttributes()
m.forceMIR = 1
SetMaterialAttributes(m)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()







SetDefaultMeshManagementAttributes

Synopsis:

SetMeshManagementAttributes() -> MeshmanagementAttributes object






	return typeMeshmanagementAttributes object

	Returns a MeshmanagementAttributes object.





Description:


The GetMeshmanagementAttributes function returns a MeshmanagementAttributes object
that contains VisIt’s current mesh discretization settings.
You can set properties on the MeshManagementAttributes object and then pass it to
SetMeshManagementAttributes to make VisIt use the new material attributes that
you’ve specified:




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/csg.silo")
AddPlot("Mesh", "csgmesh")
DrawPlots()
# Tell VisIt to always do material interface reconstruction.
mma = GetMeshManagementAttributes()
mma.discretizationTolernace = (0.01, 0.025)
SetMeshManagementAttributes(mma)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()







SetDefaultOperatorOptions

Synopsis:

SetDefaultOperatorOptions(atts) -> integer






	attsoperator attributes object

	Any type of operator attributes object.



	return typeCLI_return_t

	All functions return an integer value of 1 for success and 0 for failure.





Description:


Each operator in VisIt has a group of attributes that controls the
operator. To set the attributes for an operator, first create an operator
attributes object. This is done by calling a function which is the name of
the operator plus the word “Attributes”. For example, a Slice operator’s
operator attributes object is created and returned by the SliceAttributes
function. Assign the new operator attributes object into a variable and set
its fields. After setting the desired fields in the operator attributes
object, pass the object to the SetOperatorOptions function. The
SetOperatorOptions function determines the type of operator to which the
operator attributes object applies and sets the attributes for that
operator type. To set the default plot attributes, use the
SetDefaultOperatorOptions function. Setting the default attributes ensures
that all future instances of a certain operator are initialized with the
new default values. Note that there is no SetOperatorOptions(atts, all)
variant of this call. To set operator options for all plots that have a
an instance of the associated operator, you must first make all plots
active with SetActivePlots() and then use the SetOperatorOptions(atts)
variant.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddPlot("Mesh", "mesh1")
AddOperator("Slice", 1) # Add the operator to both plots
a = SliceAttributes()
a.normal, a.upAxis = (0,0,1), (0,1,0)
# Only set the attributes for the active plot.
SetOperatorOptions(a)
DrawPlots()







SetDefaultPickAttributes

Synopsis:

SetDefaultPickAttributes(atts) -> integer






	attsPickAttributes object

	A PickAttributes object containing the new pick settings.



	return typeCLI_return_t

	All functions return 1 on success and 0 on failure.





Description:


The SetPickAttributes function changes the pick attributes that are used
when VisIt picks on plots. The pick attributes allow you to format your
pick output in various ways and also allows you to select auxiliary pick
variables.




Example:

OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
ZonePick(coord=(-5,5,0))
p = GetPickAttributes()
p.showTimeStep = 0
p.showMeshName = 0
p.showZoneId = 0
SetPickAttributes(p)
ZonePick(coord=(0,5,0))







SetDefaultPlotOptions

Synopsis:

SetDefaultPlotOptions(atts) -> integer






	attsplot attributes object

	Any type of plot attributes object.



	return typeCLI_return_t

	All functions return an integer value of 1 for success and 0 for failure.





Description:


Each plot in VisIt has a group of attributes that controls the appearance
of the plot. To set the attributes for a plot, first create a plot
attributes object. This is done by calling a function which is the name of
the plot plus the word “Attributes”. For example, a Pseudocolor plot’s
plotattributes object is created and returned by the PseudocolorAttributes
function. Assign the new plot attributes object into a variable and set its
fields. After setting the desired fields in the plot attributes object,
pass the object to the SetPlotOptions function. The SetPlotOptions function
determines the type of plot to which the plot attributes object applies and
sets the attributes for that plot type. To set the default plot attributes,
use the SetDefaultPlotOptions function. Setting the default attributes
ensures that all future instances of a certain plot are initialized with
the new default values.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
p = PseudocolorAttributes()
p.colorTableName = "calewhite"
p.minFlag,p.maxFlag = 1,1
p.min,p.max = -5.0, 8.0
SetPlotOptions(p)
DrawPlots()







SetGlobalLineoutAttributes

Synopsis:

SetGlobalLineoutAttributes(atts) -> integer






	attsGlobalLineoutAttributes object

	A GlobalLineoutAttributes object that contains the new settings.



	return typeCLI_return_t

	The SetGlobalLineoutAttributes function returns 1 on success and 0 on
failure.





Description:


The SetGlobalLineoutAttributes function allows you to set global lineout
options that are used in the creation of all lineouts. You can, for
example, specify the destination window and the number of sample points for
lineouts.




Example:

#% visit -cli
SetWindowLayout(4)
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
gla = GetGlobalLineoutAttributes()
gla.createWindow = 0
gla.windowId = 4
gla.samplingOn = 1
gla.numSamples = 150
SetGlobalLineoutAttributes(gla)
Lineout((-5,-8), (-3.5, 8))







SetInteractorAttributes

Synopsis:

SetInteractorAttributes(atts) -> integer






	attsInteractorAttributes object

	An InteractorAttributes object that contains the new interactor attributes
that you want to use.



	return typeCLI_return_t

	SetInteractorAttributes returns 1 on success and 0 on failure.





Description:


The SetInteractorAttributes function is used to set certain interactor
properties. Interactors, can be thought of as how mouse clicks and
movements are translated into actions in the vis window. To set the
interactor attributes, first get the interactor attributes using the
GetInteractorAttributes function. Once you’ve set the
object’s properties, call the SetInteractorAttributes function to make
VisIt use the new interactor attributes.
The SetDefaultInteractorAttributes function sets the default interactor
attributes, which are used for new visualization windows. The default
interactor attributes can also be saved to the VisIt configuration file to
ensure that future VisIt sessions have the right default interactor
attributes.




Example:

#% visit -cli
ia = GetInteractorAttributes()
print(ia)
ia.showGuidelines = 0
SetInteractorAttributes(ia)







SetKeyframeAttributes

Synopsis:

SetKeyframeAttributes(kfAtts) -> integer






	kfAttsKeyframeAttributes object

	A KeyframeAttributes object that contains the new keyframing attributes
to use.



	return typeCLI_return_t

	SetKeyframeAttributes returns 1 on success and 0 on failure.





Description:


Use the SetKeyframeAttributes function when you want to change VisIt’s
keyframing settings. You must pass a KeyframeAttributes object, which you
can create using the GetKeyframeAttributes function. The
KeyframeAttributes object must contain the keyframing settings that you
want VisIt to use. For example, you would use the SetKeyframeAttributes
function if you wanted to turn on keyframing mode and set the number of
animation frames.




Example:

#% visit -cli
k = GetKeyframeAttributes()
print(k)
k.enabled,k.nFrames,k.nFramesWasUserSet = 1, 100, 1
SetKeyframeAttributes(k)







SetLight

Synopsis:

SetLight(index, light) -> integer






	indexinteger

	A zero-based integer index into the light list. Index can be in the range [0,7].



	lightLightAttributes object

	A LightAttributes object containing the properties to use for the specified light.



	return typeCLI_return_t

	SetLight returns 1 on success and 0 on failure.





Description:


The SetLight function sets the attributes for a specific light.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "w")
p = PseudocolorAttributes()
p.colorTableName = "xray"
SetPlotOptions(p)
DrawPlots()
InvertBackgroundColor()
light = GetLight(0)
print(light)
light.enabledFlag = 1
light.direction = (0,-1,0)
light.color = (255,0,0,255)
SetLight(0, light)
light.color,light.direction = (0,255,0,255), (-1,0,0)
SetLight(1, light)







SetMachineProfile

Synopsis:

SetMachineProfile(MachineProfile) -> integer






	MachineProfileMachineProfile object

	A MachineProfile object containing the new settings.





Description:


Sets the input machine profile in the HostProfileList, replaces if one already exists
Otherwise adds to the list






SetMaterialAttributes

Synopsis:

SetMaterialAttributes(atts) -> integer






	attsMaterialAttributes object

	A MaterialAttributes object containing the new settings.



	return typeCLI_return_t

	Both functions return 1 on success and 0 on failure.





Description:


The SetMaterialAttributes function takes a MaterialAttributes object and
makes VisIt use the material settings that it contains. You use the
SetMaterialAttributes function when you want to change how VisIt performs
material interface reconstruction. The SetDefaultMaterialAttributes
function sets the default material attributes, which are saved to the
config file and are also used by new visualization windows.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
p = PseudocolorAttributes()
p.min,p.minFlag = 4.0, 1
p.max,p.maxFlag = 13.0, 1
SetPlotOptions(p)
DrawPlots()
# Tell VisIt to always do material interface reconstruction.
m = GetMaterialAttributes()
m.forceMIR = 1
SetMaterialAttributes(m)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()







SetMeshManagementAttributes

Synopsis:

GetMeshManagementAttributes() -> MeshmanagementAttributes object






	return typeMeshmanagementAttributes object

	Returns a MeshmanagementAttributes object.





Description:


The GetMeshmanagementAttributes function returns a MeshmanagementAttributes object
that contains VisIt’s current mesh discretization settings.
You can set properties on the MeshManagementAttributes object and then pass it to
SetMeshManagementAttributes to make VisIt use the new material attributes that
you’ve specified:




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/csg.silo")
AddPlot("Mesh", "csgmesh")
DrawPlots()
# Tell VisIt to always do material interface reconstruction.
mma = GetMeshManagementAttributes()
mma.discretizationTolernace = (0.01, 0.025)
SetMeshManagementAttributes(mma)
ClearWindow()
# Redraw the plot forcing VisIt to use the mixed variable information.
DrawPlots()







SetNamedSelectionAutoApply

Synopsis:

SetNamedSelectionAutoApply(flag) -> integer






	flaginteger

	An integer flag. Non-zero values turn on selection auto apply mode.



	return typeCLI_return_t

	The SetNamedSelectionAutoApply function returns 1 on success and 0 on failure.





Description:


Named selections are often associated with plots for their data source. When
those plots update, their named selections can be updated, which in turn will
update any plots that use the named selection. When this mode is enabled, changes
to a named selection’s originating plot will cause the selection to be updated
automatically.




Example:

SetNamedSelectionAutoApply(1)







SetOperatorOptions

Synopsis:

SetOperatorOptions(atts) -> integer
SetOperatorOptions(atts, operatorIndex) -> integer
SetOperatorOptions(atts, operatorIndex, all) -> integer






	attsoperator attributes object

	Any type of operator attributes object.



	operatorIndexinteger

	An optional zero-based integer that serves as an index into the active
plot’s operator list. Use this argument if you want to set the operator
attributes for a plot that has multiple instances of the same type of
operator. For example, if the active plot had a Transform operator
followed by a Slice operator followed by another Transform operator and
you wanted to adjust the attributes of the second Transform operator,
you would pass an operatorIndex value of 2.



	allinteger

	An optional integer argument that tells the function to apply theoperator
attributes to all plots containing the specified operator if the value of
the argument is non-zero.



	return typeCLI_return_t

	All functions return an integer value of 1 for success and 0 for failure.





Description:


Each operator in VisIt has a group of attributes that controls the
operator. To set the attributes for an operator, first create an operator
attributes object. This is done by calling a function which is the name of
the operator plus the word “Attributes”. For example, a Slice operator’s
operator attributes object is created and returned by the SliceAttributes
function. Assign the new operator attributes object into a variable and set
its fields. After setting the desired fields in the operator attributes
object, pass the object to the SetOperatorOptions function. The
SetOperatorOptions function determines the type of operator to which the
operator attributes object applies and sets the attributes for that
operator type. To set the default plot attributes, use the
SetDefaultOperatorOptions function. Setting the default attributes ensures
that all future instances of a certain operator are initialized with the
new default values. Note that there is no SetOperatorOptions(atts, all)
variant of this call. To set operator options for all plots that have a
an instance of the associated operator, you must first make all plots
active with SetActivePlots() and then use the SetOperatorOptions(atts)
variant.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
AddPlot("Mesh", "mesh1")
AddOperator("Slice", 1) # Add the operator to both plots
a = SliceAttributes()
a.normal, a.upAxis = (0,0,1), (0,1,0)
# Only set the attributes for the active plot.
SetOperatorOptions(a)
DrawPlots()







SetPickAttributes

Synopsis:

SetPickAttributes(atts) -> integer






	attsPickAttributes object

	A PickAttributes object containing the new pick settings.



	return typeCLI_return_t

	All functions return 1 on success and 0 on failure.





Description:


The SetPickAttributes function changes the pick attributes that are used
when VisIt picks on plots. The pick attributes allow you to format your
pick output in various ways and also allows you to select auxiliary pick
variables.




Example:

OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
ZonePick(coord=(-5,5,0))
p = GetPickAttributes()
p.showTimeStep = 0
p.showMeshName = 0
p.showZoneId = 0
SetPickAttributes(p)
ZonePick(coord=(0,5,0))







SetPipelineCachingMode

Synopsis:

SetPipelineCachingMode(mode) -> integer






	return typeCLI_return_t

	The SetPipelineCachingMode function returns 1 for success and 0 for
failure.





Description:


The SetPipelineCachingMode function turns pipeline caching on or off in
the viewer. When pipeline caching is enabled, animation timesteps are
cached for fast playback. This can be a disadvantage for large databases or
for plots with many timesteps because it increases memory consumption. In
those cases, it is often useful to disable pipeline caching so the viewer
does not use as much memory. When the viewer does not cache pipelines, each
plot for a timestep must be recalculated each time the timestep is visited.




Example:

#% visit -cli
SetPipelineCachingMode(0) # Disable caching
OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
AddPlot("Mesh", "quadmesh")
DrawPlots()
for state in range(TimeSliderGetNStates()):
    SetTimeSliderState(state)







SetPlotDatabaseState

Synopsis:

SetPlotDatabaseState(index, frame, state)






	indexinteger

	A zero-based integer index that is the plot’s location in the plot list.



	frameinteger

	A zero-based integer index representing the animation frame for which we’re
going to add a database keyframe.



	stateinteger

	A zero-based integer index representing the database time state that we’re
going to use at the specified animation frame.





Description:


The SetPlotDatabaseState function is used when VisIt is in keyframing mode
to add a database keyframe for a specific plot. VisIt uses database
keyframes to determine which database state is to be used for a given
animation frame. Database keyframes can be used to stop “database time”
while “animation time” continues forward and they can also be used to
make “database time” go in reverse, etc.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
SetKeyframeAttributes(k)
AddPlot("Pseudocolor", "pressure")
AddPlot("Mesh", "quadmesh")
DrawPlots()
# Make "database time" for the Pseudocolor plot go in reverse
SetPlotDatabaseState(0, 0, 70)
SetPlotDatabaseState(0, nFrames-1, 0)
# Animate through the animation frames since the "Keyframe animation"
# time slider is active.
for state in range(TimeSliderGetNStates()):
    SetTimeSliderState(state)







SetPlotDescription

Synopsis:

SetPlotDescription(index, description) -> integer






	indexinteger

	The integer index of the plot within the plot list.



	descriptionlist

	A new description srting that will be shown in the plot list so the plot
can be identified readily.



	return typeCLI_return_t

	The SetPlotDescription function returns 1 on success and 0 on failure.





Description:


Managing many related plots can be a complex task. This function lets users
provide meaningful descriptions for each plot so they can more easily be
identified in the plot list.




Example:

SetPlotDescription(0, 'Mesh for reflected pressure plot')







SetPlotFollowsTime

Synopsis:

SetPlotFollowsTime(val) -> integer






	valinteger

	An optional integer flag indicating whether the plot should follow the
time slider. The default behavior is for the plot to follow the time slider.



	return typeCLI_return_t

	The function returns 1 on success and 0 on failure.





Description:


SetPlotFollowsTime can let you set whether the active plot follows the time slider.




Example:

SetPlotFollowsTime()







SetPlotFrameRange

Synopsis:

SetPlotFrameRange(index, start, end)






	indexinteger

	A zero-based integer representing an index into the plot list.



	startinteger

	A zero-based integer representing the animation frame where the plot
first appears in the visualization.



	endinteger

	A zero-based integer representing the animation frame where the plot
disappears from the visualization.





Description:


The SetPlotFrameRange function sets the start and end frames for a plot
when VisIt is in keyframing mode. Outside of this frame range, the plot
does not appear in the visualization. By default, plots are valid over the
entire range of animation frames when they are first created. Frame ranges
allow you to construct complex animations where plots appear and disappear
dynamically.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/wave.visit")
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
SetKeyframeAttributes(k)
AddPlot("Pseudocolor", "pressure")
AddPlot("Mesh", "quadmesh")
DrawPlots()
# Make the Pseudocolor plot take up the first half of the animation frames
# before it disappears.
SetPlotFrameRange(0, 0, nFrames/2-1)
# Make the Mesh plot take up the second half of the animation frames.
SetPlotFrameRange(1, nFrames/2, nFrames-1)
for state in range(TimeSliderGetNStates()):
    SetTimeSliderState(state)
    SaveWindow()







SetPlotOptions

Synopsis:

SetPlotOptions(atts) -> integer






	attsplot attributes object

	Any type of plot attributes object.



	return typeCLI_return_t

	All functions return an integer value of 1 for success and 0 for failure.





Description:


Each plot in VisIt has a group of attributes that controls the appearance
of the plot. To set the attributes for a plot, first create a plot
attributes object. This is done by calling a function which is the name of
the plot plus the word “Attributes”. For example, a Pseudocolor plot’s
plotattributes object is created and returned by the PseudocolorAttributes
function. Assign the new plot attributes object into a variable and set its
fields. After setting the desired fields in the plot attributes object,
pass the object to the SetPlotOptions function. The SetPlotOptions function
determines the type of plot to which the plot attributes object applies and
sets the attributes for that plot type. To set the default plot attributes,
use the SetDefaultPlotOptions function. Setting the default attributes
ensures that all future instances of a certain plot are initialized with
the new default values.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
p = PseudocolorAttributes()
p.colorTableName = "calewhite"
p.minFlag,p.maxFlag = 1,1
p.min,p.max = -5.0, 8.0
SetPlotOptions(p)
DrawPlots()







SetPlotOrderToFirst

Synopsis:

SetPlotOrderToFirst(index) -> integer






	indexinteger

	The integer index of the plot within the plot list.



	return typeCLI_return_t

	The SetPlotOrderToFirst function returns 1 on success and 0 on failure.





Description:


Move the i’th plot in the plot list to the start of the plot list.




Example:

AddPlot('Mesh', 'mesh')
AddPlot('Pseudocolor', 'pressure')
# Make the Pseudocolor plot first in the plot list
SetPlotOrderToFirst(1)







SetPlotOrderToLast

Synopsis:

SetPlotOrderToLast(index) -> integer






	indexinteger

	The integer index of the plot within the plot list.



	return typeCLI_return_t

	The SetPlotOrderToLast function returns 1 on success and 0 on failure.





Description:


Move the i’th plot in the plot list to the end of the plot list.




Example:

AddPlot('Mesh', 'mesh')
AddPlot('Pseudocolor', 'pressure')
# Make the Mesh plot last in the plot list
SetPlotOrderToLast(0)







SetPlotSILRestriction

Synopsis:

SetPlotSILRestriction(silr) -> integer
SetPlotSILRestriction(silr, all) -> integer






	silrSIL restriction object

	A SIL restriction object.



	all

	An optional argument that tells the function if the SIL restriction
should be applied to all plots in the plot list.



	return typeCLI_return_t

	The SetPlotSILRestriction function returns an integer value of 1 for
success and 0 for failure.





Description:


VisIt allows the user to select subsets of databases. The description of
the subset is called a Subset Inclusion Lattice Restriction, or SIL
restriction. The SIL restriction allows databases to be subselected in
several different ways. The VisIt Python Interface provides the
SetPlotSILRestriction function to allow Python scripts to turn off portions
of the plotted database. The SetPlotSILRestriction function accepts a
SILRestriction object that contains the SIL restriction for the active
plots. The optional all argument is an integer that tells the function to
apply the SIL restriction to all plots when the value of the argument is
non-zero. If the all argument is not supplied, then the SIL restriction is
only applied to the active plots.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/multi_curv2d.silo")
AddPlot("Subset", "mat1")
silr = SILRestriction()
silr.TurnOffSet(silr.SetsInCategory('mat1')[1])
SetPlotSILRestriction(silr)
DrawPlots()







SetPrecisionType

Synopsis:

SetPrecisionType(typeAsInt)
SetPrecisionType(typeAsString)






	typeAsIntdouble

	Precision type specified as an integer. 0 = float 1 = native 2 = double



	typeAsStringstring

	Precision type specified as a string. Options are ‘float’, ‘native’,
and ‘double’.





Description:


The SetPrecisionType function sets the floating point pecision
used by VisIt’s pipeline.  The function accepts a single argument
either an integer or string representing the precision desired.
0 = “float”, 1 = “native”, 2 = “double”




Example:

SetPrecisionType("double")
SetPrecisionType(2)







SetPreferredFileFormats

Synopsis:

SetPreferredFileFormats(pluginIDs) -> integer






	pluginIDstuple

	A tuple of plugin IDs to be attempted first when opening files.



	return typeCLI_return_t

	The SetPreferredFileFormats method does not return a value.





Description:


The SetPreferredFileFormats method is a way to set the list of
file format reader plugins which are tried before any others.
These IDs must be full IDs, not just names, and are tried in order.




Example:

SetPreferredFileFormats('Silo_1.0')
SetPreferredFileFormats(('Silo_1.0','PDB_1.0'))







SetPrinterAttributes

Synopsis:

SetPrinterAttributes(atts)






	attsPrinterAttributes object

	A PrinterAttributes object.





Description:


The SetPrinterAttributes function sets the printer attributes. VisIt uses
the printer attributes to determine how the active visualization window
should be printed. The function accepts a single argument which is a
PrinterAttributes object containing the printer attributes to use for
future printing. VisIt allows images to be printed to a network printer or
to a PostScript file that can be printed later by other applications.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Surface", "v")
DrawPlots()
# Make it print to a file.
p = PrinterAttributes()
p.outputToFile = 1
p.outputToFileName = "printfile"
SetPrinterAttributes(p)
PrintWindow()







SetQueryFloatFormat

Synopsis:

SetQueryFloatFormat(format_string)






	format_stringstring

	A string object that provides a printf style floating point format.





Description:


The SetQueryFloatFormat method sets a printf style format string that
isused by VisIt’s querys to produce textual output.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set floating point format string.
SetQueryFloatFormat("%.1f")
Query("MinMax")
# Set format back to default "%g".
SetQueryFloatFormat("%g")
Query("MinMax")







SetQueryOutputToObject

Synopsis:

SetQueryOutputToObject()





Description:


SetQueryOutputToObject changes the return type of future Queries to the
‘object’ or Python dictionary form. This is the same object that would be
returned by calling ‘GetQueryOutputObject()’ after a Query call. All other
output modes are still available after the Query call
(eg GetQueryOutputValue(),GetQueryOutputObject(), GetQueryOutputString()).




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set query output type.
SetQueryOutputToObject()
query_output = Query("MinMax")
print(query_output)







SetQueryOutputToString

Synopsis:

SetQueryOutputToString()





Description:


SetQueryOutputToString changes the return type of future Queries to the
‘string’ form. This is the same as what would be returned by calling
‘GetQueryOutputString’ after a Query call. All other output modes are
still available after the Query call (eg GetQueryOutputValue(),
GetQueryOutputObject(), GetQueryOutputString()).




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set query output type.
SetQueryOutputToString()
query_output = Query("MinMax")
print(query_output)
'''
d -- Min = 0.0235702 (zone 434 at coord <0.483333, 0.483333>)
d -- Max = 0.948976 (zone 1170 at coord <0.0166667, 1.31667>)
'''







SetQueryOutputToValue

Synopsis:

SetQueryOutputToValue()





Description:


SetQueryOutputToValue changes the return type of future Queries to the
‘value’ form. This is the same as what would be returned by calling
‘GetQueryOutputValue()’ after a Query call. All other output modes are
still available after the Query call (eg GetQueryOutputValue(),
GetQueryOutputObject(), GetQueryOutputString()).




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set query output type.
SetQueryOutputToValue()
query_output = Query("MinMax")
print(query_output)
(0.02357020415365696, 0.9489759802818298)







SetQueryOverTimeAttributes

Synopsis:

SetQueryOverTimeAttributes(atts) -> integer






	attsQueryOverTimeAttributes object

	A QueryOverTimeAttributes object containing the new settings to use for
queries over time.



	return typeCLI_return_t

	All functions return 1 on success and 0 on failure.





Description:


The SetQueryOverTimeAttributes function changes the settings that VisIt
uses for query over time. The SetDefaultQueryOverTimeAttributes function
changes the settings that new visualization windows inherit for doing query
over time. Finally, the ResetQueryOverTimeAttributes function forces VisIt
to use the stored default query over time attributes instead of the
previous settings.




Example:

#% visit -cli
SetWindowLayout(4)
OpenDatabase("/usr/gapps/visit/data/allinone00.pdb")
AddPlot("Pseudocolor", "mesh/mixvar")
DrawPlots()
qot = GetQueryOverTimeAttributes()
# Make queries over time go to window 4.
qot.createWindow,q.windowId = 0, 4
SetQueryOverTimeAttributes(qot)
QueryOverTime("Min")
# Make queries over time only use half of the number of time states.
qot.endTimeFlag,qot.endTime = 1, GetDatabaseNStates() / 2
SetQueryOverTimeAttributes(qot)
QueryOverTime("Min")
ResetView()







SetRemoveDuplicateNodes

Synopsis:

SetRemoveDuplicateNodes(val) -> integer






	valinteger

	Either a zero (false) or non-zero (true) integer value to indicate if
duplicate nodes in fully disconnected unstructured grids should be
automatically removed by visit.



	return typeCLI_return_t

	The SetRemoveDuplicateNodes function returns 1 on success and 0 on failure.





Description:


The SetRemoveDuplicateNodes function sets a boolean in the
global attributes indicating whether or not duplicate nodes in
fully disconnected unstructured grids should be automatically removed.
The default behavior is for the original grid to be left as read, which
may slow down VisIt’s performance for extraordinary large meshes.
Turning this feature off tells VisIt to remove the duplicate nodes after
the mesh is read, but before further processing in VisIt.




Example:

#% visit -cli
SetRemoveDuplicateNodes(1) # turn this feature on
SetRemoveDuplicateNodes(0) # turn this feature off







SetRenderingAttributes

Synopsis:

SetRenderingAttributes(atts) -> integer






	attsRenderingAttributes object

	A RenderingAttributes object that contains the rendering attributes that
we want to make VisIt use.



	return typeCLI_return_t

	The SetRenderingAttributes function returns 1 on success and 0 on failure.





Description:


The SetRenderingAttributes makes VisIt use the rendering attributes stored
in the specified RenderingAttributes object. The RenderingAttributes object
stores rendering attributes such as: scalable rendering options, shadows,
specular highlights, display lists, etc.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Surface", "hgslice")
DrawPlots()
v = GetView2D()
v.viewNormal = (-0.215934, -0.454611, 0.864119)
v.viewUp = (0.973938, -0.163188, 0.157523)
v.imageZoom = 1.64765
SetView3D(v)
light = GetLight(0)
light.direction = (0,1,-1)
SetLight(0, light)
r = GetRenderingAttributes()
print(r)
r.scalableActivationMode = r.Always
r.doShadowing = 1
SetRenderingAttributes(r)







SetSaveWindowAttributes

Synopsis:

SetSaveWindowAttributes(atts)






	attsSaveWindowAttributes object

	A SaveWindowAttributes object.





Description:


The SetSaveWindowAttributes function sets the format and filename that are
used to save windows when the SaveWindow function is called. The contents
of the active visualization window can be saved as TIFF, JPEG, RGB, PPM,
PNG images or they can be saved as curve, Alias Wavefront Obj, or VTK
geometry files. To set the SaveWindowAttributes, create a
SaveWindowAttributes object using the SaveWindowAttributes function and
assign it into a variable. Set the fields in the object and pass it to the
SetSaveWindowAttributes function.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv3d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Set the save window attributes
s = SaveWindowAttributes()
s.fileName = "test"
s.format = s.JPEG
s.progressive = 1
s.fileName = "test"
SetSaveWindowAttributes(s)
# Save the window
SaveWindow()







SetTimeSliderState

Synopsis:

SetTimeSliderState(state) -> integer






	stateinteger

	A zero-based integer containing the time state that we want to make active.



	return typeCLI_return_t

	The SetTimeSliderState function returns 1 on success and 0 on failure.





Description:


The SetTimeSliderState function sets the time state for the active time
slider. This is the function to use if you want to animate through time or
change the current keyframe frame.




Example:

#% visit -cli
path = "/usr/gapps/visit/data/"
dbs = (path + "dbA00.pdb", path + "dbB00.pdb", path + "dbC00.pdb")
for db in dbs:
    OpenDatabase(db)
    AddPlot("FilledBoundary", "material(mesh)")
    DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
tsNames = GetWindowInformation().timeSliders
for ts in tsNames:
    SetActiveTimeSlider(ts)
for state in list(range(TimeSliderGetNStates())) + [0]:
    SetTimeSliderState(state)







SetTreatAllDBsAsTimeVarying

Synopsis:

SetTreatAllDBsAsTimeVarying(val) -> integer






	valinteger

	Either a zero (false) or non-zero (true) integer value to indicate if
all databases should be treated as time varying (true) or not (false).



	return typeCLI_return_t

	The SetTreatAllDBsAsTimeVarying function returns 1 on success and 0 on failure.





Description:


The SetTreatAllDBsAsTimeVarying function sets a boolean in the global attributes
indicating if all databases should be treated as time varying or not. Ordinarily,
VisIt tries to minimize file I/O and database interaction by avoiding re-reading
metadata that is ‘time-invariant’ and, therefore, assumed to be the same in a
database from one time step to the next. However, sometimes, portions of the metadata,
such as the list of variable names and/or number of domains, does in fact vary. In this
case, VisIt can actually fail to acknowledge the existence of new variables in the file.
Turning this feature on forces VisIt to re-read metadata each time the time-state is
changed.




Example:

#% visit -cli
SetTreatAllDBsAsTimeVarying(1) # turn this feature on
SetTreatAllDBsAsTimeVarying(0) # turn this feature off







SetTryHarderCyclesTimes

Synopsis:

SetTryHarderCyclesTimes(val) -> integer






	valinteger

	Either a zero (false) or non-zero (true) integer value to indicate if
VisIt read cycle/time information for all timestates when opening a
database.



	return typeCLI_return_t

	The SetTryHarderCyclesTimes function returns 1 on success and 0 on failure.





Description:


For certain classes of databases, obtaining cycle/time information for all time
states in the database is an expensive operation, requiring each file to be opened
and queried. The cost of the operation gets worse the more time states there are
in the database. Ordinarily, VisIt does not bother to query each time state for
precise cycle/time information. In fact, often VisIt can guess this information
from the filename(s) comprising the databse. However, turning this feature on
will force VisIt to obtain accurate cycle/time information for all time states
by opening and querying all file(s) in the database.




Example:

#% visit -cli
SetTryHarderCyclesTimes(1) # Turn this feature on
SetTryHarderCyclesTimes(0) # Turn this feature off







SetUltraScript

Synopsis:

SetUltraScript(filename) -> integer






	filenamestring

	The name of the file to be used as the ultra script when LoadUltra is called.



	return typeCLI_return_t

	The SetUltraScript function returns 1.





Description:


Set the path to the script to be used by the LoadUltra command. Normal users do
not need to use this function.






SetView2D

Synopsis:

SetView2D(View2DAttributes) -> integer






	viewViewAttributes object

	A ViewAttributes object containing the view.



	return typeCLI_return_t

	All functions returns 1 on success and 0 on failure.





Description:


The view is a crucial part of a visualization since it determines
which parts of the database are examined. The VisIt Python Interface
provides four functions for setting the view: SetView2D, SetView3D,
SetViewCurve, and SetViewAxisArray. If the visualization window
contains 2D plots, use the SetView2D function. To set the view, first
create the appropriate ViewAttributes object and set the object’s
fields to set a new view. After setting the fields, pass the object
to the matching SetView function. A common use of the SetView
functions is to animate the view to produce simple animations where
the camera appears to fly around the plots in the visualization
window.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "v")
DrawPlots()
va = GetView3D()
va.RotateAxis(1,30.0) # rotate around the y axis 30 degrees.
SetView3D(va)
v0 = GetView3D()
v1 = GetView3D()
v1.camera,v1.viewUp = (1,1,1),(-1,1,-1)
v1.parallelScale = 10.
for i in range(0,20):
    t = float(i) / 19.
    v2 = (1. - t) * v0 + t * v1
    SetView3D(v2) # Animate the view.







SetView3D

Synopsis:

SetView3D(View3DAttributes) -> integer






	viewViewAttributes object

	A ViewAttributes object containing the view.



	return typeCLI_return_t

	All functions returns 1 on success and 0 on failure.





Description:


The view is a crucial part of a visualization since it determines
which parts of the database are examined. The VisIt Python Interface
provides four functions for setting the view: SetView2D, SetView3D,
SetViewCurve, and SetViewAxisArray. Use the SetView3D function when
the visualization window contains 3D plots. To set the view, first
create the appropriate ViewAttributes object and set the object’s
fields to set a new view. After setting the fields, pass the object
to the matching SetView function. A common use of the SetView
functions is to animate the view to produce simple animations where
the camera appears to fly around the plots in the visualization
window. A View3D object also supports the RotateAxis(int axis, double deg)
method which mimics the ‘rotx’, ‘roty’ and ‘rotz’ view commands in
the GUI.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "v")
DrawPlots()
va = GetView3D()
va.RotateAxis(1,30.0) # rotate around the y axis 30 degrees.
SetView3D(va)
v0 = GetView3D()
v1 = GetView3D()
v1.camera,v1.viewUp = (1,1,1),(-1,1,-1)
v1.parallelScale = 10.
for i in range(0,20):
    t = float(i) / 19.
    v2 = (1. - t) * v0 + t * v1
    SetView3D(v2) # Animate the view.







SetViewAxisArray

Synopsis:

SetViewAxisArray(ViewAxisArrayAttributes) -> integer






	viewViewAttributes object

	A ViewAttributes object containing the view.



	return typeCLI_return_t

	All functions returns 1 on success and 0 on failure.





Description:


The view is a crucial part of a visualization since it determines
which parts of the database are examined. The VisIt Python Interface
provides four functions for setting the view: SetView2D, SetView3D,
SetViewCurve, and SetViewAxisArray. To set the view, first create
the appropriate ViewAttributes object and set the object’s fields
to set a new view. After setting the fields, pass the object to the
matching SetView function. A common use of the SetView functions is
to animate the view to produce simple animations where the camera
appears to fly around the plots in the visualization window.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "v")
DrawPlots()
va = GetView3D()
va.RotateAxis(1,30.0) # rotate around the y axis 30 degrees.
SetView3D(va)
v0 = GetView3D()
v1 = GetView3D()
v1.camera,v1.viewUp = (1,1,1),(-1,1,-1)
v1.parallelScale = 10.
for i in range(0,20):
    t = float(i) / 19.
    v2 = (1. - t) * v0 + t * v1
    SetView3D(v2) # Animate the view.







SetViewCurve

Synopsis:

SetViewCurve(ViewCurveAttributes) -> integer






	viewViewAttributes object

	A ViewAttributes object containing the view.



	return typeCLI_return_t

	All functions returns 1 on success and 0 on failure.





Description:


The view is a crucial part of a visualization since it determines
which parts of the database are examined. The VisIt Python Interface
provides four functions for setting the view: SetView2D, SetView3D,
SetViewCurve, and SetViewAxisArray. To set the view, first create
the appropriate ViewAttributes object and set the object’s fields
to set a new view. After setting the fields, pass the object to the
matching SetView function. A common use of the SetView functions is
to animate the view to produce simple animations where the camera
appears to fly around the plots in the visualization window.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "v")
DrawPlots()
va = GetView3D()
va.RotateAxis(1,30.0) # rotate around the y axis 30 degrees.
SetView3D(va)
v0 = GetView3D()
v1 = GetView3D()
v1.camera,v1.viewUp = (1,1,1),(-1,1,-1)
v1.parallelScale = 10.
for i in range(0,20):
    t = float(i) / 19.
    v2 = (1. - t) * v0 + t * v1
    SetView3D(v2) # Animate the view.







SetViewExtentsType

Synopsis:

SetViewExtentsType(type) -> integer






	typeinteger

	An integer or a string. Options are 0, 1 and ‘original’, ‘actual’, respectively.



	return typeCLI_return_t

	SetViewExtentsType returns 1 on success and 0 on failure.





Description:


VisIt can use a plot’s spatial extents in two ways when computing the
view. The first way of using the extents is to use the “original”
extents, which are the spatial extents before any modifications, such as
subset selection, have been made to the plot. This ensures that the view
will remain relatively constant for a plot. Alternatively, you can use the
“actual” extents, which are the spatial extents of the pieces of the plot
that remain after operations such as subset selection.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
SetViewExtentsType("actual")
AddPlot("FilledBoundary", "mat1")
DrawPlots()
v = GetView3D()
v.viewNormal = (-0.618945, 0.450655, 0.643286)
v.viewUp = (0.276106, 0.891586, -0.358943)
SetView3D(v)
mats = GetMaterials()
nmats = len(mats)
# Turn off all but the last material in sequence and watch
# the view update each time.
for i in range(nmats-1):
    index = nmats-1-i
    TurnMaterialsOff(mats[index])
    SaveWindow()
    SetViewExtentsType("original")







SetViewKeyframe

Synopsis:

SetViewKeyframe() -> integer






	return typeCLI_return_t

	The SetViewKeyframe function returns 1 on success and 0 on failure.





Description:


The SetViewKeyframe function adds a view keyframe when VisIt is in
keyframing mode. View keyframes are used to set the view at crucial points
during an animation. Frames that lie between view keyframes have an
interpolated view that is based on the view keyframes. You can use the
SetViewKeyframe function to create complex camera animations that allow you
to fly around (or through) your visualization.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Contour", "hardyglobal")
DrawPlots()
k = GetKeyframeAttributes()
nFrames = 20
k.enabled, k.nFrames, k.nFramesWasUserSet = 1, nFrames, 1
SetKeyframeAttributes(k)
SetPlotFrameRange(0, 0, nFrames-1)
SetViewKeyframe()
SetTimeSliderState(10)
v = GetView3D()
v.viewNormal = (-0.721721, 0.40829, 0.558944)
v.viewUp = (0.294696, 0.911913, -0.285604)
SetView3D(v)
SetViewKeyframe()
SetTimeSliderState(nFrames-1)
v.viewNormal = (-0.74872, 0.423588, -0.509894)
v.viewUp = (0.369095, 0.905328, 0.210117)
SetView3D()
SetViewKeyframe()
ToggleCameraViewMode()
for state in range(TimeSliderGetNStates()):
    SetTimeSliderState(state)
    SaveWindow()







SetWindowArea

Synopsis:

SetWindowArea(x, y, width, height) -> integer






	xinteger

	An integer that is the left X coordinate in screen pixels.



	yinteger

	An integer that is the top Y coordinate in screen pixels.



	widthinteger

	An integer that is the width of the window area in pixels.



	heightinteger

	An integer that is the height of the window area in pixels.



	return typeCLI_return_t

	The SetWindowArea function returns 1 on success and 0 on failure.





Description:


The SetWindowArea method sets the area of the screen that can be used by
VisIt’s visualization windows. This is useful for making sure windows are a
certain size when running a Python script.




Example:

import visit
visit.Launch()
visit.SetWindowArea(0, 0, 600, 600)
visit.SetWindowLayout(4)







SetWindowLayout

Synopsis:

SetWindowLayout(layout) -> integer






	layoutinteger

	An integer that specifies the window layout. (1,2,4,8,9,16 are valid)



	return typeCLI_return_t

	The SetWindowLayout function returns an integer value of 1 for success and
0 for failure.





Description:


VisIt’s visualization windows can be arranged in various tiled patterns
that allow VisIt to make good use of the screen while displaying several
visualization windows. The window layout determines how windows are shown
on the screen. The SetWindowLayout function sets the window layout. The
layout argument is an integer value equal to 1,2,4,8,9, or 16.




Example:

#% visit -cli
SetWindowLayout(2) # switch to 1x2 layout
SetWindowLayout(4) # switch to 2x2 layout
SetWindowLayout(8) # switch to 2x4 layout







SetWindowMode

Synopsis:

SetWindowMode(mode) -> integer






	modestring

	A string containing the new mode. Options are ‘navigate’, ‘zoom’,
‘lineout’, ‘pick’, ‘zone pick’, ‘node pick’, ‘spreadsheet pick’.



	return typeCLI_return_t

	The SetWindowMode function returns 1 on success and 0 on failure.





Description:


VisIt’s visualization windows have various window modes that alter their
behavior. Most of the time a visualization window is in “navigate” mode
which changes the view when the mouse is moved in the window. The “zoom”
mode allows a zoom rectangle to be drawn in the window for changing the
view. The “pick” mode retrieves information about the plots when the
mouse is clicked in the window. The “lineout” mode allows the user to
draw lines which produce curve plots.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
SetWindowMode("zoom")
# Draw a rectangle in the visualization window to zoom the plots







ShowAllWindows

Synopsis:

ShowAllWindows() -> integer






	return typeCLI_return_t

	The ShowAllWindows function returns 1 on success and 0 on failure.





Description:


The ShowAllWindows function tells VisIt’s viewer to show all of its
visualization windows. The command line interface calls ShowAllWindows
before giving control to any user-supplied script to ensure that the
visualization windows appear as expected. Call the ShowAllWindows function
when using the VisIt module inside another Python interpreter so the
visualization windows are made visible.




Example:

#% python
import visit
visit.Launch()
visit.ShowAllWindows()







ShowToolbars

Synopsis:

ShowToolbars() -> integer
ShowToolbars(allWindows) -> integer






	allWindowsinteger

	An integer value that tells VisIt to show the toolbars for all windows
when it is non-zero.



	return typeCLI_return_t

	The ShowToolbars function returns 1 on success and 0 on failure.





Description:


The ShowToolbars function tells VisIt to show the toolbars for the active
visualization window or for all visualization windows when the optional
allWindows argument is provided and is set to a non-zero value.




Example:

#% visit -cli
SetWindowLayout(4)
HideToolbars(1)
ShowToolbars()
# Show the toolbars for all windows.
ShowToolbars(1)







Source

Synopsis:

Source(filename)





Description:


The Source function reads in the contents of a text file and interprets it
with the Python interpreter. This is a simple mechanism that allows simple
scripts to be included in larger scripts. The Source function takes a
single string argument that contains the name of the script to execute.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# include another script that does some animation.
Source("Animate.py")







SuppressMessages

Synopsis:

SuppressMessages(level) -> integer






	levelinteger

	An integer value of 1,2,3 or 4



	return typeCLI_return_t

	The SuppressMessages function returns the previous suppression level on
success and 0 on failure.





Description:


The SuppressMessage function sets the supression level for status messages
generated by VisIt.  A value of 1 suppresses all types of messages. A value
of 2 suppresses Warnings and Messages but does NOT suppress Errors.
A value of 3 suppresses Messages but does not suppress Warnings or Errors.
A value of 4 does not suppress any messages. The default setting is 4.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Turn off Warning and Message messages.
SuppressMessages(2)
SaveWindow()







SuppressQueryOutputOff

Synopsis:

SuppressQueryOutputOff() -> integer






	return typeCLI_return_t

	The SuppressQueryOutput function returns 1 on success and 0 on failure.





Description:


The SuppressQueryOutput function tells VisIt to turn on/off the automatic
printing of query output.  Query output will still be available via
GetQueryOutputString and GetQueryOutputValue.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Turn off automatic printing of Query output.
SuppressQueryOutputOn()
Query("MinMax")
print("The min is: %g and the max is: %g" % GetQueryOutputValue())
# Turn on automatic printing of Query output.
SuppressQueryOutputOff()
Query("MinMax")







SuppressQueryOutputOn

Synopsis:

SuppressQueryOutputOn() -> integer






	return typeCLI_return_t

	The SuppressQueryOutput function returns 1 on success and 0 on failure.





Description:


The SuppressQueryOutput function tells VisIt to turn on/off the automatic
printing of query output.  Query output will still be available via
GetQueryOutputString and GetQueryOutputValue.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/rect2d.silo")
AddPlot("Pseudocolor", "d")
DrawPlots()
# Turn off automatic printing of Query output.
SuppressQueryOutputOn()
Query("MinMax")
print("The min is: %g and the max is: %g" % GetQueryOutputValue())
# Turn on automatic printing of Query output.
SuppressQueryOutputOff()
Query("MinMax")







TimeSliderGetNStates

Synopsis:

TimeSliderGetNStates() -> integer






	return typeCLI_return_t

	Returns an integer containing the number of time states for the current
time slider.





Description:


The TimeSliderGetNStates function returns the number of time states for
the active time slider. Remember that the length of the time slider does
not have to be equal to the number of time states in a time-varying
database because of database correlations and keyframing. If you want to
iterate through time, use this function to determine the number of
iterations that are required to reach the end of the active time slider.




Example:

OpenDatabase("/usr/gapps/visit/data/wave.visit")
AddPlot("Pseudocolor", "pressure")
DrawPlots()
for state in range(TimeSliderGetNStates()):
    SetTimeSliderState(state)
    SaveWindow()







TimeSliderNextState

Synopsis:

TimeSliderNextState() -> integer






	return typeCLI_return_t

	The TimeSliderNextState function returns 1 on success and 0 on failure.





Description:


The TimeSliderNextState function advances the active time slider to the
next time slider state.




Example:

# Assume that files are being written to the disk.
#% visit -cli
OpenDatabase("dynamic*.silo database")
AddPlot("Pseudocolor", "var")
AddPlot("Mesh", "mesh")
DrawPlots()
SetTimeSliderState(TimeSliderGetNStates() - 1)
while 1:
    SaveWindow()
    TimeSliderPreviousState()







TimeSliderPreviousState

Synopsis:

TimeSliderPreviousState() -> integer






	return typeCLI_return_t

	The TimeSliderPreviousState function returns 1 on success and 0 on failure.





Description:


The TimeSliderPreviousState function moves the active time slider to the
previous time slider state.




Example:

# Assume that files are being written to the disk.
#% visit -cli
OpenDatabase("dynamic*.silo database")
AddPlot("Pseudocolor", "var")
AddPlot("Mesh", "mesh")
DrawPlots()
while 1:
    TimeSliderNextState()
    SaveWindow()







TimeSliderSetState

Synopsis:

TimeSliderSetState(state) -> integer






	stateinteger

	A zero-based integer containing the time state that we want to make active.



	return typeCLI_return_t

	The TimeSliderSetState function returns 1 on success and 0 on failure.





Description:


The TimeSliderSetState function sets the time state for the active time
slider. This is the function to use if you want to animate through time or
change the current keyframe frame.




Example:

#% visit -cli
path = "/usr/gapps/visit/data/"
dbs = (path + "dbA00.pdb", path + "dbB00.pdb", path + "dbC00.pdb")
for db in dbs:
    OpenDatabase(db)
    AddPlot("FilledBoundary", "material(mesh)")
    DrawPlots()
CreateDatabaseCorrelation("common", dbs, 1)
tsNames = GetWindowInformation().timeSliders
for ts in tsNames:
    SetActiveTimeSlider(ts)
for state in list(range(TimeSliderGetNStates())) + [0]:
    TimeSliderSetState(state)







ToggleBoundingBoxMode

Synopsis:

ToggleBoundingBoxMode() -> integer






	return typeCLI_return_t

	All functions return 1 on success and 0 on failure.





Description:


The visualization window has various modes that affect its behavior and
the VisIt Python Interface provides a few functions to toggle some of those
modes.
The ToggleBoundingBoxMode function toggles bounding box mode on and off.
When the visualization window is in bounding box mode, any plots it
contains are hidden while the view is being changed so the window redraws
faster.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
# after the mouse release.
# Turn off spin mode.
ToggleSpinMode()







ToggleCameraViewMode

Synopsis:

ToggleCameraViewMode() -> integer






	return typeCLI_return_t

	All functions return 1 on success and 0 on failure.





Description:


The visualization window has various modes that affect its behavior and
the VisIt Python Interface provides a few functions to toggle some of those
modes.
The ToggleCameraViewMode function toggles camera view mode on and off.
When the visualization window is in camera view mode, the view is updated
using any view keyframes that have been defined when VisIt is in keyframing
mode.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
# after the mouse release.
# Turn off spin mode.
ToggleSpinMode()







ToggleFullFrameMode

Synopsis:

ToggleFullFrameMode() -> integer






	return typeCLI_return_t

	All functions return 1 on success and 0 on failure.





Description:


The visualization window has various modes that affect its behavior and
the VisIt Python Interface provides a few functions to toggle some of those
modes.
The ToggleFullFrameMode function toggles fullframe mode on and off. When
the visualization window is in fullframe mode, the viewport is stretched
non-uniformly so that it covers most of the visualization window. While not
maintaining a 1:1 aspect ratio, it does make better use of the
visualization window.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
# after the mouse release.
# Turn off spin mode.
ToggleSpinMode()







ToggleLockTime

Synopsis:

ToggleLockTime() -> integer






	return typeCLI_return_t

	All functions return 1 on success and 0 on failure.





Description:


The visualization window has various modes that affect its behavior and
the VisIt Python Interface provides a few functions to toggle some of those
modes.
The ToggleLockTime function turns time locking on and off in a
visualization window. When time locking is on in a visualization window,
VisIt creates a database correlation that works for the databases in all
visualization windows that are time-locked. When you change the time state
using the time slider for the the afore-mentioned database correlation, it
has the effect of updating time in all time-locked visualization windows.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
# after the mouse release.
# Turn off spin mode.
ToggleSpinMode()







ToggleLockTools

Synopsis:

ToggleBoundingBoxMode() -> integer
ToggleCameraViewMode() -> integer
ToggleFullFrameMode() -> integer
ToggleLockTime() -> integer
ToggleLockViewMode() -> integer
ToggleMaintainViewMode() -> integer
ToggleSpinMode() -> integer






	return typeCLI_return_t

	All functions return 1 on success and 0 on failure.





Description:


The visualization window has various modes that affect its behavior and
the VisIt Python Interface provides a few functions to toggle some of those
modes.
The ToggleBoundingBoxMode function toggles bounding box mode on and off.
When the visualization window is in bounding box mode, any plots it
contains are hidden while the view is being changed so the window redraws
faster.
The ToggleCameraViewMode function toggles camera view mode on and off.
When the visualization window is in camera view mode, the view is updated
using any view keyframes that have been defined when VisIt is in keyframing
mode.
The ToggleFullFrameMode function toggles fullframe mode on and off. When
the visualization window is in fullframe mode, the viewport is stretched
non-uniformly so that it covers most of the visualization window. While not
maintaining a 1:1 aspect ratio, it does make better use of the
visualization window.
The ToggleLockTime function turns time locking on and off in a
visualization window. When time locking is on in a visualization window,
VisIt creates a database correlation that works for the databases in all
visualization windows that are time-locked. When you change the time state
using the time slider for the the afore-mentioned database correlation, it
has the effect of updating time in all time-locked visualization windows.
The ToggleLockViewMode function turns lock view mode on and off. When
windows are in lock view mode, each view change is broadcast to other
windows that are also in lock view mode. This allows windows containing
similar plots to be compared easily.
The ToggleMaintainViewMode function forces the view, that was in effect
when the mode was toggled to be used for all subsequent time states.
The ToggleSpinMode function turns spin mode on and off. When the
visualization window is in spin mode, it continues to spin along the axis
of rotation when the view is changed interactively.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
# after the mouse release.
# Turn off spin mode.
ToggleSpinMode()







ToggleLockViewMode

Synopsis:

ToggleLockViewMode() -> integer






	return typeCLI_return_t

	All functions return 1 on success and 0 on failure.





Description:


The visualization window has various modes that affect its behavior and
the VisIt Python Interface provides a few functions to toggle some of those
modes.
The ToggleLockViewMode function turns lock view mode on and off. When
windows are in lock view mode, each view change is broadcast to other
windows that are also in lock view mode. This allows windows containing
similar plots to be compared easily.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
# after the mouse release.
# Turn off spin mode.
ToggleSpinMode()







ToggleMaintainViewMode

Synopsis:

ToggleMaintainViewMode() -> integer






	return typeCLI_return_t

	All functions return 1 on success and 0 on failure.





Description:


The visualization window has various modes that affect its behavior and
the VisIt Python Interface provides a few functions to toggle some of those
modes.
The ToggleMaintainViewMode functions forces the view that was in effect
when the mode was toggled to be used for all subsequent time states.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
# after the mouse release.
# Turn off spin mode.
ToggleSpinMode()







ToggleSpinMode

Synopsis:

ToggleSpinMode() -> integer






	return typeCLI_return_t

	All functions return 1 on success and 0 on failure.





Description:


The visualization window has various modes that affect its behavior and
the VisIt Python Interface provides a few functions to toggle some of those
modes.
The ToggleSpinMode function turns spin mode on and off. When the
visualization window is in spin mode, it continues to spin along the axis
of rotation when the view is changed interactively.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
# Turn on spin mode.
ToggleSpinMode()
# Rotate the plot interactively using the mouse and watch it keep spinning
# after the mouse release.
# Turn off spin mode.
ToggleSpinMode()







TurnDomainsOff

Synopsis:

TurnDomainsOff() -> integer
TurnDomainsOff(set_name) -> integer
TurnDomainsOff(tuple_set_name) -> integer






	set_namestring

	The name of the set to modify.



	tuple_set_nametuple of strings

	A tuple of strings for the sets to modify.



	return typeCLI_return_t

	The Turn functions return an integer with a value of 1 for success or 0
for failure.





Description:


The Turn functions are provided to simplify the removal of material or
domain subsets. Instead of creating a SILRestriction object, you can use
the Turn functions to turn materials or domains on or off. The
TurnDomainsOff function turns domains off. All of the Turn functions have
three possible argument lists. When you do not provide any arguments, the
function applies to all subsets in the SIL so if you called the
TurnDomainsOff function with no arguments, all domains would be turned
off. All functions can also take a string argument, which is the name of the set
to modify. For example, you could turn off domain 0 by calling the
TurnDomainsOff with a single argument of “domain0” (or the appropriate
set name). All of the Turn functions can also be used to modify more than
one set if you provide a tuple of set names. After you use the Turn
functions to change the SIL restriction, you might want to call the
ListMaterials or ListDomains functions to make sure that the SIL
restriction was actually modified.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
TurnMaterialsOff(("1", "2")) # Turn off materials 1 and 2
TurnMaterialsOn() # Turn on all materials







TurnDomainsOn

Synopsis:

TurnDomainsOn() -> integer
TurnDomainsOn(set_name) -> integer
TurnDomainsOn(tuple_set_name) -> integer






	set_namestring

	The name of the set to modify.



	tuple_set_nametuple of strings

	A tuple of strings for the sets to modify.



	return typeCLI_return_t

	The Turn functions return an integer with a value of 1 for success or 0
for failure.





Description:


The Turn functions are provided to simplify the removal of material or
domain subsets. Instead of creating a SILRestriction object, you can use
the Turn functions to turn materials or domains on or off. The
TurnDomainsOn function turns domains on. All of the Turn functions have
three possible argument lists. When you do not provide any arguments, the
function applies to all subsets in the SIL so if you called the
TurnDomainsOn function with no arguments, all domains would be turned
on. All functions can also take a string argument, which is the name of
the set to modify. For example, you could turn on domain 0 by calling the
TurnDomainsOn with a single argument of “domain0” (or the appropriate
set name). All of the Turn functions can also be used to modify more than
one set if you provide a tuple of set names. After you use the Turn
functions to change the SIL restriction, you might want to call the
ListMaterials or ListDomains functions to make sure that the SIL
restriction was actually modified.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
TurnMaterialsOff(("1", "2")) # Turn off materials 1 and 2
TurnMaterialsOn() # Turn on all materials







TurnMaterialsOff

Synopsis:

TurnMaterialsOff() -> integer
TurnMaterialsOff(set_name) -> integer
TurnMaterialsOff(tuple_set_name) -> integer






	set_namestring

	The name of the set to modify.



	tuple_set_nametuple of strings

	A tuple of strings for the sets to modify.



	return typeCLI_return_t

	The Turn functions return an integer with a value of 1 for success or 0
for failure.





Description:


The Turn functions are provided to simplify the removal of material or
domain subsets. Instead of creating a SILRestriction object, you can use
the Turn functions to turn materials or domains on or off. The
TurnMaterialsOff function turns materials off. All of the Turn functions have
three possible argument lists. When you do not provide any arguments, the
function applies to all subsets in the SIL so if you called the
TurnMaterialsOff function with no arguments, all materials would be turned
off. All functions can also take a string argument, which is the name of
the set to modify. For example, you could turn off material 0 by calling
TurnMaterialsOff with a single argument of “material0” (or the appropriate
set name). All of the Turn functions can also be used to modify more than
one set if you provide a tuple of set names. After you use the Turn
functions to change the SIL restriction, you might want to call the
ListMaterials or ListDomains functions to make sure that the SIL
restriction was actually modified.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
TurnMaterialsOff(("1", "2")) # Turn off materials 1 and 2
TurnMaterialsOn() # Turn on all materials







TurnMaterialsOn

Synopsis:

TurnMaterialsOn() -> integer
TurnMaterialsOn(string) -> integer
TurnMaterialsOn(tuple of strings) -> integer






	set_namestring

	The name of the set to modify.



	tuple_set_nametuple of strings

	A tuple of strings for the sets to modify.



	return typeCLI_return_t

	The Turn functions return an integer with a value of 1 for success or 0
for failure.





Description:


The Turn functions are provided to simplify the removal of material or
domain subsets. Instead of creating a SILRestriction object, you can use
the Turn functions to turn materials or domains on or off. The
TurnMaterialsOn function turns materials on. All of the Turn functions have
three possible argument lists. When you do not provide any arguments, the
function applies to all subsets in the SIL so if you called the
TurnMaterialsOn function with no arguments, all materials would be turned
off. All functions can also take a string argument, which is the name of
the set to modify. For example, you could turn on material 0 by calling the
TurnMaterialsOn with a single argument of “material0” (or the appropriate
set name). All of the Turn functions can also be used to modify more than
one set if you provide a tuple of set names. After you use the Turn
functions to change the SIL restriction, you might want to call the
ListMaterials or ListDomains functions to make sure that the SIL
restriction was actually modified.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/globe.silo")
AddPlot("Pseudocolor", "u")
DrawPlots()
TurnMaterialsOff("4") # Turn off material 4
TurnMaterialsOff(("1", "2")) # Turn off materials 1 and 2
TurnMaterialsOn() # Turn on all materials







UndoView

Synopsis:

UndoView()





Description:


When the view changes in the visualization window, it puts the old view on
a stack of views. The UndoView function restores the view on top of the
stack and removes it. This allows the user to undo up to ten view changes.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/curv2d.silo")
AddPlot("Subset", "mat1")
DrawPlots()
v = GetView2D()
v.windowCoords = (-2.3,2.4,0.2,4.9)
SetView2D(v)
UndoView()







UpdateNamedSelection

Synopsis:

UpdateNamedSelection(name) -> integer
UpdateNamedSelection(name, properties) -> integer






	namestring

	The name of the selection to update.



	propertiesSelectionProperties object

	An optional SelectionProperties object that contains the selection
properties to use when reevaluating the selection.



	return typeCLI_return_t

	The UpdateNamedSelection function returns 1 on success and 0 on failure.





Description:


This function causes VisIt to reevaluate a named selection using new selection
properties. If no selection properties are provided then the selection will
be reevaluated using data for the plot that was associated with the selection
when it was created. This is useful if you want to change a plot in several
ways before causing its associated named selection to update using the changes.




Example:

s = GetSelection('selection1')
s.selectionType = s.CumulativeQuerySelection
s.histogramType = s.HistogramMatches
s.combineRule = s.CombineOr
s.variables = ('temperature',)
s.variableMins = (2.9,)
s.variableMaxs = (3.1,)
UpdateNamedSelection('selection1', s)







Version

Synopsis:

Version() -> string






	return typestring

	The Version function return a string that represents VisIt’s version.





Description:


The Version function returns a string that represents VisIt’s version. The
version string can be used in Python scripts to make sure that the VisIt
module is a certain version before processing the rest of the Python script.




Example:

#% visit -cli
print("We are running VisIt version %s" % Version())







WriteConfigFile

Synopsis:

WriteConfigFile()





Description:


The viewer maintains internal settings which determine the default values
for objects like plots and operators. The viewer can save out the default
values so they can be used in future VisIt sessions. The WriteConfig
function tells the viewer to write out the settings to the VisIt
configuration file.




Example:

#% visit -cli
p = PseudocolorAttributes()
p.minFlag, p.min = 1, 5.0
p.maxFlag, p.max = 1, 20.0
SetDefaultPlotOptions(p)
# Save the new default Pseudocolor settings to the config file.
WriteConfig()







WriteScript

Example:

f = open('script.py', 'wt')
WriteScript(f)
f.close()







ZonePick

Synopsis:

ZonePick(namedarg1=arg1, namedarg2=arg2, ...) -> dictionary






	coordtuple

	A tuple of doubles containing the spatial coordinate (x, y, z).



	xinteger

	An integer containing the screen X location (in pixels) offset
from the left side of the visualization window.



	yinteger

	An integer containing the screen Y location (in pixels) offset
from the bottom of the visualization window.



	vars (optional)tuple

	A tuple of strings with the variable names for which to return
results. Default is the currently plotted variable.



	do_time (optional)integer

	An integer indicating whether to do a time pick. 1 -> do a time pick,
0 (default) -> do not do a time pick.



	start_time (optional)integer

	An integer with the starting frame index. Default is 0.



	end_time (optional)integer

	An integer with the ending frame index. Default is num_timestates-1.



	stride (optional)integer

	An integer with the stride for advancing in time. Default is 1.



	preserve_coord (optional)integer

	An integer indicating whether to pick an element or a coordinate.
0 -> used picked element (default), 1-> used picked coordinate.
Note: enabling this option may substantially slow down the speed with
which the query can be performed.



	curve_plot_type (optional)integer

	An integer indicating whether the output should be on a single
axis or with multiple axes. 0 -> single Y axis (default),
1 -> multiple Y Axes.



	return typedictionary

	ZonePick returns a python dictionary of the pick results, unless
do_time is specified, then a time curve is created in a new window.
If the picked variable is node centered, the variable values are
grouped according to incident node ids.





Description:


The ZonePick function prints pick information for the cell (a.k.a zone) that
contains the specified point. The point can be specified as a 2D or 3D
point in world space or it can be specified as a pixel location in screen
space. If the point is specified as a pixel location then VisIt finds the
zone that contains the intersection of a cell and a ray that is projected
into the mesh. Once the zonal pick has been calculated, you can use the
GetPickOutput function to retrieve the printed pick output as a string
which can be used for other purposes.




Example:

#% visit -cli
OpenDatabase("/usr/gapps/visit/data/noise.silo")
AddPlot("Pseudocolor", "hgslice")
DrawPlots()
# Perform zone pick in screen space
pick_out = ZonePick(x=200,y=200)
# Perform zone pick in world space.
pick_out = ZonePick(coord = (-5.0, 5.0, 0))









          

      

      

    

 


  

  
    

    Attribute Reference
    

    

    
 
  

    
      
          
            
  
Attribute Reference

This chapter shows all the attributes that can be set to control the
behavior of VisIt. The attributes themselves are not documented, but
their names are usually quite explanatory. When a member of an attribute
can take values from a given list of options, the default option is printed
first in italic followed by a comma separated list of the other available
options.

The listing is ordered in alphabetical ordering of the name of the
attribute set. For each set the function that will provide you with
these attributes is printed in italic.

Many of the Plot and Operator attribute methods accept an optional
1 argument to indicate whether or not to return the default or
current attributes. For example, CurveAttributes() returns the default
attributes for a Curve plot where as CurveAttributes(1) returns the
attributes of either the currently active Curve plot or the first
Curve plot in the plot list regardless of whether it is selected or
hidden.

Many functions return an integer where 1 means success and 0 means failure.
This behavior is represented by the type CLI_return_t in an attempt to
distinguish it from functions that may utilize the full range of integers.


AMRStitchCell: AMRStitchCellAttributes()








	Attribute

	Default/Allowed Values



	CreateCellsOfType

	DualGridAndStitchCells,
DualGrid, StitchCells











Animation: AnimationAttributes()








	Attribute

	Default/Allowed Values



	animationMode

	StopMode,
ReversePlayMode,
PlayMode



	pipelineCachingMode

	0



	frameIncrement

	1



	timeout

	1



	playbackMode

	PlayOnce,
Looping, Swing











Annotation: AnnotationAttributes()








	Attribute

	Default/Allowed Values



	axes2D.visible

	1



	axes2D.autoSetTicks

	1



	axes2D.autoSetScaling

	1



	axes2D.lineWidth

	0



	axes2D.tickLocation

	Outside, Inside,
Both



	axes2D.tickAxes

	BottomLeft, Off,
Bottom, Left, All



	axes2D.xAxis.title.visible

	1



	axes2D.xAxis.title.font.font

	Courier, Arial,
Times



	axes2D.xAxis.title.font.scale

	1



	axes2D.xAxis.title.font.useForegroundColor

	1



	axes2D.xAxis.title.font.color

	(0, 0, 0, 255)



	axes2D.xAxis.title.font.bold

	1



	axes2D.xAxis.title.font.italic

	1



	axes2D.xAxis.title.userTitle

	0



	axes2D.xAxis.title.userUnits

	0



	axes2D.xAxis.title.title

	“X-Axis”



	axes2D.xAxis.title.units

	“”



	axes2D.xAxis.label.visible

	1



	axes2D.xAxis.label.font.font

	Courier, Arial,
Times



	axes2D.xAxis.label.font.scale

	1



	axes2D.xAxis.label.font.useForegroundColor

	1



	axes2D.xAxis.label.font.color

	(0, 0, 0, 255)



	axes2D.xAxis.label.font.bold

	1



	axes2D.xAxis.label.font.italic

	1



	axes2D.xAxis.label.scaling

	0



	axes2D.xAxis.tickMarks.visible

	1



	axes2D.xAxis.tickMarks.majorMinimum

	0



	axes2D.xAxis.tickMarks.majorMaximum

	1



	axes2D.xAxis.tickMarks.minorSpacing

	0.02



	axes2D.xAxis.tickMarks.majorSpacing

	0.2



	axes2D.xAxis.grid

	0



	axes2D.yAxis.title.visible

	1



	axes2D.yAxis.title.font.font

	Courier, Arial,
Times



	axes2D.yAxis.title.font.scale

	1



	axes2D.yAxis.title.font.useForegroundColor

	1



	axes2D.yAxis.title.font.color

	(0, 0, 0, 255)



	axes2D.yAxis.title.font.bold

	1



	axes2D.yAxis.title.font.italic

	1



	axes2D.yAxis.title.userTitle

	0



	axes2D.yAxis.title.userUnits

	0



	axes2D.yAxis.title.title

	“Y-Axis”



	axes2D.yAxis.title.units

	“”



	axes2D.yAxis.label.visible

	1



	axes2D.yAxis.label.font.font

	Courier, Arial,
Times



	axes2D.yAxis.label.font.scale

	1



	axes2D.yAxis.label.font.useForegroundColor

	1



	axes2D.yAxis.label.font.color

	(0, 0, 0, 255)



	axes2D.yAxis.label.font.bold

	1



	axes2D.yAxis.label.font.italic

	1



	axes2D.yAxis.label.scaling

	0



	axes2D.yAxis.tickMarks.visible

	1



	axes2D.yAxis.tickMarks.majorMinimum

	0



	axes2D.yAxis.tickMarks.majorMaximum

	1



	axes2D.yAxis.tickMarks.minorSpacing

	0.02



	axes2D.yAxis.tickMarks.majorSpacing

	0.2



	axes2D.yAxis.grid

	0



	axes3D.visible

	1



	axes3D.autoSetTicks

	1



	axes3D.autoSetScaling

	1



	axes3D.lineWidth

	0



	axes3D.tickLocation

	Inside, Outside,
Both



	axes3D.axesType

	ClosestTriad,
FurthestTriad,
OutsideEdges,
StaticTriad,
StaticEdges



	axes3D.triadFlag

	1



	axes3D.bboxFlag

	1



	axes3D.xAxis.title.visible

	1



	axes3D.xAxis.title.font.font

	Arial, Courier,
Times



	axes3D.xAxis.title.font.scale

	1



	axes3D.xAxis.title.font.useForegroundColor

	1



	axes3D.xAxis.title.font.color

	(0, 0, 0, 255)



	axes3D.xAxis.title.font.bold

	0



	axes3D.xAxis.title.font.italic

	0



	axes3D.xAxis.title.userTitle

	0



	axes3D.xAxis.title.userUnits

	0



	axes3D.xAxis.title.title

	“X-Axis”



	axes3D.xAxis.title.units

	“”



	axes3D.xAxis.label.visible

	1



	axes3D.xAxis.label.font.font

	Arial, Courier,
Times



	axes3D.xAxis.label.font.scale

	1



	axes3D.xAxis.label.font.useForegroundColor

	1



	axes3D.xAxis.label.font.color

	(0, 0, 0, 255)



	axes3D.xAxis.label.font.bold

	0



	axes3D.xAxis.label.font.italic

	0



	axes3D.xAxis.label.scaling

	0



	axes3D.xAxis.tickMarks.visible

	1



	axes3D.xAxis.tickMarks.majorMinimum

	0



	axes3D.xAxis.tickMarks.majorMaximum

	1



	axes3D.xAxis.tickMarks.minorSpacing

	0.02



	axes3D.xAxis.tickMarks.majorSpacing

	0.2



	axes3D.xAxis.grid

	0



	axes3D.yAxis.title.visible

	1



	axes3D.yAxis.title.font.font

	Arial, Courier,
Times



	axes3D.yAxis.title.font.scale

	1



	axes3D.yAxis.title.font.useForegroundColor

	1



	axes3D.yAxis.title.font.color

	(0, 0, 0, 255)



	axes3D.yAxis.title.font.bold

	0



	axes3D.yAxis.title.font.italic

	0



	axes3D.yAxis.title.userTitle

	0



	axes3D.yAxis.title.userUnits

	0



	axes3D.yAxis.title.title

	“Y-Axis”



	axes3D.yAxis.title.units

	“”



	axes3D.yAxis.label.visible

	1



	axes3D.yAxis.label.font.font

	Arial, Courier,
Times



	axes3D.yAxis.label.font.scale

	1



	axes3D.yAxis.label.font.useForegroundColor

	1



	axes3D.yAxis.label.font.color

	(0, 0, 0, 255)



	axes3D.yAxis.label.font.bold

	0



	axes3D.yAxis.label.font.italic

	0



	axes3D.yAxis.label.scaling

	0



	axes3D.yAxis.tickMarks.visible

	1



	axes3D.yAxis.tickMarks.majorMinimum

	0



	axes3D.yAxis.tickMarks.majorMaximum

	1



	axes3D.yAxis.tickMarks.minorSpacing

	0.02



	axes3D.yAxis.tickMarks.majorSpacing

	0.2



	axes3D.yAxis.grid

	0



	axes3D.zAxis.title.visible

	1



	axes3D.zAxis.title.font.font

	Arial, Courier,
Times



	axes3D.zAxis.title.font.scale

	1



	axes3D.zAxis.title.font.useForegroundColor

	1



	axes3D.zAxis.title.font.color

	(0, 0, 0, 255)



	axes3D.zAxis.title.font.bold

	0



	axes3D.zAxis.title.font.italic

	0



	axes3D.zAxis.title.userTitle

	0



	axes3D.zAxis.title.userUnits

	0



	axes3D.zAxis.title.title

	“Z-Axis”



	axes3D.zAxis.title.units

	“”



	axes3D.zAxis.label.visible

	1



	axes3D.zAxis.label.font.font

	Arial, Courier,
Times



	axes3D.zAxis.label.font.scale

	1



	axes3D.zAxis.label.font.useForegroundColor

	1



	axes3D.zAxis.label.font.color

	(0, 0, 0, 255)



	axes3D.zAxis.label.font.bold

	0



	axes3D.zAxis.label.font.italic

	0



	axes3D.zAxis.label.scaling

	0



	axes3D.zAxis.tickMarks.visible

	1



	axes3D.zAxis.tickMarks.majorMinimum

	0



	axes3D.zAxis.tickMarks.majorMaximum

	1



	axes3D.zAxis.tickMarks.minorSpacing

	0.02



	axes3D.zAxis.tickMarks.majorSpacing

	0.2



	axes3D.zAxis.grid

	0



	axes3D.setBBoxLocation

	0



	axes3D.bboxLocation

	(0, 1, 0, 1, 0, 1)



	axes3D.triadColor

	(0, 0, 0)



	axes3D.triadLineWidth

	1



	axes3D.triadFont

	0



	axes3D.triadBold

	1



	axes3D.triadItalic

	1



	axes3D.triadSetManually

	0



	userInfoFlag

	1



	userInfoFont.font

	Arial, Courier,
Times



	userInfoFont.scale

	1



	userInfoFont.useForegroundColor

	1



	userInfoFont.color

	(0, 0, 0, 255)



	userInfoFont.bold

	0



	userInfoFont.italic

	0



	databaseInfoFlag

	1



	timeInfoFlag

	1



	databaseInfoFont.font

	Arial, Courier,
Times



	databaseInfoFont.scale

	1



	databaseInfoFont.useForegroundColor

	1



	databaseInfoFont.color

	(0, 0, 0, 255)



	databaseInfoFont.bold

	0



	databaseInfoFont.italic

	0



	databaseInfoExpansionMode

	File, Directory,
Full, Smart,
SmartDirectory



	databaseInfoTimeScale

	1



	databaseInfoTimeOffset

	0



	legendInfoFlag

	1



	backgroundColor

	(255, 255, 255, 255)



	foregroundColor

	(0, 0, 0, 255)



	gradientBackgroundStyle

	Radial,
TopToBottom,
BottomToTop,
LeftToRight,
RightToLeft



	gradientColor1

	(0, 0, 255, 255)



	gradientColor2

	(0, 0, 0, 255)



	backgroundMode

	Solid, Gradient,
Image, ImageSphere



	backgroundImage

	“”



	imageRepeatX

	1



	imageRepeatY

	1



	axesArray.visible

	1



	axesArray.ticksVisible

	1



	axesArray.autoSetTicks

	1



	axesArray.autoSetScaling

	1



	axesArray.lineWidth

	0



	axesArray.axes.title.visible

	1



	axesArray.axes.title.font.font

	Arial, Courier,
Times



	axesArray.axes.title.font.scale

	1



	axesArray.axes.title.font.useForegroundColor

	1



	axesArray.axes.title.font.color

	(0, 0, 0, 255)



	axesArray.axes.title.font.bold

	0



	axesArray.axes.title.font.italic

	0



	axesArray.axes.title.userTitle

	0



	axesArray.axes.title.userUnits

	0



	axesArray.axes.title.title

	“”



	axesArray.axes.title.units

	“”



	axesArray.axes.label.visible

	1



	axesArray.axes.label.font.font

	Arial, Courier,
Times



	axesArray.axes.label.font.scale

	1



	axesArray.axes.label.font.useForegroundColor

	1



	axesArray.axes.label.font.color

	(0, 0, 0, 255)



	axesArray.axes.label.font.bold

	0



	axesArray.axes.label.font.italic

	0



	axesArray.axes.label.scaling

	0



	axesArray.axes.tickMarks.visible

	1



	axesArray.axes.tickMarks.majorMinimum

	0



	axesArray.axes.tickMarks.majorMaximum

	1



	axesArray.axes.tickMarks.minorSpacing

	0.02



	axesArray.axes.tickMarks.majorSpacing

	0.2



	axesArray.axes.grid

	0











Axis: AxisAttributes()








	Attribute

	Default/Allowed Values



	title.visible

	1



	title.font.font

	Arial, Courier,
Times



	title.font.scale

	1



	title.font.useForegroundColor

	1



	title.font.color

	(0, 0, 0, 255)



	title.font.bold

	0



	title.font.italic

	0



	title.userTitle

	0



	title.userUnits

	0



	title.title

	“”



	title.units

	“”



	label.visible

	1



	label.font.font

	Arial, Courier,
Times



	label.font.scale

	1



	label.font.useForegroundColor

	1



	label.font.color

	(0, 0, 0, 255)



	label.font.bold

	0



	label.font.italic

	0



	label.scaling

	0



	tickMarks.visible

	1



	tickMarks.majorMinimum

	0



	tickMarks.majorMaximum

	1



	tickMarks.minorSpacing

	0.02



	tickMarks.majorSpacing

	0.2



	grid

	0











AxisAlignedSlice4D: AxisAlignedSlice4DAttributes()








	Attribute

	Default/Allowed Values



	I

	()



	J

	()



	K

	()



	L

	()











Boundary: BoundaryAttributes()








	Attribute

	Default/Allowed Values



	colorType

	ColorByMultipleColors,
ColorBySingleColor,
ColorByColorTable



	colorTableName

	“Default”



	invertColorTable

	0



	legendFlag

	1



	lineWidth

	0



	singleColor

	(0, 0, 0, 255)



	boundaryNames

	()



	opacity

	1



	wireframe

	0



	smoothingLevel

	0











BoundaryOp: BoundaryOpAttributes()








	Attribute

	Default/Allowed Values



	smoothingLevel

	0











Box: BoxAttributes()








	Attribute

	Default/Allowed Values



	amount

	Some, All



	minx

	0



	maxx

	1



	miny

	0



	maxy

	1



	minz

	0



	maxz

	1



	inverse

	0











CartographicProjection: CartographicProjectionAttributes()








	Attribute

	Default/Allowed Values



	projectionID

	aitoff, eck4,
eqdc, hammer, laea,
lcc, merc, mill, moll,
ortho, wink2



	centralMeridian

	0











Clip: ClipAttributes()








	Attribute

	Default/Allowed Values



	quality

	Fast, Accurate



	funcType

	Plane, Sphere



	plane1Status

	1



	plane2Status

	0



	plane3Status

	0



	plane1Origin

	(0, 0, 0)



	plane2Origin

	(0, 0, 0)



	plane3Origin

	(0, 0, 0)



	plane1Normal

	(1, 0, 0)



	plane2Normal

	(0, 1, 0)



	plane3Normal

	(0, 0, 1)



	planeInverse

	0



	planeToolControlledClipPlane

	Plane1, None,
Plane2, Plane3



	center

	(0, 0, 0)



	radius

	1



	sphereInverse

	0











Cone: ConeAttributes()








	Attribute

	Default/Allowed Values



	angle

	45



	origin

	(0, 0, 0)



	normal

	(0, 0, 1)



	representation

	Flattened,
ThreeD, R_Theta



	upAxis

	(0, 1, 0)



	cutByLength

	0



	length

	1











ConnectedComponents: ConnectedComponentsAttributes()








	Attribute

	Default/Allowed Values



	EnableGhostNeighborsOptimization

	1











ConstructDataBinning: ConstructDataBinningAttributes()








	Attribute

	Default/Allowed Values



	name

	“”



	varnames

	()



	binType

	()



	binBoundaries

	()



	reductionOperator

	Average, Minimum,
Maximum,
StandardDeviation,
Variance, Sum, Count,
RMS, PDF



	varForReductionOperator

	“”



	undefinedValue

	0



	binningScheme

	Uniform, Unknown



	numBins

	()



	overTime

	0



	timeStart

	0



	timeEnd

	1



	timeStride

	1



	outOfBoundsBehavior

	Clamp, Discard











Contour: ContourAttributes()








	Attribute

	Default/Allowed Values



	defaultPalette.GetControlPoints(0).colors

	(255, 0, 0, 255)



	defaultPalette.GetControlPoints(0).position

	0



	defaultPalette.GetControlPoints(1).colors

	(0, 255, 0, 255)



	defaultPalette.GetControlPoints(1).position

	0.034



	defaultPalette.GetControlPoints(2).colors

	(0, 0, 255, 255)



	defaultPalette.GetControlPoints(2).position

	0.069



	defaultPalette.GetControlPoints(3).colors

	(0, 255, 255, 255)



	defaultPalette.GetControlPoints(3).position

	0.103



	defaultPalette.GetControlPoints(4).colors

	(255, 0, 255, 255)



	defaultPalette.GetControlPoints(4).position

	0.138



	defaultPalette.GetControlPoints(5).colors

	(255, 255, 0, 255)



	defaultPalette.GetControlPoints(5).position

	0.172



	defaultPalette.GetControlPoints(6).colors

	(255, 135, 0, 255)



	defaultPalette.GetControlPoints(6).position

	0.207



	defaultPalette.GetControlPoints(7).colors

	(255, 0, 135, 255)



	defaultPalette.GetControlPoints(7).position

	0.241



	defaultPalette.GetControlPoints(8).colors

	(168, 168, 168, 255)



	defaultPalette.GetControlPoints(8).position

	0.276



	defaultPalette.GetControlPoints(9).colors

	(255, 68, 68, 255)



	defaultPalette.GetControlPoints(9).position

	0.31



	defaultPalette.GetControlPoints(10).colors

	(99, 255, 99, 255)



	defaultPalette.GetControlPoints(10).position

	0.345



	defaultPalette.GetControlPoints(11).colors

	(99, 99, 255, 255)



	defaultPalette.GetControlPoints(11).position

	0.379



	defaultPalette.GetControlPoints(12).colors

	(40, 165, 165, 255)



	defaultPalette.GetControlPoints(12).position

	0.414



	defaultPalette.GetControlPoints(13).colors

	(255, 99, 255, 255)



	defaultPalette.GetControlPoints(13).position

	0.448



	defaultPalette.GetControlPoints(14).colors

	(255, 255, 99, 255)



	defaultPalette.GetControlPoints(14).position

	0.483



	defaultPalette.GetControlPoints(15).colors

	(255, 170, 99, 255)



	defaultPalette.GetControlPoints(15).position

	0.517



	defaultPalette.GetControlPoints(16).colors

	(170, 79, 255, 255)



	defaultPalette.GetControlPoints(16).position

	0.552



	defaultPalette.GetControlPoints(17).colors

	(150, 0, 0, 255)



	defaultPalette.GetControlPoints(17).position

	0.586



	defaultPalette.GetControlPoints(18).colors

	(0, 150, 0, 255)



	defaultPalette.GetControlPoints(18).position

	0.621



	defaultPalette.GetControlPoints(19).colors

	(0, 0, 150, 255)



	defaultPalette.GetControlPoints(19).position

	0.655



	defaultPalette.GetControlPoints(20).colors

	(0, 109, 109, 255)



	defaultPalette.GetControlPoints(20).position

	0.69



	defaultPalette.GetControlPoints(21).colors

	(150, 0, 150, 255)



	defaultPalette.GetControlPoints(21).position

	0.724



	defaultPalette.GetControlPoints(22).colors

	(150, 150, 0, 255)



	defaultPalette.GetControlPoints(22).position

	0.759



	defaultPalette.GetControlPoints(23).colors

	(150, 84, 0, 255)



	defaultPalette.GetControlPoints(23).position

	0.793



	defaultPalette.GetControlPoints(24).colors

	(160, 0, 79, 255)



	defaultPalette.GetControlPoints(24).position

	0.828



	defaultPalette.GetControlPoints(25).colors

	(255, 104, 28, 255)



	defaultPalette.GetControlPoints(25).position

	0.862



	defaultPalette.GetControlPoints(26).colors

	(0, 170, 81, 255)



	defaultPalette.GetControlPoints(26).position

	0.897



	defaultPalette.GetControlPoints(27).colors

	(68, 255, 124, 255)



	defaultPalette.GetControlPoints(27).position

	0.931



	defaultPalette.GetControlPoints(28).colors

	(0, 130, 255, 255)



	defaultPalette.GetControlPoints(28).position

	0.966



	defaultPalette.GetControlPoints(29).colors

	(130, 0, 255, 255)



	defaultPalette.GetControlPoints(29).position

	1



	defaultPalette.smoothing

	None, Linear,
CubicSpline



	defaultPalette.equalSpacingFlag

	1



	defaultPalette.discreteFlag

	1



	defaultPalette.categoryName

	“Standard”



	changedColors

	()



	colorType

	ColorByMultipleColors,
ColorBySingleColor,
ColorByColorTable



	colorTableName

	“Default”



	invertColorTable

	0



	legendFlag

	1



	lineWidth

	0



	singleColor

	(255, 0, 0, 255)



	
	SetMultiColor(0,
(255, 0, 0, 255))



	
	SetMultiColor(1, (0,
255, 0, 255))



	
	SetMultiColor(2, (0,
0, 255, 255))



	
	SetMultiColor(3, (0,
255, 255, 255))



	
	SetMultiColor(4,
(255, 0, 255, 255))



	
	SetMultiColor(5,
(255, 255, 0, 255))



	
	SetMultiColor(6,
(255, 135, 0, 255))



	
	SetMultiColor(7,
(255, 0, 135, 255))



	
	SetMultiColor(8,
(168, 168, 168, 255))



	
	SetMultiColor(9,
(255, 68, 68, 255))



	contourNLevels

	10



	contourValue

	()



	contourPercent

	()



	contourMethod

	Level, Value,
Percent



	minFlag

	0



	maxFlag

	0



	min

	0



	max

	1



	scaling

	Linear, Log



	wireframe

	0











CoordSwap: CoordSwapAttributes()








	Attribute

	Default/Allowed Values



	newCoord1

	Coord1, Coord2,
Coord3



	newCoord2

	Coord2, Coord1,
Coord3



	newCoord3

	Coord3, Coord1,
Coord2











CreateBonds: CreateBondsAttributes()








	Attribute

	Default/Allowed Values



	elementVariable

	“element”



	atomicNumber1

	(1, -1)



	atomicNumber2

	(-1, -1)



	minDist

	(0.4, 0.4)



	maxDist

	(1.2, 1.9)



	maxBondsClamp

	10



	addPeriodicBonds

	0



	useUnitCellVectors

	1



	periodicInX

	1



	periodicInY

	1



	periodicInZ

	1



	xVector

	(1, 0, 0)



	yVector

	(0, 1, 0)



	zVector

	(0, 0, 1)











Curve: CurveAttributes()








	Attribute

	Default/Allowed Values



	showLines

	1



	lineWidth

	0



	showPoints

	0



	symbol

	Point,
TriangleUp,
TriangleDown, Square,
Circle, Plus, X



	pointSize

	5



	pointFillMode

	Static, Dynamic



	pointStride

	1



	symbolDensity

	50



	curveColorSource

	Cycle, Custom



	curveColor

	(0, 0, 0, 255)



	showLegend

	1



	showLabels

	1



	designator

	“”



	doBallTimeCue

	0



	ballTimeCueColor

	(0, 0, 0, 255)



	timeCueBallSize

	0.01



	doLineTimeCue

	0



	lineTimeCueColor

	(0, 0, 0, 255)



	lineTimeCueWidth

	0



	doCropTimeCue

	0



	timeForTimeCue

	0



	fillMode

	NoFill, Solid,
HorizontalGradient,
VerticalGradient



	fillColor1

	(255, 0, 0, 255)



	fillColor2

	(255, 100, 100, 255)



	polarToCartesian

	0



	polarCoordinateOrder

	R_Theta, Theta_R



	angleUnits

	Radians, Degrees











Cylinder: CylinderAttributes()








	Attribute

	Default/Allowed Values



	point1

	(0, 0, 0)



	point2

	(1, 0, 0)



	radius

	1



	inverse

	0











DataBinning: DataBinningAttributes()








	Attribute

	Default/Allowed Values



	numDimensions

	One, Two, Three



	dim1BinBasedOn

	Variable, X, Y, Z



	dim1Var

	“default”



	dim1SpecifyRange

	0



	dim1MinRange

	0



	dim1MaxRange

	1



	dim1NumBins

	50



	dim2BinBasedOn

	Variable, X, Y, Z



	dim2Var

	“default”



	dim2SpecifyRange

	0



	dim2MinRange

	0



	dim2MaxRange

	1



	dim2NumBins

	50



	dim3BinBasedOn

	Variable, X, Y, Z



	dim3Var

	“default”



	dim3SpecifyRange

	0



	dim3MinRange

	0



	dim3MaxRange

	1



	dim3NumBins

	50



	outOfBoundsBehavior

	Clamp, Discard



	reductionOperator

	Average, Minimum,
Maximum,
StandardDeviation,
Variance, Sum, Count,
RMS, PDF



	varForReduction

	“default”



	emptyVal

	0



	outputType

	OutputOnBins,
OutputOnInputMesh



	removeEmptyValFromCurve

	1











DeferExpression: DeferExpressionAttributes()








	Attribute

	Default/Allowed Values



	exprs

	()











Displace: DisplaceAttributes()








	Attribute

	Default/Allowed Values



	factor

	1



	variable

	“default”











DualMesh: DualMeshAttributes()








	Attribute

	Default/Allowed Values



	mode

	Auto,
NodesToZones,
ZonesToNodes











Edge: EdgeAttributes()








	Attribute

	Default/Allowed Values



	dummy

	1











Elevate: ElevateAttributes()








	Attribute

	Default/Allowed Values



	useXYLimits

	Auto, Never,
Always



	limitsMode

	OriginalData,
CurrentPlot



	scaling

	Linear, Log, Skew



	skewFactor

	1



	minFlag

	0



	min

	0



	maxFlag

	0



	max

	1



	zeroFlag

	0



	variable

	“default”











EllipsoidSlice: EllipsoidSliceAttributes()








	Attribute

	Default/Allowed Values



	origin

	(0, 0, 0)



	radii

	(1, 1, 1)



	rotationAngle

	(0, 0, 0)











Explode: ExplodeAttributes()








	Attribute

	Default/Allowed Values



	explosionType

	Point, Plane,
Cylinder



	explosionPoint

	(0, 0, 0)



	planePoint

	(0, 0, 0)



	planeNorm

	(0, 0, 0)



	cylinderPoint1

	(0, 0, 0)



	cylinderPoint2

	(0, 0, 0)



	materialExplosionFactor

	1



	material

	“”



	cylinderRadius

	0



	explodeMaterialCells

	0



	cellExplosionFactor

	1



	explosionPattern

	Impact, Scatter



	explodeAllCells

	0



	boundaryNames

	()



	
	explosions does not
contain any
ExplodeAttributes
objects.











ExportDB: ExportDBAttributes()








	Attribute

	Default/Allowed Values



	allTimes

	0



	dirname

	“.”



	filename

	“visit_ex_db”



	timeStateFormat

	“_%04d”



	db_type

	“”



	db_type_fullname

	“”



	variables

	()



	writeUsingGroups

	0



	groupSize

	48



	opts.types

	()



	opts.help

	“”











ExternalSurface: ExternalSurfaceAttributes()








	Attribute

	Default/Allowed Values



	removeGhosts

	0



	edgesIn2D

	1











Extrude: ExtrudeAttributes()








	Attribute

	Default/Allowed Values



	axis

	(0, 0, 1)



	byVariable

	0



	variable

	“default”



	length

	1



	steps

	1



	preserveOriginalCellNumbers

	1











FFT: FFTAttributes()








	Attribute

	Default/Allowed Values



	dummy

	0











FilledBoundary: FilledBoundaryAttributes()








	Attribute

	Default/Allowed Values



	colorType

	ColorByMultipleColors,
ColorBySingleColor,
ColorByColorTable



	colorTableName

	“Default”



	invertColorTable

	0



	legendFlag

	1



	lineWidth

	0



	singleColor

	(0, 0, 0, 255)



	boundaryNames

	()



	opacity

	1



	wireframe

	0



	drawInternal

	0



	smoothingLevel

	0



	cleanZonesOnly

	0



	mixedColor

	(255, 255, 255, 255)



	pointSize

	0.05



	pointType

	Point, Box, Axis,
Icosahedron,
Octahedron,
Tetrahedron,
SphereGeometry,
Sphere



	pointSizeVarEnabled

	0



	pointSizeVar

	“default”



	pointSizePixels

	2











Flux: FluxAttributes()








	Attribute

	Default/Allowed Values



	flowField

	“default”



	weight

	0



	weightField

	“default”











Font: FontAttributes()








	Attribute

	Default/Allowed Values



	font

	Arial, Courier,
Times



	scale

	1



	useForegroundColor

	1



	color

	(0, 0, 0, 255)



	bold

	0



	italic

	0











Global: GlobalAttributes()








	Attribute

	Default/Allowed Values



	sources

	()



	windows

	
	






	activeWindow

	0



	iconifiedFlag

	0



	autoUpdateFlag

	0



	replacePlots

	0



	applyOperator

	1



	applySelection

	1



	applyWindow

	0



	executing

	0



	windowLayout

	1



	makeDefaultConfirm

	1



	cloneWindowOnFirstRef

	0



	automaticallyAddOperator

	0



	tryHarderCyclesTimes

	0



	treatAllDBsAsTimeVarying

	0



	createMeshQualityExpressions

	1



	createTimeDerivativeExpressions

	1



	createVectorMagnitudeExpressions

	1



	newPlotsInheritSILRestriction

	1



	userDirForSessionFiles

	0



	saveCrashRecoveryFile

	1



	ignoreExtentsFromDbs

	0



	expandNewPlots

	0



	userRestoreSessionFile

	0



	precisionType

	Native, Float,
Double



	backendType

	VTK, VTKM



	removeDuplicateNodes

	0











Histogram: HistogramAttributes()








	Attribute

	Default/Allowed Values



	basedOn

	ManyZonesForSingleVar,
ManyVarsForSingleZone



	histogramType

	Frequency,
Weighted, Variable



	weightVariable

	“default”



	limitsMode

	OriginalData,
CurrentPlot



	minFlag

	0



	maxFlag

	0



	min

	0



	max

	1



	numBins

	32



	domain

	0



	zone

	0



	useBinWidths

	1



	outputType

	Block, Curve



	lineWidth

	0



	color

	(200, 80, 40, 255)



	dataScale

	Linear, Log,
SquareRoot



	binScale

	Linear, Log,
SquareRoot



	normalizeHistogram

	0



	computeAsCDF

	0











IndexSelect: IndexSelectAttributes()








	Attribute

	Default/Allowed Values



	maxDim

	ThreeD, OneD, TwoD



	dim

	TwoD, OneD, ThreeD



	xAbsMax

	-1



	xMin

	0



	xMax

	-1



	xIncr

	1



	xWrap

	0



	yAbsMax

	-1



	yMin

	0



	yMax

	-1



	yIncr

	1



	yWrap

	0



	zAbsMax

	-1



	zMin

	0



	zMax

	-1



	zIncr

	1



	zWrap

	0



	useWholeCollection

	1



	categoryName

	“Whole”



	subsetName

	“Whole”











IntegralCurve: IntegralCurveAttributes()








	Attribute

	Default/Allowed Values



	sourceType

	SpecifiedPoint,
PointList,
SpecifiedLine,
Circle,
SpecifiedPlane,
SpecifiedSphere,
SpecifiedBox,
Selection, FieldData



	pointSource

	(0, 0, 0)



	lineStart

	(0, 0, 0)



	lineEnd

	(1, 0, 0)



	planeOrigin

	(0, 0, 0)



	planeNormal

	(0, 0, 1)



	planeUpAxis

	(0, 1, 0)



	radius

	1



	sphereOrigin

	(0, 0, 0)



	boxExtents

	(0, 1, 0, 1, 0, 1)



	useWholeBox

	1



	pointList

	(0, 0, 0, 1, 0, 0, 0, 1, 0)



	fieldData

	()



	sampleDensity0

	2



	sampleDensity1

	2



	sampleDensity2

	2



	dataValue

	TimeAbsolute,
Solid, SeedPointID,
Speed, Vorticity,
ArcLength,
TimeRelative,
AverageDistanceFromSeed,
CorrelationDistance,
Difference, Variable



	dataVariable

	“”



	integrationDirection

	Forward,
Backward, Both,
ForwardDirectionless,
BackwardDirectionless,
BothDirectionless



	maxSteps

	1000



	terminateByDistance

	0



	termDistance

	10



	terminateByTime

	0



	termTime

	10



	maxStepLength

	0.1



	limitMaximumTimestep

	0



	maxTimeStep

	0.1



	relTol

	0.0001



	absTolSizeType

	FractionOfBBox,
Absolute



	absTolAbsolute

	1e-06



	absTolBBox

	1e-06



	fieldType

	Default,
FlashField,
M3DC12DField,
M3DC13DField,
Nek5000Field,
NektarPPField



	fieldConstant

	1



	velocitySource

	(0, 0, 0)



	integrationType

	DormandPrince,
Euler, Leapfrog,
AdamsBashforth, RK4,
M3DC12DIntegrator



	parallelizationAlgorithmType

	VisItSelects,
LoadOnDemand,
ParallelStaticDomains,
MasterSlave



	maxProcessCount

	10



	maxDomainCacheSize

	3



	workGroupSize

	32



	pathlines

	0



	pathlinesOverrideStartingTimeFlag

	0



	pathlinesOverrideStartingTime

	0



	pathlinesPeriod

	0



	pathlinesCMFE

	POS_CMFE,
CONN_CMFE



	displayGeometry

	Lines, Tubes,
Ribbons



	cleanupMethod

	NoCleanup, Merge,
Before, After



	cleanupThreshold

	1e-08



	cropBeginFlag

	0



	cropBegin

	0



	cropEndFlag

	0



	cropEnd

	0



	cropValue

	Time, Distance,
StepNumber



	sampleDistance0

	10



	sampleDistance1

	10



	sampleDistance2

	10



	fillInterior

	1



	randomSamples

	0



	randomSeed

	0



	numberOfRandomSamples

	1



	issueAdvectionWarnings

	1



	issueBoundaryWarnings

	1



	issueTerminationWarnings

	1



	issueStepsizeWarnings

	1



	issueStiffnessWarnings

	1



	issueCriticalPointsWarnings

	1



	criticalPointThreshold

	0.001



	correlationDistanceAngTol

	5



	correlationDistanceMinDistAbsolute

	1



	correlationDistanceMinDistBBox

	0.005



	correlationDistanceMinDistType

	FractionOfBBox,
Absolute



	selection

	“”











InverseGhostZone: InverseGhostZoneAttributes()








	Attribute

	Default/Allowed Values



	requestGhostZones

	1



	showDuplicated

	1



	showEnhancedConnectivity

	1



	showReducedConnectivity

	1



	showAMRRefined

	1



	showExterior

	1



	showNotApplicable

	1











Isosurface: IsosurfaceAttributes()








	Attribute

	Default/Allowed Values



	contourNLevels

	10



	contourValue

	()



	contourPercent

	()



	contourMethod

	Level, Value,
Percent



	minFlag

	0



	min

	0



	maxFlag

	0



	max

	1



	scaling

	Linear, Log



	variable

	“default”











Isovolume: IsovolumeAttributes()








	Attribute

	Default/Allowed Values



	lbound

	-1e+37



	ubound

	1e+37



	variable

	“default”











Keyframe: KeyframeAttributes()








	Attribute

	Default/Allowed Values



	enabled

	0



	nFrames

	1



	nFramesWasUserSet

	0











LCS: LCSAttributes()








	Attribute

	Default/Allowed Values



	sourceType

	NativeMesh,
RegularGrid



	Resolution

	(10, 10, 10)



	UseDataSetStart

	Full, Subset



	StartPosition

	(0, 0, 0)



	UseDataSetEnd

	Full, Subset



	EndPosition

	(1, 1, 1)



	integrationDirection

	Forward,
Backward, Both



	auxiliaryGrid

	None, TwoDim,
ThreeDim



	auxiliaryGridSpacing

	0.0001



	maxSteps

	1000



	operationType

	Lyapunov,
IntegrationTime,
ArcLength,
AverageDistanceFromSeed,
EigenValue,
EigenVector



	cauchyGreenTensor

	Right, Left



	eigenComponent

	Largest,
Smallest,
Intermediate,
PosShearVector,
NegShearVector,
PosLambdaShearVector,
NegLambdaShearVector



	eigenWeight

	1



	operatorType

	BaseValue,
Gradient



	terminationType

	Time, Distance,
Size



	terminateBySize

	0



	termSize

	10



	terminateByDistance

	0



	termDistance

	10



	terminateByTime

	0



	termTime

	10



	maxStepLength

	0.1



	limitMaximumTimestep

	0



	maxTimeStep

	0.1



	relTol

	0.0001



	absTolSizeType

	FractionOfBBox,
Absolute



	absTolAbsolute

	1e-06



	absTolBBox

	1e-06



	fieldType

	Default,
FlashField,
M3DC12DField,
M3DC13DField,
Nek5000Field,
NektarPPField



	fieldConstant

	1



	velocitySource

	(0, 0, 0)



	integrationType

	DormandPrince,
Euler, Leapfrog,
AdamsBashforth, RK4,
M3DC12DIntegrator



	clampLogValues

	0



	parallelizationAlgorithmType

	VisItSelects,
LoadOnDemand,
ParallelStaticDomains,
MasterSlave



	maxProcessCount

	10



	maxDomainCacheSize

	3



	workGroupSize

	32



	pathlines

	0



	pathlinesOverrideStartingTimeFlag

	0



	pathlinesOverrideStartingTime

	0



	pathlinesPeriod

	0



	pathlinesCMFE

	POS_CMFE,
CONN_CMFE



	thresholdLimit

	0.1



	radialLimit

	0.1



	boundaryLimit

	0.1



	seedLimit

	10



	issueAdvectionWarnings

	1



	issueBoundaryWarnings

	1



	issueTerminationWarnings

	1



	issueStepsizeWarnings

	1



	issueStiffnessWarnings

	1



	issueCriticalPointsWarnings

	1



	criticalPointThreshold

	0.001











Label: LabelAttributes()








	Attribute

	Default/Allowed Values



	legendFlag

	1



	showNodes

	0



	showCells

	1



	restrictNumberOfLabels

	1



	drawLabelsFacing

	Front, Back,
FrontAndBack



	labelDisplayFormat

	Natural,
LogicalIndex, Index



	numberOfLabels

	200



	textFont1.font

	Arial, Courier,
Times



	textFont1.scale

	4



	textFont1.useForegroundColor

	1



	textFont1.color

	(255, 0, 0, 255)



	textFont1.bold

	0



	textFont1.italic

	0



	textFont2.font

	Arial, Courier,
Times



	textFont2.scale

	4



	textFont2.useForegroundColor

	1



	textFont2.color

	(0, 0, 255, 255)



	textFont2.bold

	0



	textFont2.italic

	0



	horizontalJustification

	HCenter, Left,
Right



	verticalJustification

	VCenter, Top,
Bottom



	depthTestMode

	LABEL_DT_AUTO,
LABEL_DT_ALWAYS,
LABEL_DT_NEVER



	formatTemplate

	“%g”











Lagrangian: LagrangianAttributes()








	Attribute

	Default/Allowed Values



	seedPoint

	(0, 0, 0)



	numSteps

	1000



	XAxisSample

	Step, Time,
ArcLength, Speed,
Vorticity, Variable



	YAxisSample

	Step, Time,
ArcLength, Speed,
Vorticity, Variable



	variable

	“default”











Light: LightAttributes()








	Attribute

	Default/Allowed Values



	enabledFlag

	1



	type

	Camera, Ambient,
Object



	direction

	(0, 0, -1)



	color

	(255, 255, 255, 255)



	brightness

	1











LimitCycle: LimitCycleAttributes()








	Attribute

	Default/Allowed Values



	sourceType

	SpecifiedLine,
SpecifiedPlane



	lineStart

	(0, 0, 0)



	lineEnd

	(1, 0, 0)



	planeOrigin

	(0, 0, 0)



	planeNormal

	(0, 0, 1)



	planeUpAxis

	(0, 1, 0)



	sampleDensity0

	2



	sampleDensity1

	2



	dataValue

	TimeAbsolute,
Solid, SeedPointID,
Speed, Vorticity,
ArcLength,
TimeRelative,
AverageDistanceFromSeed,
CorrelationDistance,
Difference, Variable



	dataVariable

	“”



	integrationDirection

	Forward,
Backward, Both,
ForwardDirectionless,
BackwardDirectionless,
BothDirectionless



	maxSteps

	1000



	terminateByDistance

	0



	termDistance

	10



	terminateByTime

	0



	termTime

	10



	maxStepLength

	0.1



	limitMaximumTimestep

	0



	maxTimeStep

	0.1



	relTol

	0.0001



	absTolSizeType

	FractionOfBBox,
Absolute



	absTolAbsolute

	1e-06



	absTolBBox

	1e-06



	fieldType

	Default,
FlashField,
M3DC12DField,
M3DC13DField,
Nek5000Field,
NektarPPField



	fieldConstant

	1



	velocitySource

	(0, 0, 0)



	integrationType

	DormandPrince,
Euler, Leapfrog,
AdamsBashforth, RK4,
M3DC12DIntegrator



	parallelizationAlgorithmType

	VisItSelects,
LoadOnDemand,
ParallelStaticDomains,
MasterSlave



	maxProcessCount

	10



	maxDomainCacheSize

	3



	workGroupSize

	32



	pathlines

	0



	pathlinesOverrideStartingTimeFlag

	0



	pathlinesOverrideStartingTime

	0



	pathlinesPeriod

	0



	pathlinesCMFE

	POS_CMFE,
CONN_CMFE



	sampleDistance0

	10



	sampleDistance1

	10



	sampleDistance2

	10



	fillInterior

	1



	randomSamples

	0



	randomSeed

	0



	numberOfRandomSamples

	1



	forceNodeCenteredData

	0



	cycleTolerance

	1e-06



	maxIterations

	10



	showPartialResults

	1



	showReturnDistances

	0



	issueAdvectionWarnings

	1



	issueBoundaryWarnings

	1



	issueTerminationWarnings

	1



	issueStepsizeWarnings

	1



	issueStiffnessWarnings

	1



	issueCriticalPointsWarnings

	1



	criticalPointThreshold

	0.001



	correlationDistanceAngTol

	5



	correlationDistanceMinDistAbsolute

	1



	correlationDistanceMinDistBBox

	0.005



	correlationDistanceMinDistType

	FractionOfBBox,
Absolute











Lineout: LineoutAttributes()








	Attribute

	Default/Allowed Values



	point1

	(0, 0, 0)



	point2

	(1, 1, 0)



	interactive

	0



	ignoreGlobal

	0



	samplingOn

	0



	numberOfSamplePoints

	50



	reflineLabels

	0











Material: MaterialAttributes()








	Attribute

	Default/Allowed Values



	smoothing

	0



	forceMIR

	0



	cleanZonesOnly

	0



	needValidConnectivity

	0



	algorithm

	EquiZ, EquiT,
Isovolume, PLIC,
Discrete



	iterationEnabled

	0



	numIterations

	5



	iterationDamping

	0.4



	simplifyHeavilyMixedZones

	0



	maxMaterialsPerZone

	3



	isoVolumeFraction

	0.5



	annealingTime

	10











Mesh: MeshAttributes()








	Attribute

	Default/Allowed Values



	legendFlag

	1



	lineWidth

	0



	meshColor

	(0, 0, 0, 255)



	meshColorSource

	Foreground,
MeshCustom



	opaqueColorSource

	Background,
OpaqueCustom



	opaqueMode

	Auto, On, Off



	pointSize

	0.05



	opaqueColor

	(255, 255, 255, 255)



	smoothingLevel

	None, Fast, High



	pointSizeVarEnabled

	0



	pointSizeVar

	“default”



	pointType

	Point, Box, Axis,
Icosahedron,
Octahedron,
Tetrahedron,
SphereGeometry,
Sphere



	showInternal

	0



	pointSizePixels

	2



	opacity

	1











MeshManagement: MeshManagementAttributes()








	Attribute

	Default/Allowed Values



	discretizationTolerance

	(0.02, 0.025, 0.05)



	discretizationToleranceX

	()



	discretizationToleranceY

	()



	discretizationToleranceZ

	()



	discretizationMode

	Uniform,
Adaptive, MultiPass



	discretizeBoundaryOnly

	0



	passNativeCSG

	0











Molecule: MoleculeAttributes()








	Attribute

	Default/Allowed Values



	drawAtomsAs

	SphereAtoms,
NoAtoms,
ImposterAtoms



	scaleRadiusBy

	Fixed, Covalent,
Atomic, Variable



	drawBondsAs

	CylinderBonds,
NoBonds, LineBonds



	colorBonds

	ColorByAtom,
SingleColor



	bondSingleColor

	(128, 128, 128, 255)



	radiusVariable

	“default”



	radiusScaleFactor

	1



	radiusFixed

	0.3



	atomSphereQuality

	Medium, Low, High,
Super



	bondCylinderQuality

	Medium, Low, High,
Super



	bondRadius

	0.12



	bondLineWidth

	0



	elementColorTable

	“cpk_jmol”



	residueTypeColorTable

	“amino_shapely”



	residueSequenceColorTable

	“Default”



	continuousColorTable

	“Default”



	legendFlag

	1



	minFlag

	0



	scalarMin

	0



	maxFlag

	0



	scalarMax

	1











MultiCurve: MultiCurveAttributes()








	Attribute

	Default/Allowed Values



	defaultPalette.GetControlPoints(0).colors

	(255, 0, 0, 255)



	defaultPalette.GetControlPoints(0).position

	0



	defaultPalette.GetControlPoints(1).colors

	(0, 255, 0, 255)



	defaultPalette.GetControlPoints(1).position

	0.034



	defaultPalette.GetControlPoints(2).colors

	(0, 0, 255, 255)



	defaultPalette.GetControlPoints(2).position

	0.069



	defaultPalette.GetControlPoints(3).colors

	(0, 255, 255, 255)



	defaultPalette.GetControlPoints(3).position

	0.103



	defaultPalette.GetControlPoints(4).colors

	(255, 0, 255, 255)



	defaultPalette.GetControlPoints(4).position

	0.138



	defaultPalette.GetControlPoints(5).colors

	(255, 255, 0, 255)



	defaultPalette.GetControlPoints(5).position

	0.172



	defaultPalette.GetControlPoints(6).colors

	(255, 135, 0, 255)



	defaultPalette.GetControlPoints(6).position

	0.207



	defaultPalette.GetControlPoints(7).colors

	(255, 0, 135, 255)



	defaultPalette.GetControlPoints(7).position

	0.241



	defaultPalette.GetControlPoints(8).colors

	(168, 168, 168, 255)



	defaultPalette.GetControlPoints(8).position

	0.276



	defaultPalette.GetControlPoints(9).colors

	(255, 68, 68, 255)



	defaultPalette.GetControlPoints(9).position

	0.31



	defaultPalette.GetControlPoints(10).colors

	(99, 255, 99, 255)



	defaultPalette.GetControlPoints(10).position

	0.345



	defaultPalette.GetControlPoints(11).colors

	(99, 99, 255, 255)



	defaultPalette.GetControlPoints(11).position

	0.379



	defaultPalette.GetControlPoints(12).colors

	(40, 165, 165, 255)



	defaultPalette.GetControlPoints(12).position

	0.414



	defaultPalette.GetControlPoints(13).colors

	(255, 99, 255, 255)



	defaultPalette.GetControlPoints(13).position

	0.448



	defaultPalette.GetControlPoints(14).colors

	(255, 255, 99, 255)



	defaultPalette.GetControlPoints(14).position

	0.483



	defaultPalette.GetControlPoints(15).colors

	(255, 170, 99, 255)



	defaultPalette.GetControlPoints(15).position

	0.517



	defaultPalette.GetControlPoints(16).colors

	(170, 79, 255, 255)



	defaultPalette.GetControlPoints(16).position

	0.552



	defaultPalette.GetControlPoints(17).colors

	(150, 0, 0, 255)



	defaultPalette.GetControlPoints(17).position

	0.586



	defaultPalette.GetControlPoints(18).colors

	(0, 150, 0, 255)



	defaultPalette.GetControlPoints(18).position

	0.621



	defaultPalette.GetControlPoints(19).colors

	(0, 0, 150, 255)



	defaultPalette.GetControlPoints(19).position

	0.655



	defaultPalette.GetControlPoints(20).colors

	(0, 109, 109, 255)



	defaultPalette.GetControlPoints(20).position

	0.69



	defaultPalette.GetControlPoints(21).colors

	(150, 0, 150, 255)



	defaultPalette.GetControlPoints(21).position

	0.724



	defaultPalette.GetControlPoints(22).colors

	(150, 150, 0, 255)



	defaultPalette.GetControlPoints(22).position

	0.759



	defaultPalette.GetControlPoints(23).colors

	(150, 84, 0, 255)



	defaultPalette.GetControlPoints(23).position

	0.793



	defaultPalette.GetControlPoints(24).colors

	(160, 0, 79, 255)



	defaultPalette.GetControlPoints(24).position

	0.828



	defaultPalette.GetControlPoints(25).colors

	(255, 104, 28, 255)



	defaultPalette.GetControlPoints(25).position

	0.862



	defaultPalette.GetControlPoints(26).colors

	(0, 170, 81, 255)



	defaultPalette.GetControlPoints(26).position

	0.897



	defaultPalette.GetControlPoints(27).colors

	(68, 255, 124, 255)



	defaultPalette.GetControlPoints(27).position

	0.931



	defaultPalette.GetControlPoints(28).colors

	(0, 130, 255, 255)



	defaultPalette.GetControlPoints(28).position

	0.966



	defaultPalette.GetControlPoints(29).colors

	(130, 0, 255, 255)



	defaultPalette.GetControlPoints(29).position

	1



	defaultPalette.smoothing

	None, Linear,
CubicSpline



	defaultPalette.equalSpacingFlag

	1



	defaultPalette.discreteFlag

	1



	defaultPalette.categoryName

	“Standard”



	changedColors

	()



	colorType

	ColorByMultipleColors,
ColorBySingleColor



	singleColor

	(255, 0, 0, 255)



	
	SetMultiColor(0,
(255, 0, 0, 255))



	
	SetMultiColor(1, (0,
255, 0, 255))



	
	SetMultiColor(2, (0,
0, 255, 255))



	
	SetMultiColor(3, (0,
255, 255, 255))



	
	SetMultiColor(4,
(255, 0, 255, 255))



	
	SetMultiColor(5,
(255, 255, 0, 255))



	
	SetMultiColor(6,
(255, 135, 0, 255))



	
	SetMultiColor(7,
(255, 0, 135, 255))



	
	SetMultiColor(8,
(168, 168, 168, 255))



	
	SetMultiColor(9,
(255, 68, 68, 255))



	
	SetMultiColor(10,
(99, 255, 99, 255))



	
	SetMultiColor(11,
(99, 99, 255, 255))



	
	SetMultiColor(12,
(40, 165, 165, 255))



	
	SetMultiColor(13,
(255, 99, 255, 255))



	
	SetMultiColor(14,
(255, 255, 99, 255))



	
	SetMultiColor(15,
(255, 170, 99, 255))



	lineWidth

	0



	yAxisTitleFormat

	“%g”



	useYAxisTickSpacing

	0



	yAxisTickSpacing

	1



	displayMarkers

	1



	markerScale

	1



	markerLineWidth

	0



	markerVariable

	“default”



	displayIds

	0



	idVariable

	“default”



	legendFlag

	1











MultiresControl: MultiresControlAttributes()








	Attribute

	Default/Allowed Values



	resolution

	0



	maxResolution

	1



	info

	“”











OnionPeel: OnionPeelAttributes()








	Attribute

	Default/Allowed Values



	adjacencyType

	Node, Face



	useGlobalId

	0



	categoryName

	“Whole”



	subsetName

	“Whole”



	index

	
	






	logical

	0



	requestedLayer

	0



	seedType

	SeedCell,
SeedNode



	honorOriginalMesh

	1











ParallelCoordinates: ParallelCoordinatesAttributes()








	Attribute

	Default/Allowed Values



	scalarAxisNames

	()



	visualAxisNames

	()



	extentMinima

	()



	extentMaxima

	()



	drawLines

	1



	linesColor

	(128, 0, 0, 255)



	drawContext

	1



	contextGamma

	2



	contextNumPartitions

	128



	contextColor

	(0, 220, 0, 255)



	drawLinesOnlyIfExtentsOn

	1



	unifyAxisExtents

	0



	linesNumPartitions

	512



	focusGamma

	4



	drawFocusAs

	BinsOfConstantColor,
IndividualLines,
BinsColoredByPopulation











PersistentParticles: PersistentParticlesAttributes()








	Attribute

	Default/Allowed Values



	startIndex

	0



	stopIndex

	1



	stride

	1



	startPathType

	Absolute,
Relative



	stopPathType

	Absolute,
Relative



	traceVariableX

	“default”



	traceVariableY

	“default”



	traceVariableZ

	“default”



	connectParticles

	0



	showPoints

	0



	indexVariable

	“default”











Poincare: PoincareAttributes()








	Attribute

	Default/Allowed Values



	opacityType

	Explicit,
ColorTable



	opacity

	1



	minPunctures

	50



	maxPunctures

	500



	puncturePlotType

	Single, Double



	maxSteps

	1000



	terminateByTime

	0



	termTime

	10



	puncturePeriodTolerance

	0.01



	puncturePlane

	Poloidal,
Toroidal, Arbitrary



	sourceType

	SpecifiedPoint,
PointList,
SpecifiedLine



	pointSource

	(0, 0, 0)



	pointList

	(0, 0, 0, 1, 0, 0, 0, 1, 0)



	lineStart

	(0, 0, 0)



	lineEnd

	(1, 0, 0)



	pointDensity

	1



	fieldType

	Default,
FlashField,
M3DC12DField,
M3DC13DField,
Nek5000Field,
NektarPPField



	forceNodeCenteredData

	0



	fieldConstant

	1



	velocitySource

	(0, 0, 0)



	integrationType

	AdamsBashforth,
Euler, Leapfrog,
DormandPrince, RK4,
M3DC12DIntegrator



	coordinateSystem

	Cartesian,
Cylindrical



	maxStepLength

	0.1



	limitMaximumTimestep

	0



	maxTimeStep

	0.1



	relTol

	0.0001



	absTolSizeType

	FractionOfBBox,
Absolute



	absTolAbsolute

	1e-05



	absTolBBox

	1e-06



	analysis

	Normal, None



	maximumToroidalWinding

	0



	overrideToroidalWinding

	0



	overridePoloidalWinding

	0



	windingPairConfidence

	0.9



	rationalSurfaceFactor

	0.1



	overlaps

	Remove, Raw,
Merge, Smooth



	meshType

	Curves, Surfaces



	numberPlanes

	1



	singlePlane

	0



	min

	0



	max

	0



	minFlag

	0



	maxFlag

	0



	colorType

	ColorByColorTable,
ColorBySingleColor



	singleColor

	(0, 0, 0, 255)



	colorTableName

	“Default”



	dataValue

	SafetyFactorQ,
Solid, SafetyFactorP,
SafetyFactorQ_NotP,
SafetyFactorP_NotQ,
ToroidalWindings,
PoloidalWindingsQ,
PoloidalWindingsP,
FieldlineOrder,
PointOrder,
PlaneOrder,
WindingGroupOrder,
WindingPointOrder,
WindingPointOrderModulo



	showRationalSurfaces

	0



	RationalSurfaceMaxIterations

	2



	showOPoints

	0



	OPointMaxIterations

	2



	showXPoints

	0



	XPointMaxIterations

	2



	performOLineAnalysis

	0



	OLineToroidalWinding

	1



	OLineAxisFileName

	“”



	showChaotic

	0



	showIslands

	0



	SummaryFlag

	1



	verboseFlag

	0



	show1DPlots

	0



	showLines

	1



	showPoints

	0



	parallelizationAlgorithmType

	VisItSelects,
LoadOnDemand,
ParallelStaticDomains,
MasterSlave



	maxProcessCount

	10



	maxDomainCacheSize

	3



	workGroupSize

	32



	pathlines

	0



	pathlinesOverrideStartingTimeFlag

	0



	pathlinesOverrideStartingTime

	0



	pathlinesPeriod

	0



	pathlinesCMFE

	POS_CMFE,
CONN_CMFE



	issueTerminationWarnings

	1



	issueStepsizeWarnings

	1



	issueStiffnessWarnings

	1



	issueCriticalPointsWarnings

	1



	criticalPointThreshold

	0.001











Printer: PrinterAttributes()








	Attribute

	Default/Allowed Values



	printerName

	“”



	printProgram

	“lpr”



	documentName

	“untitled”



	creator

	“”



	numCopies

	1



	portrait

	1



	printColor

	1



	outputToFile

	0



	outputToFileName

	“untitled”



	pageSize

	2











Process: ProcessAttributes()








	Attribute

	Default/Allowed Values



	pids

	()



	ppids

	()



	hosts

	()



	isParallel

	0



	memory

	()



	times

	()











Project: ProjectAttributes()








	Attribute

	Default/Allowed Values



	projectionType

	XYCartesian,
ZYCartesian,
XZCartesian,
XRCylindrical,
YRCylindrical,
ZRCylindrical



	vectorTransformMethod

	AsDirection,
None, AsPoint,
AsDisplacement











Pseudocolor: PseudocolorAttributes()








	Attribute

	Default/Allowed Values



	scaling

	Linear, Log, Skew



	skewFactor

	1



	limitsMode

	OriginalData,
CurrentPlot



	minFlag

	0



	min

	0



	useBelowMinColor

	0



	belowMinColor

	(0, 0, 0, 255)



	maxFlag

	0



	max

	1



	useAboveMaxColor

	0



	aboveMaxColor

	(0, 0, 0, 255)



	centering

	Natural, Nodal,
Zonal



	colorTableName

	“hot”



	invertColorTable

	0



	opacityType

	FullyOpaque,
ColorTable, Constant,
Ramp, VariableRange



	opacityVariable

	“”



	opacity

	1



	opacityVarMin

	0



	opacityVarMax

	1



	opacityVarMinFlag

	0



	opacityVarMaxFlag

	0



	pointSize

	0.05



	pointType

	Point, Box, Axis,
Icosahedron,
Octahedron,
Tetrahedron,
SphereGeometry,
Sphere



	pointSizeVarEnabled

	0



	pointSizeVar

	“default”



	pointSizePixels

	2



	lineType

	Line, Tube, Ribbon



	lineWidth

	0



	tubeResolution

	10



	tubeRadiusSizeType

	FractionOfBBox,
Absolute



	tubeRadiusAbsolute

	0.125



	tubeRadiusBBox

	0.005



	tubeRadiusVarEnabled

	0



	tubeRadiusVar

	“”



	tubeRadiusVarRatio

	10



	tailStyle

	None, Spheres,
Cones



	headStyle

	None, Spheres,
Cones



	endPointRadiusSizeType

	FractionOfBBox,
Absolute



	endPointRadiusAbsolute

	0.125



	endPointRadiusBBox

	0.05



	endPointResolution

	10



	endPointRatio

	5



	endPointRadiusVarEnabled

	0



	endPointRadiusVar

	“”



	endPointRadiusVarRatio

	10



	renderSurfaces

	1



	renderWireframe

	0



	renderPoints

	0



	smoothingLevel

	0



	legendFlag

	1



	lightingFlag

	1



	wireframeColor

	(0, 0, 0, 0)



	pointColor

	(0, 0, 0, 0)











RadialResample: RadialResampleAttributes()








	Attribute

	Default/Allowed Values



	isFast

	0



	minTheta

	0



	maxTheta

	90



	deltaTheta

	5



	radius

	0.5



	deltaRadius

	0.05



	center

	(0.5, 0.5, 0.5)



	is3D

	1



	minAzimuth

	0



	maxAzimuth

	180



	deltaAzimuth

	5











Reflect: ReflectAttributes()








	Attribute

	Default/Allowed Values



	octant

	PXPYPZ, NXPYPZ,
PXNYPZ, NXNYPZ,
PXPYNZ, NXPYNZ,
PXNYNZ, NXNYNZ



	useXBoundary

	1



	specifiedX

	0



	useYBoundary

	1



	specifiedY

	0



	useZBoundary

	1



	specifiedZ

	0



	reflections

	(1, 0, 1, 0, 0, 0, 0, 0)



	planePoint

	(0, 0, 0)



	planeNormal

	(0, 0, 0)



	reflectType

	Axis, Plane











Remap: RemapAttributes()








	Attribute

	Default/Allowed Values



	useExtents

	1



	startX

	0



	endX

	1



	cellsX

	10



	startY

	0



	endY

	1



	cellsY

	10



	is3D

	1



	startZ

	0



	endZ

	1



	cellsZ

	10



	variableType

	intrinsic,
extrinsic











Rendering: RenderingAttributes()








	Attribute

	Default/Allowed Values



	antialiasing

	0



	orderComposite

	1



	depthCompositeThreads

	2



	depthCompositeBlocking

	65536



	alphaCompositeThreads

	2



	alphaCompositeBlocking

	65536



	depthPeeling

	0



	occlusionRatio

	0



	numberOfPeels

	16



	multiresolutionMode

	0



	multiresolutionCellSize

	0.002



	geometryRepresentation

	Surfaces,
Wireframe, Points



	stereoRendering

	0



	stereoType

	CrystalEyes,
RedBlue, Interlaced,
RedGreen



	notifyForEachRender

	0



	scalableActivationMode

	Auto, Never,
Always



	scalableAutoThreshold

	2000000



	specularFlag

	0



	specularCoeff

	0.6



	specularPower

	10



	specularColor

	(255, 255, 255, 255)



	doShadowing

	0



	shadowStrength

	0.5



	doDepthCueing

	0



	depthCueingAutomatic

	1



	startCuePoint

	(-10, 0, 0)



	endCuePoint

	(10, 0, 0)



	compressionActivationMode

	Never, Always,
Auto



	colorTexturingFlag

	1



	compactDomainsActivationMode

	Never, Always,
Auto



	compactDomainsAutoThreshold

	256



	osprayRendering

	0



	ospraySPP

	1



	osprayAO

	0



	osprayShadows

	0











Replicate: ReplicateAttributes()








	Attribute

	Default/Allowed Values



	useUnitCellVectors

	0



	xVector

	(1, 0, 0)



	yVector

	(0, 1, 0)



	zVector

	(0, 0, 1)



	xReplications

	1



	yReplications

	1



	zReplications

	1



	mergeResults

	1



	replicateUnitCellAtoms

	0



	shiftPeriodicAtomOrigin

	0



	newPeriodicOrigin

	(0, 0, 0)











Resample: ResampleAttributes()








	Attribute

	Default/Allowed Values



	useExtents

	1



	startX

	0



	endX

	1



	samplesX

	10



	startY

	0



	endY

	1



	samplesY

	10



	is3D

	1



	startZ

	0



	endZ

	1



	samplesZ

	10



	tieResolver

	random, largest,
smallest



	tieResolverVariable

	“default”



	defaultValue

	0



	distributedResample

	1



	cellCenteredOutput

	0











Revolve: RevolveAttributes()








	Attribute

	Default/Allowed Values



	meshType

	Auto, XY, RZ, ZR



	autoAxis

	1



	axis

	(1, 0, 0)



	startAngle

	0



	stopAngle

	360



	steps

	30











SPHResample: SPHResampleAttributes()








	Attribute

	Default/Allowed Values



	minX

	0



	maxX

	1



	xnum

	10



	minY

	0



	maxY

	1



	ynum

	10



	minZ

	0



	maxZ

	1



	znum

	10



	tensorSupportVariable

	“H”



	weightVariable

	“mass”



	RK

	1











SaveWindow: SaveWindowAttributes()








	Attribute

	Default/Allowed Values



	outputToCurrentDirectory

	1



	outputDirectory

	“.”



	fileName

	“visit”



	family

	1



	format

	PNG, BMP, CURVE,
JPEG, OBJ, POSTSCRIPT,
POVRAY, PPM, RGB, STL,
TIFF, ULTRA, VTK, PLY,
EXR



	width

	1024



	height

	1024



	screenCapture

	0



	saveTiled

	0



	quality

	80



	progressive

	0



	binary

	0



	stereo

	0



	compression

	None, PackBits,
Jpeg, Deflate, LZW



	forceMerge

	0



	resConstraint

	ScreenProportions,
NoConstraint,
EqualWidthHeight



	pixelData

	1



	advancedMultiWindowSave

	0



	subWindowAtts.win1.position

	(0, 0)



	subWindowAtts.win1.size

	(128, 128)



	subWindowAtts.win1.layer

	0



	subWindowAtts.win1.transparency

	0



	subWindowAtts.win1.omitWindow

	0



	subWindowAtts.win2.position

	(0, 0)



	subWindowAtts.win2.size

	(128, 128)



	subWindowAtts.win2.layer

	0



	subWindowAtts.win2.transparency

	0



	subWindowAtts.win2.omitWindow

	0



	subWindowAtts.win3.position

	(0, 0)



	subWindowAtts.win3.size

	(128, 128)



	subWindowAtts.win3.layer

	0



	subWindowAtts.win3.transparency

	0



	subWindowAtts.win3.omitWindow

	0



	subWindowAtts.win4.position

	(0, 0)



	subWindowAtts.win4.size

	(128, 128)



	subWindowAtts.win4.layer

	0



	subWindowAtts.win4.transparency

	0



	subWindowAtts.win4.omitWindow

	0



	subWindowAtts.win5.position

	(0, 0)



	subWindowAtts.win5.size

	(128, 128)



	subWindowAtts.win5.layer

	0



	subWindowAtts.win5.transparency

	0



	subWindowAtts.win5.omitWindow

	0



	subWindowAtts.win6.position

	(0, 0)



	subWindowAtts.win6.size

	(128, 128)



	subWindowAtts.win6.layer

	0



	subWindowAtts.win6.transparency

	0



	subWindowAtts.win6.omitWindow

	0



	subWindowAtts.win7.position

	(0, 0)



	subWindowAtts.win7.size

	(128, 128)



	subWindowAtts.win7.layer

	0



	subWindowAtts.win7.transparency

	0



	subWindowAtts.win7.omitWindow

	0



	subWindowAtts.win8.position

	(0, 0)



	subWindowAtts.win8.size

	(128, 128)



	subWindowAtts.win8.layer

	0



	subWindowAtts.win8.transparency

	0



	subWindowAtts.win8.omitWindow

	0



	subWindowAtts.win9.position

	(0, 0)



	subWindowAtts.win9.size

	(128, 128)



	subWindowAtts.win9.layer

	0



	subWindowAtts.win9.transparency

	0



	subWindowAtts.win9.omitWindow

	0



	subWindowAtts.win10.position

	(0, 0)



	subWindowAtts.win10.size

	(128, 128)



	subWindowAtts.win10.layer

	0



	subWindowAtts.win10.transparency

	0



	subWindowAtts.win10.omitWindow

	0



	subWindowAtts.win11.position

	(0, 0)



	subWindowAtts.win11.size

	(128, 128)



	subWindowAtts.win11.layer

	0



	subWindowAtts.win11.transparency

	0



	subWindowAtts.win11.omitWindow

	0



	subWindowAtts.win12.position

	(0, 0)



	subWindowAtts.win12.size

	(128, 128)



	subWindowAtts.win12.layer

	0



	subWindowAtts.win12.transparency

	0



	subWindowAtts.win12.omitWindow

	0



	subWindowAtts.win13.position

	(0, 0)



	subWindowAtts.win13.size

	(128, 128)



	subWindowAtts.win13.layer

	0



	subWindowAtts.win13.transparency

	0



	subWindowAtts.win13.omitWindow

	0



	subWindowAtts.win14.position

	(0, 0)



	subWindowAtts.win14.size

	(128, 128)



	subWindowAtts.win14.layer

	0



	subWindowAtts.win14.transparency

	0



	subWindowAtts.win14.omitWindow

	0



	subWindowAtts.win15.position

	(0, 0)



	subWindowAtts.win15.size

	(128, 128)



	subWindowAtts.win15.layer

	0



	subWindowAtts.win15.transparency

	0



	subWindowAtts.win15.omitWindow

	0



	subWindowAtts.win16.position

	(0, 0)



	subWindowAtts.win16.size

	(128, 128)



	subWindowAtts.win16.layer

	0



	subWindowAtts.win16.transparency

	0



	subWindowAtts.win16.omitWindow

	0



	opts.types

	()



	opts.help

	“”











Scatter: ScatterAttributes()








	Attribute

	Default/Allowed Values



	var1

	“default”



	var1Role

	Coordinate0,
Coordinate1,
Coordinate2, Color,
None



	var1MinFlag

	0



	var1MaxFlag

	0



	var1Min

	0



	var1Max

	1



	var1Scaling

	Linear, Log, Skew



	var1SkewFactor

	1



	var2Role

	Coordinate1,
Coordinate0,
Coordinate2, Color,
None



	var2

	“default”



	var2MinFlag

	0



	var2MaxFlag

	0



	var2Min

	0



	var2Max

	1



	var2Scaling

	Linear, Log, Skew



	var2SkewFactor

	1



	var3Role

	None,
Coordinate0,
Coordinate1,
Coordinate2, Color



	var3

	“default”



	var3MinFlag

	0



	var3MaxFlag

	0



	var3Min

	0



	var3Max

	1



	var3Scaling

	Linear, Log, Skew



	var3SkewFactor

	1



	var4Role

	None,
Coordinate0,
Coordinate1,
Coordinate2, Color



	var4

	“default”



	var4MinFlag

	0



	var4MaxFlag

	0



	var4Min

	0



	var4Max

	1



	var4Scaling

	Linear, Log, Skew



	var4SkewFactor

	1



	pointSize

	0.05



	pointSizePixels

	1



	pointType

	Point, Box, Axis,
Icosahedron,
Octahedron,
Tetrahedron,
SphereGeometry,
Sphere



	scaleCube

	1



	colorType

	ColorByForegroundColor,
ColorBySingleColor,
ColorByColorTable



	singleColor

	(255, 0, 0, 255)



	colorTableName

	“Default”



	invertColorTable

	0



	legendFlag

	1











Slice: SliceAttributes()








	Attribute

	Default/Allowed Values



	originType

	Intercept, Point,
Percent, Zone, Node



	originPoint

	(0, 0, 0)



	originIntercept

	0



	originPercent

	0



	originZone

	0



	originNode

	0



	normal

	(0, -1, 0)



	axisType

	YAxis, XAxis,
ZAxis, Arbitrary,
ThetaPhi



	upAxis

	(0, 0, 1)



	project2d

	1



	interactive

	1



	flip

	0



	originZoneDomain

	0



	originNodeDomain

	0



	meshName

	“default”



	theta

	0



	phi

	0











SmoothOperator: SmoothOperatorAttributes()








	Attribute

	Default/Allowed Values



	numIterations

	20



	relaxationFactor

	0.01



	convergence

	0



	maintainFeatures

	1



	featureAngle

	45



	edgeAngle

	15



	smoothBoundaries

	0











SphereSlice: SphereSliceAttributes()








	Attribute

	Default/Allowed Values



	origin

	(0, 0, 0)



	radius

	1











Spreadsheet: SpreadsheetAttributes()








	Attribute

	Default/Allowed Values



	subsetName

	“Whole”



	formatString

	“%1.6f”



	useColorTable

	0



	colorTableName

	“Default”



	showTracerPlane

	1



	tracerColor

	(255, 0, 0, 150)



	normal

	Z, X, Y



	sliceIndex

	0



	spreadsheetFont

	“Courier,12,-1,5,50,0,0,0,0,0”



	showPatchOutline

	1



	showCurrentCellOutline

	0



	currentPickType

	0



	currentPickLetter

	“”



	pastPickLetters

	()











Stagger: StaggerAttributes()








	Attribute

	Default/Allowed Values



	offsetX

	0



	offsetY

	0



	offsetZ

	0











StatisticalTrends: StatisticalTrendsAttributes()








	Attribute

	Default/Allowed Values



	startIndex

	0



	stopIndex

	1



	stride

	1



	startTrendType

	Absolute,
Relative



	stopTrendType

	Absolute,
Relative



	statisticType

	Mean, Sum,
Variance,
StandardDeviation,
Slope, Residuals



	trendAxis

	Step, Time, Cycle



	variableSource

	Default,
OperatorExpression











SubdivideQuads: SubdivideQuadsAttributes()








	Attribute

	Default/Allowed Values



	threshold

	0.500002



	maxSubdivs

	4



	fanOutPoints

	1



	doTriangles

	0



	variable

	“default”











Subset: SubsetAttributes()








	Attribute

	Default/Allowed Values



	colorType

	ColorByMultipleColors,
ColorBySingleColor,
ColorByColorTable



	colorTableName

	“Default”



	invertColorTable

	0



	legendFlag

	1



	lineWidth

	0



	singleColor

	(0, 0, 0, 255)



	subsetNames

	()



	opacity

	1



	wireframe

	0



	drawInternal

	0



	smoothingLevel

	0



	pointSize

	0.05



	pointType

	Point, Box, Axis,
Icosahedron,
Octahedron,
Tetrahedron,
SphereGeometry,
Sphere



	pointSizeVarEnabled

	0



	pointSizeVar

	“default”



	pointSizePixels

	2











SurfaceNormal: SurfaceNormalAttributes()








	Attribute

	Default/Allowed Values



	centering

	Point, Cell











Tensor: TensorAttributes()








	Attribute

	Default/Allowed Values



	useStride

	0



	stride

	1



	nTensors

	400



	scale

	0.25



	scaleByMagnitude

	1



	autoScale

	1



	colorByEigenvalues

	1



	useLegend

	1



	tensorColor

	(0, 0, 0, 255)



	colorTableName

	“Default”



	invertColorTable

	0











ThreeSlice: ThreeSliceAttributes()








	Attribute

	Default/Allowed Values



	x

	0



	y

	0



	z

	0



	interactive

	1











Threshold: ThresholdAttributes()








	Attribute

	Default/Allowed Values



	outputMeshType

	0



	boundsInputType

	0



	listedVarNames

	(“default”)



	zonePortions

	()



	lowerBounds

	()



	upperBounds

	()



	defaultVarName

	“default”



	defaultVarIsScalar

	0



	boundsRange

	()











Transform: TransformAttributes()








	Attribute

	Default/Allowed Values



	doRotate

	0



	rotateOrigin

	(0, 0, 0)



	rotateAxis

	(0, 0, 1)



	rotateAmount

	0



	rotateType

	Deg, Rad



	doScale

	0



	scaleOrigin

	(0, 0, 0)



	scaleX

	1



	scaleY

	1



	scaleZ

	1



	doTranslate

	0



	translateX

	0



	translateY

	0



	translateZ

	0



	transformType

	Similarity,
Coordinate, Linear



	inputCoordSys

	Cartesian,
Cylindrical,
Spherical



	outputCoordSys

	Spherical,
Cartesian,
Cylindrical



	continuousPhi

	0



	m00

	1



	m01

	0



	m02

	0



	m03

	0



	m10

	0



	m11

	1



	m12

	0



	m13

	0



	m20

	0



	m21

	0



	m22

	1



	m23

	0



	m30

	0



	m31

	0



	m32

	0



	m33

	1



	invertLinearTransform

	0



	vectorTransformMethod

	AsDirection,
None, AsPoint,
AsDisplacement



	transformVectors

	1











TriangulateRegularPoints: TriangulateRegularPointsAttributes()








	Attribute

	Default/Allowed Values



	useXGridSpacing

	0



	xGridSpacing

	1



	useYGridSpacing

	0



	yGridSpacing

	1











Truecolor: TruecolorAttributes()








	Attribute

	Default/Allowed Values



	opacity

	1



	lightingFlag

	1











Tube: TubeAttributes()








	Attribute

	Default/Allowed Values



	scaleByVarFlag

	0



	tubeRadiusType

	FractionOfBBox,
Absolute



	radiusFractionBBox

	0.01



	radiusAbsolute

	1



	scaleVariable

	“default”



	fineness

	5



	capping

	0











Vector: VectorAttributes()








	Attribute

	Default/Allowed Values



	glyphLocation

	AdaptsToMeshResolution,
UniformInSpace



	useStride

	0



	stride

	1



	nVectors

	400



	lineWidth

	0



	scale

	0.25



	scaleByMagnitude

	1



	autoScale

	1



	headSize

	0.25



	headOn

	1



	colorByMag

	1



	useLegend

	1



	vectorColor

	(0, 0, 0, 255)



	colorTableName

	“Default”



	invertColorTable

	0



	vectorOrigin

	Tail, Head, Middle



	minFlag

	0



	maxFlag

	0



	limitsMode

	OriginalData,
CurrentPlot



	min

	0



	max

	1



	lineStem

	Line, Cylinder



	geometryQuality

	Fast, High



	stemWidth

	0.08



	origOnly

	1



	glyphType

	Arrow, Ellipsoid



	animationStep

	0











View: ViewAttributes()








	Attribute

	Default/Allowed Values



	viewNormal

	(0, 0, 1)



	focus

	(0, 0, 0)



	viewUp

	(0, 1, 0)



	viewAngle

	30



	setScale

	0



	parallelScale

	1



	nearPlane

	0.001



	farPlane

	100



	imagePan

	(0, 0)



	imageZoom

	1



	perspective

	1



	windowCoords

	(0, 0, 1, 1)



	viewportCoords

	(0.1, 0.1, 0.9, 0.9)



	eyeAngle

	2











View2D: View2DAttributes()








	Attribute

	Default/Allowed Values



	windowCoords

	(0, 1, 0, 1)



	viewportCoords

	(0.2, 0.95, 0.15, 0.95)



	fullFrameActivationMode

	Auto, On, Off



	fullFrameAutoThreshold

	100



	xScale

	LINEAR, LOG



	yScale

	LINEAR, LOG



	windowValid

	0











View3D: View3DAttributes()








	Attribute

	Default/Allowed Values



	viewNormal

	(0, 0, 1)



	focus

	(0, 0, 0)



	viewUp

	(0, 1, 0)



	viewAngle

	30



	parallelScale

	0.5



	nearPlane

	-0.5



	farPlane

	0.5



	imagePan

	(0, 0)



	imageZoom

	1



	perspective

	1



	eyeAngle

	2



	centerOfRotationSet

	0



	centerOfRotation

	(0, 0, 0)



	axis3DScaleFlag

	0



	axis3DScales

	(1, 1, 1)



	shear

	(0, 0, 1)



	windowValid

	0











ViewAxisArray: ViewAxisArrayAttributes()








	Attribute

	Default/Allowed Values



	domainCoords

	(0, 1)



	rangeCoords

	(0, 1)



	viewportCoords

	(0.15, 0.9, 0.1, 0.85)











ViewCurve: ViewCurveAttributes()








	Attribute

	Default/Allowed Values



	domainCoords

	(0, 1)



	rangeCoords

	(0, 1)



	viewportCoords

	(0.2, 0.95, 0.15, 0.95)



	domainScale

	LINEAR, LOG



	rangeScale

	LINEAR, LOG











Volume: VolumeAttributes()








	Attribute

	Default/Allowed Values



	osprayShadowsEnabledFlag

	0



	osprayUseGridAcceleratorFlag

	0



	osprayPreIntegrationFlag

	0



	ospraySingleShadeFlag

	0



	osprayOneSidedLightingFlag

	0



	osprayAoTransparencyEnabledFlag

	0



	ospraySpp

	1



	osprayAoSamples

	0



	osprayAoDistance

	100000



	osprayMinContribution

	0.001



	legendFlag

	1



	lightingFlag

	1



	colorControlPoints.GetControlPoints(0).colors

	(0, 0, 255, 255)



	colorControlPoints.GetControlPoints(0).position

	0



	colorControlPoints.GetControlPoints(1).colors

	(0, 255, 255, 255)



	colorControlPoints.GetControlPoints(1).position

	0.25



	colorControlPoints.GetControlPoints(2).colors

	(0, 255, 0, 255)



	colorControlPoints.GetControlPoints(2).position

	0.5



	colorControlPoints.GetControlPoints(3).colors

	(255, 255, 0, 255)



	colorControlPoints.GetControlPoints(3).position

	0.75



	colorControlPoints.GetControlPoints(4).colors

	(255, 0, 0, 255)



	colorControlPoints.GetControlPoints(4).position

	1



	colorControlPoints.smoothing

	Linear, None,
CubicSpline



	colorControlPoints.equalSpacingFlag

	0



	colorControlPoints.discreteFlag

	0



	colorControlPoints.categoryName

	“”



	opacityAttenuation

	1



	opacityMode

	FreeformMode,
GaussianMode,
ColorTableMode



	
	controlPoints does not
contain any
GaussianControlPoint
objects.



	resampleFlag

	1



	resampleTarget

	1000000



	opacityVariable

	“default”



	compactVariable

	“default”



	freeformOpacity

	(0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93,
94, 95, 96, 97, 98, 99,
100, 101, 102, 103, 104,
105, 106, 107, 108, 109,
110, 111, 112, 113, 114,
115, 116, 117, 118, 119,
120, 121, 122, 123, 124,
125, 126, 127, 128, 129,
130, 131, 132, 133, 134,
135, 136, 137, 138, 139,
140, 141, 142, 143, 144,
145, 146, 147, 148, 149,
150, 151, 152, 153, 154,
155, 156, 157, 158, 159,
160, 161, 162, 163, 164,
165, 166, 167, 168, 169,
170, 171, 172, 173, 174,
175, 176, 177, 178, 179,
180, 181, 182, 183, 184,
185, 186, 187, 188, 189,
190, 191, 192, 193, 194,
195, 196, 197, 198, 199,
200, 201, 202, 203, 204,
205, 206, 207, 208, 209,
210, 211, 212, 213, 214,
215, 216, 217, 218, 219,
220, 221, 222, 223, 224,
225, 226, 227, 228, 229,
230, 231, 232, 233, 234,
235, 236, 237, 238, 239,
240, 241, 242, 243, 244,
245, 246, 247, 248, 249,
250, 251, 252, 253, 254,
255)



	useColorVarMin

	0



	colorVarMin

	0



	useColorVarMax

	0



	colorVarMax

	0



	useOpacityVarMin

	0



	opacityVarMin

	0



	useOpacityVarMax

	0



	opacityVarMax

	0



	smoothData

	0



	samplesPerRay

	500



	rendererType

	Default,
RayCasting,
RayCastingIntegration,
RayCastingSLIVR,
RayCastingOSPRay



	gradientType

	SobelOperator,
CenteredDifferences



	scaling

	Linear, Log, Skew



	skewFactor

	1



	limitsMode

	OriginalData,
CurrentPlot



	sampling

	Rasterization,
KernelBased,
Trilinear



	rendererSamples

	3



	lowGradientLightingReduction

	Lower, Off,
Lowest, Low, Medium,
High, Higher, Highest



	lowGradientLightingClampFlag

	0



	lowGradientLightingClampValue

	1



	materialProperties

	(0.4, 0.75, 0, 15)













          

      

      

    

 


  

  
    

    VisIt CLI Events
    

    

    
 
  

    
      
          
            
  
VisIt CLI Events

This chapter shows a table with all events that the VisIt GUI could
potentially generate. Different plugins create different events, so the
list will depend on the user configuration. The list in this section is
generated from a call to the GetCallbackNames() function and will
therefore list just the events that are applicable to the user that
generates this documentation.

The list is alphabetically ordered. The left column, labeled EventName
displays each event or callback name. The right column, labeled
ArgCount displays the result of calling
GetCallbackArgumentCount(EventName) for the corresponding event, which
returns the number of arguments a callback function for that event
should accept.
|
|














	EventName

	ArgCount



	AMRStitchCellAttributes

	1



	ActivateDatabaseRPC

	1



	AddAnnotationObjectRPC

	2



	AddEmbeddedPlotRPC

	1



	AddInitializedOperatorRPC

	1



	AddOperatorRPC

	2



	AddPlotRPC

	2



	AddWindowRPC

	0



	AlterDatabaseCorrelationRPC

	4



	AnimationAttributes

	1



	AnimationPlayRPC

	0



	AnimationReversePlayRPC

	0



	AnimationSetNFramesRPC

	1



	AnimationStopRPC

	0



	AnnotationAttributes

	1



	ApplyNamedSelectionRPC

	1



	AxisAlignedSlice4DAttributes

	1



	BoundaryAttributes

	1



	BoundaryOpAttributes

	1



	BoxAttributes

	1



	CartographicProjectionAttributes

	1



	ChangeActivePlotsVarRPC

	1



	CheckForNewStatesRPC

	1



	ChooseCenterOfRotationRPC

	2



	ClearAllWindowsRPC

	0



	ClearCacheForAllEnginesRPC

	0



	ClearCacheRPC

	2



	ClearPickPointsRPC

	0



	ClearRefLinesRPC

	0



	ClearViewKeyframesRPC

	0



	ClearWindowRPC

	1



	ClipAttributes

	1



	CloneWindowRPC

	0



	CloseComputeEngineRPC

	2



	CloseDatabaseRPC

	1



	CloseRPC

	0



	ColorTableAttributes

	1



	ConeAttributes

	1



	ConnectToMetaDataServerRPC

	2



	ConnectedComponentsAttributes

	1



	ConstructDataBinningAttributes

	1



	ConstructDataBinningRPC

	0



	ContourAttributes

	1



	CoordSwapAttributes

	1



	CopyActivePlotsRPC

	0



	CopyAnnotationsToWindowRPC

	2



	CopyLightingToWindowRPC

	2



	CopyPlotsToWindowRPC

	2



	CopyViewToWindowRPC

	2



	CreateBondsAttributes

	1



	CreateDatabaseCorrelationRPC

	4



	CreateNamedSelectionRPC

	1



	CurveAttributes

	1



	CylinderAttributes

	1



	DDTConnectRPC

	1



	DDTFocusRPC

	1



	DataBinningAttributes

	1



	DatabaseMetaData

	1



	DeIconifyAllWindowsRPC

	0



	DeferExpressionAttributes

	1



	DeleteActiveAnnotationObjectsRPC

	0



	DeleteActivePlotsRPC

	0



	DeleteDatabaseCorrelationRPC

	1



	DeleteNamedSelectionRPC

	1



	DeletePlotDatabaseKeyframeRPC

	2



	DeletePlotKeyframeRPC

	2



	DeleteViewKeyframeRPC

	1



	DeleteWindowRPC

	0



	DemoteOperatorRPC

	1



	DetachRPC

	0



	DisableRedrawRPC

	0



	DisplaceAttributes

	1



	DrawPlotsRPC

	1



	DualMeshAttributes

	1



	EdgeAttributes

	1



	ElevateAttributes

	1



	EllipsoidSliceAttributes

	1



	EnableToolRPC

	2



	EnableToolbarRPC

	2



	ExplodeAttributes

	1



	ExportColorTableRPC

	1



	ExportDBAttributes

	1



	ExportDBRPC

	0



	ExportEntireStateRPC

	1



	ExportHostProfileRPC

	1



	ExportRPC

	1



	ExpressionList

	1



	ExternalSurfaceAttributes

	1



	ExtrudeAttributes

	1



	FFTAttributes

	1



	FileOpenOptions

	1



	FilledBoundaryAttributes

	1



	FluxAttributes

	1



	GetProcInfoRPC

	3



	GetQueryParametersRPC

	1



	GlobalAttributes

	1



	GlobalLineoutAttributes

	1



	HideActiveAnnotationObjectsRPC

	0



	HideActivePlotsRPC

	0



	HideAllWindowsRPC

	0



	HideToolbarsForAllWindowsRPC

	0



	HideToolbarsRPC

	0



	HistogramAttributes

	1



	IconifyAllWindowsRPC

	0



	ImportEntireStateRPC

	2



	ImportEntireStateWithDifferentSourcesRPC

	3



	IndexSelectAttributes

	1



	InitializeNamedSelectionVariablesRPC

	1



	IntegralCurveAttributes

	1



	InteractorAttributes

	1



	InverseGhostZoneAttributes

	1



	InvertBackgroundRPC

	0



	IsosurfaceAttributes

	1



	IsovolumeAttributes

	1



	KeyframeAttributes

	1



	LCSAttributes

	1



	LabelAttributes

	1



	LagrangianAttributes

	1



	LimitCycleAttributes

	1



	LineoutAttributes

	1



	LoadNamedSelectionRPC

	1



	LowerActiveAnnotationObjectsRPC

	0



	MaterialAttributes

	1



	MenuQuitRPC

	1



	MeshAttributes

	1



	MeshManagementAttributes

	1



	ModelFitAtts

	1



	MoleculeAttributes

	1



	MoveAndResizeWindowRPC

	5



	MovePlotDatabaseKeyframeRPC

	3



	MovePlotKeyframeRPC

	3



	MovePlotOrderTowardFirstRPC

	1



	MovePlotOrderTowardLastRPC

	1



	MoveViewKeyframeRPC

	2



	MoveWindowRPC

	3



	MultiCurveAttributes

	1



	MultiresControlAttributes

	1



	OnionPeelAttributes

	1



	OpenCLIClientRPC

	1



	OpenClientRPC

	3



	OpenComputeEngineRPC

	2



	OpenDatabaseRPC

	4



	OpenGUIClientRPC

	1



	OpenMDServerRPC

	2



	OverlayDatabaseRPC

	1



	ParallelCoordinatesAttributes

	1



	PersistentParticlesAttributes

	1



	PickAttributes

	1



	PlotDDTVispointVariablesRPC

	1



	PlotList

	1



	PoincareAttributes

	1



	PrintWindowRPC

	0



	PrinterAttributes

	1



	ProcessAttributes

	1



	ProcessExpressionsRPC

	0



	ProjectAttributes

	1



	PromoteOperatorRPC

	1



	PseudocolorAttributes

	1



	QueryAttributes

	1



	QueryOverTimeAttributes

	1



	QueryRPC

	1



	RadialResampleAttributes

	1



	RaiseActiveAnnotationObjectsRPC

	0



	ReOpenDatabaseRPC

	2



	ReadHostProfilesFromDirectoryRPC

	1



	RecenterViewRPC

	0



	RedoViewRPC

	0



	RedrawRPC

	0



	ReflectAttributes

	1



	ReleaseToDDTRPC

	1



	RemapAttributes

	1



	RemoveAllOperatorsRPC

	0



	RemoveLastOperatorRPC

	0



	RemoveOperatorRPC

	1



	RemovePicksRPC

	1



	RenamePickLabelRPC

	1



	RenderingAttributes

	1



	ReplaceDatabaseRPC

	2



	ReplicateAttributes

	1



	RequestMetaDataRPC

	2



	ResampleAttributes

	1



	ResetAnnotationAttributesRPC

	0



	ResetAnnotationObjectListRPC

	0



	ResetInteractorAttributesRPC

	0



	ResetLightListRPC

	0



	ResetLineoutColorRPC

	0



	ResetMaterialAttributesRPC

	0



	ResetMeshManagementAttributesRPC

	0



	ResetOperatorOptionsRPC

	1



	ResetPickAttributesRPC

	0



	ResetPickLetterRPC

	0



	ResetPlotOptionsRPC

	1



	ResetQueryOverTimeAttributesRPC

	0



	ResetViewRPC

	0



	ResizeWindowRPC

	3



	RevolveAttributes

	1



	SPHResampleAttributes

	1



	SaveNamedSelectionRPC

	1



	SaveViewRPC

	0



	SaveWindowAttributes

	1



	SaveWindowRPC

	0



	ScatterAttributes

	1



	SendSimulationCommandRPC

	4



	SetActivePlotsRPC

	2



	SetActiveTimeSliderRPC

	1



	SetActiveWindowRPC

	1



	SetAnimationAttributesRPC

	0



	SetAnnotationAttributesRPC

	0



	SetAnnotationObjectOptionsRPC

	0



	SetAppearanceRPC

	0



	SetBackendTypeRPC

	1



	SetCenterOfRotationRPC

	1



	SetCreateMeshQualityExpressionsRPC

	1



	SetCreateTimeDerivativeExpressionsRPC

	1



	SetCreateVectorMagnitudeExpressionsRPC

	1



	SetDefaultAnnotationAttributesRPC

	0



	SetDefaultAnnotationObjectListRPC

	0



	SetDefaultFileOpenOptionsRPC

	0



	SetDefaultInteractorAttributesRPC

	0



	SetDefaultLightListRPC

	0



	SetDefaultMaterialAttributesRPC

	0



	SetDefaultMeshManagementAttributesRPC

	0



	SetDefaultOperatorOptionsRPC

	1



	SetDefaultPickAttributesRPC

	0



	SetDefaultPlotOptionsRPC

	1



	SetDefaultQueryOverTimeAttributesRPC

	0



	SetGlobalLineoutAttributesRPC

	0



	SetInteractorAttributesRPC

	0



	SetKeyframeAttributesRPC

	0



	SetLightListRPC

	0



	SetMaterialAttributesRPC

	0



	SetMeshManagementAttributesRPC

	0



	SetNamedSelectionAutoApplyRPC

	1



	SetOperatorOptionsRPC

	1



	SetPickAttributesRPC

	0



	SetPlotDatabaseStateRPC

	3



	SetPlotDescriptionRPC

	1



	SetPlotFollowsTimeRPC

	0



	SetPlotFrameRangeRPC

	3



	SetPlotOptionsRPC

	1



	SetPlotOrderToFirstRPC

	1



	SetPlotOrderToLastRPC

	1



	SetPlotSILRestrictionRPC

	0



	SetPrecisionTypeRPC

	1



	SetQueryFloatFormatRPC

	1



	SetQueryOverTimeAttributesRPC

	0



	SetRemoveDuplicateNodesRPC

	1



	SetRenderingAttributesRPC

	0



	SetStateLoggingRPC

	0



	SetSuppressMessagesRPC

	1



	SetTimeSliderStateRPC

	1



	SetToolUpdateModeRPC

	1



	SetToolbarIconSizeRPC

	0



	SetTreatAllDBsAsTimeVaryingRPC

	1



	SetTryHarderCyclesTimesRPC

	1



	SetView2DRPC

	0



	SetView3DRPC

	0



	SetViewAxisArrayRPC

	1



	SetViewCurveRPC

	0



	SetViewExtentsTypeRPC

	1



	SetViewKeyframeRPC

	0



	SetWindowAreaRPC

	1



	SetWindowLayoutRPC

	1



	SetWindowModeRPC

	1



	ShowAllWindowsRPC

	0



	ShowToolbarsForAllWindowsRPC

	0



	ShowToolbarsRPC

	0



	SliceAttributes

	1



	SmoothOperatorAttributes

	1



	SphereSliceAttributes

	1



	SpreadsheetAttributes

	1



	StaggerAttributes

	1



	StartPlotAnimationRPC

	1



	StatisticalTrendsAttributes

	1



	StopPlotAnimationRPC

	1



	SubdivideQuadsAttributes

	1



	SubsetAttributes

	1



	SuppressQueryOutputRPC

	1



	SurfaceNormalAttributes

	1



	TensorAttributes

	1



	ThreeSliceAttributes

	1



	ThresholdAttributes

	1



	TimeSliderNextStateRPC

	0



	TimeSliderPreviousStateRPC

	0



	ToggleAllowPopupRPC

	1



	ToggleBoundingBoxModeRPC

	0



	ToggleCameraViewModeRPC

	0



	ToggleFullFrameRPC

	0



	ToggleLockTimeRPC

	0



	ToggleLockToolsRPC

	0



	ToggleLockViewModeRPC

	0



	ToggleMaintainViewModeRPC

	0



	TogglePerspectiveViewRPC

	0



	ToggleSpinModeRPC

	0



	TransformAttributes

	1



	TriangulateRegularPointsAttributes

	1



	TruecolorAttributes

	1



	TubeAttributes

	1



	TurnOffAllLocksRPC

	0



	UndoViewRPC

	0



	UpdateColorTableRPC

	1



	UpdateDBPluginInfoRPC

	1



	UpdateNamedSelectionRPC

	1



	VectorAttributes

	1



	View2DAttributes

	1



	View3DAttributes

	1



	ViewCurveAttributes

	1



	VolumeAttributes

	1



	WindowInformation

	1



	WriteConfigFileRPC

	0


















          

      

      

    

 


  

  
    

    Contributing To VisIt CLI Documentation
    

    

    
 
  

    
      
          
            
  
Contributing To VisIt CLI Documentation


Note

We are still refining this procedure!



The Python doc strings for most functions in VisIt’s cli are generated
from the examples embedded in the cli_manual/functions.rst file.
This allows us to have a single source for both our CLI sphinx docs
and the doc strings embedded in VisIt’s compiled Python module.
The functions_to_method_doc.py helper script generates MethodDoc.C
from the examples embedded in the rst source.

The Python doc strings for Attribute objects and Events are extracted from the CLI
for use in the CLI sphinx docs.  The sphinx_cli_extractor.py runs VisIt to
generate cli_manual/attributes.rst  and cli_manual/events.rst


Steps to update the CLI Manual


	Modify cli_manual/functions.rst


	Run functions_to_plain_py.py to generate PY_RST_FUNCTIONS_TO_PYTHON.py


	Run 2to3 -p PY_RST_FUNCTIONS_TO_PYTHON.py to check for Python syntax errors and Python 3 compatibly


	Run functions_to_method_doc.py to regenerate MethodDoc.C


	Build and run the VisIt [https://visit-dav.github.io/visit-website/] cli and assure yourself help(<your-new-func-doc>)
produces the desired output


	Run the sphinx_cli_extractor.py tool producing new attributes.rst
and events.rst files. To do so, you may need to use
a combination of the PATH and PYTHONPATH environment variables to tell the
sphinx_cli_extractor.py script where to find the VisIt [https://visit-dav.github.io/visit-website/] module, visit in
VisIt [https://visit-dav.github.io/visit-website/]’s site-packages and where to find the Python installation that that
module is expecting to run with. In addition, you may need to use the PYTHONHOME
environment variable to tell VisIt [https://visit-dav.github.io/visit-website/]’s visit module where to find standard Python
libraries. For example, to use an installed version of VisIt [https://visit-dav.github.io/visit-website/] on my OSX machine,
the command would look like…

env PATH=/Applications/VisIt.app/Contents/Resources/2.13.3/darwin-x86_64/bin:/Applications/VisIt.app/Contents/Resources/bin:$PATH \
PYTHONHOME=/Applications/VisIt.app//Contents/Resources/2.13.3/darwin-x86_64/lib/python \
PYTHONPATH=/Applications/VisIt.app/Contents/Resources/2.13.3/darwin-x86_64/lib/site-packages \
./sphinx_cli_extractor.py





Note that the above command would produce CLI documentation for version 2.13.3 of VisIt [https://visit-dav.github.io/visit-website/].
Or, to use a current build of VisIt [https://visit-dav.github.io/visit-website/] on which you are working on documentation related
to changes you have made to VisIt [https://visit-dav.github.io/visit-website/], the command would look something like…

env PATH=../../build/third_party/python/2.7.14/i386-apple-darwin17_clang/bin:../../build/visit/build/bin:$PATH \
PYTHONPATH=../../build/visit/build/lib/site-packages/ \
./sphinx_cli_extractor.py





The whole process only takes a few seconds.



	Assuming you successfully ran the above command, producing new attributes.rst
and events.rst files, then do a local build of the
documentation here and confirm there are no errors in the build

sphinx-build -b html . _build -a







	Then open the file, _build/index.html, in your favorite browser to view.


	Add all the changed files to a commit and push to GitHub


	The GitHub integration with ReadTheDocs should result in your documentation
updates going live a short while (<15 mins) after it has been merged to develop.








          

      

      

    

 


  

  
    

    Acknowledgments
    

    

    
 
  

    
      
          
            
  
Acknowledgments

This document is primarily based on the excellent manual put together by
Brad Whitlock of Lawrence Livermore in 2005. Several years afterwards,
the content from that manual was converted to serve as online help for
the command line interpreter itself. As new routines were added, this
online help was updated. In 2010, Jakob van Bethlehem of the University
of Groningen wrote a wonderful script to convert the online help to
manual form. In 2011, Hank Childs of Lawrence Berkeley merged the
descriptions from Brad Whitlock’s original manual with the function
definitions produced by Jakob’s conversion of the online help. In
2018, Alister Maguire of Lawrence Livermore wrote a script for converting
this manual to restructuredText format to be used with Sphinx. The
result is this manual.




          

      

      

    

 


  

  
    

    VisIt Tutorials
    

    

    
 
  

    
      
          
            
  
VisIt [https://visit-dav.github.io/visit-website/] Tutorials

This manual contains a series of hands on tutorials that expose the user to the features in VisIt [https://visit-dav.github.io/visit-website/]. The first three tutorials form a good basis for using VisIt [https://visit-dav.github.io/visit-website/], including the basics of using the Graphical User Interface (GUI), performing data analysis and using Python to script and automate tasks in VisIt [https://visit-dav.github.io/visit-website/]. After that are a series of tutorials that cover advanced topics in detail.

The datasets for various tutorials can be found in VisIt [https://visit-dav.github.io/visit-website/]’s large data [https://visit-dav.github.io/largedata/].



	Aneurysm tutorial data [https://visit-dav.github.io/largedata/datarchives/aneurysm]


	MRI tutorial data [https://visit-dav.github.io/largedata/datarchives/mri]


	Potential Flow tutorial data [https://visit-dav.github.io/largedata/datarchives/potential_flow]


	VisIt Basics tutorial data [https://visit-dav.github.io/largedata/datarchives/visit_tutorial]







Contents:



	1. VisIt Basics

	2. Data Analysis

	3. Scripting

	4. Aneurysm

	5. Potential Flow

	6. MRI

	7. Connected Components

	8. Remote Usage

	9. Making Movies

	10. Molecular data features








          

      

      

    

 


  

  
    

    1. VisIt Basics
    

    

    
 
  

    
      
          
            
  
1. VisIt Basics





1.1. Starting VisIt [https://visit-dav.github.io/visit-website/]

The way you start VisIt [https://visit-dav.github.io/visit-website/] depends on the platform you are on:


	On Windows, double click on the VisIt [https://visit-dav.github.io/visit-website/] desktop icon


	On Mac, double click on the VisIt [https://visit-dav.github.io/visit-website/] icon where you installed it (generally in the /Applications folder).


	On Unix, invoke: /path/to/visit/bin/visit


	Most people ultimately put /path/to/visit/bin in their $PATH and then just say visit.










1.2. What you see


[image: ../_images/Basics-GUIOverview.png]

Fig. 1.9 The VisIt graphical user interface and visualization window




	The tall grey window on the left is called the Graphical User Interface, which will be refered to from here on as the GUI. It is the primary mechanism for driving VisIt [https://visit-dav.github.io/visit-website/].


	The window on the right is called the visualization window. It displays results.






1.3. Opening files

The first thing to do is to open files.


	Go to the GUI and click on the Open icon.


	This brings up the File open window.





[image: ../_images/Basics-FileOpen.png]

Fig. 1.10 The File open window




	Change the Path field to the “tutorial_data” folder.


	Highlight the file “example.silo” and then click OK.




You’ve opened a file!


1.3.1. Advanced file opening features


	In the File open window:






	There is a field for Host. That is how you open a file on another system and run in client/server mode.


	There is a Filter. That is provided to subset the file list to only the files VisIt [https://visit-dav.github.io/visit-website/] may want.


	Example filter: “*.silo *.vtk”












	VisIt [https://visit-dav.github.io/visit-website/] uses heuristics to determine the file type.






	You can explicitly set the file type by setting the Open file as type: to the appropriate type.








	You can also open files on the command line. For example, visit -o file.ext opens the file “file.ext”.







1.4. Making a plot


	Click on the Add icon to access various plots. This is located about half way down the Main window.


	Select Pseudocolor->temp to add a Pseudocolor plot.


	After adding a plot, you will see a green entry added to the “Plot list”, which is located half way down the GUI.






	This means VisIt [https://visit-dav.github.io/visit-website/] will draw this plot after you click Draw.








[image: ../_images/Basics-PlotList.png]

Fig. 1.11 The plot list with a Pseudocolor plot in it




	Click Draw.


	You should see a plot appear in the visualization window.


	Go to Add->Mesh->Mesh.


	Click Draw.


	You should now see both a Pseudocolor and Mesh plot.





[image: ../_images/Basics-PcMesh.png]

Fig. 1.12 A Pseudocolor and mesh plot displayed in a visualization window




	Highlight the Pseudocolor plot in the Plot list.


	Click the Hide/Show button.






	This will hide the Pseudocolor plot. You should now see only the Mesh plot.








	Highlight the Mesh plot and click Delete.






	You should now have an empty visualization window.


	The Pseudocolor plot should now be selected.








	Click Hide/Show.






	The Pseudocolor plot should reappear.









1.5. Modifying the plot attributes


	Go to PlotAtts->Pseudocolor. This is located in the menu bar at the top of the Main menu.


	This brings up the Pseudocolor plot attributes window.





[image: ../_images/Basics-PseudocolorAttributes.png]

Fig. 1.13 The Pseudocolor plot attributes window




	Change the Scale from Linear to Log.


	Click Apply.






	The colors changed.








	Click Minimum on and change the value to “3”.


	Click Maximum on and change the value to “4”.


	Click Apply.






	The colors change again.








	Change the Opacity mode to Constant.






	Change the opacity slider to 50%.








	Click Apply.





	You can now see through the plot. Note that you only see the external faces. If you want to see the data from the whole volume, that will be with the volume plot.





	Change back the Scale, Limits, and Opacity back to their original settings and click Apply.


	Dismiss the Pseudocolor plot attributes window.






1.6. Applying an operator


	Click on the Operators button to access various operators. This is located next to the Add button.


	Select Slicing->Slice to add a Slice operator






	The visualization window will go blank and the Pseudocolor entry in the Plot list will turn green.


	This allows you to change the slice attributes before applying the Slice operator.


	We will apply the operator with the default attributes.








	Click Draw.






	You are now looking at a 2D slice.








	Go to OpAtts->Slicing->Slice.


	This brings up the Slice operator attributes window.





[image: ../_images/Basics-SliceAttributes.png]

Fig. 1.14 The Slice operator attributes window




	There are many controls for setting the slice plane … play with them.


	Operators can be removed by clicking on an expansion arrow in the Plot list, then clicking on the red X icon next to an operator.






1.7. VisIt [https://visit-dav.github.io/visit-website/] interaction modes

There are six basic interaction modes:


	Navigate


	Zoom


	Zone pick


	Node pick


	Spreadsheet pick


	Lineout





[image: ../_images/Basics-InteractionModes.png]

Fig. 1.15 The visualization tool bar with the icons for setting the interaction mode



The interaction mode is controlled by the toolbar, which is located at the
top of the visualization window. The six interaction modes are all located
together on the toolbar, towards the bottom.


1.7.1. Using navigate mode

You always start in Navigate mode. Navigate mode is indicated by the Navigate
icon, represented by a compass, being indented. It allows you to pan and
rotate the data set.


	Put the cursor in the visualization window.


	Left click (or single click if you do not have a 3 button mouse) and move the mouse.


	The data set will pan with the mouse.






	In 3D, the data set rotates.









1.7.2. Using zoom mode

Zoom mode is indicated by the Zoom icon, represented by a magnifying glass,
being indented. It allows you to zoom the image by selecting a rectangular
region.


	Click on the Zoom icon.


	Go to the visualization window and left click (single click) and HOLD IT DOWN.


	Move the mouse a bit.






	You should see a rubber band.








	Lift up the mouse button.






	You should now be zoomed in so that the viewport matches what was previously inside the rubber band.









1.7.3. Using lineout mode

Lineout mode is indicated by the Lineout icon, represented by a curve plot
of red and blue curves, being indented. It allows the user to create a plot
of a scalar variable as a function of distance along a line.


	First we will reset the view. Click on the Reset view icon, represented by a camera that has a green “X” around it (The camera is mostly obscured by the X).






	This will reset your view.








	Click on the Lineout icon.


	Put the cursor over the data and left click (single click) and HOLD IT DOWN.


	Move the mouse a bit.






	You should see a single line moving around.








	Lift up the mouse button.


	The window layout changes. You now have two windows. The first window is the same, but the second now contains a “Lineout”, which has temp as a function of distance over the line.


	On the window that has the curve, find the Delete window icon, represented by a window with a red circle with a line through it.


	Click this button.






	The new window will disappear and you should now have only one window.









1.7.4. Using pick mode

Pick mode is indicated by the Zone pick or Node pick icon, represented by
a “+” with a small Z or a “+” with a small N, being indented. It allows the
user to query a variable associated with a zone or node.


	Click on the Zone pick icon.


	Put the cursor over the data set and left click (single click).


	This brings up the Pick window.






	The Pick window contains information about the zone (i.e. cell or element) that you just picked in.








[image: ../_images/Basics-PickOutput.png]

Fig. 1.16 The Pick output window



Pick can return a lot more information than what it just did if you use
the Pick window.


	Go to the Variables drop down menu and select Scalars/pressure.


	Turn on Physical Coords under For Nodes.


	Turn on Domain-Logical Coords under For Zones.


	Click Apply.


	Make another pick.






	You get information about pressure, the coordinates of each node, and the logical coordinates for the zone.










1.8. Other plots


	We will experiment with the Contour, Filled Boundary, Label, Vector and Volume plots.






1.9. Other operators


	We will experiment with the Clip and Threshold operators.






1.10. Saving an image


	With a current plot, go to File->Save window.





	This saves an image to the filesystem.




On Windows, the default location for saved images is in Documents/VisIt/My images.



1.11. Saving a database

VisIt [https://visit-dav.github.io/visit-website/] can be part of a larger tool chain.


	If you do not already have one, make a Pseudocolor plot of temp from the “example.silo” database.


	Apply the Threshold operator and change the range to be 3->max.


	Click Draw.


	Go to File->Export database.


	This brings up the Export Database window.





[image: ../_images/Basics-ExportDatabase.png]

Fig. 1.17 The Export Database window




	Change Export to to VTK.


	Be sure to set the output directory or the exported file will be written to the working directory (on Windows that would be the directory where VisIt_ is installed).


	Click Export.






	The Export options for VTK writer window will pop up at this point. It allows you to specify the options for the VTK writer. We will use the default options.








	Click Ok.






	A file named “visit_ex_db.vtk” has been saved to the file system.









1.12. Subsetting


	Delete any plots in your visualization window.


	Open the file “multi_ucd3d.silo”.


	Make a Subset plot of “domains(mesh1)”.






	The plot is colored by “domains”, which normally correspond to a simulation’s processors.








	In the Plot list, find the overlapping transparent black and white ovals (like a Venn diagram) and click on it.


	This brings up the Subset window.





[image: ../_images/Basics-Subset.png]

Fig. 1.18 The Subset window




	Click on domains in the left most panel.






	This will expand the list of domains in the center panel.








	Turn off some domains and click Apply.






	You will see some of the domains disappear.


	Subsetting works with any plot type.








	Turn all the domains back on.


	Click on mat1 in the left most panel.






	This will expand the list of materials in the center panel.








	Turn off materials 1 and 3.






	You will see material 2 only, colored by domain.







This mechanism is used to expose subsetting for materials, domains, AMR levels, and other custom subsettable parts.





          

      

      

    

 


  

  
    

    2. Data Analysis
    

    

    
 
  

    
      
          
            
  
2. Data Analysis




This section describes two important abstractions in VisIt [https://visit-dav.github.io/visit-website/]: Queries and Expressions.


2.1. Queries


2.1.1. What are queries

Queries are the mechanism to do data analysis, to pull out a number or curve that describes the data set.



2.1.2. Experiment with queries


	Go to Controls->Query.


	This brings up the Query window.





[image: ../_images/DataAnalysis-QueryMinMax.png]

Fig. 2.10 The MinMax query




2.1.2.1. Variable-related

Variable related queries provide information about variables.


	Change the Display in the Query window to be Variable-related.


	Go back to the GUI, delete any plots, open up “example.silo”, create a Pseudocolor plot of temp and click Draw.


	Highlight MinMax and click Query.






	The result will be displayed in the Query results. It will tell you the minimum, maximum and their locations.








	Apply the Slice operator to your plot.


	Do another MinMax query.






	It gives you the different results. This is because the Query parameter Actual Data is selected. This means the answer will be the minimum and maximum constrained to the slice.








	Change the Query parameter to be Original Data.


	Do another MinMax query.






	This time the answer will match the result of the first query. It will display the minimum and maximum for what is in the file, not what is on the screen.








	Now highlight Variable Sum and click Query.






	This will sum up all of the values in the data set.








	Now highlight Weighted Variable Sum and click Query.






	This will sum up all of the values, but it will weight by area (since you have a slice).


	For 3D, it will weight by volume.


	For axi-symmetric 2D calculations, it will weight by revolved volume.








	Note that both queries have options for doing queries over time (grayed out because we don’t have a time varying data set).






	This is for time varying data and will produce a curve in a separate window.








	Now highlight Lineout.






	Note that you must have left Project to 2D enabled in the Slice operator for this next one to work correctly.








	Change the start point to “-5 -5 0” and the end point to “5 5 0”.


	Click Query.


	This is a way to get exact lineouts.


	You can also take 3D lineouts this way.





	Now highlight Pick.


	Click Query.






	This will provide information about the zone containing the coordinate “0 0 0”.








	Change the mode to Pick using coordinate to determine node.


	Click Query.






	This will provide information about the node nearest the coordinate “0 0 0”.








	Change the mode to Pick using domain and element Id.


	Click Query.






	This will provide information about the node or zone in the specied domain.







You can also perform a query using the global element id by selecting Pick using global elememnt Id. This only works if the file contains global element id information, which this file does not.



2.1.2.2. Mesh-related


	Change the Display in the Query window to be Mesh-related.


	Experiment with the 2D area, SpatialExtents, NumZones, and Zone Center queries.






	For the Zone Center query, you will set the Domain to “0”.


	The domain is used for when you have a parallel file, where the data has been “domain decomposed” for parallel processing.









2.1.2.3. ConnectedComponents related


	If you haven’t already removed the slice operator, do that now, so you have just a Pseudocolor plot of temp.


	Apply the Isovolume operator.  Change the Lower bound of the Isovolume operator attributes to be “4”.


	You will now see a bunch of blobs in space.


	Change the Display in the Query window to be ConnectedComponents-related.


	Perform the Number of Connected Components query.






	It should tell you that there are 15 components.








	Apply the Clip operator with the default settings.


	Perform the Number of Connected Components query again.






	It should now say there are 14 components.


	Operators affect queries.











2.2. Queries over Time


2.2.1. What are queries over time

Queries over time perform analysis through time and generate a time-curve.



2.2.2. Experiment with queries over time


2.2.2.1. Weighted Variable Sum


	Go to Controls->Query.


	This brings up the Query window.





[image: ../_images/DataAnalysis-QueryWeightedVariableSum.png]

Fig. 2.11 The Weighted Variable Sum query




	Go back to the GUI, delete any existing plots, open up “wave.visit”, and make a Pseudocolor plot of pressure.


	Find and Highlight Weighted Variable Sum and click Do Time Query.


	Options for changing the Starting timestep, Ending timestep and Stride will be available.






	Note that these are 0-origin timestate indices and not cycles or times.








	Click Query.






	The result will be displayed in a new Window. By default the x-axis will be cycle and the y-axis will be the weighted summation of the pressure.








[image: ../_images/DataAnalysis-QueryWeightedVariableSumOutput.png]

Fig. 2.12 The output of the Weighted Variable Sum query over time





2.2.2.2. Pick


	Pick can do multiple-variable time curves.


	Make Window 2 active, delete the plot, and make Window 1 active again.


	Find and Highlight Pick in the Query window and click Do Time Query to enable time-curve options.





[image: ../_images/DataAnalysis-QueryPick.png]

Fig. 2.13 The Pick query




	Change the Variables option to add v using the Variables->Scalars dropdown menu.


	Select Pick using domain and element Id. Leave the defaults for Node Id and Domain Id as “0”.


	Select Preserve Picked Element Id.


	Click Query.






	The result will be two curves in a single xy plot.








	Make Window 2 active, delete the plot, and make Window 1 active again.


	Change the Multiple-variable Time Curve options to Create Multiple Y-Axes plot.


	Click Query.






	The result will be a Multi-curve plot (multiple axes) in Window 2.








[image: ../_images/DataAnalysis-QueryPickOutput.png]

Fig. 2.14 The Pick query output




	NOTE:  Time Pick can also be performed via the mouse by first setting things up on the Time Pick tab in the Pick window (Controls->Pick).







2.2.3. Changing global options


	Go to Controls->Query over time options.


	This brings up the QueryOverTime window.





[image: ../_images/DataAnalysis-QueryOverTime.png]

Fig. 2.15 The QueryOverTime window




	Here you can change the values displayed in the x-axis for all subsequent queries over time.


	You can also change the window used to display time-curves. By default, the first un-used window becomes the time-curve window, and all subsequent time-curves are generated in the same window.







2.3. Built-in queries

Built-in queries



2.4. Expressions

Expressions in VisIt [https://visit-dav.github.io/visit-website/] create new mesh variables from existing ones. These
are also known as derived quantities. VisIt [https://visit-dav.github.io/visit-website/]’s expression system supports
only derived quantities that create a new mesh variable defined over the
entire mesh. Given a mesh on which a variable named pressure is defined,
an example of a very simple expression is “2*pressure”. On the other hand,
suppose one wanted to sum (or integrate) “pressure” over the entire mesh
(maybe the mesh represents some surface area over which a force calculation
is desired). Such an operation is not an expression in VisIt [https://visit-dav.github.io/visit-website/] because it
does not result in a new variable defined over the entire mesh. In this
example, summing pressure over the entire mesh results in a single, scalar,
number, like “25.6”. Such an operation is supported instead by VisIt [https://visit-dav.github.io/visit-website/]’s
Variable Sum Query. This tends to be true in general; Expressions define
whole mesh variables while Queries define single numerical values (there
are, however, some Queries for which this is not strictly true).


2.4.1. A simple algebraic expression, “2*radial”


	Open up “noise2d.silo”.


	Create a Pseudocolor plot of the variable radial.






	Take note of the legend range, “0…28.28”








	Go to Controls->Expressions.


	Click on New in the bottom left.






	This will create an expression and give it a default name, “unnamed1”.








	Rename this expression by typing “radial2” into the Name field






	Take note of the Type of the variable. By default, VisIt [https://visit-dav.github.io/visit-website/] assumes the type of the new variable you are creating is a s scalar mesh variable (e.g. a single numerical value for each node or zone/cell in the mesh). Here, we are indeed creating a scalar variable and so there is no need to adjust the Type. However, in some of the examples that follow, we’ll be creating vector mesh variables and if we don’t specify the correct type, we’ll get an error message.








	Place the cursor in the Definition pane of the Expressions dialog.


	Type the number “2” followed by the C/C++ language symbol for multiplication, “*”.


	Now, you can either type the name “radial” or you can go to the Insert Variable… pulldown menu and find and select the radial variable there (see picture at right).





[image: ../_images/DataAnalysis-ExpressionsRadial2.png]

Fig. 2.16 Using the Expressions window Insert variable




	Click Apply.


	Now, go to the main VisIt [https://visit-dav.github.io/visit-website/] GUI Panel to the Variables pulldown.






	Note that radial2 now appears in the list of variables there.








[image: ../_images/DataAnalysis-VariablesMenu.png]

Fig. 2.17 Expression variable appears in the plot menus




	Select radial2 from the pull down and click Draw.






	Visually, the image will not look any different. But, if you take a close look at the legend you will see it is now showing “0…56.57”.







Visit supports several unary and binary algebraic expressions including
+, -, /, \*, bitwise-^, bitwise-&, sqrt(), abs(), ciel(), floor(), ln(), log10(), exp()
and more.



2.4.2. Accessing coordinates (of a mesh) in expressions

Here, we’ll use the category of Mesh expressions to access the coordinates
of a mesh, again, working with “noise2d.silo”.


	Go to Controls->Expressions.


	Click the New button and name this expression “Coords”.


	Set the Type to Vector mesh variable (because coordinates, at least in this 2D example, are a vector quantity).


	Put the cursor in the Definition pane.


	Go to Insert Function… and find the Mesh category of expressions and then, within it, find the coord function expression.






	This should result in the insertion of “coord()” in the Definition pane and place the cursor between the two parenthesis characters.


	Note that in almost all cases, the category of Mesh expressions expect one or more mesh variables as operands.








	Now, go to Insert Variable… pull down and then to the Meshes submenu and select Mesh.






	This should result in Mesh being inserted between the parentheses in the definition.








	Click Apply.


	Now, we’ll define two scalar expressions for the “X” and “Y” coordinates of the mesh. While still in the Expressions window,






	Click New.


	Name the new expression “X”.






	Note that VisIt [https://visit-dav.github.io/visit-website/]’s expression system is case sensitive so “x” and “X” can be different variable names.








	Leave the type as Scalar mesh variable


	Type into the definition pane, “Coords[0]”






	This expression uses the array bracket dereference operator “[]” to specify a particular component of an array. In this case, the array being derefrenced is the vector variable defined by “Coords”.


	Note that VisIt [https://visit-dav.github.io/visit-website/]’s expression system always numbers its array indices starting from zero.








	Click Apply.


	Now, repeat these steps to define a “Y” expression for the “Y” coordinates as “Coords[1]”.








	Finally, we’ll define the “distance” expression






	Click the New button.


	Give the new variable the name “Dist” (Type should be Scalar mesh variable).


	Type in the definition “sqrt(X*X+Y*Y)”.


	Click Apply.







Now, we’ll use the new “Dist” variable we’ve just defined to display some data.


	Delete any existing plots from the plot list.


	Add a Pseudocolor plot of shepardglobal.


	Add an Isovolume operator.






	Although this example is a 2D example and so volume doesn’t seem to apply, VisIt [https://visit-dav.github.io/visit-website/]’s Isovolume operator performs the equivalent operation for 2D data.








	Bring up the Isovolume operator attributes (either expand the plot by clicking on the triangle to the left of its name in the plot list and double clicking on the Isovolume operator there or go to the OpAtts menu and bring up Isovolume operator attributes that way).


	Set the variable to Dist.


	Set the Lower bound to “5” and the Upper bound to “7”.


	Click Apply.


	Click Draw.




You should get the picture below. In this picture, we are displaying a
Pseudocolor plot of shepardglobal, but Isovolumed by our Dist expression
in the range “[5…7]”.


[image: ../_images/DataAnalysis-ExpressionRadial2Output.png]

Fig. 2.18 Example of using the radial expression



This example also demonstrates the use of an expression function, coord()
to operate on a mesh and return its coordinates as a vector variable on the
mesh.

VisIt [https://visit-dav.github.io/visit-website/] has a variety of expression functions that operate on a Mesh including
area (for 2D meshes), volume (for 3D meshes, revolved_volume (for
2D cylindrically symmetric meshes), zonetype, and more. In addition,
VisIt [https://visit-dav.github.io/visit-website/] includes the entire suite of Mesh quality expressions from the
Verdict Library [http://cubit.sandia.gov/public/verdict.html].



2.4.3. Creating vector and tensor valued variables from scalars

If the database contains scalar variables representing the individual
components of a vector or tensor, VisIt [https://visit-dav.github.io/visit-website/]’s Expression system allows you
to construct the associated vector (or tensor). You create vectors in
VisIt [https://visit-dav.github.io/visit-website/]’s Expression system using the curly bracket vector compose
“{}” operator. For example, using “noise2d.silo” again as an example,
suppose we want to compose a Vector valued expression that has
“shepardglobal” and “hardyglobal” as components. Here are the steps.


	Go to Controls->Expressions.


	Click the New button and set Name to “randvec”.


	Be sure to also set the Type to Vector mesh variable.


	Place the cursor in Definition pane and type “{shepardglobal, hardyglobal}”.


	Click Apply.


	Go to Plots->Vector.






	You should now see randvec appear there as a variable name to plot.








	Add the Vector plot of randvec.




In the example above, we used the vector compose operator, “{}” to
create a vector variable from multiple scalar variables. We can do the
same to create a tensor variable. Recall from calculus that a rank 0 tensor
is a scalar, a rank 1 tensor is a vector and a rank 2 tensor is a matrix.
So, to create a tensor variable, we use multiple vector compose operators
nesting within another vector compose operator. Here, solely for the
purposes of illustration (e.g. this isn’t a physically meaningful tensor)
we’ll use the “X” and “Y” coordinate component scalars we defined earlier
together with the shepardglobal and hardyglobal.


	Go to Controls->Expressions.


	Click New and set the Name to “tensor”.


	Be sure to also set the Type to Tensor mesh variable.


	Place the cursor in Definition pane and type “{ {shepardglobal, hardyglobal}, {X,Y} }”.






	Note the two levels of curly braces. The outer level is the whole rank 2 tensor matrix and the inner curly braces are each row of the matrix.


	Note that you could also have defined the same tensor expression using two vector expressions like so, “{randvec, Coords}”.








	Click Apply.


	Add a Tensor plot of tensor variable.





[image: ../_images/DataAnalysis-ExpressionVectorTensorOutput.png]

Fig. 2.19 Example of using vector and tensor expressions





2.4.4. Variable compatibility gotchas (tensor rank, centering, mesh)

VisIt [https://visit-dav.github.io/visit-website/] will allow you to define expressions that it winds up determining to
be invalid later when it attempts to execute those expressions. Some common
issues are the mixing of incompatible mesh variables in the same expression
without the necessary additional functions to make them compatible.


2.4.4.1. Tensor rank compatibility

For example, what happens if you mix scalar and vector mesh variables
(e.g. variables of different Tensor rank) in the same expression?
Again, using “noise2d.silo”.


	Define the expression, “foo” as “grad+shepardglobal” with the Type Vector mesh variable.






	Note that grad is a Vector mesh variable and shepardglobal is a Scalar mesh variable.








	Now, attempt to do a Vector plot of foo. This works because VisIt [https://visit-dav.github.io/visit-website/] will add the scalar to each component of the vector resulting a new vector mesh variable


	But, suppose you instead defined foo to be of Type Scalar mesh variable.






	VisIt [https://visit-dav.github.io/visit-website/] will allow you to define this expression. But, when you go to plot it, the plot will fail.







As an aside, as you go back and forth between the Expressions window
creating and/or adjusting expression definitions, VisIt [https://visit-dav.github.io/visit-website/] makes no attempt
to keep track of all the changes you’ve made in expressions and
automatically update plots as expressions change. You will have to
manually clear or delete plots to force VisIt [https://visit-dav.github.io/visit-website/] to re-draw plots in which
you’ve changed expressions.

In the above example, if on the other hand, you had set type of “foo”
to Scalar Mesh Variable, then VisIt [https://visit-dav.github.io/visit-website/] would have failed to plot it because
it is adding a scalar and a vector variable and the result of such an
operation is always a Vector mesh variable. If what you really
intended was a scalar mesh variable, then use one of the expression
functions that converts a vector to a scalar (e.g. magnitude() function
or array dereference operator []) to convert the Vector mesh variable
in your expression to a scalar mesh variable. So, “grad[i]+shephardglobal”
where “i” is “0” or “1” would work to define a scalar mesh variable.
Or, “magnitude(grad)+shepardglobal” would also have worked.



2.4.4.2. Centering compatibility

In “noise2d.silo”, some variables are zone centered and some are node
centered. What happens if you combine these in an expression? VisIt [https://visit-dav.github.io/visit-website/] will
default to zone centering for the result. If this is not the desired
result, use the “recenter()” expression function, where appropriate,
to adjust centering of some of the terms in your expression. For example,
again using “noise2d.silo”.


	Define the Scalar mesh variable expression “bar” as “shepardglobal+airVf”.






	For reference, in “noise2d.silo”, “shepardglobal” is node centered while “airVf” is zone centered.








	Do a Pseudocolor plot of “bar”.






	Note that “bar” displays as a zone centered quantity.








	Now, go back to the expression and recenter “airVf” by adjusting the definition to “shepardglobal+recenter(airVf)”.






	The recenter() expression function is a toggle in that it will take whatever the variable’s centering is and swap it (node->zone and zone->node).


	The recenter() expression function also takes a second argument, a string of one of the values toggle, zonal, nodal to force a particular behavior.


	Note that when you click Apply, the current plot of “bar” does not change. You need to manually delete and re-create the plot (or clear and re-draw the plots).







Finally, note that these two expressions…


	“shepardglobal+recenter(airVf)”


	“recenter(shepardglobal+airVf)”




both achieve a node-centered result. But, each expression is subtly
(and numerically) different. The first recenter’s “airVf” to the nodes
and then performs the summation operator at each node. In the second,
there is an implied recentering of “shepardglobal” to the zones first.
Then, the summation operator is applied at each zone center and finally
the results are recentered back to the nodes. In all likelihood this
results in a numerically lower quality result. The moral is that in a
complex series of expressions be sure to take care where you want
recentering to occur.



2.4.4.3. Mesh compatibility

In many cases, especially in Silo databases, all the available variables
in a database are not always defined on the same mesh. This can complicate
matters involving expressions in variables from different meshes.

Just as in the previous two examples of incompatible variables where the
solution was to apply some functions to make the variables compatible,
we have to do the same thing when variables from different meshes are
combined in an expression. The key expression functions which enable this
are called Cross Mesh Field Evaluation or CMFE functions. We will only
briefly touch on these here. CMFEs will be discussed in much greater
detail in a tutorial devoted to that topic.

Again, using “noise2d.silo”


	Define the expression “gorf” with definition “PointVar + shepardglobal”.






	Note that PointVar is defined on a mesh named PointMesh while shepardglobal is defined on a mesh named Mesh.








	Try to do a Pseudocolor plot of “gorfo”. You will get a plot of points and a warning message like this one…





The compute engine running on host somehost.com issued the following warning:
In domain 0, your nodal variable “shepardglobal” has 2500 values, but it should have 100.
Some values were removed to ensure VisIt [https://visit-dav.github.io/visit-website/] runs smoothly.




So, whats happening here? VisIt [https://visit-dav.github.io/visit-website/] is deciding to perform the summation
operation on the PointVar’s mesh. That mesh consists of 100 points. So,
when it encounters the shepardglobal variable (defined on Mesh with
50x50 nodes), it simply ignores any values in “shepardgloabl” after the
first 100. Most likely, this is not the desired outcome.

We have two options each of which involves mapping one of the variables
onto the other variable’s mesh using one of the CMFE expression functions.
We can map shepardglobal onto PointMesh or we can map PointVar onto
Mesh. We’ll do both here



2.4.4.4. Mapping shepardglobal onto PointMesh


	Define a new expression named “shepardglobal_mapped”.


	Go to Insert Function…, then to the Comparisons submenu and select pos_cmfe.






	This defines a position based cross-mesh field evaluation function. The other option is a conn_cmfe or connectivity-based which is faster but requires both meshes to be topologically congruent and is not appropriate here.








	A template for the arguments to the pos_cmfe will appear in the Definition pane.


	Replace “<filename:var>” with “<./noise2d.silo:shepardglobal>”.






	This assumes the “noise2d.silo” file is in the same directory from which VisIt [https://visit-dav.github.io/visit-website/] was started.


	This defines the source or donor variable to be mapped onto a new mesh.








	Replace “<meshname>” with “PointMesh”.






	This defines the destination or target mesh the variable is to be mapped onto.








	Replace “<fill-var-for-uncovered-regions>” with “-1”.






	This is needed for position-based CMFE’s because the donor variable’s mesh and target mesh may not always volumetrically overlap 100%. In places where this winds up being the case, VisIt [https://visit-dav.github.io/visit-website/] will use this value to fill in.








	Now with “shepardglobal_mapped” defined, you can define the desired expression, “PointVar + shepardglobal_mapped” and this will achieve the desired result and is shown below.





[image: ../_images/DataAnalysis-ExpressionCMFEOutput.png]

Fig. 2.20 The variable Shepardglobal mapped onto a point mesh





2.4.4.5. Mapping PointVar onto Mesh

To be completed. But, cannot map point mesh onto a volumetric mesh. VisIt [https://visit-dav.github.io/visit-website/]
always returns zero overlap.




2.4.5. Combining expressions and queries is powerful

Suppose you have a database generated by some application code simulating
some object being blown apart. Maybe its a 2D, cylindrically symmetric
calculation. Next, suppose the code produced a “density” and “velocity”
variable. However, what you want to compute is the total mass of some
(portion of) of the object that has velocity (magnitude) greater than
some threshold, say 5 meters/second. You can use a combination of
Expressions, Queries and the Threshold operator to achieve this.

Mass is “density * volume”. You have a 2D mesh, so how do you get volume
from something that has only 2 dimensions? You know the mesh represents
a calculation that is cylindrically symmetric (revolved around the y-axis).
You can use the revolved_volume() Expression function to obtain the
volume of each zone in the mesh. Then, you can multiply the result of
revolved_volume() by density to get mass of each zone in the mesh.
Once you have that, you can use threshold operator to display only those
zones with velocity (magnitude) greater than 5 and then a variable sum
query to add up all the mass moving at that velocity.

Here, we demonstrate the steps involved using the “noise2d.silo” database.
Because that database does not quite match the problem assumption described
in the preceding paragraphs, we simply  re-purpose a few of the variables
in the database to serve as our density and velocity variables in
this example. Namely, we define the expression density as an alias for
shephardglobal and velocity as an alias for grad.


[image: ../_images/DataAnalysis-ExpressionsMass.png]

Fig. 2.21 Mass Expression Definition



Here are the steps involved…


	Go to Controls->Expressions.


	Click New.


	Set the Name to “density”.


	Make sure the Type is set to Scalar mesh variable.


	Set the Definition to “shepardglobal”.


	Click Apply.


	Click New.


	Set the Name to “velocity”.


	Make sure the Type is set to Vector mesh variable.


	Set the Definition to “grad”.


	Click Apply.


	Click New.


	Set the Name to “mass”.


	Make sure the Type is set to Scalar mesh variable.


	Set the Definition to “revolved_volume(Mesh) * density”.


	Click Apply.


	Click the New button again (for a new expression).


	Set the Name to “velmag” (for velocity magnitude).


	Set the Definition to “magnitude(velocity)”.


	Go to Plot->Pseudocolor->mass.


	Click Draw.





[image: ../_images/DataAnalysis-ExpressionMassOutput.png]

Fig. 2.22 Mass plot




	Add Operator->Threshold.


	Open the Threshold operator attributes window.





[image: ../_images/DataAnalysis-ThresholdAttributes.png]

Fig. 2.23 Threshold attributes




	Select the default variable and then click Delete selected variable.


	Go to Add Variable and select velmag from the list of Scalars.


	Set Lower Bound to “5”.


	Click Apply.






	Now the displayed plot changes to show only those parts of the mesh that are moving with velocity greater than 5.








[image: ../_images/DataAnalysis-ThresholdOutput.png]

Fig. 2.24 Mass plot after threshold




	Go to Controls->Query.


	Find the Variable sum query from the list of queries.


	Click the Query button. The computed result will be a sum of all the individual zones’ masses in the mesh for those zones that are moving with velocity greater than 5.





[image: ../_images/DataAnalysis-QueryVariableSumOutput.png]

Fig. 2.25 The variable sum query result





2.4.6. Automatic, saved and database expressions

VisIt [https://visit-dav.github.io/visit-website/] defines several types of expressions automatically. For all vector
variables from a database, VisIt [https://visit-dav.github.io/visit-website/] will automatically define the associated
magnitude expressions. For unstructured meshes, VisIt [https://visit-dav.github.io/visit-website/] will automatically
define mesh quality expressions. For any databases consisting of
multiple time states, VisIt [https://visit-dav.github.io/visit-website/] will define time derivative expressions.
This behavior can be controlled by going to VisIt [https://visit-dav.github.io/visit-website/]’s Preferences dialog
and enabling or disabling various kinds of automatic expressions.

If you save settings, any expressions you have defined are also saved with
the settings. And, they will appear (and sometimes pollute) your menus
whether or not they are valid expressions for the currently active database.

Finally, databases are also free to define expressions. In fact, many
databases define a large number of expressions for the convenience of
their users who often use the expressions in their post-processing
workflows. Ordinarily, you never see VisIt [https://visit-dav.github.io/visit-website/]’s automatic expressions or a
database’s expressions in the Expression window because they are not
editable. However, you can check the display expressions from database
check box in the Expressions window and VisIt [https://visit-dav.github.io/visit-website/] will also show these expressions.






          

      

      

    

 


  

  
    

    3. Scripting
    

    

    
 
  

    
      
          
            
  
3. Scripting




This section describes the VisIt [https://visit-dav.github.io/visit-website/] Command Line Interface (CLI).


3.1. Command line interface overview

VisIt [https://visit-dav.github.io/visit-website/] includes a rich a command line interface that is based on Python 2.7.

There are several ways to use the CLI:


	Launch VisIt [https://visit-dav.github.io/visit-website/] in a batch mode and run scripts.






	Linux: /path/to/visit/bin/visit -nowin -cli -s <script.py>


	OSX: /path/to/VisIt.app/Contents/Resources/bin/visit -nowin -cli -s <script.py>








	Launch VisIt [https://visit-dav.github.io/visit-website/] so that a visualization window is visible and interactively issue CLI commands.


	Use both the standard GUI and CLI simultaneously.






3.2. Launching the CLI

We will focus on the use case where we have the graphical user interface and
CLI running simultaneously.

To launch the CLI from the graphical user interface:


	Go to Controls->Command.




This will bring up the Commands window. The Command window provides a text
editor with Python syntax highlighting and an Execute button that tells
VisIt [https://visit-dav.github.io/visit-website/] to execute the script. Finally, the Command window lets you record
your GUI actions into Python code that you can use in your scripts.



3.3. A first action in the CLI


	Open “example.silo” in the GUI if it not already open.


	Cut-and-paste the following Python commands into the first tab of the Commands window.

AddPlot("Pseudocolor", "temp")
# You will see the active plots list in the GUI update, since the CLI and GUI communicate.
DrawPlots()
#You should see your plot.







	Click Execute.






3.4. Tips about Python


	Python is whitespace sensitive! This is a pain, especially when you are cut-n-pasting things.


	Python has great constructs for control and iteration, here are some examples:

for i in range(100):
   # use i

# strided range
for i in range(0,100,10):
   # use i

if (cond):
 # stmt

import sys
...
sys.exit()











3.5. Example scripts

We will be using Python scripts in each of the following sections:
You can get execute them by:


	Cut-n-paste-ing them into a tab in the Commands window and executing it.




For all of these scripts, make sure “example.silo” is currently open unless
otherwise noted.


3.5.1. Setting attributes

Each of VisIt [https://visit-dav.github.io/visit-website/]’s Plots and Operators expose a set of attributes that control
their behavior. In VisIt [https://visit-dav.github.io/visit-website/]’s GUI, these attributes are modified via options
windows. VisIt [https://visit-dav.github.io/visit-website/]’s CLI provides a set of simple Python objects that control
these attributes. Here is an example setting the minimum and maximum for the
Pseudocolor plot

DeleteAllPlots()
AddPlot("Pseudocolor", "temp")
DrawPlots()
p = PseudocolorAttributes()
p.minFlag = 1
p.maxFlag = 1
p.min = 3.5
p.max = 7.5
SetPlotOptions(p)







3.5.2. Animating an isosurface

This example demonstrates sweeping an isosurface operator to animate the
display of a range of isovalues from “example.silo”.

DeleteAllPlots()
AddPlot("Pseudocolor", "temp")
iso_atts = IsosurfaceAttributes()
iso_atts.contourMethod = iso_atts.Value
iso_atts.variable = "temp"
AddOperator("Isosurface")
DrawPlots()
for i in range(30):
   iso_atts.contourValue = (2 + 0.1*i)
   SetOperatorOptions(iso_atts)
   # For moviemaking, you'll need to save off the image
   # SaveWindow()







3.5.3. Using all of VisIt [https://visit-dav.github.io/visit-website/]’s building blocks

This example uses a Pseudocolor plot with a ThreeSlice operator applied to
display temp on the exterior of the grid along with streamlines of the
gradient of temp.

Note that the script below may not work the first time you execute it. In
that case delete all the plots and execute the script again.


[image: ../_images/Scripting-StreamlineOutput.png]

Fig. 3.67 Streamlines



# Clear any previous plots
DeleteAllPlots()
# Create a plot of the scalar field 'temp'
AddPlot("Pseudocolor","temp")
# Slice the volume to show only three
# external faces.
AddOperator("ThreeSlice")
tatts = ThreeSliceAttributes()
tatts.x = -10
tatts.y = -10
tatts.z = -10
SetOperatorOptions(tatts)
DrawPlots()
# Find the maximum value of the field 'temp'
Query("Max")
val = GetQueryOutputValue()
print "Max value of 'temp' = ", val

# Create a streamline plot that follows
# the gradient of 'temp'
DefineVectorExpression("g","gradient(temp)")
AddPlot("Pseudocolor", "operators/IntegralCurve/g")
iatts = IntegralCurveAttributes()
iatts.sourceType = iatts.SpecifiedBox
iatts.sampleDensity0 = 7
iatts.sampleDensity1 = 7
iatts.sampleDensity2 = 7
iatts.dataValue = iatts.SeedPointID
iatts.integrationType = iatts.DormandPrince
iatts.issueStiffnessWarnings = 0
iatts.issueCriticalPointsWarnings = 0
SetOperatorOptions(iatts)

# set style of streamlines
patts = PseudocolorAttributes()
patts.lineType = patts.Tube
patts.tailStyle = patts.Spheres
patts.headStyle = patts.Cones
patts.endPointRadiusBBox = 0.01
SetPlotOptions(patts)

DrawPlots()







3.5.4. Creating a movie of animated streamline paths

This example extends the “Using all of VisIt [https://visit-dav.github.io/visit-website/]’s Building Blocks” example by


	animating the paths of the streamlines


	saving images of the animation


	finally, encoding those images into a movie




(Note: Encoding requires ffmpeg is installed and available in your PATH)

# import visit_utils, we will use it to help encode our movie
from visit_utils import *

# Set a better view
ResetView()
v = GetView3D()
v.RotateAxis(0,44)
v.RotateAxis(1,-23)
SetView3D(v)

# Disable annotations
aatts = AnnotationAttributes()
aatts.axes3D.visible = 0
aatts.axes3D.triadFlag = 0
aatts.axes3D.bboxFlag = 0
aatts.userInfoFlag = 0
aatts.databaseInfoFlag = 0
aatts.legendInfoFlag = 0
SetAnnotationAttributes(aatts)

# Set basic save options
swatts = SaveWindowAttributes()
#
# The 'family' option controls if visit automatically adds a frame number to
# the rendered files. For this example we will explicitly manage the output name.
#
swatts.family = 0
#
# select PNG as the output file format
#
swatts.format = swatts.PNG
#
# set the width of the output image
#
swatts.width = 1024
#
# set the height of the output image
#
swatts.height = 1024


####
# Crop streamlines to render them at increasing time values over 50 steps
####
iatts.cropValue = iatts.Time
iatts.cropEndFlag = 1
iatts.cropBeginFlag = 1
iatts.cropBegin = 0
for ts in range(0,50):
    # set the integral curve attributes to change the where we crop the streamlines
    iatts.cropEnd = (ts + 1) * .5

    # update streamline attributes and draw the plot
    SetOperatorOptions(iatts)
    DrawPlots()
    #before we render the result, explicitly set the filename for this render
    swatts.fileName = "streamline_crop_example_%04d.png" % ts
    SetSaveWindowAttributes(swatts)
    # render the image to a PNG file
    SaveWindow()

################
# use visit_utils.encoding to encode these images into a "wmv" movie
#
# The encoder looks for a printf style pattern in the input path to identify the frames of the movie.
# The frame numbers need to start at 0.
#
# The encoder selects a set of decent encoding settings based on the extension of the
# the output movie file (second argument). In this case we will create a "wmv" file.
#
# Other supported options include ".mpg", ".mov".
#   "wmv" is usually the best choice and plays on all most all platforms (Linux ,OSX, Windows).
#   "mpg" is lower quality, but should play on any platform.
#
# 'fdup' controls the number of times each frame is duplicated.
#  Duplicating the frames allows you to slow the pace of the movie to something reasonable.
#
################

input_pattern = "streamline_crop_example_%04d.png"
output_movie = "streamline_crop_example.wmv"
encoding.encode(input_pattern,output_movie,fdup=4)







3.5.5. Rendering each time step of a dataset to a movie

This example assumes the “aneurysm.visit” is already opened.


	Create a plot, render all timesteps and encode a movie.




(Note: Encoding requires that ffmpeg is installed and available in your PATH)

# import visit_utils, we will use it to help encode our movie
from visit_utils import *
DeleteAllPlots()

AddPlot("Pseudocolor","pressure")
DrawPlots()

# Set a better view
ResetView()
v = GetView3D()
v.RotateAxis(1,90)
SetView3D(v)

# get the number of timesteps
nts = TimeSliderGetNStates()

# set basic save options
swatts = SaveWindowAttributes()
#
# The 'family' option controls if visit automatically adds a frame number to
# the rendered files. For this example we will explicitly manage the output name.
#
swatts.family = 0
#
# select PNG as the output file format
#
swatts.format = swatts.PNG
#
# set the width of the output image
#
swatts.width = 1024
#
# set the height of the output image
#
swatts.height = 1024

#the encoder expects file names with an integer sequence
# 0,1,2,3 .... N-1

file_idx = 0

for ts in range(0,nts,10): # look at every 10th frame
    # Change to the next timestep
    TimeSliderSetState(ts)
    #before we render the result, explicitly set the filename for this render
    swatts.fileName = "blood_flow_example_%04d.png" % file_idx
    SetSaveWindowAttributes(swatts)
    # render the image to a PNG file
    SaveWindow()
    file_idx +=1

################
# use visit_utils.encoding to encode these images into a "wmv" movie
#
# The encoder looks for a printf style pattern in the input path to identify the frames of the movie.
# The frame numbers need to start at 0.
#
# The encoder selects a set of decent encoding settings based on the extension of the
# the output movie file (second argument). In this case we will create a "wmv" file.
#
# Other supported options include ".mpg", ".mov".
#   "wmv" is usually the best choice and plays on all most all platforms (Linux ,OSX, Windows).
#   "mpg" is lower quality, but should play on any platform.
#
# 'fdup' controls the number of times each frame is duplicated.
#  Duplicating the frames allows you to slow the pace of the movie to something reasonable.
#
################

input_pattern = "blood_flow_example_%04d.png"
output_movie = "blood_flow_example.wmv"
encoding.encode(input_pattern,output_movie,fdup=4)







3.5.6. Animating the camera

See Python fly through [http://visitusers.org/index.php?title=Visit-tutorial-python-fly].



3.5.7. Automating data analysis

See Python analysis curves [http://visitusers.org/index.php?title=Visit-tutorial-python-analysis].



3.5.8. Extracting a per-material aggregate value at each timestep

See example Python aggregate curves [http://visitusers.org/index.php?title=Visit-tutorial-python-agg-curve].




3.6. Recording GUI actions to Python scripts

VisIt [https://visit-dav.github.io/visit-website/]’s Commands window provides a mechanism to translate GUI actions into their equivalent Python commands.


	Open the Commands Window by selecting ‘’Controls Menu->Command’’





[image: ../_images/Scripting-Commands.png]

Fig. 3.68 The Commands window




	Click the Record button.


	Perform GUI actions.


	Return to the Commands Window.


	Select a tab to hold the python script of your recorded actions.


	Click the Stop button.


	The equivalent Python script will be placed in the tab in the Commands window.





	Note that the scripts are very verbose and contain some unnecessary commands, which can be edited out.






3.7. Learning the CLI

Here are some tips to help you quickly learn how to use VisIt [https://visit-dav.github.io/visit-website/]’s CLI:


	From within VisIt [https://visit-dav.github.io/visit-website/]’s python CLI, you can type “dir()” to see the list of all commands.






	Sometimes, the output from “dir()” within VisIt [https://visit-dav.github.io/visit-website/]’s python CLI is a little hard to look through. So, a useful thing on Linux to get a nicer list of methods is the following shell command (typed from outside VisIt [https://visit-dav.github.io/visit-website/]’s python CLI)…

echo "dir()" | visit -cli -nowin -forceinteractivecli | tr ',' '\n' | tr -d " '" | sort







	Or, if you are looking for CLI functions having to do with a specific thing…

echo "dir()" | visit -cli -nowin -forceinteractivecli | tr ',' '\n' | tr -d " '" | grep -i material













	You can learn the syntax of a given method by typing “help(MethodName)”






	Type “help(AddPlot)” in the Python interpreter.








	Use the GUI to Python recording featured outlined in Recording GUI actions to Python scripts.


	Use ‘’WriteScript()’’ function, which will create a python script that describes all of your current plots.






	For more details, see WriteScript [http://visitusers.org/index.php?title=WriteScript].








	When you have a Python object, you can see all of its attributes by printing it.

s = SliceAttributes()
print s
# Output:
originType = Intercept  # Point, Intercept, Percent, Zone, Node
originPoint = (0, 0, 0)
originIntercept = 0
originPercent = 0
originZone = 0
originNode = 0
normal = (0, -1, 0)
axisType = YAxis  # XAxis, YAxis, ZAxis, Arbitrary, ThetaPhi
upAxis = (0, 0, 1)
project2d = 1
interactive = 1
flip = 0
originZoneDomain = 0
originNodeDomain = 0
meshName = "default"
theta = 0
phi = 0










3.7.1. Tips for searching for help

VisIt [https://visit-dav.github.io/visit-website/]’s CLI provides a large set of functions. To can limit the scope of your
search using a helper functions. One such helper is the lsearch() function
in the visit_utils module:

from visit_utils.common import lsearch
lsearch(dir(),"Material")





lsearch() returns a python list of strings with the names that match the
given pattern. Here is another example that prints each of the result strings
on a separate line.

from visit_utils.common import lsearch
for value in lsearch(dir(),"Material"):
    print value








3.8. Advanced features


	You can set up your own buttons in the VisIt [https://visit-dav.github.io/visit-website/] gui using the CLI. See VisIt Run Commands (RC) File.


	You can set up callbacks in the CLI that get called whenever events happen in VisIt [https://visit-dav.github.io/visit-website/]. See Python callbacks [http://visitusers.org/index.php?title=Python_callbacks].


	You can create your own custom Qt GUI that uses VisIt [https://visit-dav.github.io/visit-website/] for plotting. See PySide recipes [http://visitusers.org/index.php?title=PySide_Recipes].








          

      

      

    

 


  

  
    

    4. Aneurysm
    

    

    
 
  

    
      
          
            
  
4. Aneurysm




This tutorial provides a short introduction to VisIt’s features while exploring a finite element blood flow simulation of an aneurysm. The simulation was run using the LifeV finite element solver and made available for this tutorial thanks to Gilles Fourestey and Jean Favre, Swiss National Supercomputing Centre [http://www.cscs.ch/].


4.1. Open the dataset

This tutorial uses the aneurysm [https://visit-dav.github.io/largedata/datarchives/aneurysm] dataset.


	Download the aneurysm dataset [https://visit-dav.github.io/largedata/datarchives/aneurysm].


	Click on the Open icon to bring up the File open window.


	Navigate your file system to the folder containing “aneurysm.visit”.


	Highlight the file “aneurysm.visit” and then click OK.






4.2. Plotting the mesh topology

First we will examine the finite element mesh used in the blood flow simulation.


4.2.1. Create a Mesh plot


	Go to Add->Mesh->Mesh.


	Click Draw.





[image: ../_images/Aneurysm-MeshPlotAdd.png]

Fig. 4.86 Adding a mesh plot.



After this, the mesh plot is rendered in VisIt [https://visit-dav.github.io/visit-website/]’s Viewer window.
Modify the view by rotating and zooming in the viewer window.



4.2.2. Modify the Mesh plot settings


	Double click on the Mesh plot to open the Mesh plot attributes window.





[image: ../_images/Aneurysm-MeshAttributes.png]

Fig. 4.87 The mesh plot attributes window.




	Experiment with settings for:






	Mesh color


	Opaque color


	Opaque mode - When the Mesh plot’s opaque mode is set to automatic, the Mesh plot will be drawn in opaque mode unless it is forced to share the visualization window with other plots, at which point the Mesh plot is drawn in wireframe mode. When the Mesh plot is drawn in wireframe mode, only the edges of each externally visible cell face are drawn, which prevents the Mesh plot from interfering with the appearance of other plots. In addition to having an automatic opaque mode, the Mesh plot can be forced to be drawn in opaque mode or wireframe mode by selecting the On or Off. This is best demonstrated with the Pseudocolor plot of pressure present.


	Show internal zones







You will need to click Apply to commit the settings to your plot.


[image: ../_images/Aneurysm-Mesh.png]

Fig. 4.88 The mesh plot of the aneurysm.





4.2.3. Query the mesh properties

VisIt [https://visit-dav.github.io/visit-website/]’s Query interface provides several quantitative data summarization
operations. We will use the query interface to learn some basic information
about the simulation mesh.


	Go to Controls->Query to bring up the Query window.


	Select NumZones and click Query.


	This returns the number of elements in the mesh.






	Select NumNodes and click Query.


	This returns the number of vertices in the mesh








Note: The terms “zones”, “elements”, and “cells” are overloaded in
scientific visualization, as are the terms “nodes”, “points”, and
“vertices”.



4.2.4. Additional exercises


	What type of finite element was used to construct the mesh?


	How many elements are used to construct the mesh?


	How many vertices are used to construct the mesh?


	On average, how many vertices are shared per element?







4.3. Examining scalar fields

In addition to the mesh topology, this dataset provides two mesh fields:


	A scalar field “pressure”, associated with the mesh vertices.


	A vector field “velocity”, associated with the mesh vertices.




VisIt [https://visit-dav.github.io/visit-website/] automatically defines an expression that allows us to use the magnitude
of the “velocity” vector field as a scalar field on the mesh. The result of
the expression is a new field named “velocity_magnitude”.

We will use Pseudocolor plots to examine the “pressure” and
“velocity_magnitude” fields.


	Go to Add->Pseudocolor->Pressure.


	Click Draw.


	Double click on the Pseudocolor plot to bring up the Pseudocolor plot attributes window.


	Change the color table to Spectral and check the Invert button.


	Click Apply.


	Click Draw.


	Click Play in the Time animation controls above the plot list on the main GUI window.




You will see the pressure field animate on the exterior of the mesh as the
simulation evolves.


[image: ../_images/Aneurysm-PseudocolorPressure.png]

Fig. 4.89 The pseudocolor plot of the pressure.



Experiment with:


	Setting the Pseudocolor plot limits.


	Hiding and showing the Mesh plot.




When you are done experimenting, stop animating over time steps using the
Stop button.


4.3.1. Query the maximum pressure over time

We can use the “pressure” field to extract the heart beat signal. We want to
find the maximum pressure value across the mesh elements at each time step
of our dataset. VisIt [https://visit-dav.github.io/visit-website/] provides a Query over time mechanism that allows us
to extract this data.

First, we need to set our query options to use timestep as the independent
variable for our query.


	Go to Controls->Query over time options.


	Select Timestep.


	Click Apply and Dismiss.





[image: ../_images/Aneurysm-QueryOverTimeAttributes.png]

Fig. 4.90 The QueryOverTime attributes window.



Now we can execute the Max query on all of our time steps and collect the
results into a curve.


	Click on the Pseudocolor plot to make sure it is active.


	Go to Controls->Query to bring up the Query window.


	Select Max.


	Check Do Time Query.


	Click Query.




This will process the simulation output files and create a new window with
a curve that contains the maximum pressure value at each time.


[image: ../_images/Aneurysm-QueryOverTime.png]

Fig. 4.91 The query over time plot.





4.3.2. Additional exercises


	How many heart beats does this dataset cover?


	Estimate the number of beats per minute of the simulated heart (each cycle is 0.005 seconds).







4.4. Contours and sub-volumes of high velocity


4.4.1. Examining the velocity magnitude

Next we create a Pseudocolor plot to look at the magnitude of the “velocity”
vector field.


	Delete all your existing plots by selecting them all and clicking Delete.


	Go to Add->Pseudocolor->velocity_magnitude.


	Open the Pseudocolor plot attributes window and set the color table options as before.


	Click Draw.





[image: ../_images/Aneurysm-PseudocolorVelocityMagnitude.png]

Fig. 4.92 The pseudocolor plot of the velocity magnitude.



Notice that the velocity at the surface of the mesh is zero. To get a better
understanding of the flow inside the mesh, we will use operators to extract
regions of high blood flow.


4.4.1.1. Creating a semi-transparent exterior mesh plot

When looking at features inside the mesh, it helps to have a partially
transparent view of the whole mesh boundary for reference. We will add a
Subset plot to create this view of the mesh boundary.


	Uncheck Apply operators to all plots.





[image: ../_images/Aneurysm-ApplyOperatorsToAllPlots.png]

Fig. 4.93 The apply operators to all plots setting.




	Go to Add->Subset->Mesh.


	Open the Subset plot attributes window.


	Change the color to Light Blue.


	Set the Opacity slider to 25%.


	Click Apply.


	Click Draw.





[image: ../_images/Aneurysm-Subset.png]

Fig. 4.94 The transparent subset plot.





4.4.1.2. Contours of high velocity

Now we will extract contour surfaces at high velocity values using the
Isosurface operator.


	Select the Pseudocolor plot in the plot list.


	Go to Operators->Slicing->Isosurface.


	Open the Isosurface operator attributes window.


	Set Select by to Value, and use “10 15 20”.


	Click Apply and Dismiss.


	Click Draw and press the Play button to animate the plot over time.




You will see the contour surfaces extracted from the “velocity_magnitude”
field animate as the simulation evolves.


[image: ../_images/Aneurysm-SubsetIsoSurface.png]

Fig. 4.95 The transparent subset plot with iso surfaces of velocity magnitude.





4.4.1.3. Sub-volumes of high velocity

As an alternative to contours, we can also extract the sub-volume between
two scalar values using the Isovolume operator.


	Click Stop to stop the animation.


	Remove the Isosurface operator.


	Go to Operators->Selection->Isovolume.


	Open the Isovolume operator attributes window.


	Set the Lower bound to “10” and the Upper Bound to “20”.


	Click Apply and Dismiss.


	Click Draw and press the Play button to animate the plot over time.





[image: ../_images/Aneurysm-SubsetIsoVolume.png]

Fig. 4.96 The transparent subset plot with an iso volume of velocity magnitude.







4.5. Visualizing the velocity vector field

This section of the tutorial outlines using glyphs, streamlines, and pathlines
to visualize the velocity vector field from the simulation.


4.5.1. Plotting the vector field directly with glyphs

VisIt [https://visit-dav.github.io/visit-website/]’s Vector plot renders a vector field at each time step as a collection
of arrow glyphs. This allows us to see the direction of the vectors as well
as their magnitude. We will create a vector plot to directly view the
simulated “velocity” vector field.


	Go to Add->Vector->velocity.


	Open the Vector plot attributes window.


	Go to the Vectors tab.


	Set Stride to “5”.


	Go to the Color section on the Data tab.


	Change the Magnitude to Spectral, and check the Invert option.


	Go to the Glyphs tab.


	In the Scale section, set the Scale to “0.5”.


	In the Style section, set Arrow body to Cylinder.


	In the Rendering section, set Geometry Quality to High.


	Click Apply and Dismiss.


	Click Draw.


	Click Play.





[image: ../_images/Aneurysm-Vector.png]

Fig. 4.97 The vector plot of velocity.





4.5.2. Examining features of the flow field with streamlines

To explore the flow field further we will seed and advect a set of streamlines
near the inflow of the artery. Streamlines show the path massless tracer
particles would take if advected by a static vector field. To construct
Streamlines, the first step is selecting a set of spatial locations that
can serve as the initial seed points.

We want to center our seed points around the peak velocity value on a slice
near the inflow of the artery. To find this location, we query a sliced
pseudocolor plot of the “velocity_magnitude”.


	Go to Add->Pseudocolor->velocity_magnitude.


	Open the Pseudocolor plot attributes window and set the color table options as before.


	Go to Operators->Slicing->Slice.


	Open the Slice operator attributes window.


	In the Normal section set Orthogonal to Y Axis.


	In the Origin section select Point and set the value to “3 3 3”.


	In the Up Axis section uncheck Project to 2D.


	Click Apply and Dismiss.


	Click Draw.





[image: ../_images/Aneurysm-PseudocolorSliceVelocityMagnitude.png]

Fig. 4.98 The velocity magnitude on a slice.




4.5.2.1. Query to find the maximum velocity on the slice


	Click to make sure the Pseudocolor plot of your “velocity_magnitude” slice is active.


	Go to Controls->Query.


	Select Max.


	Select Actual Data.


	Click Query.




This will give you the maximum scalar value on the slice and the x,y,z
coordinates of the node associated with this value. We will use the x,y,z
coordinates of this node to seed a set of streamlines.


[image: ../_images/Aneurysm-QueryMaxVelocityMagnitude.png]

Fig. 4.99 The result of the velocity magnitude query.





4.5.2.2. Plotting streamlines of velocity


	Go to Add->Pseudocolor->operators->IntegralCurve->velocity.





[image: ../_images/Aneurysm-CreateStreamlinePlot.png]

Fig. 4.100 Creating a streamline plot with the IntegralCurve operator.




	Open the IntegralCurve operator attributes window.


	Go to the Source tab.


	Set the Source type to Circle.


	Set the Origin to the value returned from the max query: “3.45115 3 5.54927”, excluding any commas in the input text box.


	Set the  Normal to the y-axis: “0 1 0”.


	Set the  Up axis to the z-axis: “0 0 1”.


	Set the Radius to “0.12”.


	Go to the Sampling section.


	Set Sampling along: to Boundary.


	Set Samples in Theta: to “12”.


	Go to the Advanced tab.


	In the Warnings section, uncheck all of the warning checkboxes.


	Click Apply and Dismiss.





[image: ../_images/Aneurysm-IntegralCurveAttributes.png]

Fig. 4.101 The IntegralCurve operator attributes.




	Open the Pseudocolor plot attributes window.


	Go to the Data tab.


	In the Color section set the Color table to Reds.





[image: ../_images/Aneurysm-PseudocolorDataAttributes.png]

Fig. 4.102 The Pseudocolor attributes for the streamline data.




	Go to the Line section on the Geometry tab.


	Set Line type to Tubes.


	Set Tail to Sphere.


	Set Head to Cone.


	Set the head and tail Radius to “0.03”.





[image: ../_images/Aneurysm-PseudocolorGeometryAttributes.png]

Fig. 4.103 The Pseudocolor attributes for the streamline geometry.




	Click Apply and Dismiss.


	Click Draw.


	Use the time slider controls to view a few time steps.





[image: ../_images/Aneurysm-Streamlines.png]

Fig. 4.104 The streamlines of velocity.






4.5.3. Examining features of the flow field with pathlines

Finally, to explore the time varying behavior of the flow field we will
use pathlines. Pathlines show the path massless tracer particles would
take if advected by the vector field at each timestep of the simulation.

We will modify our previous IntergralCurve options to create pathlines.


	Set the time slider controls to the first timestep.


	Open the IntegralCurve attributes window.


	Go to the Appearance tab.


	In the Streamlines vs Pathlines section select Pathline.


	In the Pathlines Options section set How to perform interpolation over time to Mesh is static over time.





[image: ../_images/Aneurysm-IntegralCurvePathlineAttributes.png]

Fig. 4.105 The IntegralCurve operator pathline attributes.




	Click Apply and Dismiss.




This will process all 200 files in the dataset and construct the pathlines
that originate at our seed points.


[image: ../_images/Aneurysm-Pathlines.png]

Fig. 4.106 The pathlines of velocity.






4.6. Publishing to SeedMe.org


4.6.1. Required setup


	Sign-in [https://www.seedme.org/user] or Sign-up [https://www.seedme.org/user/register] at SeedMe.org.


	Download your “API Key file” [https://www.seedme.org/user], then move it to your Home directory [https://en.wikipedia.org/wiki/Home_directory].






4.6.2. Sharing automation script

In this section we will render and save pathline trace in 20 steps. Then
upload and share the rendered 20 images as a sequence and instuct SeedMe to
encode a video from these set of images at 2 frames per second. A sample
video can be seen here [https://www.seedme.org/node/49054#videos].

A detailed example with a brief explanation in the comments can be seen
here [https://bitbucket.org/seedme/seedme-python-client/src/master/demo.py?at=master&fileviewer=file-view-default].


	Go to Controls->Command.


	Find an empty tab.


	Paste the following Python snippet into this tab.

#
# file: aneurysm_seedme.py
# info:
# Example showing how to use SeedMe to publish a pathline animation
#

##############################################################################
# To do : Set the following four variables
##############################################################################
seedme_apikey_path = '/absolute/path/to/seedme.txt'
my_rendered_image_path = "/absolute/path/for/images/" # does not traverse recursively
my_content_privacy = "public" # private (default), group, public
my_share_list = "one@example.com, two@example.com" # comma delimited emails


# Set save window attributes including path where the rendered images will be saved
sa = SaveWindowAttributes()
sa.outputToCurrentDirectory = 0
sa.outputDirectory = my_rendered_image_path
sa.fileName = "pathline"
sa.family = 1
sa.format = sa.PNG
sa.width = 512
sa.height = 512
sa.screenCapture = 0
sa.saveTiled = 0
sa.quality = 80
sa.progressive = 0
sa.binary = 0
sa.stereo = 0
sa.compression = sa.PackBits  # None, PackBits, Jpeg, Deflate
sa.forceMerge = 0
sa.resConstraint = sa.ScreenProportions  # NoConstraint, EqualWidthHeight, ScreenProportions
sa.advancedMultiWindowSave = 0
SetSaveWindowAttributes(sa)


# Now save this pathline visualization in 20 frames (images)
# Animate our pathlines by cropping based on time
iatts = IntegralCurveAttributes()
iatts.cropValue = iatts.Time
iatts.cropEndFlag = 1

nsteps = 20 # Number of steps
final_time = .995
for i in range(nsteps+1):
    iatts.cropEnd = final_time * i /nsteps
    SetOperatorOptions(iatts)
    SaveWindow() # will save images at the sa.outputDirectory provided above


# ----------------------------------------------------------------------------------#
# Upload and share content at SeedMe.org
# Instruct the seedme module to upload 20 images then encode a video from it
# seedme module ships with VisIt 2.9.x +
# ----------------------------------------------------------------------------------#
import seedme

# Set path to the APIKey file
obj.set_auth_via_file(seedme_apikey_path)

# Create a dictionary for rendered image sequence
my_seq = {
       "filepath": my_rendered_image_path,
       "title": "Pathline",
       "description": "Pathlines show the path massless tracer particles would take if advected by the vector field at each timestep of the simulation.",
       "fps": 2,
       "encode": True,
      }

# Create seedme object
obj = seedme.SeedMe()

# Create a new collection using create_collection method
# composed with title and sequence with public access, shared with two people
result=obj.create_collection(title="Aneurysm vis",
                             privacy=my_content_privacy,  # string = One of private(default), group, public
                             sharing=my_share_list, # string = Comma delimited emails
                             notify=True, # Boolean = False(default) send email notification to above two emails
                             sequences=my_seq, # upload sequence
                             )

# create_collection returns the result as a string in json format
print result

url = obj.get_url(result)
# Visit this url on your web browser
print("\n\nThe url for this collection is: " + url)







	Click Execute.




To view your shared content login [https://www.seedme.org/user/login] to SeedMe.org
then navigate to My collections which should be somewhat similar to the
public collections [https://www.seedme.org/collections/public].



To learn more about the SeedMe Python API review the example demo.py [https://bitbucket.org/seedme/seedme-python-client/src/master/demo.py?at=master&fileviewer=file-view-default].




4.7. Calculating the flux of a velocity field through a surface

To calculate a flux, we will need the original velocity vector, the normal
vector of the surface, and VisIt [https://visit-dav.github.io/visit-website/]’s Flux Operator. We will calculate the flux
through a cross-slice located at Y=3, at the beginning of the artery.


4.7.1. Creating the slice and showing velocity glyphs

First we will directly plot the velocity vectors that exist on the slice
through the 3D mesh.


	Delete any existing plots.


	Go to Add->Vector->velocity.


	Open the Vector plot attributes window.


	Go to the Vectors tab and set the Fixed number to “40”.


	Go to the Glyphs tab.


	Set Arrow body to Cylinder.


	Set Geometry Quality to High.





[image: ../_images/Aneurysm-VectorAttributes.png]

Fig. 4.107 The Vector plot attributes.




	Click Apply and Dismiss.


	Go to Operators->Slicing->Slice.


	Open the Slice operator attributes window.


	Set Normal to Arbitrary and to “0 1 0”.


	Set Origin to Intercept and to “3”.


	Uncheck Project to 2D.


	Click Make default, Apply and Dismiss.


	Click Draw.





[image: ../_images/Aneurysm-SliceAttributes.png]

Fig. 4.108 The Slice operator attributes.



In order to give some context to the Vector plot of velocity on the slice
let’s add a Pseudocolor plot of velocity_magnitude on the same slice and
a Mesh plot.


	Go to Add->Pseudocolor->velocity_magnitude.


	Open the Pseudocolor plot attributes window.


	Set Limits to Use Current Plot.


	Click Apply and Dismiss.


	Go to Operators->Slicing->Slice.


	Click Draw.


	Go to Add->Mesh->Mesh.


	Open the Mesh plot attributes window.


	Set Mesh color to Custom and select a medium grey color.


	Click Apply and Dismiss.


	Click Draw.


	Zoom in to explore the plot results.





[image: ../_images/Aneurysm-VectorSlice.png]

Fig. 4.109 The velocity on the slice.



The Vector plot uses glyphs to draw portions of the instantaneous vector
field. The arrows are colored according to the speed at each point (the
magnitude of the velocity vector). Next we create an expression to evaluate
the vectors normal to the Slice. These normals should all point in the Y
direction.



4.7.2. Creating a vector expression and using the DeferExpression operator

We will use VisIt [https://visit-dav.github.io/visit-website/]’s pre-defined expression to evaluate the normals on a
cell-by-cell basis.


	Go to Controls->Expressions.


	Click New.


	Change the Name to “normals” and the Type to Vector mesh variable.


	Go to Insert function->Miscellaneous->cell_surface_normal in the Standard editor tab.


	Go to Insert variable->Mesh->Mesh in the Standard editor tab.





[image: ../_images/Aneurysm-Expressions.png]

Fig. 4.110 The Expressions window.




	Click Apply and Dismiss.


	Return to the Vector plot and change its variable to “normals”.




You will then get the error message saying: The ‘normals’ expression failed because The Surface normal expression can only be calculated on surfaces. Use the ExternalSurface operator to generate the external surface of this object. You must also use the DeferExpression operator to defer the evaluation of this expression until after the external surface operator. In fact, VisIt [https://visit-dav.github.io/visit-website/] cannot use the name Mesh which refers to the original 3D mesh. It needs to defer the evaluation until after the Slice operator is applied. Thus, we need to add the Defer Expression operator.


	Go to Operators->Analysis->DeferExpression.


	Open the DeferExpression operator attributes window.


	Go to Variables->Vector->normals.





[image: ../_images/Aneurysm-DeferExpression.png]

Fig. 4.111 The DeferExpression window.




	Click Apply and Dismiss.


	Click Draw.





[image: ../_images/Aneurysm-VectorNormals.png]

Fig. 4.112 The Vector plot of the normals.




	Verify that all your normals point in the up (Y) direction.






4.7.3. Calculating the flux on the slice

We are now ready for the final draw.


	Go to Add->Pseudocolor->operators->Flux->Mesh.


	Go to Operators->Slicing->Slice.


	Open the Slice operator attributes window.


	Verify that the default values previously saved are used.


	Move the Slice operator above the Flux operator.


	Go to Operators->Analysis->DeferExpression.


	Move the DeferExpression operator above the Flux operator just below the Slice operator.


	Open the Flux operator attributes window.


	Set the Flow field to “velocity”.





[image: ../_images/Aneurysm-FluxAttributes.png]

Fig. 4.113 The Flux operator attributes window.




	Click Apply and Dismiss.


	Click Draw.





[image: ../_images/Aneurysm-VectorFlux.png]

Fig. 4.114 The Vector plot of the flux.



Verify that you have a display that is cell-centered, and that will vary with
the Time slider


	Get the numerical value of the flux by query-ing for the Weighted Variable Sum.





[image: ../_images/Aneurysm-QueryWeightedVariableSum.png]

Fig. 4.115 The result of the Weighted Variable Sum query.








          

      

      

    

 


  

  
    

    5. Potential Flow
    

    

    
 
  

    
      
          
            
  
5. Potential Flow




This tutorial demonstrates VisIt’s features while exploring results from simple simulations of potential based flow [https://en.wikipedia.org/wiki/Potential_flow] around an obstruction, specifically an airfoil. Potential flow assumes irrotational flow. That is, there is no rotational motion in the flow, no vortices or eddies. This assumption is valid for low velocities and certain types of gases/fluids and obstructions. When the flow does involve rotation, a more complex solution involving Navier-Stokes equations is required.

The potential flow solver is a mini-app developed using the MFEM [http://www.mfem.org/] finite element library. The example is available for this tutorial thanks to Aaron Fischer and Mark Miller of LLNL [http://www.llnl.gov]. The data set includes VTK output files for a set of solutions where the angle of attack of the velocity varies from -5 degrees to 25 degrees.


5.1. Open the dataset

This tutorial uses the potential flow [https://visit-dav.github.io/largedata/datarchives/potential_flow] dataset.


	Download [https://visit-dav.github.io/largedata/datarchives/potential_flow] the potential flow dataset.


	Click on the Open icon to bring up the File open window.


	Navigate your file system to the folder containing “potential_flow_ang_sweep.visit”.


	Highlight the file “potential_flow_ang_sweep.visit” and then click OK.






5.2. Plotting the mesh topology

First we will examine the mesh used by the solver.


5.2.1. Create a Mesh plot


	Go to Add->Mesh->main.


	Click Draw.




After this, the mesh plot is rendered in VisIt [https://visit-dav.github.io/visit-website/]’s Viewer window.
This is a 2D mesh, modify the view by planning and zooming in the viewer window.
Zoom in near the airfoil and look at the mesh structure.



5.2.2. Modify the Mesh plot settings


	Double click on the Mesh plot to open the Mesh plot attributes window.


	Experiment with settings for:






	Mesh color


	Opaque color


	Opaque mode








[image: ../_images/PotentialFlow-MeshPlot-Atts.png]

Fig. 5.20 Example mesh plot settings for the Potential Flow data.



You will need to click Apply to commit the settings to your plot.


[image: ../_images/PotentialFlow-MeshPlot-Render.png]

Fig. 5.21 Example mesh plot result the Potential Flow data.






5.3. Examining the velocity magnitude

In addition to the mesh topology, this dataset provides a vector field “v”, representing the velocity, associated with the mesh vertices.

VisIt [https://visit-dav.github.io/visit-website/] automatically defines an expression that allows us to use the magnitude
of the “v” vector field as a scalar field on the mesh. The result of
the expression is a new field named “v_magnitude”.

We will use Pseudocolor plots to examine the “pressure” and
“velocity_magnitude” fields.


	Go to Add->Pseudocolor->v_magnitude.


	Click Draw.


	Double click on the Pseudocolor plot to bring up the Pseudocolor plot attributes window.


	In the Limits section, enable the Maximum checkbox and set the limit to 1.


	In the Color section,cChange the color table to Spectral and check the Invert button.





[image: ../_images/PotentialFlow-Vmag-Atts.png]

Fig. 5.22 The pseudocolor plot attributes for the velocity magnitude example.




	Click Apply.


	Click Draw.


	Drag the Time animation controls above the plot list on the main GUI window.




You will see the velocity magnitude solutions for the different angles of attack.


[image: ../_images/PotentialFlow-VmagRender.png]

Fig. 5.23 The pseudocolor plot of the velocity magnitude.



Experiment with the Color for values > max option to see where the range is being clipped.


5.3.1. Contours of velocity magnitude

Now we will add an additional plot to view velocity magnitude contours


	Go to Add->Contour->v_magnitude.


	Double click on the Contour plot to bring up the Contour plot attributes window.


	In the Contour Levels section, enable the Maximum checkbox and set the limit to 1.


	In the Lines section, set the Line width to 2.





[image: ../_images/PotentialFlow-PcAndContour-Atts.png]

Fig. 5.24 Example contour plot settings for Potential Flow velocity magnitude.




	Click Apply.


	Click Draw.


	Drag the Time animation controls above the plot list on the main GUI window.




You will see the contours of the velocity magnitude solutions for the different angles of attack.


[image: ../_images/PotentialFlow-PcAndContour-Render.png]

Fig. 5.25 A contour plot of the velocity magnitude.



Delete the contour plot when you are finished exploring, but keep the pseudocolor plot.




5.4. Visualizing the velocity vector field

This section of the tutorial outlines using glyphs and streamlines
to visualize the velocity vector field from the simulation.


5.4.1. Plotting the vector field directly with glyphs

VisIt [https://visit-dav.github.io/visit-website/]’s Vector plot renders a vector field at each time step as a collection
of arrow glyphs. This allows us to see the direction of the vectors as well
as their magnitude. We will create a vector plot to directly view the
simulated “v” vector field.


	Go to Add->Vector->v.


	Open the Vector plot attributes window.


	Go to the Vectors tab.


	Set Stride to “17”.





[image: ../_images/PotentialFlow-Vectors-Atts-1.png]

Fig. 5.26 Vectors tab settings for example vector plot of velocity




	Go the the Data tab.


	In the Limits section, enable the Maximum checkbox and set the value to “1”.


	In the Color section, change the Magnitude to viridis





[image: ../_images/PotentialFlow-Vectors-Atts-2.png]

Fig. 5.27 Data tab settings for example vector plot of velocity




	Go to the Glyphs tab.


	In the Scale section, uncheck Scale by magnitude and Auto scale.





[image: ../_images/PotentialFlow-Vectors-Atts-3.png]

Fig. 5.28 Glyphs tab settings for example vector plot of velocity




	Click Apply and Dismiss.


	Click Draw.


	Zoom in near the airfoil.


	Drag the Time animation controls above the plot list on the main GUI window.





[image: ../_images/PotentialFlow-Vectors-Render.png]

Fig. 5.29 The vector plot of velocity.



You will see glyphs of velocity solutions for the different angles of attack.

Delete the vector plot when you are finished exploring, but keep the pseudocolor plot.



5.4.2. Examining features of the flow field with streamlines

To explore the flow field further we will seed and advect a set of streamlines
on the left side of the mesh. Streamlines show the path massless tracer
particles would take if advected by a static vector field. To construct
Streamlines, the first step is selecting a set of spatial locations that
can serve as the initial seed points.

The flow moves left to right, we will use a vertical line of seed points on
the left side of the mesh.


5.4.2.1. Plotting streamlines of velocity


	Go to Add->Pseudocolor->operators->IntergralCurve->v.





[image: ../_images/PotentialFlow-Streamline-Menu.png]

Fig. 5.30 Creating a streamline plot with the IntegralCurve operator.




	Open the IntegralCurve operator attributes window.


	Go to the Source section on the Integration tab.


	Set the Source type to Line.


	Set the Start to “-2 -2 0”, excluding any commas in the input text box.


	Set the Stop to “-2 2 0”.


	Set Samples along line to “10”.


	Click Apply and Dismiss.


	Click Draw on the Main GUI





[image: ../_images/PotentialFlow-Streamline-Atts.png]

Fig. 5.31 The IntegralCurve operator attributes.




	Open the Pseudocolor plot attributes window.


	Go to the Data tab.


	In the Color section set the Color table to viridis.





[image: ../_images/PotentialFlow-Streamline-PC-Atts-Data.png]

Fig. 5.32 The Pseudocolor attributes for the streamline data.




	Go to the Line section on the Geometry tab.


	Set Line type to Ribbons.


	Set Tail to Sphere.


	Set the tail Radius to “0.025”.





[image: ../_images/PotentialFlow-Streamline-PC-Atts-Geom.png]

Fig. 5.33 The Pseudocolor attributes for the streamline geometry.




	Click Apply and Dismiss.


	Click Draw.


	Use the time slider controls to view a few different angles of attack solutions.





[image: ../_images/PotentialFlow-Streamline-Render-AOT-0.png]

Fig. 5.34 The streamlines of velocity at 0 degree angle of attack.




[image: ../_images/PotentialFlow-Streamline-Render-AOT-20.png]

Fig. 5.35 The streamlines of velocity at 20.5 degree angle of attack.









          

      

      

    

 


  

  
    

    6. MRI
    

    

    
 
  

    
      
          
            
  
6. MRI




This tutorial provides a short introduction to visualizing MRI data using VisIt [https://visit-dav.github.io/visit-website/]. We’ll be relying on the Analyze data format, which is developed at the Mayo Clinic.


6.1. Open the dataset

This tutorial uses the MRI [https://visit-dav.github.io/largedata/datarchives/mri] dataset.


	Download the MRI dataset [https://visit-dav.github.io/largedata/datarchives/mri].


	Click on the Open icon to bring up the File open window.


	Navigate your file system to the folder containing “s01_anatomy_stripped.img”.


	Highlight the file “s01_anatomy_stripped.img” and then click OK.






6.2. Plotting areas of interest

First, we’ll add a Pseudocolor plot and isoloate the visualization to an area that we’re interseted in. In this case, it’s a human brain located within the dataset.


6.2.1. Create a Pseudocolor plot


	Go to Add->Pseudocolor->Variable.





[image: ../_images/MRI_Add_Var.png]

Fig. 6.20 Adding a Pseudocolor plot.




	Click Draw.





[image: ../_images/MRI_Block.png]

Fig. 6.21 Visualizing our dataset.



The Pseudocolor plot should now be rendered in VisIt [https://visit-dav.github.io/visit-website/]’s Viewer window.
Modify the view by rotating and zooming in the viewer window.
You’ll notice that the visualization doesn’t look very interesting at this point. This is because what we’re really interested in seeing is hidden within the dataset.



6.2.2. Add an Isovolume operator

Adding an Isolvolume operator will help us remove sections of the dataset that we’re uninterested in.


	Go to Operators->Selection->Isovolume to add the Isovolume operator.





[image: ../_images/MRI_Add_Op.png]

Fig. 6.22 Adding a Isovolume operator.




	Click on the triangle to the left of your Pseudocolor plot, and double click Isovolume to open up the Isovolume attributes.





[image: ../_images/MRI_Isov.png]

Fig. 6.23 Opening the Isovolume attributes.




	Once you’ve opened the Isovolume attributes, set the Lower bound to 30, and click Apply.





[image: ../_images/MRI_Isov_Atts.png]

Fig. 6.24 Changing the Isovolume attributes.




	Click Draw. You will now see a visualization of a human brain.





[image: ../_images/MRI_Blue_Brain.png]

Fig. 6.25 Visualizing the underlying data of our dataset.




	You can experiment with changing the lower and upper bounds of the Isolvoume attributes to visualize different sections of the dataset.






6.2.3. Change the color table

The default color table doesn’t add much to the visualization, so let’s change the color table to better suite our needs. In this case, we’ll choose Pastel1.


	Double click Pseudocolor to open up the Pseudocolor attributes.


	Once there, you can choose your color table.





[image: ../_images/MRI_Color_Table.png]

Fig. 6.26 Changing the color table.




	Click Apply to finalize the change.





[image: ../_images/MRI_Pink_Brain.png]

Fig. 6.27 Visualizing our updated color table.






6.3. Exploring our MRI dataset

Now that we’ve located and visualized the inner section of our dataset, we can further explore characteristics local to this region.


6.3.1. Performing a Slice

First, we’re going to slice out a single cross-section for closer examination.


	Go to Operators->Slicing->Slice to add the Slice operator.


	Double click on the Slice to bring up the Slice attributes window.


	There are a lot of options to configure here. For now, we’ll leave all of the default settings except for Project to 2D. Uncheck this box.





[image: ../_images/MRI_Slice_Op.png]

Fig. 6.28 Changing the Slice attributes.




	Click Apply.


	Click Draw.





[image: ../_images/MRI_Slice.png]

Fig. 6.29 Visualizing a Slice of our MRI dataset.





6.3.2. Performing a ThreeSlice

Another usefull operator that is similar to Slice is ThreeSlice. This operator creates three axis aligned slices of a 3D dataset, one in each dimension.


	Remove the Slice operator by clicking the X button to the right of the added Slice.


	Go to Operators->Slicing->ThreeSlice to add the ThreeSlice operator.


	Double click on the ThreeSlice to bring up the ThreeSlice attributes window. You can move the location of each slice by changing the X, Y, and Z values.





[image: ../_images/MRI_ThreeSlice_Op.png]

Fig. 6.30 The ThreeSlice attributes.




	Click Apply.


	Click Draw.





[image: ../_images/MRI_ThreeSlice.png]

Fig. 6.31 Visualizing a ThreeSlice of our MRI dataset.




6.3.2.1. Performing a ThreeSlice using the point tool

Along with directly entering the X, Y, Z coordinates for your ThreeSlice in the attributes window, Visit [https://visit-dav.github.io/visit-website/] also provides the option of using an interactive Point tool for determing these coordinates.


	In the top left-hand corner of the visualization window, you’ll find a button that activates the Point tool. Click this button.





[image: ../_images/MRI_Point_Tool_Button.png]

Fig. 6.32 Activating the Point tool.




	Once activated, you will see a point surrounded by a red box within the visualization window.





[image: ../_images/MRI_Point_Tool.png]

Fig. 6.33 The activated Point tool.




	Before changing the orientation of our Point tool, Click on the ThreeSlice attributes window so that VisIt [https://visit-dav.github.io/visit-website/] understands that we want to associate this Point tool with these attributes.


	Click and drag the red box to change the location of the point defining the X, Y, Z coordinates of the ThreeSlice. VisIt [https://visit-dav.github.io/visit-website/] will automatically update the plot.





[image: ../_images/MRI_Point_Tool_2.png]

Fig. 6.34 Performing a ThreeSlice with the Point tool.




	Click the Point tool button again to deactivate the tool.







6.3.3. Performing a Clip

One more way to view the interior of your dataset is to perform a Clip, which clips away entire sections of your data. There are many ways to perform your Clip, each of which has it’s own benefits.


6.3.3.1. Performing a Clip using a single plane


	Remove the ThreeSlice operator by clicking the X button to the right of the added ThreeSlice.


	Go to Operators->Selection->Clip to add a Clip operator.


	Double click on the Clip to bring up the Clip attributes window. Again, there are many settings to configure here. The default settings use a single plane for performing the Clip.





[image: ../_images/MRI_Clip_Op.png]

Fig. 6.35 The Clip attributes.




	Click Apply.


	Click Draw.





[image: ../_images/MRI_Clip.png]

Fig. 6.36 Visualizing a Clip of our MRI dataset.





6.3.3.2. Performing a Clip using two planes


	Return to the Clip attributes window, check the Plane 2 box, and change the normal of Plane 2 to “0 -1 0”.





[image: ../_images/MRI_Clip_2Plane_Op.png]

Fig. 6.37 Altering the Clip attributes.




	Click Apply.





[image: ../_images/MRI_Clip_2Plane.png]

Fig. 6.38 Visualizing a 2 Plane Clip of our MRI dataset.





6.3.3.3. Performing a Clip using three planes


	Return to the Clip attributes window, and check the Plane 3 box. Next, change the origin of Plane 3 to “0 0 -50”.





[image: ../_images/MRI_Clip_3Plane_Op.png]

Fig. 6.39 Altering the Clip attributes.




	Click Apply.





[image: ../_images/MRI_Clip_3Plane.png]

Fig. 6.40 Visualizing a 3 Plane Clip of our MRI dataset.





6.3.3.4. Performing a Clip using a sphere

Let’s update the settings of our Clip so that we remove a spherical section of the data.


	Double click on the Clip to bring up the Clip attributes window again. Change the Slice type to Sphere. The attribute options should change significantly. Set the Center to “0 100 0”, and set the radius to 150.





[image: ../_images/MRI_Sphere_Clip_Op.png]

Fig. 6.41 Changing the Clip attributes.




	Click Apply.


	Click Draw.





[image: ../_images/MRI_Sphere_Clip.png]

Fig. 6.42 Visualizing a spherical Clip of our MRI dataset.





6.3.3.5. Performing a Clip using the Plane tool

VisIt [https://visit-dav.github.io/visit-website/] also provides an interactive Plane tool that can be used to determine your intersecting plane by orienting a 3D axis within the dataset.


	First, Click the Reset button in the Clip attributes window to reset the Clip attributes to their default state.


	In the top left-hand corner of the visualization window, you’ll find a button that activates the Plane tool. Click this button.





[image: ../_images/MRI_Plane_Tool_Button.png]

Fig. 6.43 Activating the Plane tool.




	Once activated, you will see a 3D axis defining a plane within the visualization window.





[image: ../_images/MRI_3D_Axis.png]

Fig. 6.44 The activated Plane tool.




	Before changing the orientation of our Plane tool, Click on the Clip attributes window so that VisIt [https://visit-dav.github.io/visit-website/] understands that we want to associate this Plane tool with these attributes.


	You will see several red boxes aligned with various points of the Plane tool. Click and drag these red boxes to re-orient the plane you are defining. VisIt [https://visit-dav.github.io/visit-website/] will automatically perform a Clip at the newly oriented plane.





[image: ../_images/MRI_Plane_Tool.png]

Fig. 6.45 Performing a Clip with the Plane tool.





6.3.3.6. Performing a Clip using the Sphere tool

Much like the Plane tool, VisIt [https://visit-dav.github.io/visit-website/] also provides a Sphere tool, which allows us to interactively define a sphere that can be used to set the Clip attributes.


	Click the Plane tool button to deactivate the Plane tool.


	Click the Sphere tool button, which is in the same row as the Plane tool.





[image: ../_images/MRI_Sphere_Tool_Button.png]

Fig. 6.46 Activating the Sphere tool.




	Return to the Clip attributes window and change the Slice type to Sphere. Click Apply.


	You can change the shape and location of the Sphere tool by clicking and dragging the red boxes associated with the Sphere.





[image: ../_images/MRI_Sphere_Tool.png]

Fig. 6.47 Performing a Clip with the Sphere tool.









          

      

      

    

 


  

  
    

    7. Connected Components
    

    

    
 
  

    
      
          
            
  
7. Connected Components




VisIt [https://visit-dav.github.io/visit-website/] provides an expression and set of queries to help identify and summarize connected subcomponents of a mesh.
These capabilities can help isolate or compute statistics of complex features embedded in your data.
The connected components algorithm used is unique in that it can not only process simple meshes, but it can also efficiently handle large meshes partitioned in a distributed-memory setting. This tutorial provides an introduction of how to use VisIt’s connected components capabilities. The algorithm is not discussed here, for more details on the algorithm see 1 .


7.1. Open the dataset

This tutorial uses the “example.silo” dataset from our tutorial_data [https://visit-dav.github.io/largedata/datarchives/visit_tutorial].


	Download the tutorial_data [https://visit-dav.github.io/largedata/datarchives/visit_tutorial] and extract the example files.


	Start VisIt [https://visit-dav.github.io/visit-website/] and click the Open icon to bring up the File open window.


	Navigate your file system to the folder containing “example.silo”.


	Highlight the file “example.silo” and then click OK.






7.2. Use a scalar field to cut our mesh

This example mesh starts fully connected. First we cut our example mesh to
create a mesh with smaller connected regions that we will label. In the
“example.silo” dataset regions of the high pressure values produce an
interesting pattern to explore. In practice, volume fractions or density
values are also useful fields to use.

We compare using two operators, Theshold and Isovolume, to cut the mesh according to a scalar field. These methods produce different mesh topologies which influence the Connected Components Labeling result.


7.2.1. Threshold

First, we create a new mesh using the Threshold operator.


	In the plot list, click Add->Pseudocolor->pressure.


	In the plot list, click Operators->Selection->Isovolume


	Click on the triangle to the left of your Pseudocolor plot and double click
Threshold to open up the Threshold attributes.


	Once you’ve opened the Threshold attributes, remove the default row.
Add a new variable, select pressure and set the Lower bound to 3.9.


[image: ../_images/ccl_thresh_atts.png]

Fig. 7.16 Setting the Isovolume attributes.





	Click Apply and dismiss the Threshold attributes Window.


	Optionally, open the Pseudocolor attributes Window and change the color table used. These plots use the Spectral color table.


	Click Draw. You will now see a visualization of the thresholded mesh.


[image: ../_images/ccl_thresh_render.png]

Fig. 7.17 Visualizing our thresholded example of our dataset.







The Threshold operator simply excludes elements from the mesh based on if the threshold criteria is met.



7.2.2. Isovolume

Next, we create a new mesh using the Isovolume operator.
We created this in a new viewer window, so we can easily look at both results side-by-side.


	Create a new viewer window


[image: ../_images/ccl_new_window.png]

Fig. 7.18 Click to create a new viewer window.





	Delete any plots in the new window.


	In the plot list, click Add->Pseudocolor->pressure.


	In the plot list, click Operators->Selection->Isovolume


	Click on the triangle to the left of your Pseudocolor plot and double click Isovolume to open up the Isovolume attributes.


	Once you’ve opened the Isovolume attributes, set Variable to pressure and set the Lower bound to 3.9.


[image: ../_images/ccl_isov_atts.png]

Fig. 7.19 Setting the Isovolume attributes.





	Click Apply and dismiss the Threshold attributes Window.


	Optionally, open the Pseudocolor attributes Window and change the color table used. These plots use the Spectral color table.


	Click Draw. You will now see a visualization of the cut mesh.





[image: ../_images/ccl_isov_render.png]

Fig. 7.20 Visualizing an isovolume from our example of our dataset.



The Isovolume cuts the mesh to include volumes between two Isosurfaces.




7.3. Labeling Connected Components with an Expression

The thresholded mesh has a blocky structure and submeshes remain connected at the edges of blocks. The isovolumed mesh has interpolated cuts, which create a smoother result and less connected submeshes. Next, we use the conn_components expression to view and compare connected submeshes for each of these plots.


	Open the Expressions Window (Options Menu->Expressions)


	Create a new expression named ccl with the definition conn_components(Mesh).


[image: ../_images/ccl_expr_def.png]

Fig. 7.21 Defining a  conn_components expression





	Click Apply and dismiss the Expressions Window.




Now we use the ccl expression with our existing pipelines.


7.3.1. Connected Components of Threshold Result


	Make Window 1 active (The window with the Threshold operator pipeline)


[image: ../_images/ccl_win_1_active.png]

Fig. 7.22 Changing active window to 1





	In the plot list, click Operators->Analysis->DeferExpression


	Click on the triangle to the left of your Pseudocolor plot, and double click DeferExpression
to open up the DeferExpression attributes.


	Once you’ve opened the DeferExpression attributes, add ccl to the list of deferred expressions.


[image: ../_images/ccl_defer_expr.png]

Fig. 7.23 Setting the DeferExpression attributes. This operator instructs VisIt [https://visit-dav.github.io/visit-website/] to
execute the ccl expression on the Threshold result, instead of the original mesh.





	Click Apply and dismiss the DeferExpression attributes Window.


	Use the Variables menu to change the active variable to ccl.


[image: ../_images/ccl_sel_ccl_expr.png]

Fig. 7.24 Changing active plot variable to ccl.





	Optionally, open the Pseudocolor attributes Window and change the color table used. These plots use the Spectral color table.


	Click Draw. You will now see the mesh rendered with Connected Component Labels.


[image: ../_images/ccl_of_thresh.png]

Fig. 7.25 Connected Components of the Threshold Result







We now see a Pseudocolor plot of a new scalar field where each element is associated with its connected component label.
In this case we have 17 connected components labeled using ids 0 - 16.



7.3.2. Connected Components of Isovolume Result


	Make Window 2 active (The window with the Isovolume operator pipeline )


[image: ../_images/ccl_win_2_active.png]

Fig. 7.26 Changing active window to 2





	Repeat the steps above to add a DeferExpression operator and set it up to defer the ccl expression.


	Use the Variables menu to change the active variable to ccl.


[image: ../_images/ccl_sel_ccl_expr.png]

Fig. 7.27 Changing active plot variable to ccl.





	Optionally, open the Pseudocolor attributes Window and change the color table used. These plots use the Spectral color table.


	Click Draw. You will now see the mesh rendered with Connected Component Labels.


[image: ../_images/ccl_of_isov.png]

Fig. 7.28 Connected Components of the Isovolume Result







Again, we now have Pseudocolor plot of a new scalar field where each element is associated with its connected component label.
In this case we have 19 connected components labeled using ids 0 - 18. You can lock the views between the two windows
to compare the differences in the meshes and identify where the connected components differ.




7.4. Using the Connected Component Summary query

The Connected Components Summary query computes and aggregates all component info and optionally writes this data to an okc file (an XMDF File format)

The query returns the following details of each component:







	Component Data

	Fields





	Component Id

	comp_label



	Centroid

	comp_x, comp_y, comp_z



	Number of Cells (or Zones) per component

	comp_num_cells



	Area (if the dataset is 2D)

	comp_area



	Volume (if the dataset is 3D or RZ)

	comp_volume



	Variable Sum

	comp_sum



	Weighted Variable Sum

	comp_weighted_sum



	Spatial Bounding Box

	comp_bb_x_min, comp_bb_x_max, comp_bb_y_min, comp_bb_y_max, comp_bb_z_min, comp_bb_z_max



	Number of MPI Tasks spanned by the component

	comp_num_procs






Next, we use the Connected Components Summary via python on one of our plots to obtain this info.


	Launch VisIt’s Command Line Interface (CLI) (Controls Menu->Launch CLI)


[image: ../_images/ccl_launch_cli.png]

Fig. 7.29 Launch the CLI





	Run the following code snippets (Example output below is from the Isovolume case)

Python Snippet

# Execute our connected components query and get the result
Query("Connected Components Summary")
res = GetQueryOutputObject()

# Show names in the results dictionary
print(res.keys())

# Print the array of per component volumes
print(res["comp_volume"])





Output

"Found 19 connected components.\nComponent summary information saved to cc_summary.okc, which can be imported into VisIt"





['comp_bb_x_max', 'comp_bb_z_max', 'comp_sum', 'comp_y', 'comp_num_procs', 'comp_bb_x_min', 'comp_weighted_sum', 'comp_bb_y_min', 'comp_z', 'comp_volume', 'comp_x', 'comp_bb_z_min', 'comp_num_cells', 'connected_component_count', 'comp_bb_y_max']





(37.97730226694259, 3.2019942591930146, 1.610134229606217, 33.371787344299676, 907.2334157190477, 4.499707094552377, 0.9447130410516479, 7.414511301985026, 15.064008190720848, 0.18155970817315392, 3.1918362871108457, 22.247388229041434, 2.625056508686029, 78.24442360391282, 2.4172440068352756, 23.494122927868506, 18.57216353121875, 6.944255799937935, 8.499496779401833)





Python Snippet

# Print all of the results in a ~human friendly way
import json
print(json.dumps(res,indent=2))





Output

Lots of text, so we omit it here!






	1

	
	Harrison, J. Weiler, R. Bleile, K. Gaither, H. Childs. “A Distributed-Memory Algorithm for Connected Components Labeling of Simulation Data” in Topological and Statistical Methods for Complex Data, J. Bennett, F. Vivodtzev, V. Pascucci. Eds. Springer Berlin Heidelberg, pp. 3–21., December 2014












          

      

      

    

 


  

  
    

    8. Remote Usage
    

    

    
 
  

    
      
          
            
  
8. Remote Usage




VisIt [https://visit-dav.github.io/visit-website/] can be used remotely in several different manners. Some use
capabilities native to VisIt [https://visit-dav.github.io/visit-website/], such as running VisIt [https://visit-dav.github.io/visit-website/] in client/server mode,
and some use external mechanisms, such as VNC. We will also touch briefly
on using batch allocations in an interactive manner.

VisIt [https://visit-dav.github.io/visit-website/] can run remotely in the following ways:


	Using X display forwarding.


	Easiest to setup and convenient to use.


	Lowest interactivity performance.






	Using a VNC client.


	More complex to set up.


	Convenient to use.


	Provides high interactivity performance.






	Using client/server.


	More complex to set up.


	Provides highest interactivity performance.









8.1. Using X Display forwarding though ssh

When VisIt [https://visit-dav.github.io/visit-website/] is running with X display forwarding through ssh, it is
completely running on the remote system and sending all its graphics
commands over ssh. In one sense this is the easiest to use since you
just launch VisIt [https://visit-dav.github.io/visit-website/] on you remote system and you are ready to go. Since
you are typically already logged into the remote system and already in
the directory of interest there is no additional setup required, such
as entering passwords or navigating the remote directory structure.
Unfortunately it is also the lowest performing option. Graphical user
interfaces typically send lots of small messages back between the remote
system and the local display. If there is a high latency between them
then simple operations such as clicking on buttons and bringing up
new windows may take a long time. Furthermore, the rendering performance
of the visualization windows suffers because VisIt [https://visit-dav.github.io/visit-website/] can’t leverage the
graphics processing unit on the local system.

When using X Display forwarding you need to have an X Server running on
the display of your local system. In the case of Linux and MacOS, both
will have X Servers running by default. In the case of Windows you will
need to install a X Server on your system and enable it. Fortunately,
most people will already have an X Server installed on their system if
they are using ssh to login to the supercomputing center.

Typically, X display forwarding is enabled by default and all you need
to do is launch VisIt [https://visit-dav.github.io/visit-website/] on the remote system once you have ssh’ed to the
remote system.

When starting ssh from a command line you will need to use the “-Y”
option.

ssh -Y





Some X Servers may need to have their default options set for use with
VisIt [https://visit-dav.github.io/visit-website/]. This is primarily because VisIt [https://visit-dav.github.io/visit-website/] uses OpenGL for rendering and
not all X Servers are configured properly to work with OpenGL.


8.1.1. Configuring X-Win32 for use with VisIt [https://visit-dav.github.io/visit-website/]

The default setting X-Win32 sometimes are not set to work well with
OpenGL. This isn’t always the case and will depend on the graphics
card installed on your system. If VisIt [https://visit-dav.github.io/visit-website/] crashes on your system you
will need to do the following.


	Bring up the X-Win32 control panel.


	Go to the Window tab.


	Turn off Use Direct2D.


	Turn on Use Software Renderer for OpenGL.


	Click Apply.


	At this point you should exit all the windows associated with X-Win32 and re-establish you connections to the remote system.





[image: ../_images/Remote-XForwarding1.png]

Fig. 8.40 The X-Win32 control panel






8.2. Using VNC

When using VNC it looks and behaves just like you were logged into an X
Window display running at the supercomputing site that is constrained
to a single window and is separate from the windowing system running
on your local system. It provides all the conveniences of X display
forwarding but at a much higher interactivity level since the networking
between the remote computer and the VNC server will provide high
bandwidth and low latency. Ideally you would do all your interactions
with the supercomputer center through the VNC client. The one draw back
is that the VNC server compresses the video stream it sends to the VNC
client in order to provide high interactivity. This may result in small
compression artifacts in the images you see in the VNC client.

This portion of the tutorial on using VNC will focus on using RealVNC at the
Lawrence Livermore National Laboratory (LLNL). Using VNC at other computer
centers will be similar, but unique to each site.


8.2.1. Installing VNC

If your system is an LLNL managed system you can install it via the LLNL
workstations catalog for MacOS or Windows. Alternatively, you can download
the RealVNC client [https://www.realvnc.com/download/viewer/]
and install it on your desktop. VNC clients not supplied by RealVNC will
not work at LLNL.



8.2.2. Installing RealVNC on an LLNL managed Windows system


	Select LANDESK Management->Portal Manager from the Start menu.


	Click on RealVNC Viewer in the list of software packages.


	Click Launch to install the package.





[image: ../_images/Remote-LANDeskPortal.png]

Fig. 8.41 The LLNL LANDesk Software Portal





8.2.3. Installing RealVNC on an LLNL managed Mac system


	Start MacPatch from Applications->MacPatch.app.


	Select the Software tab and scroll down until you find the RealVNC Viewer.


	Click the Install button in the right column to install the package.





[image: ../_images/MacPatch.png]

Fig. 8.42 MacPatch: LLNL Managed Software





8.2.4. Starting up the RealVNC client

There is a lot of additional content on using
RealVNC [https://hpc.llnl.gov/software/visualization-software/vnc-realvnc]
at Livermore Computing.

At this point we will focus on running RealVNC on Windows. Other than
starting the Viewer, everything should be pretty much the same for
Windows, MacOS and Linux.


	Select RealVNC->VNC Viewer from the Start menu.


	This will bring up the VNC Viewer.




Now we are ready to create the profiles for logging into the CZ and RZ.


[image: ../_images/Remote-VNCViewer1.png]

Fig. 8.43 The VNC Viewer




	Select File->New connection….


	This will bring up the Properties window.


	Change the VNC Server field to “czvnc.llnl.gov:5999”.


	Change the Name field to “CZ VNC”.


	Click Ok.





[image: ../_images/Remote-VNCViewer2.png]

Fig. 8.44 The VNC Viewer Properties window




	This will create a profile for logging into the CZ VNC.


	Now do the same for the RZ.


	Select File->New connection….


	Change the VNC Server field to “rzvnc.llnl.gov:5999”.


	Change the Name field to “RZ VNC”.


	Click Ok.


	Your VNC Viewer window should now contain two connection profiles.





[image: ../_images/Remote-VNCViewer3.png]

Fig. 8.45 The VNC Viewer with two profiles



Now we are ready to login to one of the systems.


	Double click on the CZ VNC icon


	This will bring up a login window.


	Enter your CZ username and password.




This will bring up a Linux desktop. The resolution of the desktop will
probably be low if you have never used the VNC server before. This is so
that it isn’t too large if you are on a laptop.

To change the resolution of the display dynamically, bring up a terminal
and use the xrandr command.


	Select Applications->Terminal


	Enter “xrandr” in the terminal to get a list of supported resolutions.


	Enter “xrandr -s 1280x720” in the terminal to change the resolution to 1280 by 720.


	Change the resolution back to something more appropriate to your screen.




Recommended resolutions are:


	Dell laptop running Windows: 1280 x 720


	A high-resolution external monitor: 1920 x 1200


	A Mac laptop: 1680 x 1050 (Retina Display) or 1440 x 900




When using VisIt [https://visit-dav.github.io/visit-website/] you should ssh to another CZ machine so that you don’t
overload the VNC server. You should use version 3.1.1 of VisIt [https://visit-dav.github.io/visit-website/] for the
best performance on a VNC client. Versions prior to 3.0.0 will not work
properly with VNC.


	Enter “ssh quartz”.


	Enter “visit -v 3.1.1”.


	Run VisIt [https://visit-dav.github.io/visit-website/] as normal.





[image: ../_images/Remote-VisItVNC.png]

Fig. 8.46 VisIt [https://visit-dav.github.io/visit-website/] running on the VNC Viewer





8.2.5. Troubleshooting VNC issues

Sometimes you can’t see anything because the default screen is too large.
There are two solutions to this issue, one is to reduce the resolution of
the desktop and the other is to have the window scale automatically. To
reduce the desktop resolution:


	Use the scroll bars to navigate to upper left hand corner and bring up a terminal.


	From the terminal use the “xrandr” command to change the resolution as described here.




To have the desktop scale automatically:


	Go to the slide-out menu at the top center and rest your mouse below the title bar.





[image: ../_images/Remote-VNCViewer4.png]

Fig. 8.47 The slide-out menu




	Click the Scale automatically icon.





[image: ../_images/Remote-VNCViewer5.png]

Fig. 8.48 Clicking on the Scale automatically icon




	The window should now resize and you can use the VNC client.




Sometimes the response gets really slow when the VNC server is under heavy
load. One solution is to reduce the picture quality.


	Go to the slide-out menu at the top center and rest your mouse below the title bar.


	Click the Properties icon.





[image: ../_images/Remote-VNCViewer6.png]

Fig. 8.49 Clicking on the Properties icon




	Click on the Options tab.


	Set the Picture quality to Low.


	Click Ok.





[image: ../_images/Remote-VNCViewer7.png]

Fig. 8.50 Setting the Picture quality to Low






8.3. Using client/server

When VisIt [https://visit-dav.github.io/visit-website/] is running in a client/server mode, a portion of VisIt [https://visit-dav.github.io/visit-website/] is
running on your local system and a portion is running on a remote
compute resource such as a supercomputing center. This will always give
better performance than running on a remote system using X display forwarding,
since interactions with the graphical user interface will be faster and
VisIt [https://visit-dav.github.io/visit-website/] will be able to leverage the graphics processing unit on your local
system. The portion running on your local system is referred to as the client
and the portion running on the remote compute resource is referred to as the
server. The client is responsible for the graphical user interface and
the rendering window, while the server is responsible for accessing the
data on the remote system, processing it, and sending back geometry to be
rendered or images to be displayed.

When running in client/server mode, VisIt [https://visit-dav.github.io/visit-website/] makes use of host profiles that
provide information on how to run VisIt [https://visit-dav.github.io/visit-website/] on the remote system, such as where
VisIt [https://visit-dav.github.io/visit-website/] is installed and information about the batch system. VisIt [https://visit-dav.github.io/visit-website/] comes
with host profiles for many different supercomputing systems. This portion
of the tutorial will use the Livermore Computing Center at LLNL.


8.3.1. Installing the host profiles for your computer center

The first thing you will need to do is make sure you have the host profiles
installed for the remote system. You can check this by bringing up the
Host profiles window.


	Select Options->Host profiles… to bring up the Host profiles window.


	If the list of Hosts is blank or doesn’t contain the host of interest, you will need proceed with steps 4 - 10.


	Click the Dismiss button.


	Select Options->Host profiles and configuration setup… to bring up the Setup Host Profiles and Configuration window.





[image: ../_images/Remote-ClientServer1.png]

Fig. 8.51 The Setup Host Profiles and Configuration




	Click on the Lawrence Livermore National Laboratory (LLNL) open network.


	Click Install.


	Restart VisIt [https://visit-dav.github.io/visit-website/].


	Select Options->Host profiles… to bring up the Host profiles window.


	You should now see the host profiles for LLNL.


	Click the Dismiss button.





[image: ../_images/Remote-ClientServer2.png]

Fig. 8.52 The Host profiles window with the host profiles for LLNL





8.3.2. Connecting to a remote system

You are now ready to connect to the remote system.


	Click on the Open icon in the Sources section of the main window to bring up the File open window.


	Click on the Host  pulldown menu and select LLNL Quartz.


	This will bring up a window to enter your password.





[image: ../_images/Remote-ClientServer3.png]

Fig. 8.53 The File open window




	If your username is different on the remote system from the one on your local system you will need to click on Change username and change your username.





[image: ../_images/Remote-ClientServer4.png]

Fig. 8.54 The Enter Password window




	The File open will now open to your home directory on the remote system.




You are now ready to open files, create plots and do everything you are
used to doing with VisIt [https://visit-dav.github.io/visit-website/].



8.3.3. File locations when running client/server

When running in client/server mode some files are stored on the local
system and some are stored on the remote system. Most files are stored or
saved on the local system. Some examples include:


	Images


	Movies


	Host profiles


	Settings


	Color tables




The main exception is when exporting data. Those results are saved on the
remote system. This is usually what you want since you will most likely want
to open it on the remote system for further processing.

The window that exports databases is unable to browse the remote file
system, so you will need to carefully type in the path to the directory
to save it in.




8.4. Using batch systems interactively

When VisIt [https://visit-dav.github.io/visit-website/] normally uses the batch system, it submits the parallel compute
engine to the batch system and then the compute engine runs until it exits.
Sometimes VisIt [https://visit-dav.github.io/visit-website/] exits because of a crash. Once that happens you will lose
the rest of the batch allocation and you will need to submit a batch job,
which may not always happen immediately. One way around this is to get a
batch job and then run all of VisIt [https://visit-dav.github.io/visit-website/] in batch system using X display
forwarding (ideally from within a VNC client).

One such mechanism is mxterm, a utility available at LLNL. It submits a
batch job and pops up an xterm. From the xterm, the user can start VisIt [https://visit-dav.github.io/visit-website/]
as many times as they want until the batch job time limit expires. There
may be similar mechanisms available at other supercomputing centers. If
not, it would be fairly straightforward to create such a script for the
batch system at your supercomputing center.


8.4.1. Using mxterm

The basic mxterm command is:

mxterm <nnodes> <ntasks> <nminutes> <-q queue_name>





An example that gets 1 node with 36 tasks for 30 minutes in the pdebug queue.

mxterm 1 36 30 -q pdebug





When the job starts an xterm window will appear on your screen.

When using an mxterm, you will need to use the mxterm profile when starting
your compute engine.


[image: ../_images/Remote-Mxterm1.png]

Fig. 8.55 Selecting the mxterm host profile








          

      

      

    

 


  

  
    

    9. Making Movies
    

    

    
 
  

    
      
          
            
  
9. Making Movies




Making movies with VisIt [https://visit-dav.github.io/visit-website/] runs the gamut from creating a simple movie that
shows the time evolution of a simulation to movies that contain multiple
image sequences, where the image sequences may contain:


	Titles


	Fade-ins


	Image sequences that involve moving the camera around or through the data.


	Image sequences where each image contains multiple components such as a 3d view of the data and a curve showing the time evolution of a value.


	Image sequences where operator attributes are modified such as animating a slice plane moving through a data set.




Simple movies can be made with the Save movie wizard and more complex movies
are made using Python scripts. This tutorial will focus on creating simple
movies with the Save movie wizard and using Python scripts.


9.1. Creating a movie of a simulation evolving over time

The simplest type of movie to create is a movie of a simulation evolving
over time. There are several steps to making such a movie.


	Create a good image for a single time state. This is typically the first or last time state.


	Animate the movie to make sure the entire movie looks good and change things if they don’t.


	Create the images and encode the movie.






9.2. Creating a good image from a single time state

This tutorial uses the dbreak3d dataset – available at
http://www.visitusers.org/index.php?title=Tutorial_Data

The dataset simulates the evolution of water and air in a water tank after
an interface holding a column of water is instantaneously removed.


9.2.1. Display the tank


	Open the file dbreak3d_boundaries.silo.


	Create a Subset plot of domains.


	Click Draw.





[image: ../_images/MakingMovies-DisplayTank1.png]

Fig. 9.47 The default Subset plot of the boundaries.




	The Subset plot shows the different faces that comprise the water tank. We do not want to view all of the boundaries because they will block the fluid data, so next we turn off a few of the boundary faces that are identified as domains in the data file.


	We would like to turn off the magenta and yellow boundaries. From the Subset plot legend we can see that those are domain5 and domain6.


	Bring up the Subset window by clicking on the Ven Diagram next to the Subset plot in the plot list.





[image: ../_images/MakingMovies-DisplayTank2.png]

Fig. 9.48 Bringing up the Subset window from the plot list.




	Click on domains to expand the list of domains and deselect domain5 and domain6.





[image: ../_images/MakingMovies-DisplayTank3.png]

Fig. 9.49 Removing boundaries with the Subset window.




	Click Apply.





[image: ../_images/MakingMovies-DisplayTank4.png]

Fig. 9.50 The Subset plot with the boundaries removed.




	Now let’s make all the faces the same color.


	Double click on the Subset plot in the plot list to bring up the Subset plot attributes window.


	Select Single and choose the light pastel green color.





[image: ../_images/MakingMovies-DisplayTank5.png]

Fig. 9.51 Changing the colors of the Subset plot.




	Click Apply and Dismiss.





[image: ../_images/MakingMovies-DisplayTank6.png]

Fig. 9.52 The Subset plot boundaries in a single color.





9.2.2. Display the water

The water information is stored in the file dbreak3d_fluid.visit and
contains information about the time evolution of the water. The boundary
of the water can be created using the alpha1 variable. It represents
the volume fraction of water in a cell. A value of 0.0 means that the
cell doesn’t contain any water. A value of 1.0 means that the cell is
completely filled with water. The region containing the water can be
extracted by using the Isovolume operator, selecting the region where
the volume fraction is between 0.5 and 1.0. Let’s get started.


	Open the file dbreak3d_fluid.visit.


	Create a Pseudocolor plot of alpha1.


	Double click on the Pseudocolor plot in the plot list to bring up its attributes.


	Change the Color table to PuBu.


	Change the Opacity to Constant.


	Set the Opacity slider value to 65%.


	Click Apply and Dismiss.





[image: ../_images/MakingMovies-DisplayWater1.png]

Fig. 9.53 Setting the Pseudocolor attributes for the water.




	Deselect Apply operators to all plots on the main control window below the plot list. This will allow you to apply the Isovolume operator to just the Pseudocolor plot.


	Go to Operators->Selection->Isovolume to add the Isovolume operator to the Pseudocolor plot.


	Click on the triangle next to the Pseudocolor plot to expand the Pseudocolor plot.


	Double click on the Isovolume operator to bring up its attributes.


	Set the Lower bound to 0.5.


	Select alpha1 as the Variable option.


	Click Apply and Dismiss.





[image: ../_images/MakingMovies-DisplayWater2.png]

Fig. 9.54 Using the Isovolume operator to select the water.




	Click Draw.





[image: ../_images/MakingMovies-DisplayWater3.png]

Fig. 9.55 The boundaries and the water.





9.2.3. Improve the annotations

To make the movie look more polished, we will change the window annotations,
the background color, the lighting and add a time slider.


	Go to Controls->Annotation to bring up the Annotation window.


	Select the General tab.


	Click No annotations.


	Click Apply.





[image: ../_images/MakingMovies-Annotations1.png]

Fig. 9.56 Turning off all the annotations.




	Select the 3D tab.


	Select Show bounding box.


	Click Apply.





[image: ../_images/MakingMovies-Annotations2.png]

Fig. 9.57 Adding the bounding box.




	Select the Colors tab.


	Set the Foreground color to be the same color as our tank boundaries plot.


	Set the Background style to Gradient.


	Set the Gradient style to Radial.


	Set Gradient color 1 to be light gray.


	Set Gradient color 2 to be very dark gray.


	Click Apply.





[image: ../_images/MakingMovies-Annotations3.png]

Fig. 9.58 Setting the foreground and background colors.




	Select the Objects tab.


	Create a new Time slider.


	Click Ok when it prompts you for a name.


	Set the Width to 40%.


	Set the Height to 7%.


	Set the Start color to light blue.


	Set the End color to a darker blue.


	Deselect Use foreground color.


	Set the Text color to white.


	Click Draw.





[image: ../_images/MakingMovies-Annotations4.png]

Fig. 9.59 Setting the time slider attributes.




	Go to Controls->Lighting to bring up the Lighting window.


	Move the light vector up and to the right.


	Click Apply.





[image: ../_images/MakingMovies-Annotations5.png]

Fig. 9.60 Setting the light source position.




	Move the time slider in the main control window to a later time state where the water is splashing up.





[image: ../_images/MakingMovies-Annotations6.png]

Fig. 9.61 The final result for an image in the movie.






9.3. Encoding the movie with the movie wizard


	Go to File->Save movie to bring up the Save movie wizard window.


	Select New simple movie and click Next.





[image: ../_images/MakingMovies-Encoding1.png]

Fig. 9.62 Using the movie wizard to create a simple movie.




	Select Specify movie size.


	Ensure the the lock aspect setting is selected. While you can encode movies with a different aspect ratio than the aspect ratio of the window on the screen, it is generally not a good idea. Objects are positioned based on a zero to one coordinate system where zero represents either the left edge or the bottom of the image and the heights and widths of objects are based on fraction of the height and width. This causes objects to change position and relative size as the aspect ratio is changed.


	Change the Width to 600. The Height will automatically change to maintain the aspect ratio.


	Click the right arrow button to create an entry in the Output list with the format and resolution information specified on the right hand side of the window. It is possible to change the format and resolution information and click the right arrow button to create additional entries in the Output list to encode multiple movies with different settings at once. We are just going to create a single mpeg movie.


	Click Next.





[image: ../_images/MakingMovies-Encoding2.png]

Fig. 9.63 Setting the movie format and resolution.




	It is possible to specify the range of time states to use for the movie, as well as specify a stride if you have too many time states saved. The wizard will automatically set the range of time states. We will use all the time states and a stride of one, so we can use the default values.


	Click Next.





[image: ../_images/MakingMovies-Encoding3.png]

Fig. 9.64 Setting the length of the movie.




	You can specify the directory and file name for the movie. We will use the current directory and name the movie dbreak3d.


	Click Next.





[image: ../_images/MakingMovies-Encoding4.png]

Fig. 9.65 Setting the name of the movie.




	You can have VisIt [https://visit-dav.github.io/visit-website/] send you an e-mail when it has finished creating the movie. Since we will wait for the movie to complete, we don’t need an e-mail message to be sent when the movie has been finished and can use the default values.


	Click Next.





[image: ../_images/MakingMovies-Encoding5.png]

Fig. 9.66 Setting the e-mail notification for when the movie is complete.




	You can have VisIt [https://visit-dav.github.io/visit-website/] generate the movie now using the currently allocated processors, generate the movie with a new instance of VisIt [https://visit-dav.github.io/visit-website/], or generate the movie at some later time. We will generate the movie now so we can use the default value.


	Click Finish.





[image: ../_images/MakingMovies-Encoding6.png]

Fig. 9.67 Creating the movie with the existing processors.




	This may take a few minutes depending on how fast your computer is. You may want to go get a cup of coffee.


	A command window will appear while the movie is being generated. When the movie is finished the command window will disappear.


	On Windows, you may get a window indicating that the VisIt Python Command Line interface has stopped working. If this happens, click on Close program. Your movie will have been generated properly.





9.3.1. Playing the movie

You can now play the movie with the native movie player on your system.
On Linux you can use a player such as mplayer. On Mac OSX or Windows you
can typically just double click on the icon for the movie. Note that on
Windows you will need to play the movie with “Windows Media Player” and
not “Movies & TV”.




9.4. Encoding the movie with a Python script

This section of the tutorial is primarily aimed at Linux and Mac OSX
systems. There are usually folder path issues on Windows that will prevent
these Python code snippets from working as shown. In particular, the images
from the image saving may get saved in a different folder from where the
image encoding expects to find them. If you want to get this to work on
Windows, you will need to specify absolute paths for the filenames. At
the moment though, the image encoding won’t work at all because there
are issues with absolute paths and paths with spaces in them.

The first step in encoding a movie with a Python script is to create the
images for encoding. The following snippet of Python code will loop over
all the time states and save the images.

# Set the basic save options.
save_atts = SaveWindowAttributes()
save_atts.family = 0
save_atts.format = save_atts.PNG
save_atts.resConstraint = save_atts.NoConstraint
save_atts.width = 1200
save_atts.height = 1068

# Get the number of time steps.
n_time_steps = TimeSliderGetNStates()

# Loop over the time states saving an image for each state.
for time_step in range(0,n_time_steps):
    TimeSliderSetState(time_step)
    save_atts.fileName = "dbreak3d%04d.png" % time_step
    SetSaveWindowAttributes(save_atts)
    SaveWindow()






	Go to Controls->Command to bring up the Commands window.


	Copy and paste the code snippet above into the first tab of the Commands window.


	Click Execute.





[image: ../_images/MakingMovies-Encoding7.png]

Fig. 9.68 Saving the movie images with a Python script.



The next step is to encode the movie using the encoder that comes with
VisIt [https://visit-dav.github.io/visit-website/]. You will need the “ffmpeg” encoder to be installed on your system
and in your search path for the encoding module from visit_utils to
function. The following snippet of Python code will load the visit movie
encoding module and encode the movie.

from visit_utils import *

encoding.encode("dbreak3d%04d.png","dbreak3d.mpg",fdup=2)





The first argument specifies the file naming pattern for the input files.
You can use the same format string used to create the images. The movie
encoder doesn’t support format strings that have multiple digit sequences
in them, so it is best to keep the name of the input images simple, with
only a single digit sequence.

The second argument is the name of the output file. The extension
determines the file format to create. The available options are: “mpg”,
“wmv”, “avi”, “mov”, “swf”, “mp4” and “divx”. “wmv” is usually the
best choice and plays on most platforms (Linux, OSX and Windows).
“mpg” is lower quality, but should play on any platform.

The last argument specifies the number of times each frame is duplicated.
We are specifying duplicating each image twice. This option is useful
if you don’t have a lot of time steps and want to extend the length of
the movie. Movies typically play at 30 frames per second so if you only
have, for example, 60 frames, the movie will only play for about 2 seconds.


	Copy and paste the code snippet above into the second tab of the Commands window.


	Click Execute.





[image: ../_images/MakingMovies-Encoding8.png]

Fig. 9.69 Encoding the movie images with a Python script.





9.5. Other Tips for Making Quality Movies


9.5.1. Ensure that limits are appropriate and consistent across the entire movie

The objects in simulations typically change in size or move in position.
Because of this the view that may be appropriate at the first time step
isn’t appropriate at later time states. For example, suppose a simulation
were modeling the explosion of a supernova. As the simulation progresses
the supernova grows in size and at some point most of the supernova may
be outside the view. One possible solution would be to set the size based
on the supernova at the last time state. If this isn’t acceptable it may
be necessary to zoom out at a few key points in the simulation to ensure
that the supernova is still within the view.

Another common issue is that VisIt [https://visit-dav.github.io/visit-website/] by default will set the extents for
things like the Pseudocolor plot based on the limits of the current time
state. Typically the limits will change over time, which will result in
the meaning of a specific color changing over time. This is typically
not desired behavior for movies. In this case, the limits in the
Pseudocolor plot should be set so that they are appropriate for the
entire time series.



9.5.2. Selecting the resolution

You should always select an aspect ratio for your movie that shows off
your content the best. One strong consideration is minimizing the amount
of white space in your movie. If your simulation is primarily square then
you will probably want your movie to have a roughly one-to-one aspect
ratio. If it is wider than it is tall then you proably want something
closer to a two-to-one or three-to-two (width-to-height) aspect ratio.
Another important consideration is the type of device you will be
displaying you movie on. These days monitors tend to be wide screen
and a good resolution to have in mind is HDTV (1920 by 1080). It is
probably best to try and add annotations to your movie to fill the
white space so that you can get as close to an HDTV aspect ratio
(16 x 9) as possible.



9.5.3. Rendering images gives the most flexibility

If you want to create a movie to show to many people or will be using it
in multiple situations it is best to save images and then manually
encode them using the movie encoding tools in VisIt [https://visit-dav.github.io/visit-website/], or if you want a
really high quality movie with sound then you can use a third party
movie encoding tool.

If you anticipate using your movie in multiple situations you should
encode it at the highest resolution you expect to need it and then encode
multiple movies at different resolutions. To create the different
resolution movies, you would first resize the images to the desired size
and then encode the movie. A good trick for generating higher quality
anti-aliased movies is to save the images at quadruple the resolution
(two times in each direction) and then resizing them to a quarter of
that resolution before encoding the movie.



9.5.4. Resizing images

A good tool for resizing image is ImageMagick’s convert tool. It is
installed on most Linux and Mac OSX operating systems. If you don’t
have ImageMagick installed on your systems and in your search path
the following code snippet will fail. The following snippet of Python
code will run convert to resize the images created earlier to one half
their resolution.

from subprocess import call

for time_step in range(0,n_time_steps,4):
    file1 = "dbreak3d%04d.png" % time_step
    file2 = "dbreak3d_600x534_%04d.png" % time_step
    call(["convert", file1, "-resize", "600x534", file2])






	Copy and paste the code snippet above into the third tab of the Commands window.


	Click Execute.





[image: ../_images/MakingMovies-Encoding9.png]

Fig. 9.70 Resizing the movie images with a Python script.



Convert can also be used to do other types of image manipulations such
as cropping a flipping images. To learn more about convert google
ImageMagick convert.






          

      

      

    

 


  

  
    

    10. Molecular data features
    

    

    
 
  

    
      
          
            
  
10. Molecular data features

The basics of Molecular data visualization in VisIt [https://visit-dav.github.io/visit-website/] are found in the Molecule Plot, the Create Bonds operator and the Replicate operator.


10.1. Replicate and CreateBonds Examples


[image: ../_images/Molecule-replicate-norep.png]

Fig. 10.7 This image shows the original data set, with the original data set’s unit cell drawn.
(The unit cell happens to be orthogonal, but is not actually axis-aligned).
No replications and no bond creation have yet been applied.




[image: ../_images/Molecule-replicate-boundaries.png]

Fig. 10.8 In this image, the Replicate operator was applied, with no replications (i.e. X/Y/Z replication counts remaining at 1,1,1), but with the periodically replicate atoms at unit cell boundaries feature enabled.




[image: ../_images/Molecule-replicate-2x.png]

Fig. 10.9 Now the replication values have been changed in this image to “2,1,1”, with the replication vectors being used as-specified in the file to correspond to the unit cell of the problem.




[image: ../_images/Molecule-replicate-wrongbonds.png]

Fig. 10.10 This image shows the incorrect result (missing bonds between unit cell instances) occurring in two conditions: either the Create Bonds operator was applied before replication, or the Replicate operator did not have the Merge into one block box checked.




[image: ../_images/Molecule-replicate-rightbonds.png]

Fig. 10.11 This shows the correct behavior: the Merge into one block box was checked, and the Create Bonds operator was applied after replication, thus allowing bonds to span unit cell instances.





10.2. Other plots and operators

The following images show plots and operators you might use to explore your data apart from the Molecule Plot and related operators.
These examples show charge density and force vectors associated with the raw molecular positions and species, all combined in the same window as a Molecule Plot.


10.2.1. Pseudocolor Plot and ThreeSlice Operator


[image: ../_images/Mol_plot_and_pc_charge_threesliceb.png]

Fig. 10.12 In this image, the charge density grid is shown using the Pseudocolor plot, with moderate transparency, after applying the ThreeSlice operator to the grid around a point near the center of the molecule.





10.2.2. Contour Plot on a 3D Structured Grid


[image: ../_images/Mol_plot_and_charge_isosurf.png]

Fig. 10.13 In this image,  a Contour Plot has been applied the charge density grid, with a single low-density value, and some transparency so that the molecule itself is still visible. Note that if you have more than one variable on your grid, for more flexibility you might choose to use the Isosurface operator over one variable and color using the Pseudocolor plot on a second variable.





10.2.3. Volume Plot of the 3D Grid


[image: ../_images/Mol_plot_and_vol_charge.png]

Fig. 10.14 This shows a Volume plot of charge density. Note that the Volume plot has a continuously adjustable opacity and by nature allows farther parts of the data to show through to the front, allowing the whole data set to be involved in the final picture.





10.2.4. Isocontour Lines on a Slice


[image: ../_images/Mol_plot_and_charge_iso_slice.png]

Fig. 10.15 Here we used the Contour Plot on a slice through the data, with a thicker line width, and a continuous color table to show the increasing charge density.





10.2.5. Vector Plot of Forces on Point Data


[image: ../_images/Mol_plot_and_vectors.png]

Fig. 10.16 This image shows a Vector plot of the force vectors on the atomic data itself. Vectors are both colored and sized using the magnitude of the force vector.






10.3. Analysis Capabilities


10.3.1. Subset Selection

The screenshot in Figure 10.17 shows the same plot in two windows, but with different subset selection.
The top image shows the standard Molecule plot of a data set.
The bottom shows the Molecule Plot, but with the “Subset” set to de-select Oxygen atoms.


[image: ../_images/Molecule_subset_enumeration.png]

Various file format readers may present a different set of subsets to the user through VisIt.
For example, the Protein Data Bank reader presents compounds, residues, and atom type.
The VASP reader presents only the atom type, but is smart enough to restrict the choice to only those elements actually present in the file (while the PDB reader presents all 100+ element types).



10.3.2. Atomic Color Tables

VisIt [https://visit-dav.github.io/visit-website/] includes a variety of color tables, some for continuous variables and some for discrete variables.
For molecular plots, such as ones coloring atoms by their species, VisIt [https://visit-dav.github.io/visit-website/] includes color tables which match up with residue types or atomic numbers and have similar colors to conventional ones used.
The ones included with VisIt for atomic numbers are called “cpk_rasmol” and “cpk_jmol”, and for residue types are “amino_rasmol” and “amino_shapely”.

However, you can also create your own.
The easiest way is to start by selecting one of these, typing a new name, e.g. “my_atom_colors”, and clicking the New button.
This makes a copy of the selected color table with the new name.
You can then edit the colors at will, and when you Save Settings (in the Options menu), it will keep your new color tables in future sessions.

Note that in Figure 10.18, you see one of the features of the color table editor for atomic data, which is to provide hint labels for the colors in the grid.
Normally these are displayed as numbers, but for atomic color tables it will display the element’s symbol instead.
Note: VisIt [https://visit-dav.github.io/visit-website/] assumes if the number of colors matches what is in the provided atomic number color tables (which is 110) that it is an atomic color table.
So make sure if you’re creating a new atomic color table to create one with the correct number of color values.


[image: ../_images/Molecule-colortables.png]



10.3.3. Expressions


10.3.3.1. Basic Expression Support

Numeric expressions, created in VisIt [https://visit-dav.github.io/visit-website/]’s Expressions window, are compatible with molecular data types.
For example, if one created the variable “zcoord” as a Scalar, defined as “coords(mesh)[2]” (where “mesh” is the name of the mesh in your data file containing the atomic data), then it will create a new value, centered at the atoms, of the value of the Z coordinate of the atoms.


[image: ../_images/Mol_expr_degree.png]

Fig. 10.19 Molecule Plot of “degree(mesh)-1” (subtracting 1 because the atom itself is a cell in VTK)




[image: ../_images/Mol_expr_xcoord.png]

Fig. 10.20 Molecule Plot of the X coordinates of the atoms via the expression “coords(mesh)[0]”





10.3.3.2. Enumerate Expression

One useful expression for some molecular data files is the Enumerate Expression.
The most common use case is if your data file contains only a species type index, such as {0, 1, 2, etc.}, but does not have support for mapping this index to an actual atomic number.
In this case, some molecular operations in VisIt [https://visit-dav.github.io/visit-website/], which require an atomic number (often called “element”), will not work.
In this case, you can use the Enumerate Expression to map, e.g. “0” to “14” (Si), “1” to “80” (Hg), etc.
Typically you want to call this new scalar variable “element” as this is the convention VisIt [https://visit-dav.github.io/visit-website/] follows by default for this variable (though in some plots/operators you can specify a different one).

For example, the LAMMPS readers and VASP POSCAR reader do not have intrinsic knowledge of which type of atom in the file maps to which atomic number – but they do report the atom type (0,1,2…) as a variable called “species”.
To enable the VisIt [https://visit-dav.github.io/visit-website/] features which use atomic number, define a new expression, called “element”, of type “Scalar Mesh Variable”, with the definition “enumerate(species, [14,80,8])”, which maps the first type to Si, the second to Hg, and the third to O.


[image: ../_images/Mol_enum_species.png]

Fig. 10.21 Molecule Plot of “species” directly from file.
Note that it’s simply a continuous scalar field as far as VisIt [https://visit-dav.github.io/visit-website/] is concerned, and can’t be used for atomic properites




[image: ../_images/Mol_enum_element.png]

Fig. 10.22 Molecule Plot of “element” expression defined as an enumeration of “species”.
Note that the Molecule plot can use this element variable to determine atomic radius.






10.3.4. Enhanced Rendering


10.3.4.1. Plot Quality

Most plots have a number of options which can increase their quality at the cost of performance. Some examples follow.



10.3.4.2. Molecule Plot Quality


[image: ../_images/Mol_pretty_molplot.png]

Fig. 10.23 The first example, on the left (before) vs. on the right (after), shows what increasing the atom and bond rendering quality can do in the Molecule Plot.





10.3.4.3. Vector Plot Quality


[image: ../_images/Mol_pretty_vecplot.png]

Fig. 10.24 This second example, left (before) vs. right (after), shows what using cylinders for stems, and higher polygon count vector heads, does for the Vector plot.





10.3.4.4. Annotations

The example in Figure 10.25 shows the same plot before and after modifying various annotation properties, such as:


	switching to a darker, gradient background


	turning off the 3D bounding box, coordinate axes, and triad


	disabling database and user information


	moving the legend, changing its orientation and size


	adding a time slider progress bar, and text showing the time value





[image: ../_images/Mol_pretty_annot.png]

Fig. 10.25 Before (left), After (right)





10.3.4.5. File Export

VisIt [https://visit-dav.github.io/visit-website/] has the ability to save windows, not just as image formats like PNG and JPEG, but as data files which can be imported into other tools.
Some of these data types can be imported back into VisIt [https://visit-dav.github.io/visit-website/] or other visualization and rendering tools which might have different rendering features of interest for making renderings.



10.3.4.6. POV-Ray

One of the exportable data file types in VisIt [https://visit-dav.github.io/visit-website/], after composing your plots in VisIt [https://visit-dav.github.io/visit-website/], is a set of POV-Ray scene description files, which are commented and composed in a manner intended to be tweakable by users to achieve results better than what one could get with a real-time rendering tool.
See below for an example.


[image: ../_images/Mol_povray_supercond_small.png]

Fig. 10.26 A set of atoms and geometry rendered with POV-Ray.




[image: ../_images/Mol_povray_supercond_closeup.png]

Fig. 10.27 A closeup of the previous one, showing reflection, refraction, shadows, and varying surface characteristics.






10.3.5. Data File Formats

VisIt [https://visit-dav.github.io/visit-website/] contains readers for over 100 different scientific, code-specific, and other general file formats.
Below are listed several of the most specific to molecular data.

Note that many of these formats have lax restrictions on naming, and VisIt [https://visit-dav.github.io/visit-website/] may not automatically detect the file type.
To force VisIt [https://visit-dav.github.io/visit-website/] to try your desired file reader (as listed in quotation marks in the section header below), use that reader’s name as the input to the “-assume_format” command when launching VisIt [https://visit-dav.github.io/visit-website/].
For example, “visit -assume_format CTRL” will try the LMTO CTRL reader before reverting to its automatic detection code, and “visit -assume_format LAMMPS” will try the two LAMMPS readers first.


10.3.5.1. VASP (CHGCAR, POSCAR, OUTCAR) File Formats

The VASP code [http://cms.mpi.univie.ac.at/vasp/], as described in the link, is “a package for performing ab-initio quantum-mechanical molecular dynamics (MD) using pseudopotentials and a plane wave basis set.”
Its output is ASCII text in several files, and the VASP reader in VisIt [https://visit-dav.github.io/visit-website/] supports “OUTCAR” and “POSCAR” for varieties of atomic positions and variables, and “CHGCAR” for charge density grids.

Since the charge density grids can get very large, the VisIt [https://visit-dav.github.io/visit-website/] CHGCAR reader is actually parallelized to help speed the ASCII-binary conversion process on multi-node machines when using the MPI-enabled version of VisIt [https://visit-dav.github.io/visit-website/]’s computation engine.
It will decompose the grid into as many domains as you have processors, and each will read and process its chunk of data.
Since this is an ASCII format, the speedup for the I/O portion will not scale to large numbers of processors, but the decomposition will also help the rest of the pipeline scale in parallel for other compute-intensive operations.



10.3.5.2. LAMMPS (input structure and output dump) File Formats

LAMMPS [http://lammps.sandia.gov/] is the “Large-scale Atomic/Molecular Massively Parallel Simulator”.
The VisIt [https://visit-dav.github.io/visit-website/] LAMMPS reader supports two flavors of data files used with LAMMPS.

The first is the output dump file in Atom style, usually ending in “.dump”.
Here’s a small example of that format with three variables per atom (the final three columns):

ITEM: TIMESTEP
1500
ITEM: NUMBER OF ATOMS
5
ITEM: BOX BOUNDS
0.0 2.0
0.0 3.0
0.0 2.5
ITEM: ATOMS
2 1  0.0 0.0 1.0  0 0 0
4 1  2.0 3.0 2.5  0 0 0
1 2  1.4 0.7 0.0  0 3 1
3 2  0.3 1.0 0.5  0 1 7
5 2  1.7 2.0 0.2  0 7 7





In this example, the second and fourth atoms are of the first species type, and the first, third, and fifth are of a second species.
So you’ll need to create an enumerate expression to create the atomic numbers needed for various molecular operations.
For example, create a variable called “element”, of type Scalar Mesh Variable, and define it as “enumerate(species, [1, 8])” – this maps the first species to hydrogen, and the second to oxygen.

Note that the LAMMPS Atom-style dump has changed: the ITEM line with ATOMS now specifies the columns which were be written out.
To continue supporting the old atom-style dump format, the reader assumes a format string of “id type x y z” (i.e. unscaled atom coordinates) if the line only contains the word “ATOM” with no format specified.
The new default is “id type xs ys zs” (scaled atom coordinates) for the updated format.
See the LAMMPS documentation of the “dump” command for details.

The second format is the input format used for the LAMMPS “read_data” command.
Its file extension is not standardized, but can sometimes be “.eam”, “.meam”, and “.rigid”.

Position data on strange chemical

     5       atoms
     2       atom types
     0.0 2.0     xlo xhi
     0.0 3.0     ylo yhi
     0.0 2.5     zlo zhi

Atoms

 2    1      0.0           0.0           1.0
 4    1      2.0           3.0           2.5
 1    2      1.4           0.7           0.0
 3    2      0.3           1.0           0.5
 5    2      1.7           2.0           0.2





(As an aside, note that there is a “proper” EAM file containing pair potentials. Though the “EAM” refers to the embedded atom potential method in both usages, these are different files.)



10.3.5.3. The ProteinDataBank (.pdb) File Format

The Protein Data Bank (PDB) archive [http://www.rcsb.org/] contains molecular files in a standard ASCII format.
The format, however, is used for a wide range of molecular data, not just proteins.
See the docs [http://www.wwpdb.org/docs.html] for a full description of the file format.
The PDB reader supports ATOM, HETATM, HETNAM, MODEL/ENDMDL, TITLE, SOURCE, CONECT, and COMPND directives.

This is a simple example of a 2-compound, 4-element type data file with a single model.

COMPND    First
ATOM      1  N   TYR A   1      27.557 -46.589  10.074  1.00  0.00           N
ATOM      2  H   TYR A   1      28.603 -46.872   9.068  1.00  0.00           H
COMPND    Second
ATOM      3  C   TYR A   1      29.675 -45.772   8.980  1.00  0.00           C
ATOM      4  O   TYR A   1      30.403 -45.678   7.992  1.00  0.00           O







10.3.5.4. The XYZ File Format

The .xyz file format is a simple ASCII format used for describing atom positions, species, possibly variables, and possibly with multiple time steps.
Here’s a simple example file:

``   3
Some file comment
H      22.3844     2.0352     0.0000
O      18.4512     3.5123     0.0000
Cu     14.2455     6.1056     7.3436``





Note that the first line lists the number of atoms, the second is a comment (or blank), and the third starts the data.
In each data line, there is the element name, then the X, Y, and Z coordinates.
Note that you may have several variables after the Z coordinate – VisIt [https://visit-dav.github.io/visit-website/] will allow up to 6 extra variables.
Below is an example with three extra variables, which will be called “var0” through “var2” inside VisIt [https://visit-dav.github.io/visit-website/], and can be combined into vectors or included in any other plotting or analysis operation VisIt [https://visit-dav.github.io/visit-website/] supports.

3

H      22.3844     2.0352     0.0000     7   7.8    8
O      18.4512     3.5123     0.0000    12   1.6    9
Cu     14.2455     6.1056     7.3436    10   1.4   10





To support multiple timesteps in a single file, simply concatenate each timestep at the end of the previous one, with no blank lines or other separators.
The VisIt [https://visit-dav.github.io/visit-website/] XYZ reader also supports atomic numbers instead of element symbols in the first column and also supports the rather dissimilar CrystalMaker flavor of .xyz file (which we don’t describe here).

Wikipedia has a page on the XYZ format [http://en.wikipedia.org/wiki/XYZ_file_format], though it does not mention the possibility of extra variables or multiple timesteps, both of which are supported by VisIt [https://visit-dav.github.io/visit-website/].



10.3.5.5. The LMTO CTRL File Format

The CTRL file is a format used by the STUTTGART TB-LMTO program [http://www.fkf.mpg.de/andersen/LMTODOC/LMTODOC.html].
LMTO is the linear muffin-tin orbital method used in density functional theory (DFT).
This CTRL reader supports the STRUC, CLASS, SITE, ALAT, and PLAT file categories.
(See this page [http://www.fkf.mpg.de/andersen/LMTODOC/node15.html] for more details.)



10.3.5.6. Using the VTK File Format for Molecular Data

The VTK file format is well-understood by VisIt, as it is the underlying low-level data model for many of its internal data types.
The VTK structure best used for molecular data is that of a “vtkPolyData” type, where the vertices are the atoms, lines are the bonds (if desired), and fields on the atoms are point data fields.
An example of an approximate of a water molecule in the ASCII VTK file format is shown below:

# vtk DataFile Version 3.0
vtk output
ASCII
DATASET POLYDATA

POINTS 3 float
1.0 0.5 1.5
0.2 0.1 0.8
0.4 0.2 2.3

LINES 2 6
2 0 1
2 0 2

VERTICES 3 6
1 0
1 1
1 2

POINT_DATA 3
SCALARS element float
LOOKUP_TABLE default
8 1 1
SCALARS somefield float
LOOKUP_TABLE default
0.687 0.262 0.185





If you have no bonds in the file, or would prefer to use the Create Bonds operator to generate them inside VisIt [https://visit-dav.github.io/visit-website/], simply drop the three lines of text in the “LINES” section of the file.
For more detailed information about the VTK formats, see http://www.vtk.org/VTK/img/file-formats.pdf.
Note that what are called the “Legacy” formats are both simpler and may be more widely supported than the more recent, and complex, XML formats



10.3.5.7. Acknowledgements

This work was supported in part by the Department of Energy (DOE) Office of Basic Energy Sciences (BES), through the Center for Nanophase Materials Sciences (CNMS) and Oak Ridge National Laboratory (ORNL), as well as the Advanced Simulation and Computing (ASC) Program through Lawrence Livermore National Laboratory (LLNL).







          

      

      

    

 


  

  
    

    VisIt Developer Manual
    

    

    
 
  

    
      
          
            
  
VisIt [https://visit-dav.github.io/visit-website/] Developer Manual



	1. Developing at GitHub

	2. Coding Style Guide

	3. Creating a Pull Request

	4. Reviewing a Pull Request

	5. Release Candidate (RC) Development

	6. Regression Testing

	7. XML Tools

	8. Preparing for a Release

	9. Creating a Release

	10. Finding Memory Leaks

	11. Using Docker

	12. Site Reliability Engineering (SRE)

	13. OpenGL in VisIt

	14. Docker Containers For CI Testing








          

      

      

    

 


  

  
    

    1. Developing at GitHub
    

    

    
 
  

    
      
          
            
  
1. Developing at GitHub


1.1. Overview

The VisIt [https://visit-dav.github.io/visit-website/] project has a number of repositories located at the GitHub visit-dav organization.

https://github.com/visit-dav/

The primary repository for doing VisIt [https://visit-dav.github.io/visit-website/] development is the visit repository.

https://github.com/visit-dav/visit/

The following top level directories exist in the visit repository.


	data [https://github.com/visit-dav/visit/tree/develop/data/] - Data files used by the test suite.


	docs [https://github.com/visit-dav/visit/tree/develop/docs/] - Legacy documentation including design documents and presentations.


	scripts [https://github.com/visit-dav/visit/tree/develop/scripts/] - Various scripts used for doing VisIt [https://visit-dav.github.io/visit-website/] developement including scripts for managing docker containers and doing continuous integration.


	src [https://github.com/visit-dav/visit/tree/develop/src/] - The VisIt [https://visit-dav.github.io/visit-website/] source code. It includes the Read the Docs documentation and the regression test suite.


	test/baseline [https://github.com/visit-dav/visit/tree/develop/test/baseline/] - The baseline results for the regression test suite.






1.2. Setting Up Git LFS

Git LFS (Large File Storage) is a mechanism to help revison control large files efficiently with git. Instead of storing large files in the repo, LFS provides an extension that stores small text files with meta data in the repo and the actual files on another server. These meta data files are called “pointer” files. We use LFS for binary data including our test data tar files, source code for third party libraries, and regression test baseline images.

Git LFS is not part of the standard git client. See https://git-lfs.github.com/ for how to obtain Git LFS.

When installing, use the following option:

git lfs install --force --skip-smudge





The “skip smudge” command sets up LFS in a way that skips automatically pulling our large files on clone. We do this to conserve bandwith.

To obtain these files you will need to do some extra incantations followed by an explicit:

git lfs pull







1.3. Accessing GitHub

The following link points to a page for creating a personal access token to use for the password when accessing GitHub through the command line. Use the following scopes for the token:

repo:status

repo_deployment

public_repo

https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/

The following link describes how to add your ssh key to your GitHub account.

https://help.github.com/articles/adding-a-new-ssh-key-to-your-github-account/



1.4. Cloning the Repository and Setting Up Hooks

You can access GitHub either through https or ssh. If you use https you will be prompted for your password whenever you push to GitHub. There are ways you can have your password cached for a period of time to reduce the frequency of entering your password. However, if you have two-factor authentication set up you will need to create a personal access token to use in place of the password. If you use the ssh protocol you can set things up so that you never have to enter a password by adding your ssh key to your GitHub account.

To clone the repository:

git clone https://github.com/visit-dav/visit.git





or:

git clone ssh://git@github.com/visit-dav/visit.git





To setup our hooks:

cd visit
./scripts/git-hooks/install-hooks.sh







1.5. Creating a Branch

Developement for VisIt [https://visit-dav.github.io/visit-website/] is done off of two main branches, the develop branch and the current release candidate branch, which was 3.2RC when this content was written. The develop branch is used for development that will go into the next major or minor release. Major releases are releases where the first digit of the release number is incremented, Minor releases are releases where the second digit of the release number is incremented. The release candidate branch is used for development that will go into the next patch release. Patch releases are releases where the third digit of the release number is incremented.

There is no convention on the names of a branch. One commonly used convention is task\Username\YYYY_MM_DD_Description where Username is your GitHub user name, YYYY is the current year, MM is the current month, DD is the current day, and Description is a short description of the task to be performed. Since branches only exist while you are doing the development, the name isn’t critical, but it should be sufficiently descriptive so that someone can have some idea what the development on the branch is about.

To create a branch off of the develop branch:

git checkout develop
git pull
git checkout -b task/user/2021_05_07_bug_fix





To create a branch off of the current release candidate:

git checkout 3.2RC
git pull
git checkout -b task/user/2021_05_07_bug_fix







1.6. Doing Development

Doing development using the Git version control system can be complex and take considerable time and effort to master. The primer below is just meant to get you started in modifying files and then pushing the changes to GitHub so that they can be integrated into VisIt [https://visit-dav.github.io/visit-website/].

To add a new file or modify an existing file, edit the file with your favorite text editor and then use the add command so that git knows you want the file to be part of your next commit. To add a file:

git add src/myfile





To delete an existing file use the rm command:

git rm src/myfile





Once you have modified one or more files you can commit the change to git. You will typically do a commit after having modified one or more files that completes a logical unit of change. To commit the added files with a comment:

git commit -m "Description of my change."





It is recommended that you make commits frequently so that you can better track individual changes. The commit descriptions are typically brief. The record of the individual commits will not go into the final record of the commit, since we do “Squash and Merge” commits that merge all the commits into a single commit at GitHub. The individual commits will be helpful to you as a developer if you need to go back and understand when making many changes over a period of time. It may also potentially make it easier for reviewers to understand your commits.

Once you have finished all your changes you can push the change to GitHub. To push your changes to GitHub:

git push --set-upstream origin task/user/2021_05_07_bug_fix





Once you have pushed your changes to GitHub, you can submit a pull request.





          

      

      

    

 


  

  
    

    2. Coding Style Guide
    

    

    
 
  

    
      
          
            
  
2. Coding Style Guide


2.1. Naming Conventions


	Class names start with capital letters, (eg Mesh). If a class name has multiple words, capitalize the first letter of each word, (eg RectilinearMesh). Exceptions can be made to help group classes in a package (eg vtkRectilinearMesh).


	Fields and variables have the first letter uncapitalized and the first letter for each subsequent word capitalized, (eg theImportantValue).


	Methods and functions follow the same naming convention as classes. The distinction between methods and classes will be clear because methods will always have attached parentheses. This is not true when a function is passed as a pointer, but that should be clear from context.


	Try to avoid using the following names as they are reserved by ANSI for future expansion:










	Names

	Description



	E[0-9A-Z][0-9A-Za-z]*

	Errno values



	is[a-z][0-9A-Za-z]*

	Character classification



	to[a-z][0-9A-Za-z]*

	Character manipulation



	LC_[0-9A-Za-z_]*

	Locale



	SIG[_A-Z][0-9A-Za-z_]*

	Signals



	str[a-z][0-9A-Za-z_]*

	String manipulation



	mem[a-z][0-9A-Za-z_]*

	Memory manipulation



	wcs[a-z][0-9A-Za-z_]*

	Wide character string manipulation








2.2. File Structure


2.2.1. File Names

A file containing the definition for class Foo will be named Foo.h. A
file containing the methods for the class Foo will be named Foo.C.



2.2.2. .h File Contents

Each of the .h files will have the following format:






	#ifndef/#define



	Includes



	Class Description



	Class Definition



	Variable Declarations



	Inline Functions



	#endif







	The ifndef is used to prevent the class from being defined multiple times.


	To prevent name collisions, the symbolic name being defined should be the class name in all capital letters, with each word separated by underscores. _H should be appended.






	Forward declare classes rather than including their header file when possible but be sure to use the correct struct or class keyword in the forward declaration.


	Only one class should be defined per file. Exceptions can be made for very closely related classes.


	Inline functions should only be included in the .h file if they are public or protected. Private * inline functions should be placed in the .C file for that class.


	Note that public and protected inline functions should be used sparingly. All code that includes the header must be recompiled if the function is changed.






	The .h file should be valid as a stand alone file.


	If other header files are included before this files inclusion, it may be making use of their definitions.






	All variables declared here should be externed. Class-scoped static variables should not be defined here.


	Avoid using:: directives in header files. They will effect not only the current header file but any files in which the header file is included, directly or indirectly.






2.2.3. .C File Content

Each of the .C files will have the following format:






	Includes



	Variable Declarations



	Static Function Prototypes



	Constructors



	Destructors



	Method Definitions



	Friend Functions



	Static Functions






The friend operators included in the .C file must be directly related to
the class whose methods are defined in that file.


2.2.3.1. Copyright notice

The copyright notice shall appear at the top of each .C, .h, .java,
CMakeLists.txt, and Python sources.

// Copyright (c) Lawrence Livermore National Security, LLC and other VisIt
// Project developers.  See the top-level LICENSE file for dates and other
// details.  No copyright assignment is required to contribute to VisIt.








2.2.4. Includes


	Include files should use angle brackes. For example: #include <vtkRectilinearGrid.h>


	Class.C should include Class.h first. This is to make sure that Class.h is not using any previously declared headers. Class.C file may use quotes instead of angle brackets to include Class.h.


	Include files should be grouped from wider scope to narrower scope. This leads to grouping the include files in the following order:


	System include files. Examples are: <math.h>, <stdio.h>.


	X and Qt include files. Examples are: <Xlib.h>, <qgl.h>.


	Library include files. Examples are: <dmf.h>, <vtk.h>.


	Class definition files. Examples are: <Mesh.h>, <Field.h>.


	Within a group, include files should be listed alphabetically.






	If the include files must be listed in a specific order, which is not alphabetic, then a comment must be added justifying it.


	Some C header files contain C++ keywords that cause compilations to fail. With the exception of header files for the standard C library, X, and Motif, all C header files must be wrapped with an extern C directive.

extern "C" {
#include <hdf5.h>
}











2.2.5. Forbidden Constructs


2.2.5.1. exit() and abort()

Please do not use exit() or abort() in your code since we do not
want VisIt [https://visit-dav.github.io/visit-website/] to fail unexpectedly. Use exceptions instead. VisIt [https://visit-dav.github.io/visit-website/]’s check-in
hooks will not permit unconditionally compiled code calling exit or
abort to be checked-in.



2.2.5.2. using statements

using statements of any kind are not permitted in header files since
they can indirectly cause compilation problems for other compilation units
that may include your header file either directly or indirectly. In header
files, you will have to use the fully qualified class name for any class
you need to refer to. (e.g. std::vector and not just vector).
Yes, this does make for somewhat uglier header files but it also prevents
a lot of problems. VisIt [https://visit-dav.github.io/visit-website/]’s check-in hooks will not permit code containing
using statements in a header file.

In source files, when you need to use using statements, we prefer that
you narrow the scope of the statement as much as is practical. So, please
don’t use using namespace std to use something like std::string. Instead
use using std::string.





2.3. Class Description

Each class must have a brief description, like the below example.

// ********************************************************
// Class: Example
//
// Purpose:
//   What this class does.
//
// Notes:     Any special notes for users of the class.
//
// Programmer: Joe Smith
// Creation: August 29, 2007
//
// Modifications:
//   Joe Smith, Fri Oct 15 13:31:51 EST 2007
//   I added a new method to do ...
//
// ********************************************************





It is important to use these category names because they will be picked up
by doxygen to create our documentation. The asterisks should fill out the
line, 76 asterisks in all. The category labels (Class, Purpose, etc) should
be indented two spaces past the comment (//). When the text after a category
label wraps to the following line, it should be indented fours spaces after
the comment.



2.4. Class Definition

Class definitions should follow these rules:


	There should be no public fields. They violate the basic object-oriented philosophy of data hiding.


	The sections inside the class should be ordered public, protected, private. This way users of the class can stop reading when they reach protected/private. The fields in each section should be grouped together, as should the methods.


	All inheritance should be public to avoid confusion, bar good reason.


	Every non-trivial field should have a comment preceding it that describes its purpose. This comment will be picked up by doxygen when the documentation is built.


	Friends should be avoided when possible. When it is necessary to grant friend access to a series of derived types, grant it only to their base type and define protected methods for the base type that access the class.


	Define a copy constructor and assignment operator for every class.


	Constructor and destructor method definitions should never appear in the class header file because of compiler bugs on some platforms.


	Note that C++ automatically provides a constructor, a copy constructor, an assignment operator, two address-of operators, and a destructor for you:

// You write
class Empty { };
// You get
class Empty
{
public:
    Empty() {};
    ~Empty() {};
    Empty(const Empty &);
    Empty &operator=(const Empty &);
    Empty *operator&();
    const Empty *operator&() const;
};







	If you are redefining a pure virtual method that should not be used, declare it private and have it throw an exception.


	The copy constructor and assignment operator provided by the compiler perform blind copies, meaning that pointers will also be copied, potentially introducing many bugs.




This is because many publicly available libraries, such as STL, use these
methods.



2.5. Method Structure

The structure of a method should follow this format:






	Prologue



	Declaration



	Body







2.5.1. Prologue

Each method must have a prologue with the following format:

// ********************************************************
// Method: ClassName::MethodName
//
// Purpose:
//   What this method does.
//
// Arguments:
//   arg1 : What the first argument does...
//   arg2 : What the second argument does...
//   ...
//
// Returns:  <0 on failure, 0 on success.
//
// Note: Assumes coordinates have already been read.
//
// Programmer: Joe VisIt
// Creation: August 29, 2007
//
// Modifications:
//   Joe VisIt, Fri Oct 15 13:31:51 EST 2007
//   Fixed bug with ...
//
// ********************************************************





The category label ‘’’Method’’’ can be replaced ‘’’Function’’’, ‘’’Operator’’’, ‘’’Constructor’’’, or ‘’’Destructor’’’ and still be accepted by doxygenate.




2.6. Definition

The definition should follow this form:

Zone *
RectilinearMesh::GetZone(int i, int j, int k)





If multiple lines are needed for all of the arguments, each subsequent line
should be indented to the opening parenthesis, or if that is too far, 4 spaces.



2.7. Body


2.7.1. Size

The body should be small. Try to keep functions under 100 lines. This
promotes clarity and correctness. This tradeoff should not be paid for
a substantial speed penalty, however.



2.7.2. Arguments


	All input arguments passed by reference should be declared const.


	Unused arguments should not be named. Note that this eliminates the need for the lint directive ARGSUSED.






2.7.3. Variables


	Variables should be declared near their first use.


	Variable names may not coincide with any of the class’ field names.


	All local pointer variables should be set to NULL or 0 when declared. This helps with later tracking of memory problems when looking at core files.


	Associate * and & with the variable, not with the type.




For example, the following code:

int* i, j;





misleads the reader into thinking both i and j are pointers to ints,
while j is actually only an int.


	Only use variables declared in the initializer list of a for loop inside that for loop.




The code fragments:

for (int i = 0 ; i < size; i++)
   { ... }
for (int i = 0 ; i < length ; i++)
   { ... }





and

for (int i = 0 ; i < size ; i++)
   { ... }
if (i == size)
   ...







2.7.4. Comments


	Avoid using C-style comments. This way, when debugging, they can be used to comment out long blocks of code without worrying about nested comments.


	Indent comments to the same level as the statement to which they apply.


	Both block and single line comments are acceptable, but when modifying a pre-existing file, they should follow its convention.


	Comments are highly encouraged!






2.7.5. Control Structures


	Use for (;;) instead of while(1). They both result in infinite loops, but while(1) is flagged by many compilers as a constant condition. This eliminates the need for the lint directive CONSTCOND in this case.


	Any case of a switch statement that does not end with a break should have a FALLTHRU comment to show that this is intentional.


	When the body of a for or while is empty, place a continue in it to make the intent clear.




The following code:

for (int i = 0; p[i] != '\0' ; i++);





Is more clearly represented as:

for (int i = 0; p[i] != '\0' ; i++)
    continue;





Also note that this eliminates the need for the lint directive EMPTY in
this case.



2.7.6. Whitespace


	TAB characters are NOT ALLOWED in VisIt [https://visit-dav.github.io/visit-website/] source code.


	Semicolons should immediately follow the last character. (i.e. there is no space between the last character in a statement and its semicolon).


	Lines should not exceed 79 characters in length. Note that it is not necessary to violate this rule for strings.

char *str1 = "Hello world";
char *str2 = "Hello "
             "world";









In the code above, str1 is equal to str2.


	All variable declarations should occur on separate lines unless closely related (e.g. int i, j, k;).


	Do not use any tabs in the source. Use \t to simulate a tab in a string.


	The parenthesis of a function should immediately follow the function name. This makes searching easier for functions with common names.


	There should not be any spaces surrounding the . or ->, operators and no spaces preceding a [ operator.


	An indentation block is four spaces.


	The labels case, public, protected, and private are indented 0 or two spaces.


	Any time a new block is started, a { should be put on the following line at the same indentation level. The next statement should be indented an additional four spaces.


	Within reason, adding whitespace to line up parentheses or brackets on consecutive lines is encouraged, even when it violates one of the previous rules.





2.7.6.1. Reformatting

Automatic source code reformatting may be performed using a program called
‘’[http://astyle.sourceforge.net/ artistic style]’’. Here is some basic
usage that reformats a source file into a form compatible with VisIt [https://visit-dav.github.io/visit-website/]
coding style:

astyle --brackets=break < inputfile > outputfile








2.7.7. End of line

The UNIX convention for end of line characters must be followed for VisIt [https://visit-dav.github.io/visit-website/]
source code.



2.7.8. Preprocessor


	Macros should only be used if the # or ## operators are used.


	Any macros used to define a constant should be declared as a const global variable.


	Parameterized macros used to perform a short routine should be implemented as an inline.


	Macros should only be used if the # or ## operators are used.


	The code inside the #ifdef section should be indented as if the #ifdef were not present.


	Comments should not be added on the same line after preprocessor directives because some compilers do not accept them.


	Preprocessor directives should have the # in column 1.






2.7.9. Pointer vs. References

References are preferred over pointers.

References:


	Always refer to a real object.


	Do not change objects they refer to.




Pointers:


	Can represent no object (NULL).


	Can change the object they refer to.


	Can represent an array.


	Can represent a location (like the end of an array).







2.8. Caveats for ensuring that VisIt [https://visit-dav.github.io/visit-website/] builds on Windows

The rules that have been covered before in this document apply mainly
to source code style and are conventions to simplify maintenance. This
section describes some source code constructs that must be avoided at
all times in order to ensure compatibility with the Microsoft Windows
Visual C++ (MSVC). Windows is an important development platform for
VisIt [https://visit-dav.github.io/visit-website/]. Adhering to these additional coding rules will reduce the
amount of time required to fix minor source code problems that burden
Windows developers.


2.8.1. API macros

VisIt [https://visit-dav.github.io/visit-website/]’s header files have API macros that help the MSVC (all versions)
compiler and linker produce dynamic link libraries (DLLs) and their
associated import libraries. A DLL is a file containing executable code
which is loaded by an application at runtime and all applications that
require the code stored in the DLL use the same instance of the DLL in
the computer’s memory, which saves resources. An import library is a
small stub library that contains enough symbolic information to satisfy
the linker so that all unresolved symbols are resolved at link time and
still allowing the application code to be loaded dynamically at runtime.
This link step is mostly avoided on other platforms where VisIt [https://visit-dav.github.io/visit-website/]’s
libraries are linked exclusively at runtime.

Import libraries are difficult to create manually due to the amount of
symbols in all of VisIt [https://visit-dav.github.io/visit-website/]’s libraries so the VisIt [https://visit-dav.github.io/visit-website/] source code has been
augmented with API macros that allow the compiler to automatically
create the import libraries. VisIt [https://visit-dav.github.io/visit-website/]’s API macros come from an API
include file and there is one API include file per VisIt [https://visit-dav.github.io/visit-website/] library.
The name of the API include file is usually the name of the library
appended with the “_exports.h” suffix. The API macro is added to class
declarations when the class should be made accessible to other VisIt [https://visit-dav.github.io/visit-website/]
libraries.

#ifndef MY_EXAMPLE_CLASS_H
#define MY_EXAMPLE_CLASS_H
#include <example_exports.h>

class EXAMPLE_API MyExampleClass
{
public:
    MyExampleClass();
    virtual ~MyExampleClass();
};

void EXAMPLE_API example_exported_function();
void this_function_not_exported();
#endif





In the above example, the header file that gets included defines the
EXAMPLE_API macro, which tells the MSVC compiler to add the flagged
symbols to its list of symbols for the import library that goes along
with the DLL that contains the class. The EXAMPLE_API macro evaluates
to whitespace on other platforms so its inclusion in VisIt [https://visit-dav.github.io/visit-website/]’s source
code is not disruptive. Note that the EXAMPLE_API macro has been applied
to a class and to a function to ensure that both the class’s methods
and the function are both added to the import library. Any class,
function, variable, etc that lacks an export macro is not added to the
import library and will not be available to other programs or libraries.

Now that the mechanism by which symbols are added to import libaries
has been explained, suppose that you move a class from one library to
another. What happens? Well, the answer is that the class will be
compiled into the new library but it will not be put into the import
library because its API macro was not changed. To avoid this problem,
it is very important that when you move classes from one library to
another library that you change the class so it uses the appropriate
API macro for the new host library. This goes especially for VTK
classes that have become part of one of VisIt [https://visit-dav.github.io/visit-website/]’s libraries.



2.8.2. No constructor or destructor definitions in header file

Do not put class constructor or destructor definitions in the class
header file. When you put class constructors and destructors in the
class header file, MSVC gets confused when you attempt to use the class
from another DLL because sometimes the virtual method table is messed
up when the constructor and destructor are placed in the header file
possibly due to function inlining. When this happens, it is impossible
to successfully link against the library that is supposed to contain
your class. To be safe, always create a .C file that contains the
constructor and destructors for your class.

#ifndef MY_CLASS_H
#define MY_CLASS_H
#include <mylib_exports.h>
class MYLIB_API MyClass
{
public:
    // Never do this
    MyClass() { };
    virtual ~MyClass() { };
};





Do this instead:

MyClass.h file contents:

#ifndef MY_CLASS_H
#define MY_CLASS_H
#include <mylib_exports.h>
class MYLIB_API MyClass
{
public:
    MyClass();
    virtual ~MyClass();
};





MyClass.C file contents:

#include <MyClass.h>
MyClass::MyClass() { }
MyClass::~MyClass() { }







2.8.3. Include snprintf.h

VisIt [https://visit-dav.github.io/visit-website/] source code should not use sprintf into a static sized buffer
due to the possibility of buffer overruns, which introduce memory
problems and possible security threats. To combat this, the use of
sprintf is deprecated and all new code should use snprintf, which
behaves the same but also takes the size of the buffer as an argument
so buffer overruns are not possible. The snprintf function is not
supported in any of the Windows header files but there is a _snprintf
function. Since some platforms can use snprintf and Windows must use
_snprintf, there is an snprintf.h header file that defines an
SNPRINTF macro which evaluates to the proper symbol based on the
compiler being used.

// Don't do this
const char *s = "This is a very long message "
"intended to overrun the buffer.";
char buf[20];
sprintf(buf, "Message: %s", s);

// Do this instead
#include <snprintf.h>
SNPRINTF(buf, 20, "Message: %s", s);







2.8.4. Do not use variables called near or far

The MSVC compiler reserves the near and far keywords for backward
compatibility with older 16-bit versions of the compiler that used
near and far to determine pointer size. Do not use near or far for
variable names because it will cause a strange compiler error.



2.8.5. Do not create a file called parser.h

Windows provides a file called parser.h and if you also provide such
a file, you had better change the include directory order or you will
run into hundreds of errors when the compiler uses Microsoft’s parser.h
instead of yours.



2.8.6. Do not create functions or methods called GetMessage

The WIN32 API is used in certain places in VisIt [https://visit-dav.github.io/visit-website/] to implement
Windows-specific functionality. Occasionally, we have run into problems
where VisIt [https://visit-dav.github.io/visit-website/] classes have names such as GetMessage. The windows.h
include file defines a macro called GetMessage and sets it to GetMessageEx.
This caused the preprocessor to replace all GetMessage method calls on
a VisIt [https://visit-dav.github.io/visit-website/] object with GetMessageEx, which is not a method of the object.
Needless to say, this is a confusing compilation problem. Steer clear of
defining method names that conflict with WIN32 macro names!



2.8.7. Comparing QString and std::string

Call the .toStdString() method to compare QString to std::string.

Example:

QString string1("my q string");
std::string string2("my std string");

// Do this:
if (string1.toStdString() == string2))







2.8.8. Do not use unistd.h

Windows does not have the unistd.h header file so do not use functions
from it without making conditionally compiled code.

#if defined(_WIN32)
    // Windows implementation ...
#else
    #include <unistd.h>
    // Unix implementation ...
#endif







2.8.9. Do not use libgen.h

Windows does not have libgen.h, which is sometimes used for functions
such as dirname(), basename(). Refrain from using functions from libgen
or provide a Windows implementation as well.



2.8.10. Sign of size() method return value

The .size() method for STL containers returns a size_t. Be aware if you
attempt to do arithmetic on the value returned by .size()

Example:

// Consider what happens when the following code is
// executed with myvector being empty (size is zero)

if (val > myvector.size()-1) // if test fails
{
   return;
}
myvector[val] =  ... // SEGV!







2.8.11. Allocate dynamic arrays on the heap, not the stack

If the size of an array cannot be determined at compile-time, then it cannot be allocated on the stack, but must be allocated on the heap.

Example:

const int nPoints = dataset->GetNumberOfPoints();

// Since value of nPoints can only be determined at run-time,

// this will not compile with Visual Studio
int myarray[nPoints];

// this will compile
int *myarray2 = new int[nPoints];










          

      

      

    

 


  

  
    

    3. Creating a Pull Request
    

    

    
 
  

    
      
          
            
  
3. Creating a Pull Request


3.1. Overview

Pull Requests (PRs) allow developers to review work before
merging it into the develop branch. PRs are extremely useful for preventing bugs,
enforcing coding practices, and ensuring changes are consistent with VisIt [https://visit-dav.github.io/visit-website/]’s overall
architecture. Because PR reviews can take time, we have adopted policies to help
tailor the review effort and balance the load among developers. We hope these policies
will help ensure PR reviews are completed in a timely manner. The benefits of reviews
outweigh the added time.



3.2. Forking the repo

Developers who do not have write access to the primary VisIt [https://visit-dav.github.io/visit-website/] repo may make
contributions by forking the repo and submitting pull requests. GitHub provides
excellent informational articles about forking a repo [https://help.github.com/en/articles/fork-a-repo] and
creating pull requests from a fork [https://help.github.com/en/articles/creating-a-pull-request-from-a-fork].



3.3. Working with the Template

PR submissions are populated with a template to help guide
the content. Developers do not have to use this template. Keep in mind, however, that
reviewers need structured context in order to accurately and quickly review
a PR. So, it is best to use the template or something very similar to it. The
text sections in the template are designed to be replaced by information
relevant to the work involved. For example, replace a line that says
Please include a summary of the change with an actual summary of the change.

In general, if part of the template is not relevant, please delete it before
submitting the PR. For example, delete any items in the checklist
that are not relevant.

If additional structured sections in the PR submission are needed, please
use GitHub markdown [https://guides.github.com/features/mastering-markdown/]
styling.

In the sections below, we describe each of the sections of the PR template in
more detail.


3.3.1. Description

GitHub supports a number of
idioms and keywords [https://help.github.com/en/articles/closing-issues-using-keywords]
in PR submissions to help automatically link related items.
Please use them.

For example, when typing a hashtag (#) followed by a number or text, a search
menu will appear providing potential matches based on issue or PR numbers or
headlines. Sometimes no matches will be produced even if the number being entered
is correct, but the link will still occur when the PR is submitted. By placing the
keyword “Resolves” in front of a link to an issue, the issue will automatically
close when the PR is merged.

If a PR is unrelated to a ticket, please delete the “Resolves #…” line for clarity.



3.3.2. Type of Change

Bug fixes, features, and documentation improvements are among the most common
types of PRs. You may select from the menu by replacing
the space between the square brackets ([ ]) with an uppercase X, so that it
looks exactly like [X]. You can also make this selection after submitting
the PR by checking the box that appears on the submitted PR page.

If “Other” is checked, please describe the type of change in the space below.



3.3.3. Testing

Replace the content of this section with a description of how the change was tested.



3.3.4. The Checklist

The Checklist serves as a list of suggested tasks to be performed before
submitting the PR. Those that have been completed should
be checked off. Any items that do not relate to the PR should be deleted. For
example, if the PR is not for a bugfix or feature, adding a test may not be
required and this checklist item should be deleted.




3.4. Reviewers

GitHub will not allow non-owners to merge PRs into develop
without a reviewer’s approval. Non-owners will need at least one reviewer. Owners
may merge a PR into develop without review. But, that does not necessarily mean
they should. Follow the guidelines below to determine the need for and number of
reviewers. Note, these guidelines serve as a “lower bound”; you may always add more
reviewers to your PR if you feel that is necessary.


3.4.1. No Reviewers (owners only)

If your changes are localized, you have satisfied all the testing
requirements and you are confident in the correctness of your changes
(where correctness is measured by both the correctness of your code for
accomplishing the desired task and the correctness of how you implemented
the code according to VisIt [https://visit-dav.github.io/visit-website/]’s standard practices) then you may merge the
PR without a reviewer after the CI tests pass.



3.4.2. One reviewer

If the changes have a broader impact or involve an unfamiliar area of VisIt [https://visit-dav.github.io/visit-website/]
or existing behavior is being changed, then a reviewer should be added.

Non-owners must always have at least one reviewer even if you satisfy all other
guidelines for the No Reviewers case.



3.4.3. Two or more reviewers

If your changes substantially modify existing behavior or you are updating
significant amounts of the code or you are designing new architectures or
interfaces, then you should have at least two reviewers.



3.4.4. Choosing Reviewers

GitHub automatically suggests reviewers based on the blame data for the files
you have modified. You should choose the GitHub suggested reviewer unless you
have a specific need for a specific reviewer.




3.5. Iteration Process

Review processes are iterative by nature, and PR reviews
are no exception. A typical review process looks like this:


	The developer submits a PR and selects a reviewer.


	The reviewer reviews the PR and writes comments, suggestions, and tasks.


	The developer gets clarification for anything that us unclear and updates the PR according to the suggestions.


	Repeat steps 2 and 3 until the reviewer is satisfied with the PR.


	The reviewer approves the PR.




The actual amount of time it takes to perform a review or update the PR
is relatively small compared to the amount of time the PR waits for the next
step in the iteration. The wait time can be exacerbated in two ways: (1) The
reviewer or developer is unaware that the PR is ready for the next step in the
iteration process, and (2) the reviewer or developer is too busy with other work.
To help alleviate the situation, we recommend the following guidelines for the
developer (guidelines for the reviewer can be found
here [https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/dev_manual/pr_review.html#iteration-process]).


	Make sure the code is clear and well commented and that the PR is descriptive. This helps the reviewers quickly familiarize themselves with the context of the changes. If the code is unclear, the reviewers may spend a lot of time trying to grasp the purpose and effects of the PR.


	Immediately answer any questions the reviewers ask about the PR. Enabling notifications will help speed this along.


	When the reviewers have finished reviewing (step 2), quickly update the PR according to the requested changes. Use the @username idiom to notify the reviewers for any clarification


	When you have finished updating your PR (step 3), write a comment on the PR using @username to let the reviewers know that the PR is ready to be looked at again.








          

      

      

    

 


  

  
    

    4. Reviewing a Pull Request
    

    

    
 
  

    
      
          
            
  
4. Reviewing a Pull Request


4.1. Overview

Pull Requests (PRs) allow developers to review work before
merging it into the develop branch. PRs are extremely useful for preventing bugs,
enforcing coding practices, and ensuring changes are consistent with VisIt [https://visit-dav.github.io/visit-website/]’s overall
architecture. Because PR reviews can take time, we have adopted policies to help
tailor the review effort and balance the load among developers. We hope these policies
will help ensure PR reviews are completed in a timely manner. The benefits of reviews
outweigh the added time.



4.2. Checklist

In the course of reviewing a PR, the reviewer should use the
following as a checklist. The reviewer should verify that any deleted items are
rightfully so.


	The developer followed Visit [https://visit-dav.github.io/visit-website/]’s style guidelines


	The developer commented the code, particularly in hard-to-understand areas


	The developer updated the release notes


	The developer made corresponding changes to the documentation


	The developer added debugging support


	The developer added tests that prove the fix is effective or that the feature works


	The developer has confirmed new and existing unit tests pass


	The developer has NOT changed any protocol or public interfaces on an RC branch


	If necessary, the developer added any new baselines to the repository




These reminders will appear as checklist items in the PR template.
However, not all items apply in all PRs. For the items that do apply be sure you have
done the associated work and then check off the items by replacing the space in [ ]
with an x (or if you prefer you can submit the PR and then check the boxes with the
mouse). For items that do not apply, be sure to change these lines to strikeout style by
adding ~~ just before the check box [ ] (but after the bullet -) and also at
the end of the line like so:

- [ ] This item is unchecked.
- [x] This item is checked.
- ~~[ ] This item has been striken out.~~







4.3. Comments and Tasks

GitHub provides two ways to add comments to the PR.


4.3.1. Generic Comments

The first type of comment is a generic PR comment for
communicating about general things related to the changes or the PR process. This
comment box is found at the bottom of the “Conversation” tab, which is the main
tab on the PR page. The reviewer should use this when pinging the developer to
update changes (see Iteration Process below).



4.3.2. Code Related Comments

The “Files changed” tab in the PR will show a diff of all the
changes. Hover the mouse over the white space to the right of the line number and a
blue plus sign will appear. Click this and a comment box will pop up. Type any comments
and click either “Add single comment” or “Start a review” (see
Review Changes for more information). This type of comment
can be used to ask specific questions or suggest specific changes to the PR.




4.4. Review Changes

In addition to comments, the reviewer should also explicitly mark the state of the
PR. There are two ways to do this.

Upon writing a code related comment, select the “Start a review” button. This will
initiate a review. Click “Add review comment” for each new comment. When you are
done, navigate to the top-right of the page and click “Finish your review”.

Alternately, the reviewer can first write all the comments and then submit a review.
Use the “Add single comment” button for each code related comment. Then, once you
have finished commenting, navigate to the top-right of the page and click “Finish
your review”.

Upon clicking the green “Finish your review”, GitHub will present the ability to
add additional generic comments and to update the state of the PR. If you left
comments via the “Add single comment” button, then you must add an additional
comment here to be able to submit a review. These are the three options for
updating the PR:


	Comment - Submit general feedback without explicit approval. This is ambiguous and should not be used because the developer does not always know if the reviewer think changes should be made. It does not update the state of the PR.


	Approve - Submit feedback and approve merging these changes. Use this when the PR is ready to be merged into develop.


	Request changes - Submit feedback that must be addressed before merging. Use this when the developer should make additional changes to the PR.






4.5. Iteration Process

Review processes are iterative by nature, and PR reviews
are no exception. A typical review process looks like this:


	The developer submits a pull request and selects a reviewer.


	The reviewer writes comments and submit a “Request change” review or an “Approve” review.


	The developer updates the PR according to the suggestions.


	Repeat steps 2 and 3 until the PR is ready.


	The reviewer approves the PR.




The actual amount of time it takes to perform a review or update the PR
is relatively small compared to the amount of time the PR waits for the next
step in the iteration. The wait time can be exacerbated in two ways: (1) The
reviewer or developer is unaware that the PR is ready for the next step in the
iteration process, and (2) the reviewer or developer is too busy with other work.
To help alleviate the situation, we recommend the following guidelines for the
reviewer (guidelines for the developer can be found
here [https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/dev_manual/pr_create.html#iteration-process])


	Immediately address the PR. Enabling notifications will help speed this along.


	If anything in the PR is unclear, ask specific questions using generic or code related comments. Make use of the @username idiom to directly ping the developer.


	Clearly mark the review as “Approved” or “Request changes”.


	Notify the developer with the @username idiom that the PR is ready for updates.


	When the developer has updated the PR, make it a top priority to review it again.


	When the PR is ready to be merged into develop, approve the PR and squash-merge the PR into develop with a succinct description of the changes.




If you are chosen as a reviewer and you know that you will not be able to review
the PR in a timely manner, please let the developer know and provide suggestions
for who to choose instead. Once you start a PR review, you should make it a
priority and stick with it until the end.





          

      

      

    

 


  

  
    

    5. Release Candidate (RC) Development
    

    

    
 
  

    
      
          
            
  
5. Release Candidate (RC) Development


5.1. Overview

VisIt [https://visit-dav.github.io/visit-website/] normally has two active branches for doing development. The
first is develop and the second is the current release candidate. Work
performed on the develop branch will go into the next major release,
such as 3.1. Work performed on the current release candidate will go into
the next minor release, such as 3.0.2. When doing work on the release
candidate the normal sequence of operations is as follows:


	A branch is created off the current release candidate.


	Changes are made on the branch.


	A pull request is generated to merge the changes to the current release candidate.


	The changes are then merged into the release candidate.


	A branch is created off of develop.


	The changes from the branch off the release candidate are applied to the branch.


	A pull request is generated to merge the changes to develop.


	The changes are then merged into develop.




In some instances the changes made to the release candidate are not applied
to develop, in many instances the exact same changes can be applied to both
the release candidate and develop, and in some instannces the changes
applied to the two branches are slightly or significantly different.

Changes to files impacting communication protocols or public APIs are not permitted
on a release candidate (RC) branch unless explicitly agreed to by the team. Communication
protocol files are any XML files and their associated auto-generated header files for
state objects (any class derived from AttributeSubject) passed between VisIt [https://visit-dav.github.io/visit-website/]
components (e.g. viewer and engine_par) such as all XML and header files in
src/common/state and src/avt/DBAtts/MetaData. Files impacting public APIs include
any XML or header files used by database, plot or operator plugins as well as
src/avt/Database/Database and src/avt/Database/Formats.

The rest of the section will go through the steps of the most common case
of making the exact same changes to both branches using an example of
updating the 3.0.2 release notes on the 3.0RC and develop.



5.2. Creating the RC branch

First you checkout the 3.0RC and then create your branch.

git checkout 3.0RC
git checkout -b task/brugger1/2019_09_05_update_release_notes







5.3. Making the changes

At this point you would modify your branch as you normally do, modifying,
adding or deleting files, and then commiting the changes to the branch.



5.4. Creating the pull request on the release candidate

Once you have committed all your changes to the branch you are ready to
create the pull request. You will start out by pushing your changes to
GitHub as normal.

git push --set-upstream origin task/brugger1/2019_09_05_update_release_notes





Now you go over to GitHub and create your pull request. When creating your
pull request, make sure that you are merging it into the release candidate.


[image: ../_images/RCDevelop-GitHubStep1.png]

Fig. 5.36 Merging into the release candidate.



Now you go through the normal pull request process. Once you have merged
your changes into the release candidate you can delete the branch at GitHub
and locally.

git remote prune origin
git remote update
git checkout 3.0RC
git pull
git branch -D task/brugger1/2019_09_05_update_release_notes







5.5. Apply the same changes to develop

You will apply your changes from the 3.0RC to develop by creating a patch
of your changes to the 3.0RC and applying them to a branch created off of
develop. The easiest way to create the patch is immediately after you have
merged your changes into the release candidate before anyone else makes
any changes. In this case you can get the last set of changes from the head.
If someone else has made changes in the mean time you will need to use
the SHA of your merge to the release candidate. When we create the
branch to make the changes on develop, you can use the same name as you
used on the release candidate branch and add _develop. Normally, you
can omit the first two steps below since you presumably just did that a
moment ago.

git checkout 3.0RC
git pull
rm -f patch.txt
git format-patch -1 HEAD --stdout > patch.txt
git checkout develop
git pull
git checkout -b task/brugger1/2019_09_05_update_release_notes_develop
git am -3 < patch.txt





In the case where you need to use the SHA to create the patch, you can
get it from the code tab at GitHub for the release candidate branch.


[image: ../_images/RCDevelop-GitHubStep2.png]

Fig. 5.37 Getting the SHA for the merge into the release candidate.



The command to create the patch would then look like:

git format-patch -1 69b0561 --stdout > patch.txt





Sometimes conflicts occur when applying the patch. This may happen with
frequently updated files such as the release notes. If that happens you
will get a message similar to the one below indicating which files had
conflicts.

Applying: Updated the 3.0.2 release notes. (#3867)
Using index info to reconstruct a base tree...
M       src/resources/help/en_US/relnotes3.0.2.html
Falling back to patching base and 3-way merge...
Auto-merging src/resources/help/en_US/relnotes3.0.2.html
CONFLICT (content): Merge conflict in src/resources/help/en_US/relnotes3.0.2.html
error: Failed to merge in the changes.
Patch failed at 0001 Updated the 3.0.2 release notes. (#3867)
The copy of the patch that failed is found in: .git/rebase-apply/patch
When you have resolved this problem, run "git am --continue".
If you prefer to skip this patch, run "git am --skip" instead.
To restore the original branch and stop patching, run "git am --abort".





In our case it was the release notes. The file will be modified with
the conflicts highlighted in the normal >>>>>>>>, =========, and
<<<<<<<< notation. You can go in and edit the files and then do a
git add for each file that was in conflict. After that point you can
do a git am --continue.

vi src/resources/help/en_US/relnotes3.0.2.html
git add src/resources/help/en_US/relnotes3.0.2.html
git am --continue





Now you changes will have been commited to the branch with the appropriate
commit message. You are now ready to push the change to GitHub and create
a new pull request.



5.6. Creating the pull request for develop

You first push your changes to GitHub as normal.

git push --set-upstream origin task/brugger1/2019_09_05_update_release_notes_develop





Now you go over to GitHub and create your pull request. When creating your
pull request, make sure that you are merging it into develop.


[image: ../_images/RCDevelop-GitHubStep3.png]

Fig. 5.38 Merging into develop.



In the description you can simply say that you are merging from the
release candidate into develop rather than providing all the normal pull
request information. If you are resolving an issue, you will want to
mention that, since the automatic closing of issues only happens when
you merge into develop.


[image: ../_images/RCDevelop-GitHubStep4.png]

Fig. 5.39 The pull request with the abbreviated description.



Now you go through the normal pull request process. Once you have merged
your changes into develop you can delete the branch at GitHub and locally.

git remote prune origin
git remote update
git checkout 3.0RC
git pull
git branch -D task/brugger1/2019_09_05_update_release_notes_develop





That’s it. You have now made the exact same change to both the 3.0RC and
develop.





          

      

      

    

 


  

  
    

    6. Regression Testing
    

    

    
 
  

    
      
          
            
  
6. Regression Testing


6.1. Overview

VisIt [https://visit-dav.github.io/visit-website/] has a large and continually growing test suite. VisIt [https://visit-dav.github.io/visit-website/]’s test
suite involves a combination python scripts
in src/test, raw data and data generation sources in src/testdata
and of course the VisIt [https://visit-dav.github.io/visit-website/] sources themselves. Regression tests are
run on a nightly basis. Testing exercises VisIt [https://visit-dav.github.io/visit-website/]’s viewer,
mdserver, engine and cli but not the GUI.



6.2. Running regression tests


6.2.1. Where nightly regression tests are run

The regression suite is run on LLNL’s Pascal Cluster [https://hpc.llnl.gov/hardware/platforms/pascal]. Pascal runs the TOSS3 operating system, which is a flavor of Linux. If you are going to run the regression suite yourself you should run on a similar system or there will be differences due to numeric precision issues.

The regression suite is run on Pascal using a cron job that checks out VisIt [https://visit-dav.github.io/visit-website/] source code, builds it, and then runs the tests.



6.2.2. How to run the regression tests manually

The regression suite relies on having a working VisIt [https://visit-dav.github.io/visit-website/] build and test data available on your local computer.
Our test data and baselines are stored using git lfs, so you need to setup git lfs and pull to have all the necessary files.

The test suite is written in python and to source is in src/test.
When you configure VisIt [https://visit-dav.github.io/visit-website/], a bash script is generated in the build directory that you can use to run the test
suite out of source with all the proper data and baseline directory arguments.

cd visit-build/test/
./run_visit_test_suite.sh





Here is an example of the contents of the generated run_visit_test_suite.sh script

/Users/harrison37/Work/github/visit-dav/visit/build-mb-develop-darwin-10.13-x86_64/thirdparty_shared/third_party/python/2.7.14/darwin-x86_64/bin/python2.7
/Users/harrison37/Work/github/visit-dav/visit/src/test/visit_test_suite.py \
   -d /Users/harrison37/Work/github/visit-dav/visit/build-mb-develop-darwin-10.13-x86_64/build-debug/testdata/  \
   -b /Users/harrison37/Work/github/visit-dav/visit/src/test/../../test/baseline/   \
   -o output \
   -e /Users/harrison37/Work/github/visit-dav/visit/build-mb-develop-darwin-10.13-x86_64/build-debug/bin/visit "$@"





Once the test suite has run, the results can be found in the output/html directory. Open output/html/index.html in a web browser to view the test suite results.



6.2.3. Accessing regression test results

The nightly test suite results are posted to: http://portal.nersc.gov/project/visit/.



6.2.4. In the event of failure on the nightly run

If any tests
fail, ‘’all’’ developers who updated the code from the last time all
tests successfully passed will receive an email indicating what failed.
In addition, failed results should be available on the web.




6.3. How regression testing works

The workhorse script that manages the testing is visit_test_suite.py in
src/test. Tests can be run in a variety of ways called modes.
For example, VisIt [https://visit-dav.github.io/visit-website/]’s nightly testing is run in serial, parallel
and scalable,parallel modes. Each of these modes represents a fundamental and
relatively global change in the way VisIt [https://visit-dav.github.io/visit-website/] is doing business
under the covers during its testing. For example, the difference
between parallel and scalable,parallel modes is whether the scalable
renderer is being used to render images. In the parallel mode,
rendering is done in the viewer. In scalable,parallel mode, it
is done, in parallel, on the engine and images from each processor
are composited. Typically, the entire test suite is run in each
mode specified by the regression test policy.

There are a number
of command-line options to the test suite. ./run_visit_test_suite.sh -help
will give you details about these options. Until we are
able to get re-baselined on the systems available outside of LLNL firewalls,
options enabling some filtering of image differences will be very useful.
Use of these options on platforms other than the currently adopted testing
platform (pascal.llnl.gov) will facilitate filtering big
differences (and probably real bugs that have been introduced)
from differences due to platform where tests are run. See the section on
filtering image differences.

There are a number of different categories of tests. The test
categories are the names of all the directories under
src/test/tests. The .py files in this directory tree are all
the actual test driver files that drive VisIt [https://visit-dav.github.io/visit-website/]’s CLI and
generate images and text to compare with baselines. In addition,
the src/test/visit_test_main.py file defines a number of helper Python
functions that facilitate testing including two key functions;
Test() for testing image outputs and TestText() for testing text
outputs. Of course, all the .py files in src/test/tests subtree
are excellent examples of test scripts.

When the test suite
finishes, it will have created a web-browseable HTML tree in
the html directory. The actual image and text raw results
will be in the current directory and difference images will
be in the diff directory. The difference images are essentially
binary bitmaps of the pixels that are different and not the
actual pixel differences themselves. This is to facilitate
identifying the location and cause of the differences.

Adding a test involves a) adding a .py file to the appropriate
subdirectory in src/test/tests, b) adding the expected baselines
to test/baselines and, depending on the test, c) adding
any necessary input data files to src/testdata.
The test suite will find your added .py files the next time it runs.
So, you don’t have to do anything special other than adding the .py file.

One subtlety about the current test modality is what we call
mode specific baselines. In theory, it should not matter what
mode VisIt [https://visit-dav.github.io/visit-website/] is run in to produce an image. The image should be
identical across modes. In practice there is a long list of
things that can contribute to a handful of pixel differences
in the same test images run in different modes. This has lead
to mode specific baselines. In the baseline directory, there
are subdirectories with names corresponding to modes we currently
run. When it becomes necessary to add a mode specific baseline,
the baseline file should be added to the appropriate baseline
subdirectory.

In some cases, we skip a test in one mode but
not in others. Or, we temporarily disable a test by skipping it
until a given problem in the code is resolved. This is handled
by the --skiplist argument to the test suite. We maintained list of the
tests we currently skip and update it as necessary.
The default skip list file is src/test/skip.json.


6.3.1. Three Types of Test Results

VisIt [https://visit-dav.github.io/visit-website/]’s testing system, visit_test_main.py, uses three different methods
to process and check results.


	Test() which processes .png image files.


	TestText() which process .txt text files.


	TestValueXX() (where XX``==>``EQ, LT, LE, etc.) which processes no files
and simply checks actual and expected values passed as arguments.




The Test() and TestText() methods both take the name of a file. To process a
test result, these methods output a file produced by the current test run and
then compare it to a blessed baseline file stored in
test/baseline [https://github.com/visit-dav/visit/tree/develop/test/baseline].
When they can be used, the TestValueXX() are a little more convenient because
they do not involve storing data in files and having to maintain separate
baseline files. Instead the TestTextXX() methods take both an actual
(current) and expected (baseline) result as arguments directly coded in the
calling .py file.

As VisIt [https://visit-dav.github.io/visit-website/] testing has evolved over the past twenty years, understanding and
improving productivity related to test design has not been a priority. As a
result, there are likely far more image test results than are truly needed to
fully vet all of VisIt [https://visit-dav.github.io/visit-website/]’s plotting features. Or, image tests are used
unecessarily to confirm non-visual behavior like that a given database reader
is working. Some text tests are better handled as TestValueXX() tests and
other text tests often contain 90% noise text unrelated to the functionality
being tested. This has made maintaining and ensuring portability of the test
suite more laborious.

Because image tests tend to be the most difficult to make portable, a better
design would minimize image tests to only those needed to validate visual behaviors,
text tests would involve only the essenteial text of the test and a majority
of tests would involve value type tests.

The above explanation is offered as a rational to justify that whenever possible
adding new tests to the test suite should use the TestValueXX() approach as
much as practical.



6.3.2. More About TestValueXX Type Tests

The TestValueXX() methods are similar in spirit to Test() and
TestText() except operates on Python values passed as args both for the
current (actual) and the baseline (expected) results. The values can be any
Python object. When they are floats or ints or strings of floats or ints or
lists/tuples of the same, these methods will round the arguments to the desired
precision and do the comparisons numerically. Otherwise they will compare them as
strings.


	TestValueEQ(case_name, actual, expected, prec=5) :

	Passes if actual == expected within specific precision otherwise fails.



	TestValueNE(case_name, actual, expected, prec=5) :

	Passes if actual != expected within specific precision otherwise fails.



	TestValueLT(case_name, actual, expected, prec=5) :

	Passes if actual < expected within specific precision otherwise fails.



	TestValueLE(case_name, actual, expected, prec=5) :

	Passes if actual <= expected within specific precision otherwise fails.



	TestValueGT(case_name, actual, expected, prec=5) :

	Passes if actual > expected within specific precision otherwise fails.



	TestValueGE(case_name, actual, expected, prec=5) :

	Passes if actual >= expected within specific precision otherwise fails.



	TestValueIN(case_name, bucket, expected, eqoper=operator.eq, prec=5) :

	Passes if bucket contains expected according to eqoper equality operator.
Fails otherwise.





For some examples, see
test_values_simple.py [https://github.com/visit-dav/visit/blob/develop/src/test/tests/unit/test_value_simple.py].



6.3.3. Filtering Image Differences

There are many alternative ways for both compiling and even running VisIt [https://visit-dav.github.io/visit-website/] to
produce any given image or textual output. Nonetheless, we expect results to
be nearly if not perfectly identical. For example, we expect VisIt [https://visit-dav.github.io/visit-website/] running on
two different implementations of the GL library to produce by and large the same
images. We expect VisIt [https://visit-dav.github.io/visit-website/] running in serial or parallel to produce the same
images. We expect VisIt [https://visit-dav.github.io/visit-website/] running on Ubuntu Linux to produce the same images as
it would running on Mac OSX. We expect VisIt [https://visit-dav.github.io/visit-website/] running in client-server mode to
produce the same images as VisIt [https://visit-dav.github.io/visit-website/] running entirely remotely.

In many cases, we expect outputs produced by these alternative approaches to be
nearly the same but not always bit-for-bit identical. Minor variations such as
single pixel shifts in position or slight variations in color are inevitable
and ultimately unremarkable.

When testing, it would be nice to be able to ignore variations in results
attributable to these causes. On the other hand, we would like to be alerted
to variations in results attributable to changes made to the source code.

To satisfy both of these goals, we use bit-for-bit identical matching to
track the impact of changes to source code but fuzzy matching for anything
else. We maintain a set of several thousand version-controlled, baseline results
computed for a specific, fixed configuration and test mode of VisIt [https://visit-dav.github.io/visit-website/]. Nightly
testing of key branches of development reveals any results that are not
bit-for-bit identical to their baseline.

These failures are then corrected in one of two ways. Either the new result
is wrong and additional source code changes are required to ensure VisIt [https://visit-dav.github.io/visit-website/]
continues to produce the original baseline. Or, the original baseline is wrong
and it must be updated to the new result. In this latter situation, it is also
prudent to justify the new result with a plausible explanation as to why it is
expected, better or acceptable as well as to include such explanation in the
commit comments.


6.3.3.1. Mode specific baselines

VisIt [https://visit-dav.github.io/visit-website/] testing can be run in a variety of modes; serial, parallel,
scalable-parallel, scalable-parallel-icet, client-server, etc. For a fixed
configuration, in most cases baseline results computed in one mode agree
bit-for-bit identically with the other modes. However, this is not always
true. About 2% of results vary with the execution mode. To handle these cases,
we also maintain mode-specific baseline results as the need arises.

The need for a mode-specific baseline is discovered as new tests are added.
When testing reveals that VisIt computes slightly different results in
different modes, a single mode-agnostic baseline will fail to match in all
test modes. At that time, mode-specific baselines are added.



6.3.3.2. Changing Baseline Configuration

One weakness with this approach to testing is revealed when it becomes
necessary to change the configuration used to compute the baselines. For example,
moving VisIt [https://visit-dav.github.io/visit-website/]’s testing system to a different hardware platform or updating to a
newer compiler or third-party library such as VTK, may result in a slew of minor
variations in the results. Under these circumstances, we are confronted with
having to individually assess possibly thousands of minor image differences
to rigorously determine whether the new result is in fact good or whether some
kind of issue or bug is being revealed.

In practice, we use fuzzy matching (see below) to filter out minor variations
from major ones and then focus our efforts only on fully understanding the
major cases. We summarily accept all minor variations as the new
baselines.



6.3.3.3. Promise of Machine Learning

In theory, we should be able to develop a machine-learning approach to
filtering VisIt [https://visit-dav.github.io/visit-website/]’s test results that enable us to more effectily attribute
variations in results to various causes. A challenge here is in developing
a sufficiently large and fully labeled set of example results to prime the
machine learning. This would make for a great summer project.



6.3.3.4. Fuzzy Matching Metrics

Image difference metrics are reported on terminal output and in HTML reports.


	Total Pixels (#pix) :

	Count of all pixels in the test image



	Non-Background (#nonbg) :

	Count of all pixels which are not background either by comparison to constant
background color or if a non-constant color background is used to same pixel in background
image produced by drawing with all plots hidden. Note that if a plot produces a pixel which
coincidentally winds up being the same color as the background, our accounting logic would
count it as background. We think this situation is rare enough as to not cause serious issues.



	Different (#diff) :

	Count of all pixels that are different from the current baseline image.



	% Diff. Pixels (~%diff) :

	The precentage of different pixels computed as 100.0*#diff/#nonbg



	Avg. Diff (avgdiff) :

	The average luminance (gray-scale, obtained by weighting RGB channels by 1/3rd
and summing) difference. This is the sum of all pixel luminance differences
divided by #diff.







6.3.3.5. Fuzzy Matching Thresholds

There are some command-line arguments to run tests that control fuzzy matching.
When computed results match bit-for-bit with the baseline, a PASS is reported
and it is colored green in the HTML reports. When a computed result fails the
bit-for-bit match but passes the fuzzy match, a PASS is reported on the terminal
and it is colored yellow in the HTML reports.


	Pixel Difference Threshold (--pixdiff) :

	Specifies the acceptable threshold for the #diff metric as a percent. Default
is zero which implies bit-for-bit identical results.



	Average Difference Threshold (--avgdiff) :

	Specifies the acceptable threshold for the avgdiff metric. Note that this threshold
applies only if the --pixdiff threshold is non-zero. If a test is above the
pixdiff threshold but below the avgdiff threshold, it is considered a PASS.
The avgdiff option allows one to specify a second tolerance for the case when
the pixdiff tolerance is exceeded.



	Numerical (textual) Difference Threshold (--numdiff) :

	Specifies the acceptable relative numerical difference threshold in computed,
non-zero numerical results. The relative difference is computed as the ratio of the
magnitude of the difference between the current and baseline results and the minimum
magnitude value of the two results.





The command-line with --pixdiff=0.5 --avgdiff=0.1 means that any result with fewer
than 0.5% of pixels that are different is a PASS and anything with more than 0.5% of
pixels different but where the average pixel gray-scale difference is less than .1 is
still a PASS.



6.3.3.6. Testing on Non-Baseline Configurations

When running the test suite on platforms other than the currently adopted baseline
platform or when running tests in modes other than the standard modes, the --pixdiff
and --avgdiff command-line options will be very useful.

For numerical textual results, there is also a --numdiff command-line option
that specifies a relative numerical difference tolerance in numerical textual
results. The command-line option --numdiff=0.01 means that if a numerical
result is different but the magnitude of the difference divided by the magnitude of
the expected value is less than 0.01 it is considered a Pass.

When specified on the command-line to a test suite run, the above tolerances wind
up being applied to all test results computed during a test suite run. It is
also possible to specify these tolerances in specific tests by passing them as
arguments, for example Test(pixdiff=4.5) and TestText(numdiff=0.01), in
the methods used to check test outputs.

Finally, it may make sense for developers to generate (though not ever commit) a
complete and validated set of baselines on their target development platform and
then use those (uncommitted) baselines to enable them to run tests and track code
changes using an exact match methodology.




6.3.4. Tips on writing regression tests


	Whenever possible, add only new TestValueXX() type tests.


	Test images in which plots occupy a small portion of the total image are fraught with peril and should be avoided. Images with poor coverage are more likely to produce false positives (e.g. passes that should have failed) or to exhibit somewhat random differences as test scenario is varied.


	Except in cases where annotations are being specifically tested, remember to call TurnOffAllAnnotations() as one of the first actions in your test script. Otherwise, you can wind up producing images containing machine-specific annotations which will produce differences on other platforms.


	When setting plot and operator options, take care to decide whether you need to work from default or current attributes.
Methods to obtain plot and operator attributes optionally take an additional 1 argument to indicate that current,
rather that default attributes are desired. For example CurveAttributes() returns default Curve plot
attributes wherease CurveAttributes(1) returns current Curve plot attributes which will be the currently
active plot, if it is a Curve plot or the first Curve plot in the plot list of the currently active window
whether it is active or hidden. If there is no Curve plot available, it will return the default attributes.


	When writing tests involving text differences and file pathnames, be sure that all pathnames in the text strings passed to TestText() are absolute. Internally, VisIt [https://visit-dav.github.io/visit-website/] testing system will filter these out and replace the machine-specific part of the path with VISIT_TOP_DIR to facilitate comparison with baseline text. In fact, the .txt files that get generated in the current dir will have been filtered and all pathnames modified to have VISIT_TOP_DIR in them.


	Here is a table of python tests scripts which serve as examples of some interesting and lesser known VisIt [https://visit-dav.github.io/visit-website/]/Python scripting practices:










	Script

	What it demonstrates





	tests/faulttolerant/savewindow.py

	
	uses python exceptions







	tests/databases/itaps.py

	
	uses OpenDatabase with specific plugin


	uses SIL restriction via names of sets







	tests/databases/silo.py

	
	uses OpenDatabase with virtual database and a specific timestep







	tests/rendering/scalable.py

	
	uses OpenComputeEngine to launch a parallel engine







	tests/rendering/offscreensave.py

	
	uses Test() with alternate save window options







	tests/databases/xform_precision.py

	
	uses test-specific enviornment variable settings












6.3.5. Rebaselining Test Results

A python script, rebase.py, in the test/baseline dir can be used to rebaseline large numbers of results.
In particular, this script enables a developer to rebase test results without requiring access to the test
platform where testing is performed. This is becase the PNG files uploaded (e.g. posted) to VisIt [https://visit-dav.github.io/visit-website/]’s test
results dashboard are suitable for using as baseline results. To use this script, run ./rebase.py --help.
Once you’ve completed using rebase.py to update image baselines, don’t forget to commit your changes back
to the repository.




6.4. Using VisIt [https://visit-dav.github.io/visit-website/] Test Suite for Sim Code Testing

VisIt [https://visit-dav.github.io/visit-website/]’s testing infrastructure can also be used from a VisIt [https://visit-dav.github.io/visit-website/] install by simulation codes
how want to write their own Visit-based tests.
For more details about this, see:  Leveraging VisIt in Sim Code RegressionTesting [http://visitusers.org/index.php?title=Leveraging_VisIt_in_Sim_Code_Regression_Testing]





          

      

      

    

 


  

  
    

    7. XML Tools
    

    

    
 
  

    
      
          
            
  
7. XML Tools


7.1. Overview

VisIt [https://visit-dav.github.io/visit-website/] developers use several xml-based code generation tools to implement
VisIt [https://visit-dav.github.io/visit-website/]’s features. The source core for these tools is kept in
src/tools/dev/xml/ and src/tools/dev/xmledit/.



7.2. CMake Integration

We rely on xml code generation to keep our State object, Attribute, and Plugin
APIs up-to-date. To automate the process we provide CMake targets that call our
xml code generation tools for each object or plugin registred. Individual code
gen targets are all wired into top level targets that allow you to apply the
code gen tools to categories of code gen tasks.  These targets replace older
tools such as regen-ajp and various regenerateatts.py scripts.


7.2.1. Top Level CMake Code Gen Targets







	CMake Target

	Target Action





	gen_cpp_all

	Run xml2atts on all identified objects



	gen_python_all

	Run xml2python on all identified objects



	gen_java_all

	Run xml2java on all identified objects



	gen_info_all

	Run xml2info on all plugins



	gen_cmake_all

	Run xml2cmake on all plugins



	gen_plugin_all

	Run all applicable xml tools for all plugins








7.2.2. CMake Code Gen Functions

These are the helper functions we use to create targets that call xml tools in
our CMake build system.

XML Tools Helper functions in src/CMake/VisItMacros.cmake:







	CMake Function

	Target Action





	ADD_CPP_GEN_TARGET

	Calls xml2atts



	ADD_PYTHON_GEN_TARGET

	Calls xml2python



	ADD_JAVA_GEN_TARGET

	Calls xml2java



	ADD_INFO_GEN_TARGET

	Calls xml2info



	ADD_CMAKE_GEN_TARGET

	Calls xml2cmake






The xml2plugin and xml2avt tools are only called when you first create a new
plugin or object, they are not exposed here.

Plugin Tools Helper functions in src/CMake/PluginMacros.cmake:


	ADD_PLUGIN_CODE_GEN_TARGETS - wires up:






	ADD_CPP_GEN_TARGET


	ADD_PYTHON_GEN_TARGET


	ADD_JAVA_GEN_TARGET


	ADD_INFO_GEN_TARGET


	ADD_CMAKE_GEN_TARGET








	ADD_DATABASE_CODE_GEN_TARGETS - wires up:






	ADD_INFO_GEN_TARGET


	ADD_CMAKE_GEN_TARGET








	ADD_OPERATOR_CODE_GEN_TARGETS - alias for ADD_PLUGIN_CODE_GEN_TARGETS


	ADD_PLOT_CODE_GEN_TARGETS - alias for ADD_PLUGIN_CODE_GEN_TARGETS






7.2.3. CMake Options

VISIT_CMAKE_VERBOSE_GEN_TARGET_MESSAGES (default: OFF) When enabled
display messages about code gen targets during CMake configure time.






          

      

      

    

 


  

  
    

    8. Preparing for a Release
    

    

    
 
  

    
      
          
            
  
8. Preparing for a Release


8.1. Overview

VisIt [https://visit-dav.github.io/visit-website/] supports three types of releases, major, minor and patch, where the
version number consists of “major.minor.patch”. Patch releases are the
most common type of release and typically occur three to four times a year.
Minor releases are the next most common type of release and may occur
once or twice a year. Major releases happen very infrequently, with as much
as 10 years passing between major releases.



8.2. Preparing for a Patch Release

Preparing for a minor release is pretty straightforward and consists of
updating a few files. These consist of

VERSION
INSTALL_NOTES
gui/Splashscreen.C







8.3. Preparing for a Minor Release

Preparing for a minor release consists of performing all the steps involved
in preparing for a patch release, along with some additional ones, such as
creating the release candidate branch and updating the splash screen.


8.3.1. Creating the Release Candidate Branch

Creating a release candidate branch is just like creating a normal branch.
Here are the steps used to create the 3.1RC.

git checkout develop
git pull
git checkout -b 3.1RC
git push --set-upstream origin 3.1RC







8.3.2. Updating the Splashscreen

The splashscreen is the first thing the user sees when running VisIt [https://visit-dav.github.io/visit-website/] so the
version number included in the splashscreen image should be up to date.
Updating the splashscreen usually means just updating the version number in
the current splashscreen images but in the event of a major or minor release
(when the first or second digit in the version changes), the splashscreen
images should be redesigned to showcase new features.

There are two image files associated with the splashscreen, both of which
are XCF [https://xcf.berkeley.edu]. XCF files are the native image format
of the GIMP [https://www.gimp.org] image-editing program. One is for the
splashscreen and the second is for the icon on MacOS X. They are both used
as the first step in the process to create the splashscreen and icon.

The rest of this section will be focused on updating the version number.
Changing the images would be the same in terms of the mechanics involved
except that it would involve more editing of the image files.


8.3.2.1. Changing the version on the splashscreen

Follow these steps to update the version on the splashscreen.


	Go to the src/common/icons directory.


	The splashscreen image’s XCF files are named VisIt3.0.xcf, VisIt3.1.xcf, etc.


	Copy the file from the last version to the new name for the current version.


	Open the file in GIMP.





[image: ../_images/Release-GimpImage.png]

Fig. 8.56 The splashscreen in GIMP.



You’ll see that the file has several layers to it. There are four layers for
each of the four splash screen images that get randomly choosen from when
starting VisIt [https://visit-dav.github.io/visit-website/] or are cycled through when you select About in the Help
menu.


	Select the text layer containing the version number and change it.


	Save the file.




Now you are ready to create the png images that are actually read in
by Qt. When you open the XCF file all the layers corresponding to the four
different splashscreen images will be enabled. When you save the first image
you will have them all shown. To save the second image you will hide the
layer corresponding to the first splashscreen image. You will successively
hide one additional layer until you have saved all four of the png images.


	Go to File->Export As and change Name to VisIt1.png.


	Click on Export.


	Click on Export on the window that pops up to allow you to set the save options.


	Hide Background1.





[image: ../_images/Release-GimpLayers.png]

Fig. 8.57 Hiding the Background1 layer in GIMP.




	Repeat steps 6 - 9, saving images VisIt2.png, VisIt3.png and VisIt4.png.




The images saved by GIMP result in warning messages when read by Qt. To
modify the images so that the warning message disappears do the following.

convert VisIt1.png VisIt1a.png
convert VisIt2.png VisIt2a.png
convert VisIt3.png VisIt3a.png
convert VisIt4.png VisIt4a.png
mv VisIt1a.png VisIt1.png
mv VisIt2a.png VisIt2.png
mv VisIt3a.png VisIt3.png
mv VisIt4a.png VisIt4.png






	Copy the files to src/resources/images.






8.3.2.2. Changing the version on the MacOS X icon

When VisIt [https://visit-dav.github.io/visit-website/] starts on MacOS X systems, it adds an icon into the Mac
application dock. The icon that we use is based on the splashscreen but
is stored in MacOS X icon format.

Follow these steps to update the version on the MacOS X icon.


	Go to the src/common/icons directory.


	Create the directory VisItIcon.iconset.


	Open the file VisIt3.x-square.xcf in GIMP.


	Select the text layer containing the version number and change it.


	Go to Image->Scale Image.


	Change the Image Size Width and Height to 1024.


	Click on Scale.


	Go to File->Export As and change Name to VisItIcon.iconset/icon_512x512@2x.png.


	Click on Export.


	Click on Export on the window that pops up to allow you to set the save options.




Now you need to create several sizes of the file. You will use ImageMagick
for this.

cd VisItIcon.iconset
convert -geometry 512x512 icon_512x512@2x.png icon_512x512.png
convert -geometry 512x512 icon_512x512@2x.png icon_256x256@2x.png
convert -geometry 256x256 icon_512x512@2x.png icon_256x256.png
convert -geometry 256x256 icon_512x512@2x.png icon_128x128@2x.png
convert -geometry 128x128 icon_512x512@2x.png icon_128x128.png
convert -geometry 64x64 icon_512x512@2x.png icon_32x32@2x.png
convert -geometry 32x32 icon_512x512@2x.png icon_32x32.png
convert -geometry 32x32 icon_512x512@2x.png icon_16x16@2x.png
convert -geometry 16x16 icon_512x512@2x.png icon_16x16.png





Now you will use iconutil to create the icns file. Note that iconutil
is only available on the Mac.

cd ..
iconutil --convert icns VisItIcon.iconset







8.3.2.3. Creating a new release notes file

A final step in making a release is to create the release notes file for the next
release. To do this, you must be reasonably certain what the next release’s version
number will be. Typically, we do 3-4 patch releases for each minor release. So,
if the release you are just now making is version 3.1.2, then the next release
is likely to be 3.1.3. However, if the current release is 3.1.3, the next
release might be 3.1.4 or it might be 3.2.

In any event, to make the release notes file for the next release, you need to create
an new, empty release notes file by going to src/resources/help/en_US and copying
either the minor release notes template, relnotes_minor_templ.html, or the major
release notes template, relnotes_major_templ.html to a file name of the form
relnotesA.B.C.html where A.B.C is the version number for the next release.
The .C part of the file name is missing for minor releases.

Patch release notes should go on the RC branch (e.g. 3.1RC) and minor release notes
should go on develop. Always assume there will be another patch release
and just create the next patch release file. If there isn’t another patch release, the
notes from the patch release can be incorporated into the minor release notes file.
When finishing a minor release, create the files for the next minor release and the
next patch release.





8.4. Preparing for a Major Release

Preparing for a major release is the same as preparing for a minor release
with the addition of putting VisIt [https://visit-dav.github.io/visit-website/] through the Information Management
software release process.





          

      

      

    

 


  

  
    

    9. Creating a Release
    

    

    
 
  

    
      
          
            
  
9. Creating a Release


9.1. Overview

When we put out a new release we should tag the repository and create a
release. We will describe creating a release by way of example using the
steps used to create the 3.0.1 release.



9.2. Tagging the release

To create a release you will first create a tag using git commands. You
should get the short SHA for the release that can be found on the splash
screen of any of the binaries built from the source tar file. The Linux
distributions are all built with the source tar file. The Windows
distribution is typically not. To bring up the splash screen go to
Help->About.


[image: ../_images/Release-SplashScreen.png]

Fig. 9.71 The splash screen with the short SHA.



Now you can issue the git commands to create the tag and push it to GitHub.

git checkout 3.0RC
git checkout 2f38385
git tag v3.0.1
git push origin v3.0.1





If you go to GitHub and go to the Releases tab you will see the newly
created tag. Now you are ready to create the release. Click on
Draft a new release to bring up the form to create a new release.


[image: ../_images/Release-GitHubStep1.png]

Fig. 9.72 Creating a new release.



Now you can enter information about the release. Set the Tag version to
v3.0.1, the Release title to v3.0.1 and copy and paste the
description from the 3.0.0 release into the description, changing the link
to the release notes appropriately. At this point you can go to the bottom
of the window and click on Publish release.


[image: ../_images/Release-GitHubStep2.png]

Fig. 9.73 Entering information about the release.



Your newly created release will now appear.


[image: ../_images/Release-GitHubStep3.png]

Fig. 9.74 The newly created release.





9.3. Deleting a release

If you mess up the tag or the release you can delete the tag using git
commands.

git tag -d v3.0.1
git push origin :refs/tags/v3.0.1





You can then remove the release at GitHub. The release will change to
a draft release because the tag no longer exists. Go ahead and click on
the release to bring up the draft release.


[image: ../_images/Release-GitHubDelete1.png]

Fig. 9.75 Selecting the draft release corresponding to the deleted tag.



Click on Delete to delete the release.


[image: ../_images/Release-GitHubDelete2.png]

Fig. 9.76 Deleting the draft release corresponding to the deleted tag.







          

      

      

    

 


  

  
    

    10. Finding Memory Leaks
    

    

    
 
  

    
      
          
            
  
10. Finding Memory Leaks


10.1. Overview

We support several mechanisms to find memory leaks. The two best
mechanisms are using Valgrind and vtkDebugLeaks. Valgrind is used to detect
memory leaks in a specific component. You run VisIt [https://visit-dav.github.io/visit-website/] with the appropriate
options and then when VisIt [https://visit-dav.github.io/visit-website/] is finished running you will get logs with a
report of memory leaks and usage. The log files are quite large. The top
of the log file contains stack traces of where the memory was allocated for
each chunk of memory allocated. It is sorted from the smallest leaks to
the largest leaks. At the bottom of the log is a summary of memory leaks and
usage. vtkDebugLeaks is specifically used to find VTK memory leaks. It
provides a list of all the VTK objects that are still in use when VisIt [https://visit-dav.github.io/visit-website/]
terminates to the terminal. There will be one list for the viewer and one
for the engine (multiple lists if running in parallel).



10.2. Building VisIt [https://visit-dav.github.io/visit-website/] for Valgrind and vtkDebugLeaks

The following steps were from building and running VisIt [https://visit-dav.github.io/visit-website/] 3.1 on Quartz, a
Linux cluster.


10.2.1. Building the Third party Libraries

In order to use vtkDebugLeaks you will need to enable it when you build
VTK. Edit the build_visit script and find the line:

vtk_debug_leaks="false"





and change it to:

vtk_debug_leaks="true"





In order for the stack traces from Valgrid to be the most useful, you should
build the third party libraries with debug support. In our case we are
going to do a minimal build with just the Silo and HDF5 I/O libraries.

./build_visit3_1_0 --required --mesagl --llvm --silo --hdf5 --debug --no-visit \
--thirdparty-path /usr/workspace/wsa/visit/visit/thirdparty_shared/3.1.0/toss3_debug \
--makeflags -j16







10.2.2. Building VisIt [https://visit-dav.github.io/visit-website/]

Just like the third party libraries, VisIt [https://visit-dav.github.io/visit-website/] needs to be built with debug
support in order for Valgrind to produce useful stack traces. Furthermore,
VisIt [https://visit-dav.github.io/visit-website/] contains conditional code that does additional cleanup at exit to
eliminate spurious memory leaks. The additional cleanup is enabled with
DEBUG_MEMORY_LEAKS.
The following steps were used to build VisIt [https://visit-dav.github.io/visit-website/] as described.

cd visit3.1.0
mkdir build
cd build
/usr/workspace/wsa/visit/visit/thirdparty_shared/3.1.0/toss3_debug/cmake/3.9.3/linux-x86_64_gcc-4.9/bin/cmake -DCMAKE_BUILD_TYPE=Debug -DVISIT_CONFIG_SITE=/usr/workspace/wsa/brugger/visit_memory/quartz2498.cmake -DCMAKE_CXX_FLAGS:STRING="-DDEBUG_MEMORY_LEAKS" ../src
make -j 36





You are now ready to start looking for memory leaks.




10.3. Running VisIt [https://visit-dav.github.io/visit-website/] with Valgrind

Follow these steps to run Valgrind on the viewer to find memory leaks from
a basic use case.


	Run VisIt [https://visit-dav.github.io/visit-website/] with Valgrind on the viewer in nowin mode.

cd ..
mkdir run1
cd run1
../visit3.1.0/build/bin/visit -valgrind viewer -nowin







	Open wave.visit.


	Create a Pseudocolor plot of pressure.


	Save the window.


	Delete the plot.


	Close the database.


	Exit




There are several things to note. We ran in nowin mode to eliminate leaks
from Qt, which are difficult to address. Since we ran in nowin mode we had
to save an image in order to do some rendering. After we saved the image
we deleted the plot and closed the database to clean up as much memory as
possible.

After VisIt [https://visit-dav.github.io/visit-website/] exits, you will get vtkDebugLeaks output sent to the terminal
as well as log files created by Valgrind. Let’s look at the Valgrind output
first.


10.3.1. Looking at the Valgrind Output

Valgrind creates several log files with the output. You are interested in
the largest one. Here are the files generated from the run described above.

ls -l
total 48792
-rw------- 1 brugger brugger 49715025 Dec  4 11:44 vg_viewer_8870.log
-rw------- 1 brugger brugger      449 Dec  4 11:43 vg_viewer_8915.log
-rw------- 1 brugger brugger      449 Dec  4 11:44 vg_viewer_9281.log
-rw------- 1 brugger brugger    32373 Dec  4 11:44 visit0000.png





Here is the output from the end of the largest log file.

tail -11 vg_viewer_8870.log
==8870== LEAK SUMMARY:
==8870==    definitely lost: 0 bytes in 0 blocks
==8870==    indirectly lost: 0 bytes in 0 blocks
==8870==      possibly lost: 33,097 bytes in 245 blocks
==8870==    still reachable: 30,386,572 bytes in 24,057 blocks
==8870==                       of which reachable via heuristic:
==8870==                         stdstring          : 25,296 bytes in 649 blocks
==8870==         suppressed: 0 bytes in 0 blocks
==8870==
==8870== For counts of detected and suppressed errors, rerun with: -v
==8870== ERROR SUMMARY: 202 errors from 202 contexts (suppressed: 0 from 0)





This is actually pretty good. There is still more work to be done to address
the possibly lost memory and then there may be issues with the still
reachable. This is probably primarily from a lack of cleanup before exiting.



10.3.2. Looking at the vtkDebugLeaks Output

You will get vtkDebugLeaks output from both the viewer and engine since
both have VTK code and both were linked against VTK built with vtkDebugLeaks.
Here is the engine output, which came out first.

vtkDebugLeaks has detected LEAKS!
Class "9vtkBufferIxE" has 1 instance still around.
Class "vtkDataSetAttributes" has 2 instances still around.
Class "vtkGraphInternals" has 1 instance still around.
Class "vtkOutputWindow" has 1 instance still around.
Class "vtkInformation" has 1 instance still around.
Class "vtkInformationIntegerValue" has 4 instances still around.
Class "vtkGraphEdge" has 1 instance still around.
Class "vtkIdTypeArray" has 1 instance still around.
Class "vtkTypeUInt32Array" has 1 instance still around.
Class "vtkFieldData" has 1 instance still around.
Class "vtkMergeTree" has 1 instance still around.
Class "vtkCommand or subclass" has 1 instance still around.
Class "9vtkBufferIjE" has 1 instance still around.





As you can see, it had relatively few leaks associated with VTK. These may
not even be leaks, they are probably from a lack of cleaning up before exiting.
More work needs to be done here.

Here is the viewer output.

vtkDebugLeaks has detected LEAKS!
Class "vtkOpenGLRenderTimerLog" has 1 instance still around.
Class "vtkOpenGLTextActor" has 33 instances still around.
Class "vtkOpenGLTextMapper" has 1 instance still around.
Class "vtkTextureObject" has 5 instances still around.
Class "9vtkBufferIxE" has 146 instances still around.
Class "vtkTexturedActor2D" has 1 instance still around.
Class "vtkBackgroundActor" has 1 instance still around.
Class "vtkCellData" has 195 instances still around.
Class "vtkVisItTextActor" has 1 instance still around.
Class "vtkInformationIntegerVectorValue" has 17 instances still around.
Class "vtkInformationVector" has 1454 instances still around.
Class "vtkVisItCubeAxesActor" has 1 instance still around.
Class "vtkPerspectiveTransform" has 6 instances still around.
Class "vtkPointData" has 195 instances still around.
Class "vtkProperty2D" has 16 instances still around.
Class "vtkCompositeDataPipeline" has 290 instances still around.
Class "vtkMatrix3x3" has 236 instances still around.
Class "vtkTrivialProducer" has 100 instances still around.
Class "vtkAxesActor2D" has 1 instance still around.
Class "vtkOpenGLIndexBufferObject" has 1006 instances still around.
Class "vtkMatrix4x4" has 1331 instances still around.
Class "vtkPickingManager" has 1 instance still around.
Class "QVTKInteractor" has 1 instance still around.
Class "vtkCoordinate" has 160 instances still around.
Class "vtkSimpleTransform" has 35 instances still around.
Class "vtkFollower" has 88 instances still around.
Class "vtkOutputWindow" has 1 instance still around.
Class "vtkPoints" has 192 instances still around.
Class "vtkInformation" has 3503 instances still around.
Class "vtkActorCollection" has 3 instances still around.
Class "vtkLine" has 5 instances still around.
Class "vtkGenericOpenGLRenderWindow" has 1 instance still around.
Class "vtkVolumeCollection" has 3 instances still around.
Class "vtkPropCollection" has 5 instances still around.
Class "vtkInformationIntegerPointerValue" has 36 instances still around.
Class "vtkTriad2D" has 1 instance still around.
Class "vtkPolyData" has 159 instances still around.
Class "vtkLookupTable" has 34 instances still around.
Class "vtkPixel" has 5 instances still around.
Class "vtkAppendPolyData" has 1 instance still around.
Class "vtkOpenGLImageMapper" has 1 instance still around.
Class "vtkPropPicker" has 1 instance still around.
Class "vtkActor2D" has 11 instances still around.
Class "vtkOpenGLCamera" has 3 instances still around.
Class "vtkOpenGLVertexArrayObject" has 1006 instances still around.
Class "vtkOpenGLActor" has 115 instances still around.
Class "vtkOpenGLPolyDataMapper" has 118 instances still around.
Class "vtkIdList" has 10 instances still around.
Class "vtkWorldPointPicker" has 1 instance still around.
Class "vtkDoubleArray" has 10 instances still around.
Class "vtkMatrixToLinearTransform" has 26 instances still around.
Class "vtkAlgorithmOutput" has 194 instances still around.
Class "vtkCullerCollection" has 3 instances still around.
Class "vtkOpenGLRenderer" has 3 instances still around.
Class "vtkPolyDataAlgorithm" has 89 instances still around.
Class "vtkDepthSortPolyData2" has 1 instance still around.
Class "vtkInformationIntegerValue" has 3756 instances still around.
Class "vtkOpenGLLight" has 10 instances still around.
Class "vtkOpenGLPolyDataMapper2D" has 45 instances still around.
Class "vtkTextProperty" has 93 instances still around.
Class "vtkCellArray" has 146 instances still around.
Class "vtkRendererCollection" has 1 instance still around.
Class "vtkShaderProgram" has 6 instances still around.
Class "vtkVisItAxisActor2D" has 9 instances still around.
Class "vtkOpenGLShaderCache" has 1 instance still around.
Class "vtkTDxInteractorStyleCamera" has 3 instances still around.
Class "vtkImageData" has 36 instances still around.
Class "vtkFloatArray" has 222 instances still around.
Class "vtkInformationStringValue" has 108 instances still around.
Class "vtkInformationExecutivePortVectorValue" has 194 instances still around.
Class "vtkOpenGLVertexBufferObject" has 9 instances still around.
Class "vtkIdTypeArray" has 146 instances still around.
Class "vtkTransform" has 541 instances still around.
Class "vtkOutlineSource" has 5 instances still around.
Class "vtkOpenGLVertexBufferObjectGroup" has 163 instances still around.
Class "vtkFieldData" has 195 instances still around.
Class "vtkVisItAxisActor" has 12 instances still around.
Class "vtkOpenGLProperty" has 40 instances still around.
Class "vtkOpenGLTexture" has 36 instances still around.
Class "vtkLineSource" has 1 instance still around.
Class "vtkInformationDoubleVectorValue" has 90 instances still around.
Class "vtkLightCollection" has 3 instances still around.
Class "vtkUnsignedCharArray" has 41 instances still around.
Class "vtkShader" has 18 instances still around.
Class "vtkTDxInteractorStyleSettings" has 3 instances still around.
Class "vtkStreamingDemandDrivenPipeline" has 100 instances still around.
Class "vtkTextureUnitManager" has 1 instance still around.
Class "vtkOpenGLVertexBufferObjectCache" has 1 instance still around.
Class "vtkActor2DCollection" has 3 instances still around.
Class "vtkTimerLog" has 166 instances still around.
Class "9vtkBufferIfE" has 222 instances still around.
Class "9vtkBufferIdE" has 10 instances still around.
Class "vtkCommand or subclass" has 208 instances still around.
Class "9vtkBufferIhE" has 41 instances still around.
Class "vtkInformationExecutivePortValue" has 237 instances still around.
Class "vtkFXAAOptions" has 3 instances still around.





As you can see, the viewer has considerably more leaks associated with VTK.
Again, these may not be leaks but merely a lack of cleanup before exiting.
More work needs to be done here as well.

That’s it. Happy hunting!






          

      

      

    

 


  

  
    

    11. Using Docker
    

    

    
 
  

    
      
          
            
  
11. Using Docker


11.1. Overview

Docker is a platform for building containers. Containers can run either
Windows or Linux operating systems. Docker is available on the Mac, Windows
and Linux. The rest of this tutorial will primarily be focused on running
Docker on Windows. The content on installing and setting up Docker is Windows
specific but the remainder of the content on creating and using containers
is operating system independent.



11.2. Installing Docker on Windows

Install Docker on your system. It is free to download and install. You will
need to be running Windows Professional and you will need administrator
priviledges. The following link will get you started.

https://docs.docker.com/docker-for-windows/

You will need to enable experimental features to be able to use the
--squash option when building your container. You can enable experimental
features with the Settings window. Go to the Daemon tab and check the
Experimental features checkbox and press Apply. Note that this will
restart the Docker daemon, which will kill container builds or running
containers.


[image: ../_images/Docker-Settings1.png]

Fig. 11.10 Enabling experimental features.



If you run into problems running out of disk space, you can increase the
amount of disk space allocated to Docker with the Settings window. Go to
the Advanced tab and move the Disk image max size to the right to increase
the amount of disk space and press Apply. Note that this will restart the
Docker daemon, which will kill container builds or running containers.


[image: ../_images/Docker-Settings2.png]

Fig. 11.11 Increasing the disk space allocated to Docker.





11.3. Creating a Docker Container

First you will want to bring up a Command window and use that to run Docker
commands. Next we’ll create a folder to hold all our Docker files. We are
assuming that you are at the root of the C: drive.

C:\>cd \Users\brugger1
C:\Users\brugger1>mkdir docker
C:cd docker





Now you need to copy all the relevant files to your docker folder. You
must have the following files in your folder.

C:\Users\brugger1\docker>dir
 Volume in drive C is Windows
 Volume Serial Number is A8F6-9F9C

 Directory of C:\Users\brugger1\docker

09/13/2019  02:46 PM    <DIR>          .
09/13/2019  02:46 PM    <DIR>          ..
09/13/2019  02:39 PM           737,636 build_visit3_0_2
08/28/2019  01:45 PM             1,173 build_visit_docker_cleanup.py
09/12/2019  12:24 PM             1,322 Dockerfile-debian9
09/13/2019  07:27 AM             1,176 Dockerfile-fedora27
09/12/2019  03:49 PM             1,337 Dockerfile-ubuntu16
09/12/2019  12:36 PM             1,321 Dockerfile-ubuntu18
09/12/2019  12:23 PM               216 run_build_visit.sh
09/13/2019  02:39 PM       121,776,180 visit3.0.2.tar.gz
               8 File(s)    122,520,361 bytes
               2 Dir(s)  814,047,002,624 bytes free





These files can be found in the VisIt [https://visit-dav.github.io/visit-website/] repository at GitHub in the following
location.

https://github.com/visit-dav/visit/tree/develop/scripts/docker

The Dockerfile determines the type of operating system you will build your
container with. The first line in the Dockerfile contains information about
the operating system. Here is a link to a reference on Dockerfile.

https://docs.docker.com/engine/reference/builder/

The Dockerfile will need to be specific to the operating system since the
way you install packages and do other administrative tasks will vary among
different Linux operating systems, although there are only a few unique
varients that the rest are built on. You can go to the Docker Hub to find
Linux distributions to start with.

https://hub.docker.com/_/centos

https://hub.docker.com/_/debian

https://hub.docker.com/_/fedora

https://hub.docker.com/_/ubuntu

In this example the Dockerfile is set up to use Ubuntu 16. The Dockerfile
installs all the packages needed to build VisIt [https://visit-dav.github.io/visit-website/] and then uses build_visit
to create all the third party libraries as well as the config site file.
The build will take several hours. Sometimes I have had it stop sending
text to the Command window, so if it looks like it is hung, it may
actually be happily progressing along.

C:\Users\brugger1\docker>docker build -f Dockerfile-ubuntu16 -t visitdev:3.0.2-ubuntu16 . --squash





Start up the container and run it interactively.

C:\Users\brugger\docker>docker run -t -i visitdev:3.0.2-ubuntu16 /bin/bash
visit@bea87fee3276:~$





Now the container is ready for you to build VisIt [https://visit-dav.github.io/visit-website/]. First, you need to copy
the tar file with the source code. To do this, you will need to go to another
Command window and use the container id shown in the prompt.

C:\Users\brugger\docker>docker cp visit3.0.2.tar.gz bea87fee3276:/home/visit





Now go back to the first Command window and create your distribution.

visit@bea87fee3276:~$ tar zxf visit3.0.2.tar.gz
visit@bea87fee3276:~$ cd visit3.0.2
visit@bea87fee3276:~/visit3.0.2$ mkdir build
visit@bea87fee3276:~/visit3.0.2$ cd build
visit@bea87fee3276:~/visit3.0.2/build$ /home/visit/third-party/cmake/3.9.3/linux-x86_64_gcc-5.4/bin/cmake \
   -DCMAKE_BUILD_TYPE:STRING=Release -DVISIT_INSTALL_THIRD_PARTY:BOOL=ON -DVISIT_ENABLE_XDB:BOOL=ON \
   -DVISIT_PARADIS:BOOL=ON -DVISIT_CONFIG_SITE="/home/visit/visit-config.cmake" ../src
visit@bea87fee3276:~/visit3.0.2/build$ make -j 4 package
visit@bea87fee3276:~/visit3.0.2/build$ mv visit3_0_2.linux-x86_64.tar.gz ../..





Now let’s test it to make sure we can create an image.

visit@bea87fee3276:~/visit3.0.2/build$ cd ../..
visit@bea87fee3276:~$ cp visit3.0.2/src/tools/dev/scripts/visit-install .
visit@bea87fee3276:~$ ./visit-install 3.0.2 linux-x86_64 visit
visit@bea87fee3276:~$ visit/bin/visit -cli -nowin
>>> OpenDatabase("visit/data/curv2d.silo")
>>> AddPlot("Pseudocolor", "d")
>>> DrawPlots()
>>> SaveWindow()
>>> quit()
visit@:~$





Now let’s go back to the second Command window and copy the binary
distribution back out of the container and the image we created.

C:\Users\brugger\docker>docker cp bea87fee3276:/home/visit/visit3_0_2.linux-x86_64.tar.gz .
C:\Users\brugger\docker>docker cp bea87fee3276:/home/visit/visit0000.png .





At this point you can exit your container.

visit@bea87fee3276:~$ exit
C:\Users\brugger\docker>





You should view the image to verify that it was produced correctly. You
now have the binary distribution for VisIt [https://visit-dav.github.io/visit-website/] 3.0.2 for Ubuntu 16.



11.4. Creating a Dockerfile From Scratch

To create a Dockerfile from scratch it is best to do so running interactively
as root with the base operating system image. You can start by installing
packages that your are certain you will need. At that point you can run
build_visit until it fails, determining what missing package caused the
failure, installing the missing package and repeating until you have gotten
build_visit to complete with the third party libraries you want to build.
From that experience you can create your Dockerfile.



11.5. Useful Docker Commands

Here are some useful Docker commands to manage images and containers.

docker image ls
docker container ls --all
docker image rm <image id>
docker container rm <container id>





Docker will create a “checkpoint” after each command it executes. Everytime
you partially create an image or execute a container it is saving those
checkpoints. This can quickly start to consume a lot of disk space, so you
should frequently list your images and containers and remove those that you
no longer need.

If building an image fails and you want to take a look at what happened, you
can convert the container into an image and then launch a bash shell in the
image.

docker commit <container id> <image name>
docker run  -t -i <image name> /bin/bash









          

      

      

    

 


  

  
    

    12. Site Reliability Engineering (SRE)
    

    

    
 
  

    
      
          
            
  
12. Site Reliability Engineering (SRE)

In the VisIt [https://visit-dav.github.io/visit-website/] project, members of the development team are frequently called
upon to respond to a variety of inquiries often originating directly from users.
Some of these may relate to the use of VisIt [https://visit-dav.github.io/visit-website/] such as



	How do I do a surface plot?


	How do I compute the mass in a given material?


	How do I get client/server to TACC working?







and some may relate to an operational aspect of either the VisIt [https://visit-dav.github.io/visit-website/] software
itself such as



	A botched managed VisIt [https://visit-dav.github.io/visit-website/] installation.


	An update to host profiles to address site access changes.


	A missing database reader plugin.







or, the underlying computing infrastructure upon which VisIt [https://visit-dav.github.io/visit-website/] depends such as



	An incompatible graphics driver.


	A downed file system or network.


	A trip in the security environment.







Typically, such inquiries originate from users in the midst of using VisIt [https://visit-dav.github.io/visit-website/]
and are encountering some kind of difficulty. In highly effective software
projects, the work involved in handling such inquiries does not end
with fixing this one user’s problem and sending them on their way. When one
user encounters a problem, there are probably others who have encountered
the same problem. Furthermore, often the problems users encounter are
suggestive of minor, easily fixed deficiencies in either the software itself
or its associated processes and artifacts.

The continuous investment of effort to craft and carry out
small corrective actions
in response to such inquiries is a best practice. It represents a
fusion [https://medium.com/@aHev/why-ux-researchers-should-learn-sre-practices-a2b213e69a8a]
of aspects of Google’s
Site Reliability Engineering [https://landing.google.com/sre/sre-book/toc/] (SRE)
process (sometimes also called
Systems Reliability Engineering or Services Reliability Engineering [https://www.cio.com/article/3192531/why-you-need-a-systems-reliability-engineer.html])
and maybe aspects of either
User Experience Regression Testing [https://www.uxmatters.com/mt/archives/2019/04/reining-in-ux-regression.php]
or
User Experience Driven Development (UXDD) [https://docs.microsoft.com/en-us/archive/msdn-magazine/2016/february/cutting-edge-architecture-spinoffs-of-uxdd].

For mature DOE software projects with wide reach and many users, SRE activity
represents a brand of effort wholly different from conventional software product
development, planning and execution. Like most DOE software projects, VisIt [https://visit-dav.github.io/visit-website/] has
no dedicated SRE resources. Instead, developers themselves must also support SRE
work. Nonetheless,
managing SRE work effectively and efficiently is an essential part of maintaining the overall productivity and sustainability of the software [https://beyondphilosophy.com/15-statistics-that-should-change-the-business-world-but-havent]
as well as the productivity of both users and developers of the software alike.


12.1. Goals

This document describes how the VisIt [https://visit-dav.github.io/visit-website/] project manages its SRE activities.
Some of the goals of this process are…



	To maintain a reputation for timely and quality response to customer inquiries.


	To develop a practice of routine housekeeping quality improvements to the
VisIt [https://visit-dav.github.io/visit-website/] software and associated processes and artifacts impacting user and/or
developer productivity.


	To load balance SRE work in an equitable way across the development team.


	To reduce SRE interruptions for the team as a whole.


	To log, track and evolve a database of SRE activity and effort to help inform
ongoing development plans and resource allocation.


	To identify and document escalation paths for major incidents.


	To aim for a four hour response time.







While many aspects of SRE are under the direct control of
VisIt [https://visit-dav.github.io/visit-website/] developers, some are not and involve collaboration with other teams in
resolving. In most cases the extent of the VisIt [https://visit-dav.github.io/visit-website/] team’s involvement in the
operations is confined primarly to the VisIt [https://visit-dav.github.io/visit-website/] software itself; its
development, testing, release and deployment which includes installations the
VisIt [https://visit-dav.github.io/visit-website/] team directly manages, hosted binary downloads for common platforms and
the tools and resources to build from sources. Operational issues impacting
VisIt [https://visit-dav.github.io/visit-website/] but outside of this scope are typically delegated to other teams who
are responsible for the associated processes and resources.


12.1.1. Business Hours

In the IT world where companies like Google, Apple and Amazon have whole teams
dedicated to SRE activity, coverage is 24/7 and response time is measured in
minutes. For the VisIt [https://visit-dav.github.io/visit-website/] project where the majority of funded development takes
place at Lawrence Livermore National Lab, coverage is during normal West Coast
business hours, 8am-12pm and 1-5pm (GMT-8, San Francisco time zone), Monday
through Friday excluding
LLNL holidays [https://supplychain.llnl.gov/poattach/pdf/llnl_holidays.pdf]
and response time may be as much as four hours due to team members having to
multi-task among many responsibilities.




12.2. The Basic Process

SRE work is allocated and rotated among developers in
one-week shifts. During a shift, one developer’s role is to
serve as the Primary SRE contact and a second developer’s
role is to serve as a Backup. Except for
escalations, all other developers are free of SRE
responsibilities for that week.

The role of the Primary is to respond
within the response time goal, to each inquiry. Ideally, all SRE
activity during the week is handled and resolved
solely by the Primary. However, escalations, which we
hope are rare, will wind up engaging the Backup and may even engage other
developers. In addition, any active SRE issues that remain
unresolved at the end of the week are formally handed off to
the next Primary.

Active SRE issues will be logged and tracked in a separate GitHub,
issues-only repository [https://github.com/visit-dav/live-customer-response/issues]
within the visit-dav GitHub organization [https://github.com/visit-dav]. Upon
resolution of serious incidents, the Primary will prepare a brief
postmortem to inform a discussion at the next project meeting of possible changes
in practices to avoid repeating such major incidents.

Because SRE work tends to be interrupt driven, there is always
the chance that the Primary will have no active issues.
At these idle times, the Primary shall use their time to address general
housekeeping or other low-hanging fruit type work. In
particular, there shall be no expectation that a developer serving as Primary
can get any other work done beyond their active or idle SRE obligations. In slow
weeks, its conceivable they can. But, there can be no implied assumption or
expectation that this will be the case.

A schedule of the Primary and Backup assignments going
out several months is periodically negotiated by the team and posted in the form
of a shared calendar. Primary and Backup responsibilities are rotated
so as to balance the load among team members.

The preceding paragraphs describe VisIt [https://visit-dav.github.io/visit-website/]’s SRE processes at a
basic level and in the ideal. Nonetheless, several terms here (those that are
links or in italics in the paragraphs above) require elaboration. In addition,
there are also many practical matters which can serve to complicate the basic
process. These details are addressed in the remaining sections.



12.3. Roles

The Primary’s role is to respond, within the response time goal, to each
inquiry that occurs during that week including those that come in during the
preceding weekend/holiday. The Primary’s goal is to resolve
all inquiries by the end of their week.

The Primary has the sole responsibility for responding to inquiries
and opening and resolving SRE issue tickets.
When the Primary needs help to
resolve an SRE issue, s/he should
first enlist the Backup. This is an escalation.
Nonetheless, the Backup (or other developers for that matter) are called
into action only by explicit request of the Primary.
Note that enlisting additional resources for help is part of
escalation and is not the same as a
handoff.

If the Primary’s schedule changes such that the response time goal may
not be met, the Primary may temporarily delegate his/her role and
responsibilities to the Backup. To the extent possible, such temporary
delegation from Primary to Backup should be handled formally and by
mutual agreement. Temporary delegation of the Primary’s role is also
not the same as a handoff.

Ideally, the Primary is able to handle all SRE activity
and no other developers are engaged. Thus, other developers are free to
ignore customer inquiries as well as redirect customers who may contact them directly
via email, phone or walk-in. It is a best practice to handle such redirections
with a formal, three-way handoff confirming that the customer
indeed makes contact with the Primary.



12.4. SRE vs. Product Development

Part of the reason for formalizing this process is the recognition of a
different category of work,
Site Reliability Engineering [https://en.wikipedia.org/wiki/Site_Reliability_Engineering] (SRE),
that is
essential part of maintaining the overall quality [https://beyondphilosophy.com/15-statistics-that-should-change-the-business-world-but-havent]
of a software product as well as the productivity of both developers and users
of the software alike. Nonetheless, SRE work is very different from
conventional product development type work where bug fixes, technology
refreshes and feature enhancements are estimated and prioritized,
methodically planned and resources are assigned to hit target release dates.

Issues that impact one user’s productivity often impact others. Likewise for
developers. When such issues come to our attention, whenever possible it
is often helpful to identify two kinds of actions; a short-term
constructive correction and a longer-term comprehensive solution.







	Constructive Correction

	Comprehensive Solution





	Short term

	Longer term



	Faster response

	Slower response



	Low cost/benefit

	Higher cost/benefit



	Low risk

	Higher risk



	Unplanned

	Planned



	Mitigation

	Resolution






A constructive correction has value only when it represents a step towards the
comprehensive solution, can sufficiently reduce the impact of the issue and can
be rolled out to users significantly sooner and with lower cost than the
comprehensive solution. Ordinarily, a constructive correction is something the
Primary handles as part of their SRE activity. The comprehensive solution,
which often involves more planning and resource allocation, is handled as part
of normal product development activities.

Constructive corrections can wind up falling through the cracks of traditional
software project management and planning processes. However, such work also often
represents low cost high benefit improvements in quality of either the software
itself or the development or deployment processes supporting it. We refer to issues
of this nature as general low-hanging fruit type issues.

Apart from acknowledging their existence, a key part of this process is the
allocation of a small fraction of our resources for the sole purpose of supporting
SRE activities and developing a practice of continuously crafting constructive
corrective actions arising from SRE inquiries.

Consequently, another key role of the Primary is to use any time not working
active SRE issues to fix other low-hanging fruit issues from the
product development backlog. As a rule of thumb, low-hanging
fruit is considered to be anything that the team believes is fixable
within a half-day’s (4 hours) worth of effort. When there are many such tasks in
the system to work on, the Primary is free to use his/her judgment to decide
which s/he can most productively address.

Part of the acknowledgment of this new category of work is the new
issue tracker [https://github.com/visit-dav/live-customer-response/issues]
for tracking it. New SRE activity will start with an issue being added there.
As an SRE incident unfolds it may result in either the same issue being moved to the
product development [https://github.com/visit-dav/visit/issues] issue tracker
and/or new issue(s) being added to the
product development [https://github.com/visit-dav/visit/issues] tracker.
Any new product development issues should be linked back to the original
SRE issue that spawned them.



12.5. Active SRE Issues Repo

Active SRE issues will be logged and tracked in a separate GitHub,
issues-only repository [https://github.com/visit-dav/live-customer-response/issues]
within the visit-dav GitHub organization [https://github.com/visit-dav].
For each new inquiry, the primary will file an issue ticket and assign themselves.

The primary will endeavor to capture all relevant information and
communications in this issue. The use of GitHub issues for this purpose has a number
of advantages over other options such as email including better search/browse as well
as support for attachments. For this reason, a number of steps were taken to integrate
the visit-users@elist.ornl.gov email list with this issues-only repository.

The SRE issue shall be closed when the associated inquiry is
resolved. Or, it will be closed and labeled
wontfix after 21 days pass since the user last engaged in any conversation with
VisIt [https://visit-dav.github.io/visit-website/] developers to reach a resolution.

Upon receiving a new inquiry on the visit-users email list, telephone hotline
call, or walk-in (with the exception of walk-ins involving classified information),
the procedure is for the Primary to cut-n-paste the initial email to a new
GitHub SRE issue [https://github.com/visit-dav/live-customer-response/issues]
and from then on handle all communication through the conversation associated with
that issue. Each comment there
will generate an email to visit-users. In addition, any reply to any
GitHub generated emails will result in a new comment added to the GitHub issues
as though it came from GitHub user account markcmiller86-visit. However,
any replies to the initial email (which is not generated by GitHub) will not
route to the GitHub issue conversation. The more quickly the Primary creates
the associated GitHub issue in response to the initial email, the less likely
this can occur. In addition, boilerplate guidance in an issue template will help
to mitigate this by informing visit-users members of this behavior.

For any work the Primary performs, even if it is a rather trivial amount
of work to resolve, there should be an associated issue for tracking that work.
Tracking even the trivial issues will help to build a database of issues we
may be able to later mine to identify patterns and further process improvements.

Given this integration of visit-users emails with GitHub conversations, for the
remainder of this document we simply use the term conversation to refer to the
communication involved in an active SRE issue.



12.6. Supported Methods of Contact

An SRE inquiry with the VisIt team begins with a first contact and may optionally
be followed by ongoing conversation. These two kinds of communication have different
requirements and can involve different processes. This is due to the fact that we need
to balance two priorities; accessibility for users and productivity for developers.

To maximize accessibility for users, we should support a wide variety of methods of
first contact. However, to maximize productivity for developers, we should restrict
methods of ongoing conversations.

A key benefit of having the VisIt [https://visit-dav.github.io/visit-website/] team co-located with our user community is
that users can spontaneously make a first contact with any one of us by an office
drop-in or a tackle in the hallway or parking lot. This can even occur on social
media platforms such as Confluence, Jabber, MS Teams, etc. where users can wind
up engaging specific VisIt [https://visit-dav.github.io/visit-website/] developers that happen, by nothing more than
coincidence, to also be using those platforms.

A challenge with these spontaneous methods of first contact is that they
inadvertently single out a specific developer who is then expected to at least
respond and possibly even to also resolve the issue. But, these actions
and the effort they involve are the responsibility of the primary SRE.
Consequently, spontaneous methods of first contact can wind up jeopardizing the
goals of our SRE process by making it difficult to track, allocate and manage
SRE effort.

Therefore, the methods of first contact we officially support are those which
engage the whole team instead of singling out a specific member. This
includes…



	Creation of a GitHub issue [https://github.com/visit-dav/live-customer-response/issues].


	Email to visit-users,
visit-help-asc, or
visit-help-scidac email lists.


	Telephone call to the VisIt hotline.







Whenever users attempt a first contact through something other than the supported
methods listed immediately above, the receiving developer should make an effort
to handoff the inquiry to the primary SRE as quickly and
politely as practical.

What does it mean for a method of first contact to be supported? It means
there is an assurance that the particular platform is being monitored by VisIt [https://visit-dav.github.io/visit-website/]
team members during normal business hours such that the response time goal can
be maintained. In addition, supported methods are encouraged and promoted in
any documentation where VisIt [https://visit-dav.github.io/visit-website/] support processes are discussed.

Balancing the priorites of user accessibility with developer productivity
involves a compromise on the number of platforms we make an assurance to monitor.
Currently, this is limited to those listed above. However, the selected methods
should be periodically reevaluated. If there is some platform which seems to
be gaining popularity among users, it could either be added to the list of
supported platforms or perhaps it could be integrated with email in the same way
GitHub issue conversations have been.



12.7. Response Time and Response vs. Resolution

The response time goal of four hours was chosen to reflect the worst case
practicalities of team members’ schedules and responsibilities. For example, if
the Primary has meetings just before and just after the lunch hour break,
there can easily be a four hour period of time where inquiries go unattended.
Typically, we anticipate response times to be far less than four hours and
certainly, when able, the Primary should respond as quickly as practical and
not use the four hour goal as an excuse to delay a prompt response.

Since a majority of funding for VisIt [https://visit-dav.github.io/visit-website/] is from LLNL and since VisIt [https://visit-dav.github.io/visit-website/] developers
are co-located with many of its LLNL users, certainly these users as well as
their direct collaborators are accustomed to response times of less than four
hours. For example, the VisIt [https://visit-dav.github.io/visit-website/] project operates a telephone hotline and also
frequently handles walk-ins. As an aside, after a recent small test effort to
maintain a rapid response time, a noticeable up-tick in user email inquiries was
observed suggesting that rapid response times have the effect of encouraging
more user interactions.

It is also important to distinguish between response and resolution here.
A key goal in this process is to ensure that customer inquiries do not go
unanswered for a long time. However, responding to a customer inquiry does
not necessarily mean resolving it. Sometimes, the only response possible is to
acknowledge the customer’s inquiry and let them know that the resources to
address it will be allocated as soon as practical. In many cases, an immediate
response to acknowledge even just the receipt of a customer’s inquiry with no
progress towards actual resolution goes a long way towards creating the goodwill
necessary to negotiate a day or more of time to respond more fully and maybe even
resolve.

Resolution of an SRE issue often involves one or more of the
following activities…



	Answering a question or referring a user to documentation.


	Diagnosing the issue.


	Developing a work-around for users.


	Developing a reproducer for developers.


	This may include any relevant user data files as well as approval, where
appropriate for world read access to such data as part of attaching to
a GitHub issue.






	Identifying any low-hanging fruit type work that would address, even if
only in part, the original SRE inquiry and then engaging in the
housekeeping work to resolve it.


	Determining if the user’s issue is known (e.g. an issue ticket already exists).


	Updating a known issue with new information from this user, perhaps
adjusting labels on the issue or putting the issue back into the
un-reviewed state for further discussion at a VisIt [https://visit-dav.github.io/visit-website/] project meeting.


	Identifying and filing a new product development type issue ticket.







To emphasize the last bullet, resolution does not always mean a customer’s
issue can be addressed to satisfaction within the constraints of the SRE
process as it is defined here. Sometimes, the most that can be achieved is
filing a highly informative issue ticket to be prioritized, scheduled and
ultimately resolved as part of normal VisIt [https://visit-dav.github.io/visit-website/] product development activities.
The SRE issue gets promoted to a product development issue. It is closed
in the SRE issue tracker and new issue is opened in the product development
issue tracker including a reference to the original SRE issue. Doing so does
serve to resolve the original SRE issue that initiated the work.



12.8. Serious Incidents and Postmortems

Serious incidents are those that have significant productivity consequences for
multiple users and/or require an inordinate amount of resources (either time or
people or both) to diagnose, work-around and/or ultimately properly correct.

When such incidents occur, it is a best practice to spend some time considering
adjustments in processes that can help to avoid repeating similar issues in
the future.

When such incidents reach SRE resolution, the Primary will prepare a
brief postmortem (often just a set of bullet points) explaining what happened and why,
estimating the amount of resources that were needed to resolve the incident, describing key
milestones in the work to resolve the incident and suggesting recommendations for
changes in processes to prevent such incidents from being repeated. This postmortem
will be used to guide team discussion during a subsequent weekly project meeting.



12.9. Handoffs

Our SRE processes involve two kinds of handoffs. One is the
redirection of a customer who makes contact with a developer not serving as the
Primary. The other is the handoff of unresolved SRE issues
from one week’s Primary to the next.

To handle customer redirection handoffs, it is a best practice to use a three-way
handoff giving the customer some assurance that their initial contact with someone
is successfully handed off to the Primary. For example, for a call-in, it
is a best practice to try a three-way call transfer. For some developers, the
prospect of redirecting friends and colleagues with whom they may have long
standing relationships may be initially uncomfortable. But it is important to
recognize that this an essential part of achieving one the goals of this process,
to reduce SRE interruptions for the team as a whole.

If an active SRE issue cannot be resolved within the week of
a Primary’s assignment, it gets handed off to the next week’s Primary.
Such handoffs shall be managed formally with a comment (or email) to the
customer(s) and the next week’s Primary and Backup in the associated
GitHub issue. The associated issue(s) in the SRE issues
repository shall be re-assigned by the previous week’s Primary upon ending
their shift. However, a preceding week’s Primary may be near enough
to resolving an SRE issue that it makes
more sense for him/her to carry it completion in the following week. In this
case, s/he will leave such issues assigned to themselves.



12.10. Escalation

SRE inquiries may escalate for a variety of reasons. The
technical expertise or authority required may be beyond the Primary’s
abilities or other difficulties may arise. For issues that the Primary does
not quickly see a path to resolution, the Backup should be enlisted first.
When developer expertise other than Backup is needed, the Primary should
try to engage other developers using the @ mention feature in the associated
GitHub issue. However, where a Primary is responsible for maintaining the
response time goal, other developers so enlisted are free to either delay or even
decline to respond (but nonetheless inform the Primary of this need) if their
schedule does not permit timely response. Such a situation could mean that the
only remaining course of action for the Primary to resolve the issue is to
file a product development issue as discussed at the end of a preceding section.

If after investigation and diagnosis the work required to resolve an SRE
incident remains highly uncertain or is not believed to be a
low-hanging-fruit type task, the Primary should search the product
development issues to see if this is a known issue and, if so, add additional
information to that known issue about this new SRE incident (and perhaps remove the
reviewed tag from the issue to cause the issue to be re-reviewed at the next
VisIt [https://visit-dav.github.io/visit-website/] project meeting) or submit a new issue to the product development issue
tracker. Such action then resolves the original SRE issue.


12.10.1. Special Considerations for Classified Computing

Occasionally, incidents arise that may be specific to a classified computing
environment. This is not too common but does happen and it presents problems
for a geographically distributed team. In many ways, handling such an incident
is just a different form of escalation.

On the one hand, customers working in a classified computing environment
are accustomed to longer response times. On the other hand, such work is often
a high priority and requires rapid response from a developer that is on site
with classified computing access.

Our current plan is to handle this on a case-by-case basis. If neither the
Primary nor Backup are able to handle a customer response incident
requiring classified computing, the Primary should



	First determine the customer’s required response time. It may be hours
or it may be days. If it is days. Its conceivable the issue could be
handled in the following week by a new Primary/Backup pair.


	If customer indicates immediate response is required, the Primary
should query the whole team to arrange another developer who can
handle it.










12.11. Scheduling and Load Balancing

To balance the work load of SRE, the responsibilities of the
Primary and Backup are rotated, round-robin among team members. For
example, on a team of eight developers, each would serve as Primary only one
week in eight or 12.5% of their time. However, a number of factors complicate
this simple approach including percent-time assignments of team members,
alternate work schedules, working remotely, travel, vacations, trainings,
meetings, etc.

Round-robin assignment may lead to a fair load by head-count but isn’t weighted by
percent-time assignments. From a percent-time assignment perspective, it might be
more appropriate for a developer that is only 50% time on VisIt [https://visit-dav.github.io/visit-website/] to serve as the
Primary only half as often as a 100% time developer.

Since a majority of VisIt [https://visit-dav.github.io/visit-website/] developers divide their time across multiple projects,
we use 50% as the nominal developer assignment. Because of all the factors that
can effect scheduling, the VisIt [https://visit-dav.github.io/visit-website/] project has opted to manage scheduling by
periodically negotiating assignments 1-3 months into the future and recording the
assignments on a shared calendar. The aim is an approximately round-robin load
balancing where contributors who are more than 50% time on VisIt [https://visit-dav.github.io/visit-website/] are occasionally
assigned an extra week. Either Primary or Backup can make last minute
changes to the schedule by finding a willing replacement, updating the shared
calendar and informing the rest of the team of the change.

Whenever possible, an experienced Backup will be scheduled with a less
experienced Primary.



12.12. A Common Misconception: SRE is an Interruption to Programmatic Work

When faced with a long backlog of development tasks, team members can all too
easily perceive SRE work as an interruption to those tasks.
This is a common misconception. SRE is an important aspect to
a successful product and project on par with any other major development work.
It is part of what is involved in keeping the software working and a useful tool
in our customer’s workflows not only here at LLNL, likely VisIt [https://visit-dav.github.io/visit-website/]’s biggest
customer, but wherever in DOE/DOD and elsewhere in the world VisIt [https://visit-dav.github.io/visit-website/] is used.

Indeed, there are several advantages in having developers involved with
SRE activities. These include..



	Learning what problems users are using the tool to solve.


	Learning how users use the tool.


	Learning what users find easy and what users find hard about the tool.


	Learning where documentation needs improvement.


	Learning where the user interface needs improvement.


	Learning operational aspects of user’s work that the tool can impact.


	Building collaborative relationships with other members of the organization.


	Learning how users operate in performing their programmatic work for the
organization which helps to inform planning for future needs.







In short, the work involved in Software Reliability Engineering (SRE) and
ensuring productivity of both users and developers of VisIt [https://visit-dav.github.io/visit-website/] is programmatic
work. The practice of having software development staff integrated with
operations is more commonly referred to as DevOps. There is a pretty good
video [https://youtu.be/XoXeHdN2Ayc] that introduces these concepts.





          

      

      

    

 


  

  
    

    13. OpenGL in VisIt
    

    

    
 
  

    
      
          
            
  
13. OpenGL in VisIt

VisIt requires an OpenGL 3.2 context to work properly. Mesa provides a 3.3 context. Most desktop computers or laptops with graphics cards provide an OpenGL 4.6 or 4.7 context. For some unknown reason most (if not all) Linux HPC systems only provide a 3.0 context.

When using the QVTKOpenGLWidget with Qt, the following code snippet needs to be executed before creating the QApplication to tell Qt that it needs an OpenGL 3.2 context.

//
// Setting default QSurfaceFormat required with QVTKOpenGLwidget.
//
auto surfaceFormat = QVTKOpenGLWidget::defaultFormat();
surfaceFormat.setSamples(0);
surfaceFormat.setAlphaBufferSize(0);
QSurfaceFormat::setDefaultFormat(surfaceFormat);






13.1. OpenGL in Qt

The sections of Qt that deal with OpenGL are

qtbase/src/opengl
qtbase/src/openglextensions

qtbase/src/plugins/platforms/xcb/gl_integrations/xcb_glx

qtbase/src/platformsupport/glxconvenience





The context creation is performed in

qtbase/src/plugins/platforms/xcb/gl_integrations/xcb_glx/qglxintegration.cpp

void QGLXContext::init(QXcbScreen *screen, QPlatformOpenGLContext *share)







13.2. OpenGL in VTK

The sections of VTK that deal with OpenGL are

GUISupport/Qt
Rendering/OpenGL2





The context creation is performed in

GUISupport/Qt/QVTKOpenGLWidget.cxx





Other stuff is done in

Rendering/OpenGL2/vtkOpenGLRenderWindow.cxx







13.3. OpenGL documentation

GLX is the OpenGL extension to the X Window System. In the X Window System, OpenGL rendering is made available as an extension to X in the formal X sense: connection and authentication are accomplished with the normal X mechanisms. As with other X extensions, there is a defined network protocol for the OpenGL rendering commands encapsulated within the X byte stream.

Since performance is critical in 3D rendering, there is a way for OpenGL rendering to bypass the data encoding step, the data copying, and interpretation of that data by the X server. This direct rendering is possible only when a process has direct access to the graphics pipeline.


	Documentation on GLX [https://www.khronos.org/registry/OpenGL/specs/gl/glx1.4.pdf].
* GLX functions all start with “glX” and GLX constants all start with “GLX”.


	Documentation on creating an OpenGL 3.0 context [https://www.khronos.org/opengl/wiki/Tutorial:_OpenGL_3.0_Context_Creation_(GLX)].
* It is the source of the test in build_visit to determine if the OpenGL on a system supports creating a 3.2 context.


	Documentation on the history of the changes to OpenGL [https://www.khronos.org/opengl/wiki/History_of_OpenGL].








          

      

      

    

 


  

  
    

    14. Docker Containers For CI Testing
    

    

    
 
  

    
      
          
            
  
14. Docker Containers For CI Testing

We use Azure Pipelines for CI testing VisIt [https://visit-dav.github.io/visit-website/]’s Pull Requests, located at
VisIt Azure DevOps Space [https://dev.azure.com/visit-dav/VisIt/].

To speed up our CI testing we use Docker containers with pre-built third party
libraries (TPLs). These containers leverage our build_visit third party
build process. The Docker files and build scripts used to create
these containers are in scripts/ci/docker. The process to create the
container varies somewhat if you have Docker installed on the same
system as the git checkout of your branch.


14.1. Creating the container with Docker on the same system as the git checkout

Create the container using build_docker_visit_ci.py.

cd scripts/ci/docker
python build_docker_visit_ci.py





This creates the container with a tag that will include today’s date
and a short substring of the current git hash.

Example Tag: visitdav/visit-ci-develop:2020-11-11-sha433ef0

This will typically take several hours to complete.



14.2. Creating the container without Docker on the same system as the git checkout

Create two tar files and the Docker command to create the container using
build_docker_visit_ci.py.

cd scripts/ci/docker
python build_docker_visit_ci.py





This will create the files

visit.build_visit.docker.src.tar
visit.masonry.docker.src.tar





The command will also fail with output similar to this

[exe: git rev-parse HEAD]
[exe: docker build -t visitdav/visit-ci-develop:2020-11-11-sha433ef0 . --squash]
Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?





You will use the docker build ... command to build the container on
the system you have Docker installed.

You can now move over to the system where you have Docker installed.
Bring up up a shell window and create a new directory or folder to contain
the files necessary to create the container.

mkdir docker_ci
cd docker_ci





Now copy all the files in scripts/ci/docker to your new folder. Now
you can run the docker build ... command to create the container. For
example:

docker build -t visitdav/visit-ci-develop:2020-11-11-sha433ef0 . --squash





This will typically take several hours to complete.



14.3. Push the container to Dockerhub

Now that you have created your Docker container image, you are ready to push
it to VisIt’s DockerHub Registry [https://hub.docker.com/orgs/visitdav]
using docker push <container-name>.

If you do not already have a DockerHub account, go
here [https://hub.docker.com/signup]  and sign up for one. Then
contact another member of visitdav [https://hub.docker.com/orgs/visitdav]
and ask to be added to the organization.

You will need to be logged into DockerHub to successfully push. Here is
an example push command:

docker login docker.io
docker push visitdav/visit-ci-develop:2020-11-11-sha433ef0







14.4. Update VisIt [https://visit-dav.github.io/visit-website/] to use the new Docker image

To change which Docker Image is used by Azure, edit azure-pipelines.yml
and change the container_tag variable.

#####
# TO USE A NEW CONTAINER, UPDATE TAG NAME HERE AS PART OF YOUR PR!
#####
variables:
  container_tag: visitdav/visit-ci-develop:2020-12-09-shaf6ef22





If you change the operating system, you will need to update the vmImage
variable. It is specified in two locations.

pool:
  vmImage: 'ubuntu-18.04'





When the PR is merged, the Azure changes will be merged and PRs to develop
will now use the new container.





          

      

      

    

 


  

  
    
    Index
    

    

    
 
  

    
      
          
            

Index



 A
 | C
 | I
 | N
 | P
 | S
 | V
 | Z
 


A


  	
      	AAN


  

  	
      	Always, Auto, Never


  





C


  	
      	Cell


  

  	
      	Cell-centered


  





I


  	
      	Integral Curve


  





N


  	
      	Node


  

  	
      	Node-centered


  





P


  	
      	Parallel task


      	Pathlines


  

  	
      	Point


      	Point-centered


  





S


  	
      	SIL


      	SR


  

  	
      	SR mode


      	Streamlines


      	Subset Inclusion Lattice


  





V


  	
      	Vertex


  





Z


  	
      	Zone


  

  	
      	Zone-centered


  







          

      

      

    

  

  
    

    Not Found
    

    

    
 
  

    
      
          
            
  
Not Found

[image: /en/v3.2.1/_images/visit_404.png]
We’re sorry but the page you requested is not available.

This can sometimes be caused by something as simple as your browser’s page
cache falling out of date with respect to recent changes in our documentation.
Use your browser’s back button to go back to the page that sent you here and
refresh that page and try again.

Some other possible causes of this problem are


	You followed an outdated link from an external source. If so,
please contact the adminstrator of the associated page to have
it corrected. This is not something we have the control to correct
ourselves.


	You followed a bad internal link from within our documentation. If
so, please cut and paste the URL and either send an email or file
an issue [https://github.com/visit-dav/visit/issues/new?assignees=&labels=docs&template=documentation-request.md&title=Bad%20Link]




If none of the above helps, here are some other potentially useful places
to go from here…


	Documentation Home [https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/]


	Project Home Page [https://visit.llnl.gov]


	User Email Archive [https://elist.ornl.gov/mailman/private/visit-users/]


	Issue Tracker [https://github.com/visit-dav/visit/issues]


	GitHub Repo [https://github.com/visit-dav/visit]


	Project Testing Dashboard [https://portal.nersc.gov/project/visit/]







          

      

      

    

 


  
_images/volume_opacity.png
Freeform curve

. -

Gaussian curves






_images/volumewindow.png
[ JON ] Volume plot attributes

Renderer Options Transfer function

Rendering Method

[ Default Rendering

Default Rendering Options

Sample data onto regular grid Number of samples 1000000 o
Methods
Gradient method °

Lighting and Material Properties

4 Lighting
Ambient: 0.40 Diffuse: 0.75 C Specular: 0.00 Shininess: 15.0 C
Misc
[ Show Legend
Make default Load Save Reset

Apply Post Dismiss






_images/volumeplot.png





_images/windowclearmenu.png
Vislt 2130 S

Pick points.
Plots

Reference lines

Global 1 New
Actve wdow B Clone
- Detete cui-pa
Clesall
TE O 5w ,
G2 G2 Eo Active window »
Active source |globe.sio. & copy R
Time Clear >
9 Lock .
“ < Rt
— Spinmode

B L % 4

Add, Operators, Delete Hde/Show Draw Variables,






_images/volumewindow2.png
[ JON ] Volume plot attributes

Renderer Options BRIERE AV i)}

Color

Color table Default + - | Align Smoothing Linear Equal
L] _|| L] _|] L]
Data

Scale @ Linear ( )Log ( ) Skew

Minimum Maximum
Opacity
Interaction mode @) Freeform () Gaussian () From Color Table Show colors

- - | ki Smooth | Attenuation

Opacity variable

Variable default
Make default Load Save Reset
Apply Post Dismiss






_images/windowlockmenu.png
B3 Vst 2130 S
File Controls Options Windows ] Plotatts Ophtts  »

bl T New Curtens
Actve wndow B Cone
Sources Detete CrteDel
Clearall
v &
TE O 5w ,
= & Active window »
Actve source [gabeasto |
|globe. e R
Time Clear >
3 ook VT o
« « Fllframe mode o
Spin mode few
e i vi
B ool Unlock everything






_images/windowcopymenu.png
B3 visit 2130

Global
Actve window

Sources.

-

Open Close Reopen

Actve source [gobesio.

B copy »| Viewsrom
Tme Clear ° Lighting from
3 Lock » | Annotations from
« « Fullframe mode o
Spin mode ——
. i Everything

Window 2.
Window 3,
Window 4.






_images/xray00.png
3.0 -2.0 -1.0

4.0





_images/windowtoolbar.png
(o] B8 = = o gF






_images/xray01.png





nav.xhtml

    
      Table of Contents


      
        		
          VisIt User Manuals
        


        		
          How to Search
          
            		
              Examples
            


          


        


        		
          GUI Manual
          
            		
              Introduction to VisIt
              
                		
                  Understanding how VisIt works
                


                		
                  Installing and Starting VisIt
                


                		
                  The Main Window
                


                		
                  Getting Started
                


              


            


            		
              Working with Databases
              
                		
                  Supported File Types
                


                		
                  File Open Window
                


                		
                  Database Read Options
                


                		
                  Sources Pane
                


                		
                  Time Pane
                


                		
                  File Information Window
                


              


            


            		
              Plots
              
                		
                  Working with Plots
                


                		
                  Standard Plot Types
                


              


            


            		
              Operators
              
                		
                  Working with Operators
                


                		
                  Operators that Generate New Variables
                


                		
                  Operator Types
                


              


            


            		
              Saving and Printing
              
                		
                  Session files
                


                		
                  Saving the Visualization Window
                


                		
                  Saving movies
                


                		
                  Saving Cinema
                


                		
                  Exporting databases
                


                		
                  Printing
                


              


            


            		
              Visualization Windows
              
                		
                  Managing vis windows
                


                		
                  Using vis windows
                


                		
                  Interactor settings
                


                		
                  The Popup menu and the Toolbar
                


              


            


            		
              Subsetting
              
                		
                  What is a subset?
                


                		
                  Subset Inclusion Lattice
                


                		
                  Using the Subset Window
                


                		
                  Material Interface Reconstruction
                


                		
                  Species
                


              


            


            		
              Quantitative Analysis
              
                		
                  Expressions
                


                		
                  Query
                


                		
                  Pick
                


                		
                  Lineout
                


                		
                  Data Level Comparisons Wizard
                


              


            


            		
              Making it pretty
              
                		
                  Annotations
                


                		
                  Color Tables
                


                		
                  Lighting
                


                		
                  Rendering Options
                


                		
                  View
                


              


            


            		
              Animation
              
                		
                  Animation basics
                


                		
                  Keyframing
                


                		
                  Movie tools
                


              


            


            		
              Interactive Tools
              
                		
                  Box Tool
                


                		
                  Line Tool
                


                		
                  Plane Tool
                


                		
                  Point Tool
                


                		
                  Sphere Tool
                


                		
                  Axis Restriction Tool
                


              


            


            		
              Multiple Databases and Windows
              
                		
                  Databases
                


                		
                  Database correlations
                


                		
                  Database comparison
                


                		
                  Multiple window operations
                


              


            


            		
              Client Server
              
                		
                  Client-Server Mode
                


                		
                  Host Profiles
                


              


            


            		
              Compute Engines
              
                		
                  Compute Engines Window
                


                		
                  Simulation Window
                


              


            


            		
              Command Window
              
                		
                  VisIt’s Python Command Line via the Command Window
                


                		
                  Macros
                


                		
                  VisIt Run Commands (RC) File
                


              


            


            		
              Preferences
              
                		
                  How VisIt Uses Preferences
                


                		
                  Setting Default Values
                


                		
                  How to Save Settings
                


                		
                  Appearance Window
                


                		
                  Plugin Manager Window
                


                		
                  Rendering Options Window
                


                		
                  Preferences Window
                


                		
                  File Locations
                


              


            


            		
              Help
              
                		
                  About VisIt
                


                		
                  Help Window
                


              


            


            		
              Startup Options
            


            		
              Building
              
                		
                  Basic Usage
                


                		
                  Advanced Usage
                


                		
                  Common Build Scenarios
                


              


            


            		
              Building on Windows
              
                		
                  Prerequisites
                


                		
                  Configuring With CMake GUI
                


              


            


            		
              Building on macOS with masonry
              
                		
                  Setup
                


                		
                  Running Masonry Scripts
                


              


            


            		
              Acknowledgments
            


            		
              Glossary
            


            		
              Contributing
              
                		
                  Quick Reference
                


                		
                  More on Images
                


                		
                  Tables
                


                		
                  Math
                


                		
                  Spell Checking Using Aspell
                


                		
                  Link checking using Sphinx linkcheck builder
                


                		
                  Things To Consider Going Forward
                


              


            


          


        


        		
          CLI Manual
          
            		
              Introduction to VisIt
              
                		
                  Overview
                


                		
                  Manual chapters
                


                		
                  Understanding how VisIt works
                


                		
                  Starting VisIt
                


                		
                  Python 3 vs Python 2
                


                		
                  Getting started
                


              


            


            		
              Python
              
                		
                  Overview
                


                		
                  Indentation
                


                		
                  Comments
                


                		
                  Identifiers
                


                		
                  Data types
                


                		
                  Control flow
                


                		
                  Functions
                


              


            


            		
              Quick Recipes
              
                		
                  Overview
                


                		
                  How to start
                


                		
                  Saving images
                


                		
                  Working with databases
                


                		
                  Opening a compute engine
                


                		
                  Working with plots
                


                		
                  Operators
                


                		
                  Quantitative operations
                


                		
                  Subsetting
                


                		
                  View
                


                		
                  Working with annotations
                


              


            


            		
              Functions
              
                		
                  ActivateDatabase
                


                		
                  AddArgument
                


                		
                  AddMachineProfile
                


                		
                  AddOperator
                


                		
                  AddPlot
                


                		
                  AddWindow
                


                		
                  AlterDatabaseCorrelation
                


                		
                  ApplyNamedSelection
                


                		
                  ChangeActivePlotsVar
                


                		
                  CheckForNewStates
                


                		
                  ChooseCenterOfRotation
                


                		
                  ClearAllWindows
                


                		
                  ClearCache
                


                		
                  ClearCacheForAllEngines
                


                		
                  ClearMacros
                


                		
                  ClearPickPoints
                


                		
                  ClearReferenceLines
                


                		
                  ClearViewKeyframes
                


                		
                  ClearWindow
                


                		
                  CloneWindow
                


                		
                  Close
                


                		
                  CloseComputeEngine
                


                		
                  CloseDatabase
                


                		
                  ColorTableNames
                


                		
                  ConstructDataBinning
                


                		
                  CopyAnnotationsToWindow
                


                		
                  CopyLightingToWindow
                


                		
                  CopyPlotsToWindow
                


                		
                  CopyViewToWindow
                


                		
                  CreateAnnotationObject
                


                		
                  CreateDatabaseCorrelation
                


                		
                  CreateNamedSelection
                


                		
                  DatabasePlugins
                


                		
                  DeIconifyAllWindows
                


                		
                  DefineArrayExpression
                


                		
                  DefineCurveExpression
                


                		
                  DefineMaterialExpression
                


                		
                  DefineMeshExpression
                


                		
                  DefinePythonExpression
                


                		
                  DefineScalarExpression
                


                		
                  DefineSpeciesExpression
                


                		
                  DefineTensorExpression
                


                		
                  DefineVectorExpression
                


                		
                  DeleteActivePlots
                


                		
                  DeleteAllPlots
                


                		
                  DeleteDatabaseCorrelation
                


                		
                  DeleteExpression
                


                		
                  DeleteNamedSelection
                


                		
                  DeletePlotDatabaseKeyframe
                


                		
                  DeletePlotKeyframe
                


                		
                  DeleteViewKeyframe
                


                		
                  DeleteWindow
                


                		
                  DemoteOperator
                


                		
                  DisableRedraw
                


                		
                  DrawPlots
                


                		
                  EnableTool
                


                		
                  EvalCubic
                


                		
                  EvalCubicSpline
                


                		
                  EvalLinear
                


                		
                  EvalQuadratic
                


                		
                  ExecuteMacro
                


                		
                  ExportDatabase
                


                		
                  Expressions
                


                		
                  GetActiveContinuousColorTable
                


                		
                  GetActiveDiscreteColorTable
                


                		
                  GetActiveTimeSlider
                


                		
                  GetAnimationAttributes
                


                		
                  GetAnimationTimeout
                


                		
                  GetAnnotationAttributes
                


                		
                  GetAnnotationObject
                


                		
                  GetAnnotationObjectNames
                


                		
                  GetCallbackArgumentCount
                


                		
                  GetCallbackNames
                


                		
                  GetDatabaseNStates
                


                		
                  GetDebugLevel
                


                		
                  GetDefaultFileOpenOptions
                


                		
                  GetDomains
                


                		
                  GetEngineList
                


                		
                  GetEngineProperties
                


                		
                  GetGlobalAttributes
                


                		
                  GetGlobalLineoutAttributes
                


                		
                  GetInteractorAttributes
                


                		
                  GetKeyframeAttributes
                


                		
                  GetLastError
                


                		
                  GetLight
                


                		
                  GetLocalHostName
                


                		
                  GetLocalUserName
                


                		
                  GetMachineProfile
                


                		
                  GetMachineProfileNames
                


                		
                  GetMaterialAttributes
                


                		
                  GetMaterials
                


                		
                  GetMeshManagementAttributes
                


                		
                  GetMetaData
                


                		
                  GetNumPlots
                


                		
                  GetOperatorOptions
                


                		
                  GetPickAttributes
                


                		
                  GetPickOutput
                


                		
                  GetPickOutputObject
                


                		
                  GetPipelineCachingMode
                


                		
                  GetPlotInformation
                


                		
                  GetPlotList
                


                		
                  GetPlotOptions
                


                		
                  GetPreferredFileFormats
                


                		
                  GetQueryOutputObject
                


                		
                  GetQueryOutputString
                


                		
                  GetQueryOutputValue
                


                		
                  GetQueryOutputXML
                


                		
                  GetQueryOverTimeAttributes
                


                		
                  GetQueryParameters
                


                		
                  GetRenderingAttributes
                


                		
                  GetSaveWindowAttributes
                


                		
                  GetSelection
                


                		
                  GetSelectionList
                


                		
                  GetSelectionSummary
                


                		
                  GetTimeSliders
                


                		
                  GetUltraScript
                


                		
                  GetView2D
                


                		
                  GetView3D
                


                		
                  GetViewAxisArray
                


                		
                  GetViewCurve
                


                		
                  GetWindowInformation
                


                		
                  HideActivePlots
                


                		
                  HideToolbars
                


                		
                  IconifyAllWindows
                


                		
                  InitializeNamedSelectionVariables
                


                		
                  InvertBackgroundColor
                


                		
                  Launch
                


                		
                  LaunchNowin
                


                		
                  Lineout
                


                		
                  ListDomains
                


                		
                  ListMaterials
                


                		
                  ListPlots
                


                		
                  LoadAttribute
                


                		
                  LoadNamedSelection
                


                		
                  LoadUltra
                


                		
                  LocalNameSpace
                


                		
                  LongFileName
                


                		
                  MoveAndResizeWindow
                


                		
                  MovePlotDatabaseKeyframe
                


                		
                  MovePlotKeyframe
                


                		
                  MovePlotOrderTowardFirst
                


                		
                  MovePlotOrderTowardLast
                


                		
                  MoveViewKeyframe
                


                		
                  MoveWindow
                


                		
                  NodePick
                


                		
                  NumColorTableNames
                


                		
                  NumOperatorPlugins
                


                		
                  NumPlotPlugins
                


                		
                  OpenComputeEngine
                


                		
                  OpenDatabase
                


                		
                  OpenMDServer
                


                		
                  OperatorPlugins
                


                		
                  OverlayDatabase
                


                		
                  PickByGlobalNode
                


                		
                  PickByGlobalZone
                


                		
                  PickByNode
                


                		
                  PickByNodeLabel
                


                		
                  PickByZone
                


                		
                  PickByZoneLabel
                


                		
                  PlotPlugins
                


                		
                  PointPick
                


                		
                  PrintWindow
                


                		
                  PromoteOperator
                


                		
                  PythonQuery
                


                		
                  Queries
                


                		
                  QueriesOverTime
                


                		
                  Query
                


                		
                  QueryOverTime
                


                		
                  ReOpenDatabase
                


                		
                  ReadHostProfilesFromDirectory
                


                		
                  RecenterView
                


                		
                  RedoView
                


                		
                  RedrawWindow
                


                		
                  RegisterCallback
                


                		
                  RegisterMacro
                


                		
                  RemoveAllOperators
                


                		
                  RemoveLastOperator
                


                		
                  RemoveMachineProfile
                


                		
                  RemoveOperator
                


                		
                  RemovePicks
                


                		
                  RenamePickLabel
                


                		
                  ReplaceDatabase
                


                		
                  ResetLineoutColor
                


                		
                  ResetOperatorOptions
                


                		
                  ResetPickLetter
                


                		
                  ResetPlotOptions
                


                		
                  ResetView
                


                		
                  ResizeWindow
                


                		
                  RestoreSession
                


                		
                  RestoreSessionWithDifferentSources
                


                		
                  SaveAttribute
                


                		
                  SaveNamedSelection
                


                		
                  SaveSession
                


                		
                  SaveWindow
                


                		
                  SendSimulationCommand
                


                		
                  SetActiveContinuousColorTable
                


                		
                  SetActiveDiscreteColorTable
                


                		
                  SetActivePlots
                


                		
                  SetActiveTimeSlider
                


                		
                  SetActiveWindow
                


                		
                  SetAnimationTimeout
                


                		
                  SetAnnotationAttributes
                


                		
                  SetBackendType
                


                		
                  SetCenterOfRotation
                


                		
                  SetColorTexturingEnabled
                


                		
                  SetCreateMeshQualityExpressions
                


                		
                  SetCreateTimeDerivativeExpressions
                


                		
                  SetCreateVectorMagnitudeExpressions
                


                		
                  SetDatabaseCorrelationOptions
                


                		
                  SetDebugLevel
                


                		
                  SetDefaultAnnotationAttributes
                


                		
                  SetDefaultFileOpenOptions
                


                		
                  SetDefaultInteractorAttributes
                


                		
                  SetDefaultMaterialAttributes
                


                		
                  SetDefaultMeshManagementAttributes
                


                		
                  SetDefaultOperatorOptions
                


                		
                  SetDefaultPickAttributes
                


                		
                  SetDefaultPlotOptions
                


                		
                  SetGlobalLineoutAttributes
                


                		
                  SetInteractorAttributes
                


                		
                  SetKeyframeAttributes
                


                		
                  SetLight
                


                		
                  SetMachineProfile
                


                		
                  SetMaterialAttributes
                


                		
                  SetMeshManagementAttributes
                


                		
                  SetNamedSelectionAutoApply
                


                		
                  SetOperatorOptions
                


                		
                  SetPickAttributes
                


                		
                  SetPipelineCachingMode
                


                		
                  SetPlotDatabaseState
                


                		
                  SetPlotDescription
                


                		
                  SetPlotFollowsTime
                


                		
                  SetPlotFrameRange
                


                		
                  SetPlotOptions
                


                		
                  SetPlotOrderToFirst
                


                		
                  SetPlotOrderToLast
                


                		
                  SetPlotSILRestriction
                


                		
                  SetPrecisionType
                


                		
                  SetPreferredFileFormats
                


                		
                  SetPrinterAttributes
                


                		
                  SetQueryFloatFormat
                


                		
                  SetQueryOutputToObject
                


                		
                  SetQueryOutputToString
                


                		
                  SetQueryOutputToValue
                


                		
                  SetQueryOverTimeAttributes
                


                		
                  SetRemoveDuplicateNodes
                


                		
                  SetRenderingAttributes
                


                		
                  SetSaveWindowAttributes
                


                		
                  SetTimeSliderState
                


                		
                  SetTreatAllDBsAsTimeVarying
                


                		
                  SetTryHarderCyclesTimes
                


                		
                  SetUltraScript
                


                		
                  SetView2D
                


                		
                  SetView3D
                


                		
                  SetViewAxisArray
                


                		
                  SetViewCurve
                


                		
                  SetViewExtentsType
                


                		
                  SetViewKeyframe
                


                		
                  SetWindowArea
                


                		
                  SetWindowLayout
                


                		
                  SetWindowMode
                


                		
                  ShowAllWindows
                


                		
                  ShowToolbars
                


                		
                  Source
                


                		
                  SuppressMessages
                


                		
                  SuppressQueryOutputOff
                


                		
                  SuppressQueryOutputOn
                


                		
                  TimeSliderGetNStates
                


                		
                  TimeSliderNextState
                


                		
                  TimeSliderPreviousState
                


                		
                  TimeSliderSetState
                


                		
                  ToggleBoundingBoxMode
                


                		
                  ToggleCameraViewMode
                


                		
                  ToggleFullFrameMode
                


                		
                  ToggleLockTime
                


                		
                  ToggleLockTools
                


                		
                  ToggleLockViewMode
                


                		
                  ToggleMaintainViewMode
                


                		
                  ToggleSpinMode
                


                		
                  TurnDomainsOff
                


                		
                  TurnDomainsOn
                


                		
                  TurnMaterialsOff
                


                		
                  TurnMaterialsOn
                


                		
                  UndoView
                


                		
                  UpdateNamedSelection
                


                		
                  Version
                


                		
                  WriteConfigFile
                


                		
                  WriteScript
                


                		
                  ZonePick
                


              


            


            		
              Attribute Reference
              
                		
                  AMRStitchCell: AMRStitchCellAttributes()
                


                		
                  Animation: AnimationAttributes()
                


                		
                  Annotation: AnnotationAttributes()
                


                		
                  Axis: AxisAttributes()
                


                		
                  AxisAlignedSlice4D: AxisAlignedSlice4DAttributes()
                


                		
                  Boundary: BoundaryAttributes()
                


                		
                  BoundaryOp: BoundaryOpAttributes()
                


                		
                  Box: BoxAttributes()
                


                		
                  CartographicProjection: CartographicProjectionAttributes()
                


                		
                  Clip: ClipAttributes()
                


                		
                  Cone: ConeAttributes()
                


                		
                  ConnectedComponents: ConnectedComponentsAttributes()
                


                		
                  ConstructDataBinning: ConstructDataBinningAttributes()
                


                		
                  Contour: ContourAttributes()
                


                		
                  CoordSwap: CoordSwapAttributes()
                


                		
                  CreateBonds: CreateBondsAttributes()
                


                		
                  Curve: CurveAttributes()
                


                		
                  Cylinder: CylinderAttributes()
                


                		
                  DataBinning: DataBinningAttributes()
                


                		
                  DeferExpression: DeferExpressionAttributes()
                


                		
                  Displace: DisplaceAttributes()
                


                		
                  DualMesh: DualMeshAttributes()
                


                		
                  Edge: EdgeAttributes()
                


                		
                  Elevate: ElevateAttributes()
                


                		
                  EllipsoidSlice: EllipsoidSliceAttributes()
                


                		
                  Explode: ExplodeAttributes()
                


                		
                  ExportDB: ExportDBAttributes()
                


                		
                  ExternalSurface: ExternalSurfaceAttributes()
                


                		
                  Extrude: ExtrudeAttributes()
                


                		
                  FFT: FFTAttributes()
                


                		
                  FilledBoundary: FilledBoundaryAttributes()
                


                		
                  Flux: FluxAttributes()
                


                		
                  Font: FontAttributes()
                


                		
                  Global: GlobalAttributes()
                


                		
                  Histogram: HistogramAttributes()
                


                		
                  IndexSelect: IndexSelectAttributes()
                


                		
                  IntegralCurve: IntegralCurveAttributes()
                


                		
                  InverseGhostZone: InverseGhostZoneAttributes()
                


                		
                  Isosurface: IsosurfaceAttributes()
                


                		
                  Isovolume: IsovolumeAttributes()
                


                		
                  Keyframe: KeyframeAttributes()
                


                		
                  LCS: LCSAttributes()
                


                		
                  Label: LabelAttributes()
                


                		
                  Lagrangian: LagrangianAttributes()
                


                		
                  Light: LightAttributes()
                


                		
                  LimitCycle: LimitCycleAttributes()
                


                		
                  Lineout: LineoutAttributes()
                


                		
                  Material: MaterialAttributes()
                


                		
                  Mesh: MeshAttributes()
                


                		
                  MeshManagement: MeshManagementAttributes()
                


                		
                  Molecule: MoleculeAttributes()
                


                		
                  MultiCurve: MultiCurveAttributes()
                


                		
                  MultiresControl: MultiresControlAttributes()
                


                		
                  OnionPeel: OnionPeelAttributes()
                


                		
                  ParallelCoordinates: ParallelCoordinatesAttributes()
                


                		
                  PersistentParticles: PersistentParticlesAttributes()
                


                		
                  Poincare: PoincareAttributes()
                


                		
                  Printer: PrinterAttributes()
                


                		
                  Process: ProcessAttributes()
                


                		
                  Project: ProjectAttributes()
                


                		
                  Pseudocolor: PseudocolorAttributes()
                


                		
                  RadialResample: RadialResampleAttributes()
                


                		
                  Reflect: ReflectAttributes()
                


                		
                  Remap: RemapAttributes()
                


                		
                  Rendering: RenderingAttributes()
                


                		
                  Replicate: ReplicateAttributes()
                


                		
                  Resample: ResampleAttributes()
                


                		
                  Revolve: RevolveAttributes()
                


                		
                  SPHResample: SPHResampleAttributes()
                


                		
                  SaveWindow: SaveWindowAttributes()
                


                		
                  Scatter: ScatterAttributes()
                


                		
                  Slice: SliceAttributes()
                


                		
                  SmoothOperator: SmoothOperatorAttributes()
                


                		
                  SphereSlice: SphereSliceAttributes()
                


                		
                  Spreadsheet: SpreadsheetAttributes()
                


                		
                  Stagger: StaggerAttributes()
                


                		
                  StatisticalTrends: StatisticalTrendsAttributes()
                


                		
                  SubdivideQuads: SubdivideQuadsAttributes()
                


                		
                  Subset: SubsetAttributes()
                


                		
                  SurfaceNormal: SurfaceNormalAttributes()
                


                		
                  Tensor: TensorAttributes()
                


                		
                  ThreeSlice: ThreeSliceAttributes()
                


                		
                  Threshold: ThresholdAttributes()
                


                		
                  Transform: TransformAttributes()
                


                		
                  TriangulateRegularPoints: TriangulateRegularPointsAttributes()
                


                		
                  Truecolor: TruecolorAttributes()
                


                		
                  Tube: TubeAttributes()
                


                		
                  Vector: VectorAttributes()
                


                		
                  View: ViewAttributes()
                


                		
                  View2D: View2DAttributes()
                


                		
                  View3D: View3DAttributes()
                


                		
                  ViewAxisArray: ViewAxisArrayAttributes()
                


                		
                  ViewCurve: ViewCurveAttributes()
                


                		
                  Volume: VolumeAttributes()
                


              


            


            		
              VisIt CLI Events
            


            		
              Contributing To VisIt CLI Documentation
              
                		
                  Steps to update the CLI Manual
                


              


            


            		
              Acknowledgments
            


          


        


        		
          Tutorials
          
            		
              VisIt Basics
              
                		
                  Starting VisIt
                


                		
                  What you see
                


                		
                  Opening files
                


                		
                  Making a plot
                


                		
                  Modifying the plot attributes
                


                		
                  Applying an operator
                


                		
                  VisIt interaction modes
                


                		
                  Other plots
                


                		
                  Other operators
                


                		
                  Saving an image
                


                		
                  Saving a database
                


                		
                  Subsetting
                


              


            


            		
              Data Analysis
              
                		
                  Queries
                


                		
                  Queries over Time
                


                		
                  Built-in queries
                


                		
                  Expressions
                


              


            


            		
              Scripting
              
                		
                  Command line interface overview
                


                		
                  Launching the CLI
                


                		
                  A first action in the CLI
                


                		
                  Tips about Python
                


                		
                  Example scripts
                


                		
                  Recording GUI actions to Python scripts
                


                		
                  Learning the CLI
                


                		
                  Advanced features
                


              


            


            		
              Aneurysm
              
                		
                  Open the dataset
                


                		
                  Plotting the mesh topology
                


                		
                  Examining scalar fields
                


                		
                  Contours and sub-volumes of high velocity
                


                		
                  Visualizing the velocity vector field
                


                		
                  Publishing to SeedMe.org
                


                		
                  Calculating the flux of a velocity field through a surface
                


              


            


            		
              Potential Flow
              
                		
                  Open the dataset
                


                		
                  Plotting the mesh topology
                


                		
                  Examining the velocity magnitude
                


                		
                  Visualizing the velocity vector field
                


              


            


            		
              MRI
              
                		
                  Open the dataset
                


                		
                  Plotting areas of interest
                


                		
                  Exploring our MRI dataset
                


              


            


            		
              Connected Components
              
                		
                  Open the dataset
                


                		
                  Use a scalar field to cut our mesh
                


                		
                  Labeling Connected Components with an Expression
                


                		
                  Using the Connected Component Summary query
                


              


            


            		
              Remote Usage
              
                		
                  Using X Display forwarding though ssh
                


                		
                  Using VNC
                


                		
                  Using client/server
                


                		
                  Using batch systems interactively
                


              


            


            		
              Making Movies
              
                		
                  Creating a movie of a simulation evolving over time
                


                		
                  Creating a good image from a single time state
                


                		
                  Encoding the movie with the movie wizard
                


                		
                  Encoding the movie with a Python script
                


                		
                  Other Tips for Making Quality Movies
                


              


            


            		
              Molecular data features
              
                		
                  Replicate and CreateBonds Examples
                


                		
                  Other plots and operators
                


                		
                  Analysis Capabilities
                


              


            


          


        


        		
          Developer Manual
          
            		
              Developing at GitHub
              
                		
                  Overview
                


                		
                  Setting Up Git LFS
                


                		
                  Accessing GitHub
                


                		
                  Cloning the Repository and Setting Up Hooks
                


                		
                  Creating a Branch
                


                		
                  Doing Development
                


              


            


            		
              Coding Style Guide
              
                		
                  Naming Conventions
                


                		
                  File Structure
                


                		
                  Class Description
                


                		
                  Class Definition
                


                		
                  Method Structure
                


                		
                  Definition
                


                		
                  Body
                


                		
                  Caveats for ensuring that VisIt builds on Windows
                


              


            


            		
              Creating a Pull Request
              
                		
                  Overview
                


                		
                  Forking the repo
                


                		
                  Working with the Template
                


                		
                  Reviewers
                


                		
                  Iteration Process
                


              


            


            		
              Reviewing a Pull Request
              
                		
                  Overview
                


                		
                  Checklist
                


                		
                  Comments and Tasks
                


                		
                  Review Changes
                


                		
                  Iteration Process
                


              


            


            		
              Release Candidate (RC) Development
              
                		
                  Overview
                


                		
                  Creating the RC branch
                


                		
                  Making the changes
                


                		
                  Creating the pull request on the release candidate
                


                		
                  Apply the same changes to develop
                


                		
                  Creating the pull request for develop
                


              


            


            		
              Regression Testing
              
                		
                  Overview
                


                		
                  Running regression tests
                


                		
                  How regression testing works
                


                		
                  Using VisIt Test Suite for Sim Code Testing
                


              


            


            		
              XML Tools
              
                		
                  Overview
                


                		
                  CMake Integration
                


              


            


            		
              Preparing for a Release
              
                		
                  Overview
                


                		
                  Preparing for a Patch Release
                


                		
                  Preparing for a Minor Release
                


                		
                  Preparing for a Major Release
                


              


            


            		
              Creating a Release
              
                		
                  Overview
                


                		
                  Tagging the release
                


                		
                  Deleting a release
                


              


            


            		
              Finding Memory Leaks
              
                		
                  Overview
                


                		
                  Building VisIt for Valgrind and vtkDebugLeaks
                


                		
                  Running VisIt with Valgrind
                


              


            


            		
              Using Docker
              
                		
                  Overview
                


                		
                  Installing Docker on Windows
                


                		
                  Creating a Docker Container
                


                		
                  Creating a Dockerfile From Scratch
                


                		
                  Useful Docker Commands
                


              


            


            		
              Site Reliability Engineering (SRE)
              
                		
                  Goals
                


                		
                  The Basic Process
                


                		
                  Roles
                


                		
                  SRE vs. Product Development
                


                		
                  Active SRE Issues Repo
                


                		
                  Supported Methods of Contact
                


                		
                  Response Time and Response vs. Resolution
                


                		
                  Serious Incidents and Postmortems
                


                		
                  Handoffs
                


                		
                  Escalation
                


                		
                  Scheduling and Load Balancing
                


                		
                  A Common Misconception: SRE is an Interruption to Programmatic Work
                


              


            


            		
              OpenGL in VisIt
              
                		
                  OpenGL in Qt
                


                		
                  OpenGL in VTK
                


                		
                  OpenGL documentation
                


              


            


            		
              Docker Containers For CI Testing
              
                		
                  Creating the container with Docker on the same system as the git checkout
                


                		
                  Creating the container without Docker on the same system as the git checkout
                


                		
                  Push the container to Dockerhub
                


                		
                  Update VisIt to use the new Docker image
                


              


            


          


        


      


    
  

_images/Mol_plot_and_charge_iso_slice.png





_images/Mol_plot_and_pc_charge_threesliceb.png





_images/Mol_plot_and_charge_isosurf.png





_images/Mol_plot_and_vol_charge.png





_images/Mol_plot_and_vectors.png





_images/Mol_povray_supercond_small.png





_images/Mol_povray_supercond_closeup.png





_images/Mol_pretty_molplot.png





_images/Mol_pretty_annot.png





_images/Mol_pretty_vecplot.png





_images/MakingMovies-Encoding5.png
© Savemovie wizard

E-mail notification

Do you want to be notified by E-mail when your movie completes?
Coves @ o

Email address






_images/MakingMovies-Encoding4.png
© Savemovie wizard

Choose filename

Choose the output directory and base flename for your movie(s).

Output drectory [C\Documents\Vett) |

o lename [doreas






_images/MakingMovies-Encoding7.png
Commands. - o X

® Record 10 pause | u s |

Store commands in [actve tab

T Append commands to existing text

1]2l3lals]lelz]s] Mamos|

# Set the basic save options
save_atts = SaveWindowAvcributes ()
=ave_stcs.family = 0

=ave_stcs.format = save_sces.BNG
=ave_stcs.resConstraint = save_sces.NoConstraint
=ave_svcs wideh = 1200

save_acts height = 1068

# Got the mumber of time steps
n_vime_steps = TimeSliderGeclistaves ()

b 0 (e (2 (i S v o o e G
for vine_stap in zange 0,n_cime steps) -
Tineiiidersassiate (vime suep)
veavus fiictems < rdBeedrads4d png” 3 vine_svep
e SaveWindonatersutes (seve atte,
Seveindon |

e | = ———

__pot | o |






_images/MakingMovies-Encoding6.png
<«

Save movie wizard

Choose method

Choose when and how you would like Vs to reate your movies.
@ Now, use currently allocated processors:
€ Now, use a new instance of VIt
€ Later, tel me the command torun






_images/MakingMovies-Encoding9.png
Commands

® Record 10 pause | u s |

Store commands in [actve tab

T Append commands to existing text

1]2l3lals]lelz]s] Mamos|

from subprocess import call

cor come_scep i senge 0,n_cime_steps, i -
Eile = "dbreskadsdd pug- 3 time svep
21102 - dbreakad €00x533 4044 pg 8 vime_step
Ga11(Ccommerar, Filel, "resiser, "eooseein, fitezs)|






_images/MakingMovies-Encoding8.png
%4 Commands
® Record 10 pause | u s |
Store commandsin [rtve b -
™ Agpend commans o exsting text
1]2l3lals]lelz]s] Mamos|
frem visis_seils tmport ¢
encoing.ancods (*Hbreskadsosd.pag”, "dbreskad.spg", Eduped)
e = T =






_images/Mol_enum_species.png
Molecule
Var: species

0.000 1.000 2.000 3.000 4.000

Max: 4.000
Min: 0.000






_images/Mol_enum_element.png
Molecule
Var: element

H (e} N o P

Max: 15.00
Min: 1.000






_images/Mol_expr_xcoord.png
Molecule

Var: xcoord

-6.091 -0.05800 5.974 12.01

-12.12

1
2

1

Max: 12.0
Min: -12






_images/Mol_expr_degree.png
Molecule

Var: degree

. L . |
1.000 2.000 3.000 4,000 5.000

Max: 4.000

Min: 1.000





_images/Remote-VNCViewer7.png
[ czVNC - Properties - o

Preserve aspect ratio

Keys

[ Pass volume up/down/mte keys diretly to VNC Server
255 media keyslike play/pause direcly to VNC Server
ass special keys irecly to VN Server

s






_images/Remote-VNCViewer6.png





_images/Remote-XForwarding1.png
0 X-Win32 18 Configuration

@ Comectons  [P1Window [l Network s Input

Window Mode Mtple B

Bront

& searty

Use Panning

Set Xresource Defaults

PseudoColor Emulaton -
Backing Store: When Requested v

G S
SoftereRerdre e penc.

Display Splash Screen On Startup.

] Disable Xinerama Extension

O Disable Composite Extension

] Force Composite redirection for rootiess windows

About Help.






_images/Remote-VisItVNC.png
& Applications _Places

fle Controls Options Windows PlotAts OpATs Help

Active window 1.~ Auto apply
e & o & @
% ¥ L% 4,

Add, operators,

P |@|pseudocolor - dx

Applyto

Delete  HidelShow Draw

© activevindow ) all windows
v/ Apply operators t alplots:

1 Apply subset selections o allpots

£ Thissie 6 O

dd -3 3~

=i lali=E::)

FA R KL

DB:
Cycle: 0

GRS L L
NN EWO

lobe silo.
Time: Qo






_images/RenderingOptionsBasic.png
sasic | Advanced | Iformatin |

Smallest cell
Draw objects as.
@ Surfaces
Use display lists
* Auto

[~ stereo

€ Red/Blue

& Crystal Eyes

Strength

Sharpness

[ Antialiasing
‘Composter Settings
¥ ordered Compositing
Depth Compositer Threads [2
Depth Compositer Blocking [65536
Alpha Compositer Threads [2
Alpha Compositer Blocking [65536
™ Depth Peeling

I Multi resolution for 2d AMR data

™ specular lighting

Occlusion ratio o.01
Max number of Peels 2

02000000094994903

© Wireframe € Points.
© Aways © Never
€ nterlace
€ Red/Green

- 60%

i

Apply

e | e






_images/RenderingOptionsAdvanced.png
Basic  Advanced | Information |

Use scalable rendering

* Auto

£ Auto
Compact domains on engine

© Auto

Strength

¥ Apply color using textures

When polygon count exceeds 2000 kPolys =]

‘Compress images (geometry too) from engine.

When domains per process exceeds [256 =

I Shadows (scalable rendering only)

I Depth Cueing (scalable rendering only)

I cue automatically along camera depth

Manual start point [-10 0 0
Manual end point [1000

© Aways © Never

© Aways @ Never

© Aways @ Never

Apply

rs | osmss






_images/Scripting-Commands.png
Commands. - o X

Oreod | werase | msw |
Store commandsin [rtve b
™ Agpend commancs o exsting text

1l2lslalslsl7]sl magesl

DeleteAlPlots)
| AddPlot Pseudocolor”, “temp”)
is0_atts = IsosurfaceAttributes()
is0_atts. contourMethod = iso_atts.Value
is0_atts.varizble = “temp”
 AddOperator Tsosurface”)
DranPlots)
foriinrange(30):
is0_atts. contourValue = (2 +0,1%)
‘SetOperatorOptions so_atts)
# For moviemaing, youll need to save off the image.
# Saveitindow(]

> Execute Clear | vetemeao |

__pot | o |






_images/RenderingOptionsInformation.png
T3 Rendering options

Basic | Advanced  Information |

I Query after each render

Using Scalable Rendering:  no
Frames per second: 342 58 0
Approximate polygon count: 0

X Extents: not set. not set.
¥ Extents: not set. not set.
Z Extents: not set. not set.






_images/Stereo.png
DB: noise.silo DB: noise.silo
Cycle: 0 Cycle: 0






_images/Scripting-StreamlineOutput.png
B Window 1 - o X

[BoBE0=8 = = @ # k|6 & 6w a4 -5~
Fath Lk \ BB

Pseudocolr
Var temp.
Unifs:

580
|}

Laeo1
| aa0

L2201

-

Max 5850
Wi 1098

Pseudocolbr
Var'g-Seed Point D
W0

265
Lo

sss0

-

Max 2120
WMin: 00000






_images/Remote-VNCViewer5.png





_images/Remote-ClientServer2.png
Host profiles

Hosts.

LLNL Ansel
LLNL Borax

LLNL Lassen
LLNL Oslic

LLNL Pascal

LLNL Quartz
LLNL RZ Alastor
LLNLRZ Ansel
LLNL RZ Genie
LLNL RZ Has GPU.
LLNL RZ Topaz
LLNLRZ Trona
LLNL Surface
LLNL Syrah

LLNL Vulcan
SLAC Red

il
il

it stings | Lounchprfe |

=] [ el

5 ==

& [ansel.Inl.gov ansel#.li.gov ansel###.ln.gov ansel# ansel## ansel %

5 veimnnodes [0

— | M processors [1
Path to Vilt installation [ /usr/gappsfvisit
Account
Username [
~Comnecton

T Share batch job with Metadata Server

[ Tunnel data connections through SSH
Method used to determine local host name when ot tumeling

€ Use local machine name.

& Parse from SSH_CLIENT environment varisble

€ speafy manualy: [

rsiomand [
I ssport 2
I Use gateway I






_images/Remote-ClientServer4.png
7 Enter Password 7%

Password for user @quartz.Il.gov:






_images/Remote-ClientServer3.png
File open

~{cunrent directory)
~-(goup 1 directory level)

cun2dsilo 5
cun2d_colmajor.
cunadilo

cun3d_colmajor.silo
dbAOD.pdb
dbB0D.pdb.
dbC00.pdb
globesilo
globe_mat0.silo

=l

Open fie as type: [Guess from fie name/extension |~ Set defauit open options.

_ree |

o canal






_images/Remote-Mxterm1.png
Select options for ‘quartz1538.lnlgov X

serial
parallel interactive pdebug
atch

Numprocs (36 3] s






_images/Remote-LANDeskPortal.png
% LLNL LANDesk Software Portal

Lawrence Livermore.
National Laboratory

& Launchpad

LLNL LANDesk Software Portal

Neme Type Description Sttus  PolicyType  LastRun
Microsoft Teams Package  Microsoft Teams Optional
Microsoft Visio Package  REQUIRES Pre-Purchased 0365 Sub Optional
Nessus Agent - CSP Too  Package  Nessus Agent for all Networks v7.4, Optional
Office 2016 (Office 365\ Package  Office 2016 Run From Source AIO. Optional
Oracle InstantClient ~ Package  Oracle InstantClient Optional
Oracle UCM Desktop It Package  Oracle UCM Desktop Integration Su Optional
PuTTY Package  PuTTY SSH and Telnet Client v0.72 Optional 06/24/2019 08:2900
Remp Multicast Receiver Package  Remp Multicast Receiver v2.3.1 Optional
RealVNC Viewer Package  RealVNC Viewer v6.19325 Optional 01/29/2019 13:5347
Safeweb AppStream Clie Package  Safeweb AppStream Client Optional
SEP (x64) Package  Symantec Endpoint Protection v14 Optional
Splunk Universal Forwan Package  Splunk Universal Forwarder 7.33 Optional
Stretchbreak Package  Stretchbreak 661 Optional
Uninstall Adobe Acrobat Package  Uninstall Adobe Acrobat - Al Versic Optional
WebEx Mectings Deskto Package  WebEx Mectings Desktop App and Optional 05/02/2019 10:14:19
Wintap with MFA Plugin Package  Wintap 5 with MFA Plugins -Clean Optional

Apps
[ 0ocs
[ inks

[ Recommended
] Optonal

[ Notinstaled
O installe

[ Standard COE
[ Dev-0a






_images/Remote-VNCViewer2.png
[ czVNC - Properties - o

General Options  Expert

Labels
o nest abels,separate names with a forward slesh (/)

[Erers bel mame orpress Down o spply eising b

Security
Encryption: | Let VNC Server choose. v

uthenticate using single sign-on (S50) if possible

thenticate using a smartcard or certficate store if possible

Privacy
lpdate desktop preview automatically






_images/Remote-VNCViewer1.png
] &sgnin. ~

Delete. Y
Duplicate CtrlsD.
Properties... Alt+Enter

Import connections...
Export connections...

Preferences..
Bit

There are no computers in your address book at present.
Sign in to your RealVNC account to automatically discover team computers.

Alternatively, enter the VNC Server IP address or hostname in the Search bar to connect directly.






_images/Remote-VNCViewer4.png





_images/Remote-VNCViewer3.png
VNC Viewer

Ele View Help

VNCCONNCCT [enter o VNC Server address orsearch
by RealiC

] &sgnin. ~

e RZVNC






_images/Remote-ClientServer1.png
‘Setup Host Profiles and Configuration - o X

To finish the Visitnstal on ths computer select any computing centers whose resources
You are using to confgure host profes automatcal for ther machines.

Select computing centers used

7 Argonne National Laboatory (ANL) network. =
[ Arizona State University network
[ Atomic Weapons Establishment network
] Clemson Universty network
e e abro (L) dsentcr
(S e e
e G0 pen e
[ Los Alamos National Laboratory (LANL) closed network
[ Leibniz Supercomputing Centre network
[ Lousiana State University network
(0] National Center for Atmospheric Research (NCAR) network
- _'_I

Select default configuration

@ None (use Visit's standard defaults)
Chombo Users
Lowrence Livermore National Laboratory
Princeton University






_images/RemRecentPaths.png
3 Remove recent paths S

‘Select paths to remove.

TocslhostGA VIt 2 12RC\Bui
locslhostG\A Vit 212RC\Bui
{TocalhostCAA Vit 21 2RC\Build 6i.reh data\ei_hdfs et data |
TocalhostGAA VIt L2RC\Buid 164 reh e Relesse
locslhostG\A Vit 2:12RC\Build 164 rehexe

R (Rl (et

(o] [Cemai ]






_images/adding_windowsbuild_dir.png
A CMake 3122 - C/A Visit/Build o x
File_Tools Options _Help

Where s the source code: [C:/A_Visitvsitisrc

Where to buid the binaries: [C:/A_Visit/Buid

W Gowped ¥ advanced |8 AddEty | 3¢ Remove sty

Value

Name

A Add Cache Entry






_images/activewindow.png
Vislt 2130 S

File Controls Options Windows PlotAtts OpAtts  »|
Global
Actve window

] Auto apply.

Sources.

e O § @

Open Cose Reopen | Replace Overlay.

(e





_images/after_first_configure.png
A Make 312.2 - C/A Visit/GIT2/build3 - o x
File Tools Options Help

Where s the source code: [C:/A_Visit/GIT2jvisitjsrc
Where to buid the binaries: [C:/A_Visit/GIT2/buid3. | Browse Buid..
Search: [ Grouped 7 Advanced| b AddEntry | 3¢ Remove Entry

Name Value
Ungrouped Entries
BOOST

BOXLIB

ccMio

CHITSIO

CGNS

CMAKE

CONDUIT

GDAL

HSPART

HAVE

HDF4

HDFS

JPEG

LOCAL

MFEM

ML

NETCDF

OPENEXR =
[ 3

Press Configure to update and display new values n red, then press Generate to generate selected buid fles.

Configue | _ Generate | Open Project | current Generator: Visual Studio 15 2017 Wins4

Check size of dowle |
Check size of double - done

Locking for limits.n

Locking for lemits.n - found

Locking for uaista.n

Locking for wnistd.n - net found

Locking for prazead.n

Locking for penzesd.n - not found

Locking for include files sys/types.n, sys/prctl.n

Looking for include files sys/types.h, sys/prctl.h - not found
Cnsck if the system is big endizn

Seazening 16 bic snceger

Check size of unsigned shor

Check size of unsigned shot - done

Using unsigned short

Check if the system is big endian - litcle endian

Found Threads: TRUE _'_I






_images/advancedoptions.png
=[@] = |

FostSetings | Launchprofies

LLNL RZ Alastor
LLNL RZ Cereal
LLNLRZ GPU
LLNLRZ Merl
LLNL RZ Thiller
LLNLRZ uSeq
LLNLRZ Zeus
LLNL Surface
LLNL Syrah
LLNL Vulcan
SLAC Red

Machines

Remote Profies

parallel pdebug
paralel psml
parallel pbstch

) [ vereoeeut

o srm.out






_images/animation.png
LK ] Animation

[~ Cache animation for faster playback
Animation playback
© Looping () Play once () Swing

soinaon e [ ]

Animation speed






_images/altercorrelation.png
Alter database comrelation: Correlation01 (uc=21 =) [P

Name [Correlation01

F—

Sources Correlated sources:

‘dbA00.pdb
dbB00.pdb.

[ G coron






_images/animationtoolbar.png
e0oe Vislt 2.13.0

Global

Active window 1 Auto apply
Sources

B

| Open Close Reopen

Active source = wave.visit
iT\me

0000
| @ <« mmm > >
Plots

| L % 45

Delete  Hide/Show  Draw  Variables,

Add,  Operatorsy

} € |pseudocolor - u

Apply to © active window all windows

Apply operators to all plots
| Apply subset selections to all plots





_images/animationmenu.png
Lock

B Resctview

& Recenterview
Mode

Tools
Tool Updates
Choose center

Customize






_images/annotation1.png
DB wave0000 sio
Cycle:0  Tme:-2






_images/animationtoolbar1.png
d 4= Dh





_images/SurfaceRepresentations.png
DB: noise silo DB: noise silo DB: noise silo
Cycle:0 Cycle:0 Cycle:0

! -
A

aren 1877 1686 2008 aren 1877 1686 2008

aren 1877 1686 2008





_images/Visit_connectivity_diagram.png
Local computer
LR R LY LR Y]
Remote computer





_images/TimeVaryingAnimationControls.png
Giobal
e 5| Doy

EeE v § G
Oen Close Reopen  Replace_Overlay

Actve source

Tine
0 o

(o]« ) Ead > ][]






_images/a_minus_a0.png
0B dbA0pcb DB dbA00pob DB dbA00 pob

Sidelo e Syde0 Trear Sidels T
[ ] [ ] [ ]





_images/a.png





_images/a_minus_preva.png





_images/a_minus_b.png
DB dbA00 o 08: dbB00pcy DB: dbA00 o

S0 Trmear S 10, e Sideo T
| |} | |} [ B






_images/activetimeslider12.png
Time Time
Actve tm sider (dbA00.pb ] hcove tme icer (o000 -]

0 o 0 o=
T T e e ST T B v =






_images/activetimeslider0.png
Active time slider combo box

Time
Actve tmesider (w0 Y 7]
i

l«llﬁ\.l.ll»lffrl

Time slider Cycle/Time textfield






_images/activetimeslider4.png
5.0
filect Bouncicry
BF abAtpab filct Boundicry
&S 105 B abaipal
Gl materaimen Sl B e 2
N Gl matencime
-—
= -
= -,
o
w0 -4
-
»
5
EPRE
1.0
0.0
7






_images/operatortoolbar.png
HEYU@EVE P B4 BixId [\ @-+m BHBROJPELTF VOSBRI ES






_images/operatormenu.png
$ ! §
T Mm%mm:mrmmmw

&
ioo-:&-\nwnwv CHBEDOBBUEBIYD

I

> [ 18 AVR Dl Grid and Stch Cells

e
N

Animation

»
»

i i
T:wm:mmm






_images/PotentialFlow-PcAndContour-Atts.png
LX) Contour plot attributes
Contour Levels

Scale (@ Linear Log

e o e C—

Selectby | N levels

" Color table Default Invert
© Multiple
Level Color Opacity

1

2

[T
|

Lines.
Line width —
Mise
Legend " Wireframe
Make default Load save Reset
Apply Post Dismiss






_images/paddedindex.png
‘ D) sicte=0

»

( A‘ State =0
a8

‘ ) siote=5

»

( A‘ State =5
a8

‘ D) siore=10

»

(A‘ State =9
a8

‘ D) siore-15

»

(A‘ State =9
a8

‘ D) siore-10

»

(A‘ State =9
a8





_images/PotentialFlow-MeshPlot-Render.png
Window 1

BOBEO- 3o =8 &k 0666 #d.

Y PR RSy L X

DB: potential_flow_ang_sweep_0000.vtk

Cycle: 0 Time:-5
e
o
10
0.5
4 0.0
5
3
M
0.5
1.0
15 1o 0.5 0.0

X-Axis

o.

5

1.

o

.5






_images/optionwindow.png
Select options for ‘surface.linlgov’

sersl
| prsle batch phatch
paralel mterm

Numprocs 32 <] Numnodes 2

Bank wbronze Tmelmit  30:00
Machine fie

]






_images/PotentialFlow-Streamline-Atts.png
eoe IntegralCurve operator attributes

Integrat

Appearance  Advanced

Source

Source type | Line B

Sampling

Samplingtype: @ Uniform ) Random

Samples along line: |10 8|

Field

Field Default B

Integration

Integration direction Forward

Integrator Dormand-Prince (Runge-Kutta)

[ Limit maximum time step 0.1
Tolerances: max error for step < max(abstal,reftol*velocity.J) for each component i

Relative tolerance 0.0001

Absolute tolerance Te-6 | Fraction of Bounding Box [

Termination

R —

[ Limit maximum time elapsed for particles 10

[~ Limit maximum distance traveled by particles 10

Make default Load Save Reset

Apply Post Dismiss






_images/parallel_launch_constraints.png





_images/PotentialFlow-PcAndContour-Render.png
Window 1

& i 6l ool 4 « »

o
W

OBEO0 =B = =8 &Ik O @
A Rk N i

DB: potential_flow_ang_sweep_0054.vik
Cycle: 54

P
Sl

—osmo

751

Vi 2135
W dtisor

cartar
i
™
_——
| me
Covestz
oy
s
o)
o
o

[ m

b 2132

W dtisoro

»





_images/parallel.png
Host profiles

Hosts.

Pomtsatigs | ot |

LLNL Borax
LLNL Cab

LLNL Oslic
LLNL Quartz
LLNL RZ Alastor
LLNL RZ Cereal
LLNLRZ GPU
LLNL RZ Merl
LLNLRZ Thriller
LLNLRZ uSeq
LLNLRZ Zeus
LLNL Surface
LLNL Syrah
LLNL Vulcan
SLAC Red

parallel interactive pdebug.

paralll batch pbatch
parallel miterm.

Copy Profie

) [ vaeoeront

7] Partiton /Pool / Quee  pdebug
Defaults

Nmberofprocessors %8 [
[——
L —
B —
E—

Machine Fie

Constraints
Addron

Dekete row

Nodes

Processors






_images/PotentialFlow-Streamline-PC-Atts-Data.png
eoe Pseudocolor plot attributes

20 ceometry

Data
Scale  @linear (log ) Skew 1

Limits | Use Original Data [
[~ Minimum 0 | Color for values < min SEEE

[ Maximum 1 [ Color for values > max S

Centering @ Original )

Color

Nodal () Zonal

Color table W i [invert

Opacity | Fully opaque B

{4 Legend 1 Lighting

Make default Load Save Reset

Apply Post Dismiss






_images/perspective.png





_images/PotentialFlow-Streamline-Menu.png
Plots

B ¥0 WL
| Boundary

@ Contour

[ curve

W Filled Boundary

Histogram

A Label

B Mesh

« Molecule

Multicurve

[ Parallel Coordinates

b o v,

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

’ Pseudocolor mesh_quality >
i Scatter operators ConnectedComponents ~ »
I Spreadsheet ] DataBinning >
W subset time_derivative > | Fjux >
Tensor agnitude IntegralCurve >
Il Truecolor LCs 4
< Vector — LimitCycle >
® Volume F all windows ModelFit >
TABply operators o allplots Poincare >
Apply subset selections to all plots. StatisticalTrends »






_images/password.png
1] Enter password

Password for somebody @surface I

o ] [Change userae]






_images/Plots-PlotsArea.png
Plots

Add, Operators, Delete ~Hide/Show Draw Variables,

» aMe‘sh quadmesh2d

Apply to active window () all windows
Apply operators to all plots

‘Apply subset selections to all plots






_images/onion.png
0B gbe2pas 0B gbe2pas

DB: globe2.pdb L L
Cycle: 0 I ] I 3
~
v v
z z
06 gotezs 06 gotezs
Sl Sl






_images/Plots-PlotAttsMenu.png
File Controls Options Windows
Global

Active vindow [1_7] |

Sources

CE O & g

Open Close Reopen  Replace Ov:

Active source [rect2d.silo

Time

Add, Operators, Delete ~ Hide/Show

D (@) Mest

uadmesh2d

* Tensor

Filled Boundary ...
Histogram ...
Label...
Mesh...
Molecule
MultiCurve .
Parallel Coordinates ...
Pseudocolor ...

* Scatter...

Spreadsheet ...
Subset..

Truecolor
Vector.

Volume.....

e






_images/new_array_compose_with_bins.png
10.7





_images/PluginManager.png
3 Plugin Manager I

Plots | Operators | Databases |
Enabled | Version | Name |

10 Boundary
10 Contour
0 e
10 Filedgoundary
10 Histogram
10 Label
10 Mesh
10 Molece
10 Muicuve
10 PerallelCoordinates
10 Pseudocolor
10 Scatter
10 Spreadsheet
10 Subset
10 Sutface
10 Tensor
10 Truecolor
10 Vecor
11 Voume

O 10 WelBore

Apply Post Dismiss






_images/Plots-VariablesMenu.png
Plots.

Add, Operators, Delete Hide/Show Draw

» aMe‘sh quadmesh2d

operators  »
[
speed

Apply to active window
‘Apply operators to all plots

‘Apply subset selections to all plots

vel_magnitude






_images/onionpeelwindow.png
Onion Peel operator atributes [ )

==
Adjacency © Node () Face

Category [domans -
set
seet Ocd Ot

Seed #orij [ 1

7] seed #isGobal

Lovers o S

[Honor originalmesh v

[Mteetout] [ toag | [ sove ][ Reset |

(= [ pest [ oemes |






_images/PotentialFlow-MeshPlot-Atts.png
eoe Mesh plot atiributes

Zone

"I Show interal zones

Color
Mesh color " Foreground @ Custom [
Opaquecolor (| Backgound @ Custom |
Opaque mode @ Auto “ion “off
Opacity : 100%
Paint Line Style
Point type | Point B Point size (pixels) |2
Scale point size by variable default v

tnewidth | —1 [
Geometry
Smoothing (@ None ) Fast "~ High
wisc
Legend

Make default Load Save Reset

Apply Post Dismiss






_images/modetoolbar.png
et h ki





_images/Operators-PlotCollapsed.png
Plots.

WL

Add, Operators, Delete ~Hide/Show Draw Variables,

t2d silo:Pseudocolor - Isosurface(Reflect(Threshold(d));

Apply to @ active window () all windows
Apply operators to all plots
Apply subset selections to all plots






_images/molecule_bonds.png
Atoms Bonds | colors |

Drawbondsas  [oinders <]
Sondcjinder ualty [Medum <]
Bond radiss o
Bondinewidts |1 <]

Color bonds by






_images/molecule_atoms.png
atoms | sonds | cotrs |
Draw atoms as |Spheres. >
Atom sphere quality |Medium >

Radius based on [Fixed value -

Variable for atom radius defauit -
Atom radius scale factor [T
Fixed atom radus 03






_images/Operators-Plots.png
Plots

Apply to @ active window () all windows
Apply operators to all plots
Apply subset selections to all plots






_images/mousemotions.png
Rotating about the Rotating about the Rotating about the
z-axis of the screen. y-axis of the screen. x-axis of the screen.





_images/Operators-PlotExpanded.png
Plots.

WO % 4 S

Add, Operators, Delete ~Hide/Show Draw Variables,

H* Threshold
B Reflect

8 pseudacolor

Apply to ©) active window © all windows

Apply operators to all plots
[¥] Apply subset selections to all plots






_images/molecule_colors.png
Residue types [N amine _shapely ~
Other discrte ks oefait -
~Continuous colrs

Colr tabe for scalars Defait -
I Gempminmm [0
I Cempmaxmem [T






_images/Plots-AddMenu.png
Plots.

E‘Z@L

A& S

Operators, Delete Hide/Show Draw Variables,

®
]

@ F Aa@BkRV

Boundary
Contour

Curve

Filled Boundary
Histogram
Label

Mesh

Molecule
MultiCurve
Parallel Coordinates
Pseudocolor
Scatter
Spreadsheet
Subset

Tensor
Truecolor
Vector

Volume

»

»

»

ow () all windows
ascii
d
operators  »
P
speed

t
u
v
vel_magnitude






_images/movieprogress.png
@ Generating frames

Cancel





_images/PLOT3D_read_options.png
File Format C Binary
Solution (Q) File Name

Solution Time field accurate
3D

"] Multi Grid

ig Endian

| Double Precision

1Blanking Auto
Use IBlanking If Present

Gas constant R 1

Gas constant Gamma 1.4

Cancel






_images/movieoptions.png
Open
it

Make 1024768 movie
Make 10241768 PNG frames
Make 480180 movie

Make 480480 PNG frames
Make 640480 movie

Make 640480 PNG frames
Make 800:600 movie

Make 800:600 PNG frames

Make movie





_images/Operators-OpAttsMenu.png
Global

Active vindow [1_7] |

Sources

e O §

Open Close Reopen

Time
<t «
Plots
opls)
™ K

File Controls Options Windows PlotAtts

@

Replace  Overiay

Active source [rect2d.silo

A

Add, Operators, Delete Hide/Show Draw  Variables,

v

]

Analysis
Debugging
Geometry
Integral Curves
Molecular
Selection
Slicing
Transforms

sage €

Axis Aligned Slice 4D ...

Boundary
Cone....
EllipsoidSlice ...
Isosurface...
Slice.....
Spherical Slice ...
ThreeSlice






_images/miroptions.png
[ NON ] Material Reconstruction Options

Algorithm: | Equi-Z (default, supports iteration)

@

Enable interface smoothing (Equi-* only)
Force full connectivity (Equi-T only)
Force interface reconstruction

Clean zones only

Simplify heavily mixed zones

Maximum materials per zone 3

Volume Fraction for Isovolume 0.5

Enable iteration (Equi-Z, Isovolume only)

Number of iterations 5

Convergence rate (>0) 0.4

Annealing time (seconds) (Discrete only) 10

Make default

Apply

Post

Reset

Dismiss





_images/Operators-ApplyOperatorDialog.png
E3 visit

No Slice operator was found for the selected plots.
Do you want to apply the Slice operator?

No | [ves, Do not prompt again






_images/mirgaps.png





_images/Operators-OperatorsInVariableMenu.png
Plots

‘ opE)
=
Add) Operators,

Delete _Hide/Show Draw Variables,

®
]

8T aBk W

=
[ 4
]
&
.

Boundary
Contour
Curve

»

»

»

Filled Boundary ,

Histogram
Label
Mesh
Molecule
MultiCurve

Parallel Coordinates  *

Pseudocolor
Scatter
Spreadsheet
Subset
Tensor
Truecolor
Vector

Volume

& S

d

mesh_quality >

operators  * | ConnectedComponents

[ DataBinning

speed Flux

t IntegralCurve

u Lcs

v LimitCycle

vel_magnitude ModelFit

w Poincare
StatisticalTrends

curvmesh3d






_images/mixvar.png
5.0

5.0

e

e






_images/Operators-OperatorDeleted.png
Plots

™oL A& S

Add, Operators, Delete Hide/Show Draw Variables,

B pseudocolor

Apply to ©) active window © all windows

Apply operators to all plots
[¥] Apply subset selections to all plots






_images/mirtetzoo.png





_images/Operators-OperatorsReordered.png
Plots.

WO % 4 S

Add, Operators, Delete ~Hide/Show Draw Variables,

B pseudacolor

Apply to ©) active window © all windows

Apply operators to all plots
[¥] Apply subset selections to all plots






_images/Operators-OperatorsMenu.png
Plots.

P

|

Delete _Hide/Show

Analysis ,
Debugging »
Geometry »
Integral Curves

Molecular
Selection

A& Sy

Draw  Variables,

Slicing
Transforms e
B Remove last L}
@ Removeall
w
L J
L J
Apply to active wir o

[ Apply operators to all plots

Aois Aligned Slice 4D
Boundary

Cone

EllipsoidSlice
Isosurface

Slice

Spherical Slice
ThreeSlice

‘Apply subset selections to all plots






_images/project_projectiontype.png
Project operator atrbutes

Projecton type
Vector transform method:

Make defat] [ Loaq
Aeply






_images/project_operator_example.png
Original plot

DB: noise.silo
Cycle:0 °

Project operator applied

0. ot sony
Cycle: 0 L]
0 %0 0d g o
°

flo

[

® 50
» ;....‘lo :.
i o °
o o oo
o
2 M
o 2 .‘o,






_images/Release-GimpLayers.png
Layers - Brushes (on quartz386) x

W Visit3. Lxcf-1 ~ | Auto

8% ®

¢

Bsckgrounde
N )





_images/pseudocolorplot.png
DB: f5e_05.0bj

Pseudocolor
Var: var
4328

2703

107.7

—54.90

2175
Max: 432.8
Min:-217.5





_images/Release-GimpImage.png
VisIt3.1xcf-1.0 (RGB color, 12 layers) 400x220 - GIMP (on quartz386) — B X

File Edit Select View Image Layer Colors Tools Filters Windows Help
CL ST
0

p< v | 100% v BottomFade (5.6 MB)






_images/project_vectortransform.png
Project operator attributes (=@
rojectonte

Treat as point coordinates

Treat as instantaneol






_images/Release-GitHubDelete2.png
© Relemez0l vistamiEs x4

< C @ GitHub, Inc. [US] | github.com/visit-dav/visit/releases/tag/untagged-408d2b2c331.. @ # @

Pull requests  Issues  Marketplace  Explore

visit-dav / visit @unan- u | kun | ©0 | Ve | 2

©Code  Dlssues15t6  [1Pulrequests 6 [lProjects 0 Wi ) Security |1 Insights £ Settings

v3.0.1

7 bruggert drafted this on Jul 11
Release Notes:
https:/wcillnl gov/simulation/computer-codes/visitreleasesrelease-notes-3.0.1

prebuilt Binaries:
https:/wcillnl gov/simulation/computer-codesvisit/executables

https://github.com/visit-dav/visit/relesses/edit/untagged-408d2b2c33158c714a73  ComsGivb  Picng AP Tmnng  Bog Aot






_images/pseudocolorwindow2.png
eoe Pseudocolor plot attributes
Data

Line

Linetype | Lines [
Lnewidth | —1 |

Tail | None B Head  None [

Point

Pointtype | Point [ Point size (pixels) 2

" Scale point

by variable default v
Rendering
Draw objectsas [ Surfaces | | Wireframe SRS | |points  FEEEE

Smo

© None

Make default Load Save Reset

Apply Post Dismiss






_images/Release-GitHubDelete1.png
©) Relesses vistdau/ist x +

< C @ GitHub, Inc. [US] | github.com/visit-dav/visit/releases

Pull requests Marketplace  Expl

visit-dav / visit @unuane | || knar

©Code  Dlssues15t6  [1Pulrequests 6 [lProjects 0 Wi ) Security |1 Insights £ Settings

8 bruggert drafted this on Jul 11

Release Notes:
https:/wcillnl gov/simulation/computer-codes/visitreleasesrelease-notes-3.0.1

prebuilt Binaries:
https:/wcillnl gov/simulation/computer-codesvisit/executables

e

v3.0.0

©w00
) cyrush refesse s 3 cays 90+ 100 commits o 30RC snce s reesse

o 762001

o | YRk 2

Draft a new release






_images/pseudocolorwindow.png
eoe Pseudocolor plot at

Data
Scale  @linear  log ) Skew 1
Limits | Use Original Data o)

I Minimum 0 I Maximum 1

Centering @) Original | Nodal ( Zonal
Golor.

Color table PEdhot | invert

Opacity | Fully opaque B

Vise
Legend Lighting
Make default Load Save Reset.
Apply Post






_images/Release-GitHubStep2.png
- o
) ditrelease visitdavvist x|+

<« C @ GitHub, Inc. [US] | github.com/visit-dav/visit/releases/edit/untagged-3clacc5cdfdfe.. @ * @
©Code  Olssues 1516 ) Pullrequests 6 [IProjects 0 EAWiki  )Security Ll Insights £ Settings,

Tagging suggestions

Its common practice o prefx your
version names with the letter v.

@ Some good tag names mignt be

 Bisting tag Ifthe tag isn't meant for
production use, add 2 pre-release
version afterthe version name.
Some good pre.release versions
might be ve.2-21phe o7 5.9-
[

“This i a draft and won't be seen by the public uniess i published. [——

write | preview

Semantic versioning
eyoute new o reiessing sotusre,
e ghy recommend resaing
sbout semanticversoring

nitps/nciinlgou/smulation/computer-codes/visireleases/release notes-3.0.1

Prsbut Binaries:
0s//cln.gov/simulation/computer-codesiist/excutables

Atach files by dragging & dropping, selecing or pasing them.






_images/queryparams_db.png
Query parameters

Query





_images/Release-GitHubStep1.png
©) Relesses vistdau/ist x +

< c

& GitHub, Inc. [US]

github.com)visit-dav/visit/releases

Pull requests  Issues

Marketplace

Explore

o
%
@

visit-dav / visit

© Coce

on i1t

e

300
P

Vertiza

Issues 1516

POy

Pulrequests 6 [Projects @  EIWI  U)Security  |iyInsights 13 Settings

V301

Rprney

v3.0.0

B oyrush refeased this 3 days 2go - 100 commits to 30RC since ths release

Release Notes:
https:/wcillnl gov/simulation/computer-codesvisi/releases/release-notes-3.00

prebuilt Binaries:
https:/wcillnl gov/simulation/computer-codesvisit/executables

*unsr | &0

Yrow | 2






_images/queryovertimewindow.png
-~ QueryOverTime

[=]ml[x]

B —
(r: Cycle © Time € Timestep

I” Starting timestep [0
I Ending timestep [T

stride

¥ Use 1st unused window
or create new one.

Window # 2
Make default Reset
Apply Post Dismiss






_images/Release-SplashScreen.png
() 2000-202m
vistt 3. git version 2f38385
July 2019

TSR served.

Copyright.

Contributors,

Dismiss





_images/queryparams_db3.png
Query parameters

Domain [0
Zone [o

Variables [default

Time Curve
Query






_images/Release-GitHubStep3.png
© Relemez0l vistamiEs x4

< C @ GitHub, Inc. [US] | github.com/visit-dav/visit/releases/tag/v3.0.1 ax @

Pull requests  Issues  Marketplace  Explore

visit-dav / visit @unan- u | kun | ©0 | Ve | 2

©Code | Dlssues 157 [Pullrequests & [lProjects 0 GHWiki  [[)Security |1 Insights £ Settings

Edit release | Delete

v3.0.1
Swoi
oy brugger reessea s minute 90 250 o o ceveop snce s rekase
e

Release Notes:
https:/wcillnl gov/simulation/computer-codes/visitreleasesrelease-notes-3.0.1

prebuilt Binaries:
https:/wcillnl gov/simulation/computer-codesvisit/executables

- Assets 2

D Source code (zp)

D Source code (targ2)






_images/queryparams_db2.png
Query parameters

¢ Original Data
& Actual Data

Query





_images/RCDevelop-GitHubStep3.png
©) Comparing develop. tosifbruge X |+

< C @ GitHub, Inc. [US] | github.com/visit-dav/visit/compare/task/brugger1/2018 09.05 upda.. @ ¥ @

Pull requests  Issues  Marketplace  Explg

visit-dav / visit @umane 3 Kunsr | 6 Vek 2

©Code  (Dlssues 1516 [1Pulrequests 6  [lProjects 0 EIWKI  [)Security | Insights & Settings

Open a pull request

Create a new pul request by comparing changes across two branches. If you need to, you can also compare across forks.

compre: tas bruggerl/2018.09.05 upd.. = | Able to merge. These branches can be automatically merged.

W [ Dpcated the 3.02 release notes. (+3867) Reviewers
Susgestons

wite | preview MBI koD Womns Request

#2# Description [ B Request

Bonsn seoe

Resolves # ['Iftis PR is unrelated to a tcket, please erase this ine”) st sopreing e e

merga this pul request.
Plesse incluce 3 summary of the change

Assignees

#2# Type of change v Noonesmgnyouser
4

Attachfles by dragging & dropping. seecting or pasting them. @ ebes






_images/RCDevelop-GitHubStep2.png
€ Commitsvsit-daviist x o+

< C @ GitHub, Inc. [US] | github.com/visit-dav/visit/commits/3.0RC ax @

Pull requests  Issues  Marketplace  Explore

visit-dav / visit Ouuscns | | Kunmsr @ Yok 2

©Code  (Dlssues 1516 [1Pulrequests 6  [lProjects 0 EIWKI  [)Security | Insights & Settings

erancr: 30RC

Comits on Sep 5, 2019

Updated the 3.0.2 elease notes. (+3867)

Verfiza ooser | )
8 bruggert commited 4 hours 330

Comits on Sep 4, 2019

Merge pull request #3862 from vist-dav/task/grifin28/plotlist

Verbed sz || o
R 28 ommice sy

Merge branch 3.0RC into task/grtin28/potist Vertes et | [ ©
[ e —e——"

Bugfubiagas/remote profies 30 c (43960) Verbed aseens | [ o
[ JSS———

Resolvs #3861.Fixed Uintah irary path and ndexcn e reading sssor | [ ©

[ P ——

Comits on Sep 3, 2019






_images/printwindowmac.png
Print

Printer: | HP Color LaserJet CP2025n (36CD5D) [
Presets: | Default Settings B
Copies: D [ Two-Sided

Pages: @ All

From: 1 1
Page Attributes B
Paper Size: | US Letter [ 8500y 11.00inches

orientation: 1 # T+

2) | POF | | Hide Details Cancel Pri






_images/RCDevelop-GitHubStep4.png
©) Comparing develop. tosifbruge X |+

< C @ GitHub, Inc. [US] | github.com/visit-dav/visit/compare/task/brugger1/2018 09.05 upda.. @ ¥ @

Pull requests  Issues  Marketplace  Explg

visit-dav / visit @umane 3 Kunsr | 6 Vek 2

©Code  (Dlssues 1516 [1Pulrequests 6  [lProjects 0 EIWKI  [)Security | Insights & Settings

Open a pull request

Create a new pul request by comparing changes across two branches. If you need to, you can also compare across forks.

11| base:develop~ | # | compare: tasbrugger/2018.09.05 updt.. v | Able to merge. These branches can be automatically merged.

U0 Updated the 302 release notes. (+3367) Revewers
Suggestons

[ B seoe
[ e Request
Bonsn seoe

tleast 1 approing rview s requird o
merga this pul request.

Write |_Previen MBI o @R~

Merge from the 3,08 to develop.

Assignees

No one—sssign yoursalf

Attachfles by dragging & dropping. seecting or pasting them. @ ebes






_images/pickwindow.png
=8 = |

3 pick

Outputdisplay | Tmepick | Spreadsheet |

™ Concse output T~ Swivelfocus:

7 vesh name W Timestep

7 Incdentnodesfzones | Gobalnodes/zones

W Reference pickletter T pick ighights

Fornedes

P I~ Domainogical coords

T physical coords [~ Blocklogical cords

Roranes

P I~ Domainogical coords
™ Bodkcogica coords

slclolelrle w4

d:






_images/PotentialFlow-Vectors-Atts-2.png
eoe Vector plot attributes.

vectors [IECH Glyohs

Limits

tnits[Use Origiaiate |3

[ Minimum 0 {2 Maximum 1
Golor

O | B v |
Oconsent [

Mise
@ Legend

Make default Load Save Reset
Apply Post Dismiss






_images/plotmenu.png
Window

View
Animation
Operstors
Plots Add plot 5 Boundsry
Clear Draw plots |® Contour Pointlar
Lock Hide active plots B cune s
B Resetview Delete activ plots W Filld Boundary ainfGradient magnitude
@ Recenterview Copy sctive plots i Histogram chromeVf
Mode Plot follows time sicer | 4 Label grad_magnitude
Tools B Meh hardyglobal
Tool Updates € Molecule hgslice
) Choose center [l Parallel Coordinates operators
Customize B Peudocolor racial
Scatter shepardglobsl
T Spresdeheet tensor_comps
P subset x
B Tensor
B Tuecolor
S Vector
® Volume






_images/planetool.png
Pseutocolor Plot

var. u

mal <0 01>





_images/PotentialFlow-Vectors-Render.png
Window 1

A0

50 = B = = 8 &k 0 @

H#AE AR E N d i

DB potentil flow_ang_sweep_0040.v1k

Cycle: 46

Time:18






_images/point_type_dropdown.png





_images/PotentialFlow-Vectors-Atts-3.png
-
B E—| P

swe
yntpe Arow ) Eoawhead See 025
T — | wan 1B
Vector origin (Head () Middle () Tail

Renderng

‘Geometry Quality ° Fast. (\ High

Make default Load Save Reset

Apply Post Dismiss






_images/plottoolbar.png
)]

WA

4 A8 BN K






_images/PotentialFlow-VmagRender.png
L] Window 1
A0BRE0 =8B =8 ik 086 G # 4 « »
H#AE AR E N d I

0054.vik

DB: potential_flow_ang_sweep
Cycle: 54

—osmo
—ozss
1.0
B oo
Vi 2135
W dtisor
4
% 0.0
ki
%

o 1.0 2.0 5.0






_images/pointtypes.png
et = FuE ‘e °
I -"-.""f":."'“: '--"'lllgll“:",.l % -';‘Atw‘s

e, ..'.#} _'E:g := ) .l
AR, | FIE R A






_images/PotentialFlow-Vmag-Atts.png
eoe Pseudocolor plot attributes

20 ceometry

Data
Scale  @linear (log ) Skew 1

Limits | Use Original Data [

[~ Minimum 0 7] Color for values < min FEEEE

Centering @ Original () Nodal () Zonal

Color

Color table B A spectral | B invert

Opacity | Fully opaque B

Mise

1 Legend 1 Lighting

Make default Load Save Reset

Apply Post Dismiss






_images/pointtool.png
DB: noise.silo
Cycle: 0

Preudocolor
Varhagygona






_images/RCDevelop-GitHubStep1.png
©) Comparing 30RC..task/brugger X |+

< C @ GitHub, Inc. [US]

Issues Marketplace  Expl

Pull requests

github.com)visit-dav/visit/compare/3.0RC..task/brugger1/2018_09.0...

ax @

visit-dav / visit © Unwatch~ | 13 Kunstar 61 YFork 22
e (e ise e s [iEosso Wi (Seary s 0 Setings
Open a pull request
Create 3 new pu requet by comparing changes acrss o branches. o eed 0, You an 30 compare acoss ok,
compare: aiougge208.03.03 ..« | Able to merg, These branchescanbe utomaticaly mergec,
T | Updated the 302 release notes. Reviewers
Soggsions
Write | Preview MBI KO D @ R - Request
.
e Desrston
sacunt

Resolves # ['Iftis PR is unrelated to a tcket, please erase this ine”)

Plesse incluce 3 summary of the change

### Type of change

Please select one below (+Please click check boxes AFTER submitting ticket”)

tleast 1 approing rview s requird o
merga this pul request.

Assignees

No one—sssign yoursalf

Labets

[—






_images/popupmode.png





_images/Preferences.png
54 preereces

G | v | st | rieowe |
[

ottt | sesnti | Fieows |
7 Ty gt esines

P —
[T ———
(Lo r—
[—,

[ ——— [ e ————
[ ———— [T ——
7 omctbtore g e o [ T—_—
[Le—— [ O O————
[ —— [ E————
I reisss 17 Aty e e e om et assacs s
e
Fosasontmeen:
€ ot s € oot
e






_images/popupmenuwindowmenu.png
2

@

Window
View
Animation
Operators
Plots

Clear

Lock

Reset view
Recenter view
Mode

Tools

Tool Updates
Choose center
Customize

o
&
B
*
[

Make active
New

Clone

Delete

Layout

Spin

Invert background

EECEEIE]

EREE






_images/PotentialFlow-Streamline-Render-AOT-0.png
Window 1

A0 BRE OB == » G » 4 »

2 »

HF#AE AR E N i

DB: potential flow ang sweep 0010.vtic
Cycli10 i






_images/pickviswindow.png
DB: noise.silo
Cycle: 0

Pseudacolor Plot
Var. hardyglobal

e 388 5

user: whitlocb
Tue Jun 18 14:34:03 2002





_images/PotentialFlow-Streamline-PC-Atts-Geom.png
eoe Pseudocolor plot attributes

Data
Line
Line type | Riobons [
Radius (0.005 Fraction of Bounding Box [

| Variable radius v Max/Min Ratio |0

Tail | Sphere [ Head | None [
Radus Fraction of bounding box 5]

[ Variable radius v MaxMinratio |0

Rendering
Draw objectsas [ Surfaces || Wireframe  §288 || Points
Smoothing @ None () Fast () High

Make default Load save Reset
Apply Post Dismiss






_images/pickpoints.png
DB: noise.silo
Cycle: 0

Pseudocolor

Var: hardyglobal
-
—4.691

-7
3493

2294

1.096
Max: 5890 _, -
Min: 1.096 el

Mesh
Var: Mesh

Z-Axis -8.27]

(parsec)

-8.47

-8.6

-5.

T
-5.4 -5.2 -5.0 -4.8
X-Axis (parsec)





_images/PotentialFlow-Vectors-Atts-1.png
eoe Vector plot af ites.

T pete  Giyons

Wnere to place the vectors and how many of them

Vector placement ) Adapted to resolution of mesh

O Uniformly located throughout mesh
Vectoramount () Fixed number 400
-

[ Only show vectors on original nodes/cells

Make default Load Save Reset

Apply Post Dismiss






_images/PotentialFlow-Streamline-Render-AOT-20.png
o Window 1
(| 2] 0 @ B @ = » [ » 4] »
SRR N !

DE: potential flow ang sweep 0051yt
Cycle:51  Tinf

\






_images/Aneurysm-Mesh.png
Window 1

OEEo=8= =8 &k
FA L hE N\ EBQ
DB: aneurysm0035 silo
Cycle: 0 Time:0.175

a5

07 e i ol el O 4l

ZPxis

55

60

o X
Sl@l 3 -
50
45
YoAxis
35
3.0
xis






_images/Aneurysm-MeshAttributes.png
4 Mesh plot attributes - o x
ol
zone
T~ showinternal zones.

~Color
Opaquecor O Badkgond @ custom ||
Opsuemode @ Ao Con © off

ey L —|

-Poit /Line Style
pointtype  [paint =] pontsize Gixek) [2

T Scale point size by variable. defauit
newidh  [—1 ¥

-Geometry.
Smooting @ Nene O Fast O Hgh

e
¥ Legend

| = = =
ooy | post | oemiss |






_images/Aneurysm-IntegralCurveAttributes.png
IntegralCurve operator attributes - [m]

~Source
Source type ICide LI

Origin  |3.45115 3 5.54927
Normal |0 10
Upaxis (001

Radius |0.12

~Sampling
Sampling type: ¢ Uniform (" Random Sampling along: ¢ Boundary (" Interior

Samples in Theta: IlZ 3:

—Field
Field Default e






_images/Aneurysm-IntegralCurvePathlineAttributes.png
treamines vs Pathines-

{Streamine
€ Compute trajectories n an (nstantaneous) snapshot of the vector field.
‘Uses and loads vector data from only the current time sice.

Pathine
& Compute trajectories in the time-varying vector field.
Uses and loads vector data from l relevant tine sices

athine Options
I Override starting tme  Time [0 period [0
to perform interpolaton over time:

¥ Meshis static over tme (fast, but specil purpose)

 Mesh changes over time (sow, but robust)






_images/Aneurysm-PseudocolorDataAttributes.png
Pseudocolor plot attributes. - o X

cats | eonery |

oot

Scale @ Lnear  Clog C skew |1
e [oeorraoes

™ Minimum o T~ Color for values < min

T maximum  [1 T~ Color for values >max

Centering @ Original " Nodal (" Zonal






_images/Aneurysm-PseudocolorGeometryAttributes.png
Pseudocolor plot attributes. - o X

=l
o=

Line type [Tubes < Resoluton [10 =
Radus [0.01 [Fraction of Bounding Box <!
T~ Varizble radius | MaxMinRato |10

T e = ead [ =]
Radus [0.03 [Fracbon ofboundngbox =] Conerato [5
™ Vrobl s | wexanrato o
Resoton [0 =]
pont

ponttype [point =] pontsize Gixek) [2
T Scale point size by variable. default -

-Rendering
Drawobjectsas [ Surfaces [ Wireframe

Smooting  ® None © Fast © tigh

ke et st | sme | rest
= post | _osnss






_images/Aneurysm-MeshPlotAdd.png
ts:

Loy 4
Delete Hide/Show Draw Variables.

[
4=
Add, Operators..

9 Boundary >
& Contour >
B curve 4
W FiledBoundary >
Histogram >
A Label >
Elver ]

& Molecule »






_images/Aneurysm-Pathlines.png
AL AEN\NEBOI

DB: aneurn ysm0000.silo
Cycle: 0 Time:0






_images/labelplotwindow.png
eoe Label plot attributes

Selection
Show nodes /I Show cells
Restrict number of labels to 200 2
Draw labels that face Front B
Depthtestmode (@ Auto T Aways () Never
Formatting

Label display format | Natural B
Font name [ Fontscale (4 | [ IBold [ italic

Use foreground color £ 20

Horizontal justification | Center B
Vertical justification | Center B

Format template
Mise
Legend
Make default Load save Reset
Apply Post Dismiss






_images/labelplotmats.png
DB: noise.silo

v
H
1
i
H
&
=
d
&
a

8.2 8.4
wWidth (parsec)






_images/Aneurysm-PseudocolorPressure.png
4 Window 1
OEEo=8= =8 &k
FA L LhEN\EBQ

DB: aneurysm0035 silo
Cycle: 0 Time:0.175

7 & & & i el O 4

[u]
=

X

3






_images/launch_method_options.png





_images/Aneurysm-PseudocolorSliceVelocityMagnitude.png
4 Window 1 o X

[BoBlores sk Raandac |4 -]~

EXSRAN SN 4 [ R

DB: aneurysm0182 silo
Cycle: 0 Time:0.9






_images/labelplotwindow2.png
eoe Label plot attributes

Selection
Show nodes Show cells
Restrict number of labels to 200 8
Draw Iabels that face Front
Depthtestmode @ Auto Always Never
Formatting
Label display format  Natural
Cel labels
Font name | Arial Fontscale 4 Bold [ | italic
Use foreground color &
Node labels
Font name Font scale Bold [ | italic
Use foreground color 5
Horizontal justification | Center
Vertical justification | Center
Format template %g
Mise
Legend
Make default Load save Reset
Apply Post Dismiss





_images/isovolumewindow.png
Isovolume operator attributes.

Lower bound  min|

vee  [amn 7]






_images/isovolume_example.png
.. Plot with Isovolume
original plot operator applied

D8: noise.silo
Cycle:0

08B: noise sio
Cycle:0






_images/keyframearea.png
Keyframes





_images/keyframe1.png





_images/labelplot2.png
DB: noise.silo
Cycle: 0
o 0.0 2024 | 2124 | 2224 | 2324 | 2424 | 2524
Vc?steshZD
o g sobog sabs y oo
Var: Mesh2D
2023 | 21,23 | 2223 | 2323 | 2423 | 2523
-0.5-
s sobos A .
R 2022 | 21,22 | 2222 | 2322 | 2422 | 2522
E -1.0+ 24l20 2909 a3l2a o 25000
&
£ 20,21 21,21 22,21 2321 24,21 25,21
2
-1.5-
2020 | 2120 | 2220 | 2320 | 2420 | 2520
209 20,19 21,19 22,19 23,19 24,19 25,19
T T T T T
-1.5 -1.0 -0.5 0.0 0.

Width (parsec)






_images/labelplot.png
DB: noise.silo
Cycle:_057 175 3 144 31&23 4781
Mesh
Var. Mesh2D
pseudocolor 0+ 817,22 18,22 19,22 20,22 21,22
Var: hgslice
Units: Joules
5.024
4069 ~1.04 308834 362023 902 2.9947
—-3.114
~2159 _; 21
I #] 18,21 19,21 20,21 21,21
1.204
Max: 5.024
Min: 1.204
Label -1.4 -
V%vehgshce 467 g2t 274702 2774
Units: Joules
Label
Var Mesh2D -1.6 o
7.20 18,20 19,20 20,20 21,20
-1.8+
dasg 259005 2 44 25430
-2.0+
7.19 18,19 19,19 20,18 21,19
-2.2+
11 e 20440 2
T T T T T T T T
-2. -2. -2.4 -2.2 -2.0 -1.8 -1. -1. -1.2

Width (parsec)






_images/labelplotdepthtest.png





_images/Aneurysm-PseudocolorVelocityMagnitude.png
4 Window 1

OBRB o= 8= =8 &k |7 @& #d] d
FA LA LEN N EBQI

DB: aneurysm0048 silo

Cycle: 0 Time:0.24

o x

N a-






_images/Aneurysm-QueryOverTimeAttributes.png
QueryOverTime  — o X
Xeaxis-

Choices entered here only apply to vales.
dispayed in the x-2xis of the time curve.

C Cyde @ Tme C Tmestep

Use 1stunused windon or create new

[ one. Al subsequent queries wil use this
same window.

Window # [z

Make defauit Reset
Aeply Post Dismiss






_images/Aneurysm-QueryWeightedVariableSum.png
%4 Query

- a X
Standard cueris | python cury edtr |
Display 'y parameters:
[ 1| doTme query————
Queries Startand end ae tme steps,
T —| ot cydes o tmes
TjectonyZone Startngtmestes o =
Volume ending tmestep [159 =
Wateright S
Weighted Variable Sum stride B

e
= | e

Query resuts Float format [%g

The total operators/Flux/Mesh i 0.553711

Clear resuts | Save results as... Post Dismiss






_images/Aneurysm-QueryMaxVelocityMagnitude.png
3 quey - o x

s e

Diplay v parameters
far 2| ¢ ougnavam
Queries. @ ActualData
2Nom I |

L2Norm Between Curves (BICST=Ersy

Line Sampler Info

Start and end are tine steps,
ot cydes or times.

Starting tinestep [0 =

Localzed Compactness Factor Il
Mass Distribution Ending timestep  [199 31
Max
Memory Usage s R =
Min

pravs =
: _— o= |
e S

velocty_magnitude —Max = 20,1189 (node 16620 at coord <3.45115, 3, 5.54927>)

et | Swvereits .. post | _osnss






_images/Aneurysm-QueryOverTime.png
Window2

Max (x10%3)

ml=)]

3.0

Do @ m= 6 #k
FAE AR NN\

o

o

E LY IR ]

X

g

2.54

T T
50 100
Time (timestep)

T
150

200






_images/Aneurysm-Subset.png
4 Window 1 o X

BOBEC=8= =@ &k 6o d#eaEo|a -5~
Fathhhkx \EWQII

DB: aneurysm0184 silo
Cycle: 0 Time:0.92






_images/Aneurysm-SubsetIsoSurface.png
4 Window 1 o X

l

BOBEC=8= =@ &k 6o d#eaEo|a -5~

I

FA LA LAEN N EBQI

DB: aneurysm0052 silo
Cycle: 0 Time:0.26






_images/Aneurysm-SliceAttributes.png
Slice operator attributes - o X

o
Ortrogonal © xaxs © Yas C zaws [ o
sty @ [010
Tewen © 50
oG
€ pont @ Intercept O percent C Zane C Node
ntercept [5
T
I proectio
orecton [501

R interacive
| = | ==
ooy | ot | Demss |






_images/Aneurysm-Streamlines.png
indow 1 - a X
PoGEo-os = fk/dReawdan|d -5~

FA LA LAEN N EBQI

DB: aneurysm0138 silo
Cycle: 0 Time:0.69






_images/inverseghostzonewindow.png
Inverse Ghost Zone operator attributes (/21 =) | WP

[7] Request Ghost Zones

7] Show Zenes That Are Dupicated At Domain Boundaries.
[¥] show Enhanced Connectivity Zones

[¥] show Reduced Connectivity Zones

(7] Show zones refned aut b finer patches (AVR)

[¥] Show cells on exterior of data st

[7] show zones deemed not appicable to problem

(o) (o] [ ) (i)

(= [ pest [ oemes |






_images/Aneurysm-SubsetIsoVolume.png
4 Window 1 - o X

[BoBlores sk Raandac |4 -]~

[t Hhhis~x\ E@@I

DB: aneurysm0044 silo
Cycle: 0 Time:0.22






_images/isosurfacewindow.png
T Isosurface operator attributes l [=/@] = |

(ot ] [Csmve ] [Chesst )
(post ] [Cosmss ]






_images/isosurface.png





_images/indextab.png
Contents [NEEER Bookmarks

le

2D Annotations

2D fine annotation objects
20 view

3D Annotations

3D view

ASIL restriction

A selection range

About Visit
Activating a database

Activating a host profile
Activating tools

Active color table

Active time step

Active window

‘Adding a bookmark

Adding a database state keyframe
‘Adding a keyframe

‘Adding a new vis window

‘Adding a plot

‘Adding a view keyframe

‘Adding an operator

‘Adding an operator (2)

Advanced file options

Advanced host profile options
Advanced view features

Altering an existing database correlat
An input variable's role

Animation






_images/indexselectwindow.png
Index Select operator atributes

1 2 r::f 2 = 2 gw
3 +| max 2 Ho
B ——
[Moke defouit] [ toad | [ save ][ Reset |
(=T ([ post ][ oomss ]






_images/install_remote_profiles_2.png
Host profiles =[S
Hosts
LINL Aztec [ntpsjvistight.comjsvnvisttrunk/srchresourceshosts] =) [Cptete ) [ impert )
hieey e =
LLNL Ostic > University of Utah Center for High Performance Computing (CHPC) netwark
LLNL Quartz > Universty of Michigan Advanced Research Computing (ARC-TS) network
LLNL R Alstor > Ters Advanced Computing Center (TACC) network
LLNL RZ Cereat > Swiss National Supercomputing Center (CSCS) network
LINLRZGPU. > SwissFederal Institue of Technology Zurich network
LLNL RZ Merl > Sandia National Laboratory (SNL) open network
LLNL RZ Thriller '; ﬁ:ﬁ::l:ix::ﬂl:::mmyﬂ[{sMu closed network.
it et 05 o
LLNL Siers > OakRidge National Laboratory (ORNL) network
LLNL Surface > National Institute for Computational Scences (NICS) newbwork
LUNL Valean, > National Energy Scienifc Research Computing Center (NERSC) network
SLACRed » Naina enterfor Supecampting Aplcaions (NCS) networ
>
>
>
>
>
>
>
>

[comront ] [_eponron_]

National Center for Atmospheric Research (NCAR) network
Lousiana State University network.

Los Alamos National Laboratory (LANL) open network
Lawrence Livermore National Laboratory (LLNL) rz network
Lawrence Livermore National Laboratory (LLNL) open network
Lowrence Livermore National Laboratory (LLNL) closed network
Clemson University network

Atomic Weapons Establishment network

‘Argonne National Laboatory (ANL) network






_images/install_remote_profiles_1.png
Host profiles

Hosts.

LLNL Actec
LLNL Borax
LLNL Cab

LLNL Oslic
LLNL Quartz
LLNL RZ Alastor
LLNL RZ Cereal
LLNLRZ GPU
LLNL RZ Merl
LLNLRZ Thriller
LLNLRZ uSeq
LLNLRZ Zeus
LLNL Sierra
LLNL Surface
LLNL Vulcan
SLAC Red

[comront ] [_eponron_]

Machines

[nts/vistight.com)svnvisittrunkscresources/hosts/

Profiles






_images/install_remote_profiles_4.png
Setup Host Profiles and Configuration [

To finish the Visitnstal on ths computer select any computing centers whose resources
You are using to confgure host profes automatcal for ther machines.

Select computing centers used

] Lousiana State University network
National Center for Atmospheric Research (NCAR) network
] Netional Center for Supercomputing Applications (NCSA) network
] Netional Energy Scientifc Research Computing Center (NERSC) network
] Netional Institute for Computatione Sciences (NICS) newtwork
‘Oak Ridge National Laboratory (ORNL) network
] Ohio Supercomputer Center (SC) network
0] Princeton University network
] Sandia Nationel Laboratory (SNL) closed network
] Sandia Nationl Laboratory (SNL) open network
Stenford Linear Accelerator Center (SLAC) network
AR s A peterke, | _'_I

Select default configuration

@ None (use Vislt's standard defaults)
Chombo Users
Lowrence Livermore National Laboratory
Princeton University

|






_images/install_remote_profiles_3.png
B9 Host profiles [=2]/@] = |
Hosts
LLNL Aztec (nttp:/iisitight.com/svnvisittrunkisrcresources hosts/ Bt = [ ]
e Pt -
LINL Oslic  Universiy of Utah Center for High Performance Computing (CHPC) network
LINL Quartz  Universiy of Michigan Advanced Research Computing (ARC-TS) network
LINLRZ Alastor  Texas Advanced Computing Center (TACC) network
LINLRZ Cereal b Swiss National Supercomputing Center (CSCS) network
LINLRZ 6PU b Swiss Federal Institue of Technology Zurich network
LINLRZ Merl » Sandia National Laboratory (SNL) open network
LLNL RZ Thiiller ? Sondi el .I:nl;malmy' SND dossdnevork
N g " OhioSupercomputes Cente (05C) ntwork
LUNL Sierrs 4 Oak Ridge National Laboratory (ORNL) network
LINL Surface host_ornl ttan i
LINL Vulcen host_ornl sithaml
SLAC Red host_ornl_rhea.xml

[ coyrest | [ portrost |

host_ornl_photon.iml
host_ornl jaguarpfmi
host_ornl jaguaruml
National Institute for Computational Sciences (NICS) newtwork
National Energy Scientific Research Computing Center (NERSC) network
National Center for Supercomputing Applications (NCSA) network
National Center for Atmospheric Research (NCAR) network
Lousiana State University network.
Los Alamos National Laboratory (LANL) open network
Lawrence Livermore National Laboratory (LLNL) rz network
Lawrence Livermore National Laboratory (LLNL) open network
Lowrence Livermore National Laboratory (LLNL) closed network
Clemson University network
Atomic Weapons Establishment network






_images/inverseghostzone.png
0B: mut ucdidipd £8: mult uedidpa
e a5 “Tmoas e a5 “Tmoas






_images/interactors.png
‘Auto (remote rendering only)

Ais Array interactions

st

(= post | pemiss |






_images/Aneurysm-Vector.png
4 Window 1 - o X

l

Prtfocss =8 #lkoResacmac |4 -

=

I~

I

FA LA LAEN N EBQI

DB: aneurysm0184 silo
Cycle: 0 Time:0.92






_images/Aneurysm-VectorAttributes.png
Vector plot attributes

Vectors | Data  Giyohs |

[Scale
sae 025 7 Scle by magnituce |7 Auto scale:
st

Giyphtype  [arron ] Fomwhead  see [o.2s

Aowbody [Cinder =l wth [o.08

Vectororgn " Head " Midde © Tal

-Rendering






_images/Aneurysm-VectorSlice.png
B Window 1 - O

Box

BOBE0 =8 = = 6 # k|0 66 dEsEo 4 -

[=:]1}

FAEAAENNEBOI

DB: aneurysm0000 silo
Cycle: 0 Time:0






_images/Appearance.png
£3 Appearance

[7] Use default system appearance

GUI background

cutforeground [
curstye

GUIorientation |Vertical -

Gutfont Helveticn12,-1,5,50,0,0,0,00 [.]






_images/Aneurysm-VectorFlux.png
B Window 1 - O

Box

BOBE0 =8 = = 6 # k|0 66 dEsEo 4 -

[=:]1}

FAEAAENNEBOI

DB: aneurysm0000 silo
Cycle: 0 Time:0






_images/Aneurysm-VectorNormals.png
Window 1

ml=)]

- o

Dooess#kaaawdac |4 -5

Box

FA LA LAEN N EBQI

DB: aneurysm0000 silo
Cycle: 0

Time:0






_images/Basics-GUIOverview.png
@) :: LR N T dd4eodP P @ 523
Lo nni >






_images/Basics-InteractionModes.png
Delete window Reset view

4 Window 1

/
lizislsloEEN - W)
[#ath ik~ \ E 8Ol

NS

Zoom Node pick Lineout

Navigate Zone pick Spreadsheet pick





_images/Basics-ExportDatabase.png
Export Database - o X

vt
orectoryrame [ .|
Fierame  [mtecd
I Etaltnesates  Formot [300

Bgotto a0V -

-Variables-
Delimiter & Space © comma

Add varizble ~
F1/0 options:

T Coordinate paralle writes with groups.

Wite group size: [ =

Export

ooy | post | oemiss |






_images/macrorecord2.png
80 X Vislt

Please enter the name of the macro to be defined (as you want it o appear n a bution).

[rcd compex setoroperaios

cancel |






_images/Basics-FileOpen.png
File open

T

Path [C:\Users\brugger 1\Doauments|\tutorial_data

e |7

™ Use "aurent working drectory” by default

Fiegrouping [Smart ¥] | Removepaths...

T~ Show dot files
Directories: Fies
{current directory) ovg_tempuvisit <

(goup 1 dinectorylevel)
avg.temp_data

<edov_cata

tgvortexdata

varing dsta

wave dta

Open fie as type: [Guess from fie name/extension |~ Set defauit open options.

_reen |

cunv3dailo

=l

I ="






_images/macrorecord1.png
80 X Vislt

Please enterthe name of the Python function to be defined for the macro.

[ComplexOperaio]

Cancel






_images/OpenASimulation.png
File open

Bt ocont

Path C:\Jsers\biagas2\Documents\ViTtlsmuatons

Fiter *

] Use "aurrent working drectory’ by default

regonng (6]
e ()
— =
o) o
ooy

—— etdcratopenotors

(o ] [Cemal ]






_images/meshplot.png
DB: f5e_05.0bj

Mesh
Var: OBJMesh

i
L
o
.

Al

0
i

Ay
R

A,
&
S5

]

S
>

i
///’ 40

i
ok

=

S

e
G

’1) .
Wi,

‘ A =
o =WV 7

i
V!






_images/Molecule_subset_enumeration.png
Visit 1.11.0 =J[@)[x

Eile Controls Options Windows Hel

Active window  Malntain limits | Replace plots

i | view_| data _| Auto update

Sorce crotamine.pdb B

Active plots  Hide/Show Delete Draw

Jle - element

Plots Operators PlotAtts OpAtts  Varlables

Apply I operators/ selection to all plots

| Subset =J(@](x
T
Whole element
'vE mesh B H
| ECTET—— | o
compouind = Li
B Be
(==}
= C
(= )
D CH—
(=
B2 Ne
B Na
= Mg
B3 Al
B3 si
= P
= s
= Cl
B3 Ar
B3 K
B Ca
B Sc
All sets Reverse| ¢| | All sets Reve
Selected sets Reverse Selected sets Reve

Apply _Post| Dismiss






_images/macrorecord3.png
866 X! Macros

P> Add complex setof operators
Post | Dismiss






_images/Operators-ActiveOperator2.png
Plots

Transform
8 pseudacolor

Apply to @ active window () all windows
Apply operators to all plots
[¥] Apply subset selections to all plots






_images/mir.png
DB: noise silo DB: noise silo
Cycle:0 4 Cycle:0






_images/Operators-ActiveOperator1.png
Plots.

op(E)
¥
Add, Operators,  Delete Hide/Show Draw Variables,

Transform ]
B pseudacolor

Apply to @ active window () all windows
Apply operators to all plots
[¥] Apply subset selections to all plots






_images/meshwindow.png
Zone
Show internal zones
Color

Mesh color e Foreground Random ) Custom §i i

Opaque color (s Background ) Random () Custom

Opague mode « Auto On off

Opacity

100%
Point Line Style
Point type | Point < Pointsize (pixels) 2

Scale point size by variable default v

Line width 1

o

Geometry
Smoothing ) None Fast High
Mise

I Legend

Make default Load Save Reset

Apply Post





_images/Molecule-replicate-rightbonds.png





_images/locktoolbar.png
Py






_images/Molecule-replicate-norep.png
Molecule
Var. element

Max 1400
Min: 1.000






_images/lockmenu.png





_images/Molecule_crotamine_backbone.png
DB: crotamine.pdb






_images/lowfrac.png
| Low velume fraction

,,,,,,,,,,,,,





_images/Molecule-replicate-wrongbonds.png





_images/log.png
‘...‘LlLH\E ‘ localhost ¢ | 0 & T

[trigger: build (inorder)]
]

[actions]

[ src_checkout
(I switch_branch

Ul create_third_party

LI bv_run

[ create_build.release

[ create_install.release

(I cmake_release

[ build_release

(I manuals_release

(3N install_release
package_release

U cmake_cfg_bundle_release

[ package_osx_bundle.release

(I osx_sanity_release

src_checkout

Command

git clone ssh://git@github.com/visit-dav/visit.git

Output

return_code: 0
elapsed_time: 2 minutes 49 seconds

Cloning into 'visit'...

Checking out files: 14% (2491/17688) Checking out files: 15% (2654/17688) Checking out files: 16% (2831/17688) Checking out files: 17% (3007/17688) Checking out files:
18% (3184/17688) Checking out files: 19% (3361/17688) Checking out files: 20% (3538/17688) Checking out files: 21% (3715/17688) Checking out files: 22% (3892/17688)
Checking out files: 23% (4069/17688) Checking out files: 24% (4246/17688) Checking out files: 25% (4422/17688) Checking out files: 26% (4599/17688) Checking out files:






_images/Molecule_crotamine_scalar.png
DB: crotamine.pdib

Molecule
Var. x
8.0

3811
3173
25.34

1896
Max: 44.49
Min: 18.96

-60

user:s9
Thu Mar 23 1657347 2006





_images/Molecule_crotamine_residue.png
DB: crotamine.pdib

\V\//\n\e:é:ls
o
e } e s

—TRP < -
R cen L
~ ARG . gl s
- iy - 7

~PRO . N o ‘.‘
S ‘
e 24 . 63

—LE

HIS
Gly
CPHE

-Gl
ASP
CYs

Max: 21.00
Min: 3,000

user:s9
Thu Mar 23 17:0:






_images/machine_hostsettings.png
Machines

Vacine
Hostrickname. L sorex
Remoteostrame boraxgov
Hostrame sases  borax#.nlgov borax# 2.l gov borax borax=#
Maximumnodes | 5]
Masimum processors |1 ]

Path to Visltnstalation _fusr/gapps/vist

] share batch job with Metadata Server

el data comnectios thvaugh SSH

Method used to determine loca host name when not turneling:
Uselocal machine name.

©® Parse from SSH_CLIENT environment varizble:

Spechymanushy: |

somand [oh

ssHport =

[r——






_images/Molecule_crotamine_species.png
DB: crotamine.pdib

Molecule
Var. element

o
C

Max: 1600
Min: 1.000

user:s9
Thu Mar 23 16:5¢





_images/Basics-PickOutput.png
C:\sers\prugger 1\Documents
\Vilt Tutorial_Data\exampe.sio
Mesh

Pont: <5.33099, 0, 2.03002>
Zone! 46832

Incdent Nodes: 45737 46738 48787 46788
51237 51238 51287 51288

Outputdsplay | Tmepick | Spreadsheet |
T~ Condise output. T~ Swivel focus

¥ Mesh name ¥ Timestep

[ Incident nodes/zones [ Giobal nodes/zones.
¥ Reference pick letter [ Pick highlights
o ——
7] T~ Domain-ogical coords
I~ Physical coords I Block-ogical coords

[Forzones——————————————————
3¢ T Domain-ogical coords
™ Blodclogical coords

Make defauit Reset
Aeply Post Dismiss






_images/Basics-PlotList.png
[~Plots

AL

Add, Operators, | Delete Hide/Shon Draw  Variables,

Apply to @ actvewindon " allwindows
¥ Apply operators to all plots
¥ Apply subset selectons to all plots






_images/Basics-PcMesh.png
4 Window 1 X

BOBR0-8==n#k 06 \u« \u\u@

FARAE A REN\EBQI

DB: example silo
Cycle: 0

Bvidth (parsec]






_images/Basics-Subset.png
‘Subset - o X

Whole.

=@ mesh
"~ domains
mat!

% B domaint ]

Alsets: Reverse || Alsets: Reverse [¥] Al sets: Reverse [v]
Selected Sefs: Reverse || Selected Sets: Reverse [¥] selected sets: Reverse [v]

= =

= post | _osnss






_images/DataAnalysis-ExpressionCMFEOutput.png
Window 1 o X

PoElo-re=sfkRnasndac| 4 »|E]a-
It H kv \EBQIl

DB: noise2d silo

Cycle: 0
VR 2005 H -
7 2.0 " -
.
.
.
.
.
g 1.0
H .
2.0 [ u
" s

3.0

.

[ " L]
E .
.
. . -
5.0 "
T T T T A






_images/Basics-PseudocolorAttributes.png
4 Pseudocolor plot attibutes - o x
ol

Data | Geomety |

Data
Sl @ e Clog  Cosew [0
Limits [Use original Data !

™ Minimum o T~ Color for values < min

T maximum  [1 T~ Color for values >max

Centering @ Original " Nodal (" Zonal

-Color

Color table t T~ tnvert

Opacity [Fuly opaque =

¥ Legend ¥ Lighting

Aply Post _I






_images/Basics-SliceAttributes.png
Slice operator attributes - o X

o
Orthogoral © XAxs @ Yas C zais [ fip
S =T
Tewen © o0
oG
€ pont @ Intercept O percent C Zane C Node
ntecept [o
T
¥ proectio
orecton [501

R interacive
| = | ==
ooy | ot | Demss |






_images/DataAnalysis-ExpressionVectorTensorOutput.png
Window 1 o X

[BoBeore s =e ik @eaawdeac|d )3~

l#at i\ EBQII

DB: noise2d silo
Cycle: 0

-8 -6 s -2 °
width (parsec)






_images/DataAnalysis-ExpressionMassOutput.png
4 Window 1 o X

[BoBeore s =e ik @eaawdeac|d )3~

I#athhix s\ EBQIl

DB: noise2d silo

-10 -5 ) H
width (parsec)






_images/lineoutattswindow.png
Lineout operator attributes S

Pont1 1010 10

Pant2 -10-10-10

fr—=r
[] Override Global Lineout Settings
-

Refine Labels

[Mteetout] [ toag | [ sove ][ Reset |

(= [ pest [ oemes |






_images/DataAnalysis-ExpressionRadial2Output.png
Window 1

BOBEC -8 = =& &k |0 @ e w6 b

o x

IR

FRE A RENNEBOI

DB: noise2d silo

Cycle: 0

Height (parsec)
I

-10

width (parsec)






_images/Molecule-colortables.png
Color tables =)

contoured

sl

Name [cp ol
ator

Numbertcolors 08
Golortabe ype ) contuous

H | [He] [N [EEN 5N NN N B B

| Show index hints

e ——————willE

<
—— [ ]
o ——— [






_images/lineoutoptionswindow.png
Lineout options

Use 1stunused window or create
new one. Al subseguent Ineouts
willse this same window.

Window # [2.

[ Freeze In Time.

[CJ Synchronize with originating plot
Tmechange  [spdatesae  ~
New aurve repeatscoor__~

These tems can be overridden
by Lineout Operator

[7] Use Samping
samplepoints  [50
[7] Create refiine labels:






_images/lineoutmodeicon.png





_images/Molecule-replicate-boundaries.png
Molecule
Var. element

Max 1400
Min: 1.000






_images/lockmechanisms.png
Lock toolbar

Window
View
Animation

Operators
Clear

Lock

=

oz

Mode

T

Tool Updates

) [croee e
[

2

s

3

Lock popup menu

Lock view )|

Locktime
Locktools

Unlock everything

Vist 2130

0 B o »[ Tme
« « Fullframe mode Tools ]
= spin mode View
o L % g [ |
Lock menu





_images/Molecule-replicate-2x.png





_images/lockedtools.png
(4 Window 1 [=][m][x| | X4 wandow 2 [=]imi[x]
06 mut rectad paly 06 mut rectad paly
[ e o] [ e o]
095901150259
(- Window 3 (=] | = wandow 4 [=]imi[x]
06 mut rectadlpan 06 mut rectadlpan
e e R
e -
-
em om)

T
xhifs om  °

T T
xhifs o OC






_images/line1.png
4o a0 20 10 oo 1o 20 30 40
X-Axis





_images/launchprogress.png
‘compute engine launch progress

Vit waiting for a parallel compute engine to launch on surface.Inl. gov.






_images/lineout.png
DB noisesio
Cycle:0

vaxise

Diseance

Kohxis





_images/line2.png





_images/lineout_query_params.png
‘Query parameters.

P il

Strtpont 10100

Endpont 10100
7] Use Samping
Sample Paints 50





_images/lineout_from_curveplot.png
FPlots
P R % 4 Y

Add,) Operators, | Delete Hide/Show Draw Variables,
5 Boundary ,
©  Contour »
(B Cune > operators 5
W ity e pasmng
i Histogram , ,
& Label » i 5
B Meh »
& Molecule >
MultiCurve »
Fl Paralel Coordinates >
@ Pseudocolor b
L Scatter »
I Spreadsheet »
P subser »
b Tensor »
»
»
»






_static/up.png





_static/down-pressed.png





_static/down.png





_static/minus.png





_static/file.png





_static/plus.png





_static/up-pressed.png





_static/comment.png





_images/xray03.png





_images/xray02.png





_images/xray05.png





_images/xray04.png





_images/xray07.png





_images/xray06.png





_static/ajax-loader.gif





_static/comment-close.png





_static/comment-bright.png





_images/indexselect_categoryselection.png
[7] Use Whole Collection

Category [domains

st foomans ]

(Paecerout)

o] [

[ post

] [Cosmes ]






_images/indexselect.png





_images/filledboundarywireframe.png
0B recdsio L —
CEyce'de Sydeds “Infoss

=

K axie (em) K axie (em)






_images/filledboundarysubsets.png
DB: tiresilo
Cycle: 0






_images/headings.png
20. First Level Heading

This is an example of some text under the heading...

20.1. Second Level Heading

This is an example of some text under the heading...

20.1.1. Third Level Heading

This is an example of some text under the heading..
20.1.1.1. Fourth level heading

This is an example of some text under the headin;






_images/glyph_types2.png





_images/histogramplot.png
DB: noise.si

Cycle:

Height (Volume)

[¢]

0
500

800
700
600
500
400
300
200

100

0.40 0.50 0.60 0.70 0.80
Variable loglO(hardyglobal) (Joules)





_images/helpwindow.png
e0e Help

G A A Q
foox_Sookmare Vislt home page

Vislt home page Welcome to Vislt's main help page. Vislt is a distributed, parallel,
@ Release Notes visualization tool for visualizing data defined on two- and three-dimensional
@ Command line arguments structured and unstructured meshes. Visit's distributed architecture allows
 Frequently asked questions it to leverage both the compute power of a large parallel computer and the
© Copyright graphics acceleration hardware of a local workstation. Another benefit of
© Vit Contributors the distributed architecture is that Vislt can visualize the data where it is
b generated, eliminating the need to move the data. Visit can be controlled by
 Graphical User Interface (GUI) or through the Python or Java
programming languages.

@ Visit UltraWrapper
v D Visit User's Manual
» & Introduction to Visit

@ Working with Databases Key Features
@ Plots
@ Operators m Description/Example
@ saving and Pri Has rich Vislt's visualization capabilities are primarily
& Visualization Windows feature set  grouped into two categories:
@ Subsetting for scalar, - .
© Quaniitative Analysis o *Plots are used to visualize data and include
& waking 1t retty e ] Boundary, Contour, Curve, Mesh,
© Animati ! s Pseudocolor, Scatter, Streamline, Surface,
Animation and Keyframing Tensor, Truecolor, Vector, and Volume.
@ Interactive Tools «Operators transform the data prior to
© Multiple Databases and W... visualization. Some examples include Slice,
© Remote Visualization Index select, Iso-surface, Onion peel, Reflect,
@ Seting Preferences Threshold. See the chapter on operators for
the complete list of operators that Visit
Help
supports.

Vislt handles 2D and 3D data equally well. Visit also
Dismiss





_images/hostprofile.png
9 Host profiles =8 = |
E=5 Host Settings | Launch Profiles
LINL Aztec
LINL Borax
iy Host ickname LN Surface
LLNL Osiic Remotehostrame  surfoce.nlgov
LLNL Quartz H
LN rtor 2 vostramesions  aufacemlgovarfoces #govsafaces 2l gov arface# safaces arfoce:
LLNL RZ Cereal g -
LINLRZ GPU §| Dmaximumnodes  [1 =]
LLNLRZ Merl Maximum processors |1 =]
LLNL RZ Thiller
LINLRZ uSeq Path o Vistinstallton fusr/gappsfvist
LINLRZ Zeus
LLNL Sierra Account
LLNL Surface Username. somebacdy
LINL Vulcan
SACRu Conecton
(0] Share batch job with Metadata Server

[comront ] [_eponron_]

Turnel data connectons throuh SSH
Method used to determine local host name when not tumneling:
Use local machine name

@ Parse from SSH_CLIENT environment variable:

Specify manualy: [

somand [oh

ssHport =

—






_images/histogramwindow.png
ece Histogram plot attributes
Histogram based on Array of variables (one zone) (+) Many zones.

Histogram Options.

Number of Bins |32 8
Bin Scale “Log ~ Square root
Bin contribution ) Frequency © Weighted
Weighting
Weighted by (© Avea (2D) / Volume (aD) ) Variable
Variable to Weight By default -
Data
Scale “Linear @ Log "~ Square Root
Limits Use Original Data [
| Minimum 0 ~Maximum 1
Statistical Options
| Normalize Histogram | Compute the CDF
Single Zons Pt Options.
domain o
zone o
7] Use bin widths
Plot style
Type of Output () Curve ) Block
Line Style — solid
Line Width | — 1
coor [
Make default Load Save Reset
Apply Post Dismiss






_images/hostprofile_launchtab.png
Machines

Profie name parallel nteractive pdebug
Timeout (minutes) 0
Number of threads per task 0






_images/filledboundarystuff.png
Filed Boundiary
Var. matl

) Filled Boundary plot attributes

FiledBoundary colors

Color table

Multiple [ ] " — 000,

Boundaries
Opacity s—— |0
Options

Wireframe Draw internal surfaces

Clean zones only ~ mixed color

Point  Line Style

Point type | Point | Point size (pixels) 2
Line style | — sold | Line width 1 ]
Geometry
Smoothing None Fast High
Mis

Legend

Make default Load Save Reset

Apply Post Dismiss






_images/MRI_Clip_Op.png
Clip operator attributes

O Fast
Slice type: © Plane
Ciipparam
Plane 1
origin (000
Normal 100
CPane 2
“Piane 3
inverse

Plane tool controls:

“)Nothing @ Plane1 () Plane 2

Make default Load Save

Apply Post

*) Accurate

) Sphere.

~) Plane 3






_images/MRI_Color_Table.png
Pseudocolor plot atributes

B ceorery

Data
Scale (@ Linear Log
Limits Use Original Data
" Minimum
" Maximum

Centering @ Original ) Nodal

Color

Color table

Opacity

Legend

Make default

Apply

Pastell

Fully opaque

Skew

Zonal

linvert

Lighting

Load Save

Post

Reset

Dismiss






_images/MRI_Clip_3Plane.png
L X5} Window 1

)
OB 0 -8 = =8k ORGEGGHd s P E S22
Ahh kN &8Qll

DB: sO1_anatomy_stripped.img

Pseudocolor
Var: Variable
126.0

,goms (m

—106.5

Max: 26‘0
Min: 0,000

user: root
Fri May 29 13:19:26 2020






_images/MRI_Clip_3Plane_Op.png
Clip operator attributes
O Fast
© Plane

Slice type:
Clip param

G Plane 1
Origin 000

Normal (100

G Plane 2
Origin 000

Normal 0-10

Plane 3
Origin 00 -50

Normal 001

linverse

Plane tool controls:

Nothing @ Plane1 () Plane 2
Make default Load Save
Apply Post

Accurate

Sphere

Plane 3






_images/MRI_Isov.png
Plots.

B, o W % A"ZI

e Y
s, Operators,  Delete Oraw  Varables,
|@ |variable

0
= Isovolume

8 pseudocolor





_images/MRI_Isov_Atts.png
eoe Isovolume operator attributes
30 Upper bound

| default B

| Make default

[ Aepy |






_images/MRI_Clip_2Plane.png
Window 1
BRO-B8==8 &k ORGEGGHd s > P E S22
A AEN N EBQ Il

DB: sO01_anatomy_stripped.img

Pseudocolor
Var: Variable
—426.0

—106.5

0.000
Max: 426.0
Min: 0.000

user: root
Fri May 29 13:11:22 2020






_images/MRI_Clip_2Plane_Op.png
Quality: <) Fast

Slice type: ) Plane
Clip parameters.

 Plane 1
Origin 000
Normal (100
 Plane 2
Origin 000

Normal 0-10

“IPlane 3

Inverse
Plane tool controls:

Nothing () Plane1 () Plane 2

Make default Load Save

Apply Post

Accurate

Sphere

Plane 3

Reset

Dismiss





_images/MRI_Blue_Brain.png
e0e Window 1

OB o-s==s#dk ORGadHad o > D E 3 22
A h A hkE N\ FBQ Il

DB: sO1_anatomy_stripped.img

Pseudocolor

- VO(%‘(EOO 50 -SAD)( .5§ (m )200 -100 T (X -A)%i)s ( ml)

SWWHH‘H\HM‘HH\‘Hm\m‘uuum\\mwu‘m R AR A AR RRRES RERRRRERRT RRRRY

213.0

10

0.0
Max: 426.0
Min: 0.000

204

user: root
Thu May 28 15:41:13 2020






_images/MRI_Clip.png
Window 1

L]
OB~ =Bk ORSGSG@d O 4o > D E 23
& + +

rh e N N 8@l

DB: sO1_anatomy_stripped.img

Pseudocolor
Var: Variable
—426.0

—319.5

. 2180

—106.5

C . _o000
Max: 426.0
Min: 0.000

°Y-Axis (m)

user: root

Thu May 28 16:15:14 2020






_images/DataAnalysis-QueryMinMax.png
3 quey - o x

s e
Display

[Variablerelated -

Population Statistics
Sample Statistics
TrajectoryByNode

Query resuts Float format [%g






_images/DataAnalysis-QueryOverTime.png
QueryOverTime  — o X
Xeaxis-

Choices entered here only apply to vales.
dispayed in the x-2xis of the time curve.

@ Cyde C Tme C Tmestep

Use 1stunused windon or create new

[ one. Al subsequent queries wil use this
same window.

Window # [z

Make defauit Reset
Aeply Post Dismiss






_images/DataAnalysis-ExpressionsMass.png
Expressions
Eressonist Defniton
a2 Name [
Coords
< Type[scolr e vt
M
- I Show variable in plot menus
randvec Stancard editor | ython vpresion et
tensor
shepardglobal_mapped Defintion
 density revolved_volume(Mesh) * density

Insert functon... *| Insert variabl...






_images/DataAnalysis-ExpressionsRadial2.png
Expressions. - o X
Expressionlist -Defriton
e Name [radai2

Type [Sciar e varabe
¥ Show variable in plot menus

Stadardcitor | Pyton xprssoneor
sesiton

>

Species
Curves »

Tensors

‘Symmetic Tensors

Labels unnamedi
Arrys





_images/DataAnalysis-QueryVariableSumOutput.png
%4 Query

- a
s el
Display parameters
|l = I™ Do Time Query
Queries Startand end are time steps,
Spherical Compactness Factor 4] ot cycles or tines,
Time Starting tmestep [0 31
Total Length = ”
TrectonByNode [E— 2
TrjectonyZone
B swide T =
Volume -
Wateright -
: o Lol
Query results Float format | %g.
e o maseis 553,02

et | Smvereits .. post | _osnss






_images/DataAnalysis-QueryWeightedVariableSum.png
3 quey - o x

s e
Display

[Variablerelated -

Queries
Lineout |
Max

Min

MinMax

Pick

Population Statistics

Sample Statistics
TrajectoryByNode
TrajectoryByZone

Variable Sum

Weighted Variable Sum -

Query resuts

Clear resuts | Save results as... Post Dismiss






_images/DataAnalysis-QueryPick.png
3 quey

s e
Display

[Variablerelated

Queries

Weighted Variable Sum

[-Query parameters

AversgeVaioe
GyRadus CoNoderd Czomerd o
Max Domantd [0

Min

Minhax (“Tme Curve aptons:

pick

Population Statistics £ Preserve Picked Coordinate
SampleStatistics @ e
TajectoByNode P
TrejectonByZone

Vonable S  Mulile-vriabe Time urveaptons: ——

Variables | [defauitv
[Pc using domain and element 1d -

" Create Singe Y-ais pot
@ Create Mutpe Y-Axes plot

[ Do Time Query-

Start and end are time steps,
ot cycles or tmes.

startng tmestep [0 =
Endg tmestep |70 =
stide 1 =

Query resuts

Save results as...






_images/DataAnalysis-QueryPickOutput.png
4 Window 2

oGl ora= =@ &k

F#A AR AL
DB: wave0700.slo

- o x

ER&EE ~[d-E

B

presau

w0 s00 en0 700

iy 3 Va7 28 2010






_images/DataAnalysis-QueryWeightedVariableSumOutput.png
Window2

At hhkEx\EBQ
DB: wave0700.silo

OGforae=s &k |O@aEa -4~

- o

Weighted varisble sun

100 200 200 00
Tine (eyele)

500

600






_images/DataAnalysis-ThresholdAttributes.png
Threshold operator attributes. - o X

-For indiidual threshold variables ——————————————————
Variable | Lower bound | Upper bound __Show zone f
veimag |5 Patinrenge v

Add variable _~ | Delete selected variable

Bounds Input: & Defauit " Custom
o —
Output Mesh Is: & Zones frominput " Point mesh
ekttt | | =

LI_I_I






_images/DataLevelComparisons1.png
Data-Level Comparison Setup

Data-Level Comparisons
‘Cross-mesh field evaluations (CMFES) take a field from a donor
‘mesh and place that field on a target mesh. To begin select the
type of evaluation to setup:

(© Between two or more meshes in a single database
Between different time siices on the same mesh
Between meshes in two or more separate databases

GoBack Gancel





_images/DataLevelComparisons3b.png
Donor & Target Setup

Which mesh should be used as the evaluation target? What is
the desired donor field?

Target Database:

Target Mesh: default v

Donor Database:

Donor Field: default v

Add Donor Delete Donor Delete All Donors

Go Back Continue Cancel





_images/DataAnalysis-VariablesMenu.png
[Plots

o L % 4 Y
Adt, Opeators. | Delte HideShow raw | Vs,
Pontlr

e

aiGradint magritude
chromett

24 silo:Pseudocolor - radial

o
operators °
e






_images/DataLevelComparisons0.png
MELLECEN Options  Windows  Plot At

& Animation . ..
I Annotation .
& Color table .
[ Launch CLI.
[ Command

Da

asb Expressions . ..
25 Keyframing ...
@ Lighting . ..
I Lineout ... .
Macros . .
i Material Options
| Mesh management ... .
@ Pick
Query .

Query over time options . ..

[ Selections.. . .
@ Subset ...
& View...

evel Comparisons
Database correlations .

2A
%N
%7
x%C
£%C
038D
ED)
0RE
28K
8L
o8

%M
%M
%P

Y
oY
0%

28U

8V

|
|





_images/DataLevelComparisons4.png
Data-Level Comparison Setup
Specify Evaluation Scheme

Do you want to use indexing or interpolation? How will you handie regions of non-overlap?
Evaluation Scheme
Connectivity-based CMFE  The value at index ' of the target is assigned
the value of index T from the donor. This is efficient,
but requires that the meshes are congruent.

(© Position-based CMFE  The value at index i from the target s evaluated
by first determining its location and then determining the
value at that location from the donor mesh. This is less

efficient, but is robust and works on non-congruent meshes.

Handiing For Non-Overlapping Regions
© Use aconstant [0

Use a variable default

Go Back Cor Cancel






_images/DataLevelComparisons5.png
Data-Level Comparison Setup

Setting Up The Expression

How do you want to use your new CMFE expression? What is its name?

Name of Expression |hardyglobal_onto_meshi_from_globe

What do you want to do with the donor field?
(© Simply place it on the target mesh (you can then use this field in the expression editor to do more complex things)

) Expression with <Select>
Minimum of valves Sum of values Absolute value of difference
Maximum of valves Average of values () Donor field minus variable

Variance of values () Variable minus donor field

Go Back Done Cancel






_images/DataLevelComparisons3c.png
Donor & Target Setup

Which mesh should be used as the evaluation target? What is the desired
donor field?

Target Database: globe.silo

!J Host localhost

3 Path /Users/miller86/tmp

Filter *
Use "current working directory" by default i i
y File grouping = Smart Remove paths . . .
Show dot files
Directories Files
. (current directory) gﬁ_quadr:ics.pd;
. 1 directory level -tri-sphere.vil
ég%zzum;:liat?own evel) 2014 - Employee Enroliment Change Cancellation form-I
362872.pdf
] Exodus 9184396_Miller.pdf
9184396_Miller_Test.pdf
(3 Exodus_2.9_trunk 9184396_Miller_signed.pdf
(21 FASTMath_handson . A.engine_ser.*.vlog database
MACSio A.engine_ser.1.vlog
o Noh-cylindrical-RZ-time=0.6-cycle=284 A.engine_ser.2.vlog
(23 Noh-cylindrical-RZ-time=0.6-cycle= A.engine_ser.3.viog
] PSUADE_vi1.7.4 A.engine_ser.4.vlog
] SAMRAI A.engine_ser.5.vlog

. A.gui.*.vlog database

A ~nii 1 vinn

(] TOPOPT_000000
™3 WhatYanCanNDn

Open file as type: = Guess from file name/extension Set default open options...

Refresh OK Cancel





_images/DataLevelComparisons3d.png
Data-Level Comparison Setup

Donor & Target Setup

Which mesh should be used as the evaluation target? What is the desired
donor field?

Target Database: ~globe.silo
Target Mesh: mesht v

Donor Database: noise.silo

PointVar
Vectors  p airVf
Tensors » airVfGradient_magnitude
chromeVf
Add Donor Delete Donor __grad_magnitude

hardyglobal
hgslice

radial
Go Bz shepardglobal 1

tensor_comps >
ﬁ X ;—






_images/DataLevelComparisons7.png
LX) Expressions

Expression List Definiton
hardyglobal_onto_meshi_from_ globe Name ~ hardyglobal_onto_meshi_from_globe
Type  Scalar Mesh Variable
‘Show variable in plot menus.
SELECIETEg Python Expression Ed

Definition

‘pos_cmfe(</Users/miller86visittrunk/data/silo_hdfs_test_datalnoise silo:hardyglobal>, <meshi, 0.000000)

New Delete

Insert Function... v Insert Variable... v

Display expressions from database

Load Save

Apply Post Dismiss





_images/DataAnalysis-ThresholdOutput.png
Window 1

[BoBEo =8 = =@ &k |0 @ & w6 b

o x

Ja -iE)a-

I#athhix s\ EBQIl

DB: noise2d silo

Cycle: 0 -

Height (parsec)

-10 -5
width (parsec)






_images/GUIWidgetNames.png
button

check box

label

list

menu

option

[t ]

Group tables by Category

Continuous hot

difference -
gray
hot
hot_and_cold

‘Smoothing [Linear -

Cubic Spline

Usage: The button is referred to by the text on the button.
E.g. To create a new color table click on the **New** button.

Usage: The check box is referred to by the text to the right
of the check box. E.g. To group tables by category check the
**Group tables by Category** check box.

Usage: The label is referred to by the textin the label. E.g.
Click on the color table menu next to the **Continuous**
label.

Usage: Lists don’t typically have labels associated with
them, so the name is chosen to be descriptive of the list.
E.g. The **Color table** list.

Usage: The menuis referred to by the text to the left of the
menu. E.g. To enable linear smoothing select **Linear**
from the **Smoothing** menu.

Usage: The option is referred to by the name in the menu
and the word “option” isn’t included. E.g. To enable cubic
smoothing select the **Cubic Spline** option from the
**Smoothing** menu.





_images/GUIWidgetNames2.png
panel

radio box

spin box

tab

text field

Manager

aray
hot
[ Bpot ] |rotand.coid

New | [difference
)

Delete

Name hot

Color table type (@) Continuous

Number of colors 5.

Discrete

kg

Curveview | 2Dview | 3D view

i D)

View normal 001
Focus 000
Up Vector 010

Name hot

Usage: The panel is referred to by the text in the box
surrounding the panel. E.g. The **Manager** panel has
controls for managing color tables.

Usage: The radio box is referred to by the text to the left
of the radio buttons. E.g. Select the **Continuous** radio
button from the **Color table type** radio box.

Usage: The spin box is referred to by the text to the left of
the spin box. E.g. Set the number of colors by changing the
value in the **Number of colors** spin box.

Usage: The tab is referred to by the text at the top of the
tab. E.g. The controls for setting the 3D view are located in
the **3D view** tab.

Usage: The text field is referred to by the text to the left
of the text field. E.g. Enter the name of the new color table
in the **Name** text field.





_images/FileGroupingOff.png
%3 File open

Bt ocont

Path  C1\A_VeIt\2. ZRCpuld_x64.reldatalsio_hf5 test data
Fiter =
[F] Use "aurrent working drectory” by default

[T Show dot fies
Directories:

~(current directory)

(9o up 1 directory level)
mmad]_rect 2d_data

mulidir_test_data

—— etdcratopenotors

oK






_images/FileGroupingOn.png
File open

Bt ocost

Path  C1\A_VeIt\2. ZRCpuld_x64.reldatalsio_hf5 test data
Fiter =
[F] Use "aurrent working drectory” by default

[T Show dot fies
Directories:

~(current directory)

(9o up 1 directory level)
mmad]_rect 2d_data

mulidir_test_data

—— etdcratopenotors

oK






_images/Intro-AutoApply.png
File Controls Options Windows PlotAtts
Global

Active window [7] Auto apply






_images/Intro-MainMenus.png
pn.

=

File Controls [Options| Windows Plotatts OpAtts Help

[Eie] Convols Options WindowsPlotatis Opatstelp i [Convois| Qption: Windows Ploits OpatHelp
Open e ano @ nmaton... anen
Close e + boseay .m.{w ez N pr
Reopentie . S @ Colortable. et
Refresh ile st ater, B Launch ... CtieAteC
e g o e
e CtrlShiftsD
Savesesion == ano
Save session s Boresions... cneshifeg
Restresesion Keytraming . anex
e ——— " Lighting ... CrrisL.
Simuitions... Lineout aneshitol,
Macros ..
e = . e
Mesh management... st
PO ] pick. aestinep g
Query over time options..... Cri+ShiftsQ
Query... crisQ
e B selecions .. cneshiss
et Culex - @ subset.. [<URT) [ ]
o 8 Vew.. any
File menu Controls menu

EleControls Qptions [Windows  Plotats OpAttsHelp

v s (s |

0 New
B cone
Oelete
Gearal
B youts
Actve window
B cony
Gear
3 Lo
- ol frame made
spinmode

Windows menu

Gobal Appearance .. CutsShiftsA.

e wndon: (1 8 st profles.... CuleH
Host profies and Configuration Setup ..

& & o .
O com | PlgiMamager..
e

i

Sovesetings

Time

Options menu

Help menu





_images/Intro-ApplyButton.png





_images/Intro-Architecture.png
Client Computer

Vislt
I Engine
c
£5 1 :
g S o Vls.lt
2 E I b Engine
=8
Vislt Viewer ! Vislt
| .
I Engine
visitGul  visitcu  Python g |
Clients Clients |
1

Data
Plugin

Data
Plugin

Data
Plugin

4' Data

Parallel HPC Cluster

(Files or Simulation)





_images/Docker-Settings1.png
© settings

& General
Daemon

& Shared Drives Configure the Docker daemon by typing a json docker daemon

configuration file.
& Advanced

s
Nevork [0 > & ppernena fses

O Proxies Insecure registries:
| Daemon
@ Kuberetes
@ Reset Registry mirrors:
se

@ Dockeris ruming Docker il restart when spplying these setings.






_images/Docker-Settings2.png
© setings
& General

2 Shared Drives

& Advanced

Network

o]

Proxies

Daemon

o

Kubernetes

(]

Reset

=>

@ Dockeris ruming

Advanced

Limit the resources available to Docker Engine.

Swap: 1024 MB.

—

Disk image location

C\ProgramData\DockerDesktop\vm-data\DockerDesktop.vhdx

Disk image max size

0 GB (56.09 GB  used)

Browse

Docker vill restart when applying these settings.






_images/Intro-VisItGUI.png
Main window Visualization window

il ConirolsOpliors=Wiro BE0rBe=84#lk DHcsacadac (=)D
Global ALt h vk N\ EBQIl

Active window (27) | [T Auto apply
DB: wave0240.silo

Sources
- Cycle: 240  Time:2.8
& & D & (§ Pseudocolor

Open Close Reopen  Replace Overlay Var: pressure

B e S— 1.000

Time 07547
& 0240

] (] (e (] (st

0.5095

0.2642

0.01893
Max: 1.000
Min: 0.01893

» [@pseudocolor - pressure

Apply to ©) active window (0 all windows
Apply operators to all plots
Apply subset selections to all plots






_images/MRI_3D_Axis.png
L] Window 1
Hoso-ss5==s#fdk ORGSSGHd e > D E S 22
Ak A hkE N N 8@l

DB: sO1_anatomy_stripped.img

Pseudocolor
Var: Variable
—426.0

user: root
Fri May 29 14:09:25 2020






_images/Intro-PostedWindow.png
Unposted window

e

[] cache animation for faster playback

£3 Animation

Posted window

Animation

[”] cache animation for faster playback

Animation playback Animation playback
@ Looping () Play once (©) Swing ©) Looping () Play once () Swing
Animation increment 1 = Animation increment 1 2
Animation speed Animation speed
) ‘ ?
slower faster slower faster
[ ey J[ o [[ oemss | [ sy [ umpos [ [ osmss ]
T‘ !
Post button Unpost button






_images/Intro-ScalableRendering.png





_images/MRI_Block.png
Window 1
A0 BB 0 o 8 @ = 8 ik O @ & & @ o &b d <= » P Bis X2
A KR NN E N el

DB: sO1_anatomy_stripped.img

Pseudocolor
Var: Variable
26.0

e |
A XIS (

user: root
Fri May 29 13:38:07 2020






_images/MRI_Add_Op.png
Plots.

Fr

Add, Operators  Delete  1dc/Show  Draw  Variables,
o q |
Debugging >
Geometry >
Integral Curves »

Molecular > |

|_selection > [T

Siicing > ecip

Transforms » @ Cylinder

£ Remove last jk Index Select

@ Remove all |___lsovolume ____
MultiresControl
4 Onion Peel

4 Threshold





_images/MRI_Add_Var.png
Plots.

op(
=

Add  Operators, | Delete  HidefShow  Draw  Variables,

@ Contour
Curve

v

v

Histogram
A Label
B Mesh
« Molecule
MultiCurve
[ Parallel Coordinates
Pseudocolor
Li¥ Scatter
[~ Spreadsheet

vvyldvvvvvy





_images/Intro-OutputIndicator.png





_images/Intro-OutputWindow.png
£3 information

Error!

‘The MetaData server running on localhost could not change the current
directory to C:\this\directory\does\not\exist.






_images/Intro-MainWindow.png
Pulldown menus

Active window

selector 2 ek

Active source
selector

Open Close Reopen | Replace Overlay

v e

Time

« « . > "
Plot & Operator
Selection area

o3 L % 4 Y

Add, Operstors, Delete Hide/Show Draw  Variables,

Dl T

Active
plot list

Aopivto © actve vindow alvindous
7] Apply operators o ol piots
1] Apply subset selections to al plots

Notepad area

Status bar

/ Output indicator






_images/exportdatabase2.png
ene Export Database
Output

Directory name
File name visit_ex_db

Export all time states Format: _%04d

Export to BOV B
Varisbles
Delimiter © space Comma
‘Add Variable default
default
Scalars L Pointvar
Vectors L airvf
Meshes > airvfGradient_magnitude
Materials > chromevf
Subsets > grad_magnitude
Species hardyglobal
Curves > hgslice
Tensors > operators d
Symmetric Tensors |  ragial
Labels shepardglobal |

Arrays > tensor_comps >
x





_images/MakingItPretty-RenderingOptionsAdvanced.png
| £.2 Rendering options

Basic | Advanced | Information

Use scalable rendering

© Auto Aways

When polygon count exceeds
‘Compress images (geometry too) from engine

© Auto ©) Aways
‘Compact domains on engine

© Ao © Aways @ Never

When domains er process exceeds (255 5]

‘Shadows (scalable rendering only)

Strength

Depth Cueing (scalable rendering only)
[] Cue automatically along camera depth
Manual start point
Manual end point

[¥] Apply color using textures






_images/expressionwindow-functionmenu.png
eoe Expressions

Expression List Definiton
mesh_quality/diagonal_ratio Name unnamed1
mesh_qualiy/min_diagonal -
mesh_ qualityjmax diagonal Type | Scalar Mesn Variable

mesh_quality/dimension
mesh_quality/jacobian

mesh_quality/max_side_volume

mesh_qualty/min_edge_length Definition

Show variable in plot menus

Python Expression Editor

mesh_quality/max_edge._length (" Standard Editor | ion Edit

mesh_quality/min_side_ volume
mesh_quality/oddy
mesh_quality/relative_size
mesh_quality/scaled_jacobian
mesh_quality/shape
mesh_quality/shape_and_size
mesh_quality/shear
mesh_quality/skew
mesh_quality/stretch

New Delete

Display expressions from database

Apply

—

matvf(<material-object-name>, [#, #,

#])

Mesh Quality
Comparison
Image Processing
Miscellaneous
Trigonometry
Relational
Conditional
Logical

Time lteration

YYVYYYVYYVY

m dominant mat

materror

nmats
specmf
value_for_material





_images/exportdatabase3.png
eoe Export Database
output

Directory name -

File name visit_ex_db

Export all time states  Format: _%04d

CO o ]

Varlabk Curve2D
riables ExtrudedVol
Delimiter HPart
Image
Add Variable  pry”
1/0 Options gl_w
Coordinate§ g0
Write group sizl - SimV2 3
Tecplot
VIK
Export Wavefront0BJ
XYz
Xmdv
Apply Post | Dismiss






_images/MakingItPretty-ShadowExample.png





_images/expressionwindow.png
Expression List

el

disp

speed

mesh_quality/volume2
mesh_quality/aspect gamma
mesh_quality/aspect
mesh_quality/condition
mesh_quality/diagonal ratio
mesh_quality/min_diagonal
mesh_quality/max_diagonal
mesh_quality/dimension
mesh_quality/jacobian
mesh_quality/max_edge._length
mesh_quality/max_side.volume
mesh_quality/min_edge_length
mesh_quality/min_side_volume
mesh_quality/oddy

New Delete

/| Display expressions from database

Apply

Definition
Name speed
Type | Scalar Mesh Variable B

/| Show variable in plot menus.

Standard Editor Python Expression Editor
Definition
sart(utu+vevswew)
Insert Function... v | | Insert Variable... v
Load Save
Post Dismiss





_images/MakingItPretty-RenderingOptionsBasic.png
3 Rendering options

Basic | Advanced | Information

[] Antialiasing
Composter Settings
Ordered Compositing
Depth Compositer Threads 2
Depth Compositer Blocking 65536
Alpha Compositer Threads 2
Alpha Compositer Blocking 65536
[] Depth Peeling
Occlusion ratio
Max number of Peels
[] Mutti resolution for 2d AMR data
Smallest cell [0.002000000094994903

Draw objects as
@ surfaces Wireframe

Red/Blue Interlace
) Crystal Eyes ©) Red/Green
[] Specular lighting
Strength . -

shapness 0ttt T TP g






_images/expressionwindow-varmenu.png
Exprossion List
‘my_new_expression Name  my_new_expression ]
Type  Scalar Mesh Variable
Show variable in plot menus
SIEEECIECR  Python Expression E
abs(dx)
| New Delete J
e | Insert Function... | | Insert Variable... [
[ Display expressions from database ‘= 5
disp_magnitude
Vectors
Meshes ay
Load Materials dz
Apply Subsets mesh_quality »

Species operators >
Curves > | speed

Tensors t

Symmetric Tensors |

Labels unnamed1

Arrays v
vel_magnitude
w






_images/MakingItPretty-View2D.png
£3 view

Curveview | 20view | 3Dview | Axisarra 4 {b
Viewport  0.20.950.150.95
Window 0101
Ful Frame @ Auto () on () off
XScale @ Linear () Log
YScale @ Linear () Log
Commands






_images/fileinformationwindow.png
%4 File information

Fie = localhost:C:\A_ViIt\2. 12RC\Buid_x64.rel\datalsio_hfs_test_datalglobe sio

_VisIt|2. 12RCBuid_x64_rel\datalsio_hdfs_test_datalglobe.sio

Database comment: unstructured mesh of gobe:
Fie format: Sio_1.0

Num Time States: 1

MetaData is NOT repopuiated on state changes
useCatchAllveshs: 0

Format cannot do its own domain decomposition
The temporal extents are not set.

AllTimes are Accurate.
Times: Are denfica to cydes.
Al Cyces are Acaurate
Cydes:
o
Meshes:
Name = mesh1
Number of bodks = 1
Block origin =0
Cell origin = 0 (orign within one block of the cel).
Node origi = 0 (rigin within one biock of the nodes).
Group origin
Tite for domain herarchy is domains

Tite for indivicualpiece n domain herarchy is domain
Number of groups = 0

Tite for group hierarchy i blocks

Tite for indiidualpiece n aroup hierarchy i block
Mesh type s Unstructured Mesh.

‘spatial Dmension

‘Spatial extents are: ((-40, 10), (-10, 10), (10, 10))
Topological Dimension

The logial cell bound are not ..
The number of cel s not set.

There are no names set with the blocks.
Disjont elements No
Contains ghost zones Maybe
Contains orignal cels No

‘Contains original nodes No

Units = x: 7, : 7, 2

Labels = i A", y: Y Axis”, 7 2 Axis™
Mesh coord type s XY

Mesh s primaril cel-based
Unitcellvector 205 100
Unitcellvector #1550 10

Unitcellvector 221500 1






_images/MakingItPretty-SpecularExample.png





_images/externalsurface.png





_images/MakingItPretty-ViewAdvanced.png
w [ 30view [ musarroyview | Adenced [4])]

View based on

Locked view Maintain view limits

Copy view from camera.

User defined center of rotation

Center 000

Commands






_images/fileopenwindow.png
o File open

M) Host [localhost

Path /usr/gapps/visit/data

Filter

Use "current working directory” by default

File grouping Remove paths .
[ Show dot files
Directories Files
 (current directory) bigsil.silo
.. (go up 1 directory level) csg.silo
curvzd silo

curv2d_colmajorsilo
curv2d_hdfssilo
curvadssilo
curv3d_colmajorsilo
dbA00.pdb
dbB00.pdb
emptydom.

file.ult

Open file as type: |Guess from file name/extension ¢ | |

Refresh






_images/MakingItPretty-View3D.png
Curve view 2D view 3D view ﬂ"‘ 4 I »

View normal 00t

Focus 000

Up vector 010

Angle of view 30

Parallel scale 0.5

Near clipping -05

Far dlipping 0.5

Image pan 00

Image zoom T

Shear 001

EyeAngle (stere) 2 [}
] perspectie

Align to axis






_images/fileopen.png
ece File open
] Host localhost

Path |[Users|griffin28/Documents/WCI/ASQ/Vislt/tutorial_data/VisitClassData

Filter *

Use "current working directory" by default
- File grouping | Smart Remove paths . ..
Show dot files growing [ Smrt_ [ ——

Directories Files

(current directory) waterjacket.nas
(go up 1 directory level) wave.visit
samrai

(71 total files)
\s':;x;e;w:: Wave0000.silo

wave0020.silo
wave0030.silo
wave0040.silo

Wave0660.5i
wave0670.silo
Wave0680.5i

‘waveintensity.plt

Openfile as type: | Guess from file name/extension [ Set default open options...

Refresh oK Cancel






_images/MakingItPretty-ViewCurve.png
£3 view

Curveview | 2Dview | 3pview | mxisarre <[>

Viewport  0.20.950.150.95
Domain 01
Range 01
Domain Scale @ Linear () Log
Range Scale @ Linear () Log






_images/MakingItPretty-ViewAxisArray.png
e [ 2oview [ soven | Awswrorvew [4]3]

Viewport 0.150.9 0.1 0.85

Domain 01

Range 01






_images/filledboundarymixedzones.png
08 recd o 08 recd o

Sdeis il SAvam®
-
= =

K axis (em)

K axis (em)






_images/MakingItPretty-Perspective3D.png
up axis

<\V‘iewi angle

near

far





_images/MakingItPretty-Lighting.png
Lighting

Mode ©) Edit (*) Preview Active light [ § 1 ~]

Properties

Light type [Camera
Direction  00-1
Color

Brightness """,

[ make defautt |

\ Apply \






_images/elevate.png





_images/dynamiclineout.png
roanists

0






_images/MakingItPretty-ColorTableEditContinuous.png
Editor

Number of colors 5

kg

Color table type (@) Continuous Discrete.

Smoothing  cqua

Red 0 2552
Green [ 2552
Blue [} o =
Alpha { 2552





_images/elevatescale.png





_images/MakingItPretty-ColorSelectDialog.png
Popup color menu

EEEEEEEN
EEEEEEEN
EEEEEEEE

EOEEEEE

Color selection dialog

£ select Color

ie: 300 (2] Red: 2552

o oo o < <
00000000 : o8 green:0_H
i

o J( oo ]






_images/elevate_zero.png





_images/MakingItPretty-ColorTables.png
£ color tables
Active color table

G P ot
Discrete WM evels

["] Group tables by Category

New Accent -

Blues
BraG
BuGn

Editor

Number of colors 5

kg

Color table type (@) Continuous () piscrete

snestng Dcan

Red {0 2552
Green {0 2552
Blue [} o =
Alpha {0 2552

[ e ] (o= ]






_images/enginewindow.png
Engine: | naples

Engine Information

Nodes: Default
Processors: a2
Processors using GPUs: 0

Load balancing: Static

Domain assignment:  Contiguous Blocks Together

Total Status:

Stage Status:

Interrupt Clear cache Close engine

Post





_images/MakingItPretty-ColorTableEditDiscrete.png
Editor

Number of colors 30

kg

Color table type Continuous @) Discrete
‘Smoothing

I B . N .

I I

[] Show index hints

Red {0 2552
Green [} o =
Blue [} o =

Alpha ] 255

kG





_images/elevatewindow.png
T Elevate operator attibutes  lacoul =)
4] Bevation heigt relative o XY is?

Limits Mode © Original Data Current Plot
sce ®nex Ol Stew
Sewfocor 1

Flusenn

o 0

[ wsemax

Mox f

7] Blevate with zero height?
Bevtebyvrise [ 7]
[Make defouit] [ toad ] [ save ][ Reset ]
[T [post ][ osmss ]






_images/MakingItPretty-FullFrame.png
08 e0s pao 08 e0s pao
i) By
P P

no "(a/ee) ke (s/eer





_images/explode_montage.png
DB: fire.silo
Cycle: 0

Filed Boundiary
Var: Materials

1 Rubber
2 Steel
3 Cord

DB: fire.silo
Cycle: 0

Filed Boundiary
Var: Materials

1 Rubber
2 Steel
3 Cord

DB: fire.silo
Cycle: 0

Filed Boundiary
Var: Materials

1 Rubber
2 Steel
3 Cord






_images/MakingItPretty-DepthCueingExample.png





_images/explode_attributes.png
eoe IX| Explode operator attributes

Explosions origin

[Epiosiono | Foint | Plane | Cylinder

Plane Point (000 |

Plane Normal 10 0 |

Material Explosion
Explosion Factor 1
Available Materials |1 Rubber

cell Explosion

V| Explode Material Cells

Explosion Factor 1
| Add || Remove || Update || Clear Explosion Pattern |Impact
| Make default | | load || Save || Reset |

| Apply | | post || Dismiss |






_images/MakingItPretty-LightTypes.png





_images/exportdatabase1.png
e0e Export Database
Output

Y o—
File name visit_ex_db

| Exportall time states Format: _%04d

Exportto B8OV

Variabies

Delimiter © space
Add Variable [

1/0 Options
[~ Coordinate parallel writes with groups.
Write group size a8 8
Export
Apply Post






_images/MakingItPretty-Gradients.png





_images/export_options_example.png
L] Export options for Silo writer

Driver v PDB
" Checksums HOES,
DBSetCompression()

B e | [ Gorce






_images/MakingItPretty-AntialiasingExample.png
no antialiasing  antialiasing





_images/MakingItPretty-AnnotationObjects.png
General | 20 | 30 [ Aay | Golors | Objecs |

Createnew  Annotation objects.

Font family [Arial

[ sold. [ talic [ Shadow
[[] visible






_images/displacewindow.png
3 Displace operator atiributes

Diplocenent varisbe
(ke et [ Lond ][ sve ) [ e |
(= [ et ][ Demiss |






_images/MakingItPretty-AutoscaleAxesLabelsExample.png
Y Axis (x10"3 cm

120

100

80

60

40

20

20

T T
40 60
X Axis (x10°3 cm)

80

100





_images/MakingMovies-DisplayTank3.png
B4 Subset - o X
Whole domains
~ E domaint
H domain2
4 domain3
B gomaind
Amains
ofmeint
Mo Reveselv] ses  Revese[r] Mses  Revase ||

Seectedsets:Revers [v] Seeced Sets:_Revere [v] Selectedset:_peverse|1]

Aopied slcton [fone

Aeply

e
__pot | o |






_images/MakingMovies-DisplayTank5.png
More colors.





_images/MakingMovies-DisplayTank4.png
4 Window 1

Zo&

- o x

Dode=8#k Ogesa-| -3~

Fa hhh ko o
DB: dbreak3d_boundries.silo

Cycle: 0

Time:0






_images/MakingMovies-DisplayWater1.png
Pseudocolor plot attributes. - o X

cats | eonery |

oot

Scale @ Lnear  Clog C skew |1
e [oeorraoes

™ Minimum o T~ Color for values < min

T maximum  [1 T~ Color for values >max

Centering @ Original " Nodal (" Zonal






_images/MakingMovies-DisplayTank6.png
4 Window 1 X

BE%IFEEEEEiMW‘éGMﬂMHM

FARAE A REN\EBQI

DB: dbreak3d_boundries.silo
Cycle: 0 Time:0

™ 000






_images/MakingMovies-DisplayWater3.png
4 Window 1 X

BE@IFEEEEEiMW‘éOMﬂMHM

FARAE A REN\EBQI






_images/MakingMovies-DisplayWater2.png
Isovolume operator attributes






_images/MakingMovies-Encoding2.png
© Savemovie wizard

Choose format

‘Choose movie formats and resalutons.
-Format and resolution

fomat  [WPEGmove

© Use current window size:

ify movie size
width €] "
Y
Height 535 +

T stereo movie

steres type Jlefmoht 7]

T Use screen capture

-Output-
Format Resolution Stereo Screen Capture
MPEG movie 600535 off no






_images/MakingMovies-Encoding1.png
Save movie wizard

Movie type

‘Would you ke to create a new sinple movie or use your previous setings?
€ Use my previous movie settings
@ New simple movie
© New template movie






_images/MakingMovies-Encoding3.png
© Savemovie wizard

Choose length

Choose movie start/end time and frames per second.

Frames per second [0

Fstrone o
[
Famesiie |1

it frame vae [0





_images/MakingItPretty-uniform-banded-coloring.png





_images/MakingItPretty-smooth-coloring.png





_images/MakingMovies-Annotations2.png
Annotation

e | ® | Aray | cotrs | Obiects |

T~ show axes. T~ show triad
Geneal | xais | Vs | zaws |

xes

bounding box

¥ Auto scale label values
V' Auto set ticks

Ik marklocatons [

==

==

Led L] L]

-

K masinam £

-

¢ masimam £

-

i [

Triad

™ set triad manually

(color

Select color

line width 1 7]
FFont [l 7]

¥ 8oid
¥ ttsiic
Make defauit Reset






_images/MakingMovies-Annotations1.png
Annotation - o X

Geera | 2 | | Avey | coms | Obiecs
™ tegerd

I Database:

= =

Fontname [aial =] Fontscale [1 I sod I~ ttaic

I Use foreground color 100%

7 Time.

Time scale factor [1 Time offset [0

I~ User information

Fontname [aial =] Fontscale [1 I sod I~ ttaic

I Use foreground color 100%






_images/MakingMovies-Annotations4.png
Annotation

enera | 2 | © | Aray | cobrs  Obiecs |

[Createnew——

Annotation objects

Legend:Subset - domains
Legend:Pseudocolor - Isovolume(alphat)

FideShow | Dekete |

>

[Time=stime

i o

0%

Text colr {100
e [ Fames =
¥ visible. ¥ Rounded W Shaded

ke deft Reset






_images/MakingMovies-Annotations3.png
Annotation

e | 2 | ® | Aray

colrs | objects |

€ Image sphere

Badkground image |

RepetitonsinX |1 =
RepetitonsinY |1 =






_images/MakingMovies-Annotations6.png
Time=0.6





_images/MakingMovies-Annotations5.png
Lighting - o X

Mode % Edit (" Preview Activelight | § 1 ¥
Ol -
e

Make default Reset
Aoy Post Dismiss

il






_images/MakingMovies-DisplayTank2.png
ts

B L % 4

‘Add, Qperators, | Delete Hde/Shon Draw  Varizbles,

Apply to @ actvewindon " allwindows





_images/MakingMovies-DisplayTank1.png
4 Window 1 - o X

PGl ==a#&ik|g@&ea- |45~

ga + ks d

DB: dbreak3d_boundies.silo
Cycle:0  Tme:0






_images/MakingItPretty-numerically-banded-coloring.png





_images/tubewindow.png
Tube operator atiributes = ||

Tuberadus
1) Scle wicth by varisle? (Nodsl varisies workbest)

varsbe defait -
Radus 0.01 [Fracton of Bounding Box.~
Tube form

Fineness of tbe: s

[7] Cap ends of the tubes.

[Mekedefauit] [ toad ][ save | [ Reset ]






_images/correlatedialog.png
B9 Correlate databases? =]

Would you like to create a “Index” database correlation for the following
databases?

localhostD:\A Vislt\dbB0O.pdb

localhostD:\A Vislt\dbA0O.pdb

e JEw )






_images/vectorwindow.png
eoe Vector plot attributes

W pata  Giyohs

Where to place the vectors and how many of them

Vector placement () Adapted to resolution of mesh
(" Uniformly located throughout mesh

Vet P

 Stride 1

{22 Only show vectors on original nodes/cells

Save Reset

Make default

Apply Post Dismiss

ece Vector plot attributes
Vectors Glyphs

Limits

Limits Use Original Data

| Minimum 0 * Maximum 1

Color

© Magnitude Default nvert

Make default Load Save Reset

Apply Post Dismiss

-
Scale 0.3 72 Scale by magnitude [ Auto scale
o

R — =
Arowbody | Line Width | —1

Vector origin () Head ) Middle () Tail

Rendering
Geometry Quality © Fast () High
Make default Load Save Reset
Apply Post






_images/vectorplot.png
DB: globe silo
Cycle: 0 Time:0






_images/MRI_Sphere_Tool.png
Window 1

°
Hoelo-s==as#fdk ORSGGHd e > D E 322
A E R AN N AWQ Il

DB: sO1_anatomy_stripped.img
-150 .
Pseudocolor -;(())z -A X IS (m

Var: Variable
—426.0

-100

-200

user: root
Fri May 29 13:53:50 2020






_images/correlationwindow.png
Database correlation list

Database correlations

[ewer ] [dbA00p30
@B0pdo
Edt- || Corrlationtl

Vihen to create correlation

Defaut correlation method

Prompt before reating new correlation

(post ] [Comes






_images/viewtoolbar.png
)5 & & el el 0





_images/correlationtimeslider.png
Time

e T —
{0 5

[T ey vl v T






_images/viewmenu.png
I
& ﬂhgﬁg

2

:
i
i






_images/MRI_ThreeSlice.png
e0e Window 1
OB o-s==s#dk ORGadHad o > D E 3 22
A h A hkE N\ FBQ Il

DB: sO1_anatomy_stripped.img

Pseudocolor
Var: Variable
—426.0

user: root
Thu May 28 16:12:44 2020





_images/createbonds_advanced.png
e (e |

Variable for atomic number dement -

Maximum bonds per atom |10
T~ Add periodic bonds

periodicin W x Ry Fz
I Use provided unit cell vectors

Vector forx  [100

Vectorfor Y [o10

Vectorforz Jo01

e R I = | ==

oy | Post | Dsmss |






_images/visit_dirs_from_github_repos.png
v 38 0S(C)
> | SWINDOWS.~BT
v st
v [ vist
[ dts
1] docs
1] scipts
o
et
[ visit-deps
] windowsbuild





_images/MRI_Sphere_Tool_Button.png
[©]

# [

0o @88 =8#k: 9
Ak N & 8Q Il

Sphere tool





_images/createbonds-selector.png
S T Pa U Np Pu Am Cm B Cf Es Fm Ma No Lr

| ten any element ]






_images/visit_404.png





_images/MacPatch.png
L ICN MacPatch

WFCR::

History  Agent

LLNL Managed Software

( Default <)

/=) Nessus
Version 7.4.3
Size: 14.3 MB

Outlook2016 account cleanup (QA)  Fix Outlook account for 0365
LLNL

Version 0.2

Size: 2KB

RealVNC Viewer 6.19.325 RealVNC VNC Viewer

RealVNC
Version 6.19.325
Size: 3.3 MB,

Remove Adobe Acrobat XI Remove Adobe Acrobat XI

@ Remove Adobe Acrobat XI

Version 1.0
Size: 9KB.

Remove Syncplicity Remove Syncplicity
Remove Syncplicity

Version 1.0
Size: 1KB.

Remove VMWare Fusion 10 or lower  Remove VMWare Fusion 10 or lower

@ Remove VMWare Fusion

Version 1.0
Size: 10 KB

) Refresh Catalog

Questions or help?
Visit https://servicenow.linl.gov
and search on ‘macpatch.’

Install






_images/createbonds_example.png
Molecule
Var. element

51
H

Max 1400
Min: 1.000

Molecule
Var. element

Max 1400
Min: 1.000






_images/volume_freeform_controls.png
Smooth | Attenuation






_images/MRI_ThreeSlice_Op.png
@ Interactive.

| Mokedefault = Load | | Save | | Reset |

_ Apply | | Post | | Dismiss |






_images/createbonds_bonding.png
Bonding parameters | Advanced settings |

Note: fistmath s taken, so order s sgrfcant

st [2nd  [Min Max.

H - 02000 15000
04000 25000






_images/visit_dirs_from_released_source.png
v 0s(C)
> | SWINDOWS.~BT
5 1 sk
v [ sk
v || Vishdm300b

7] windowsbuitd





_images/MRI_Point_Tool_Button.png
[©]

L
OERlo=8= =8 &Kk
Ahh kN \&8Qll

Point tool

# [





_images/contourplot.png
DB: noise.silo
Cycle: 0
Contour

Var: hardyglobal
Unifs: Joules

Max: 5.890
Min: 1.096_-





_images/tube2.png





_images/MRI_Point_Tool_2.png
Window 1
B m]
*+

AhESN &8Ol

o B == B RS S G SO > DES 2

DB: sO1_anatomy_stripped.img

Pseudocolor
Var: Variable
—426.0

4-200

P

L

-100

user: root
Fri May 29 16:28:27 2020






_images/contentstab.png
'ﬂ gﬂﬂ Index  Bookmarks
Coments

% Visit home page
@ Release Notes
@ Command line arguments
@ Frequently asked questions
@ Copyright
@ Visit Contributors.
@ Vislt UltraWrapper
v D Visit User's Manual
» & Introduction to Visit
» € Working with Databases
> & Plots
> 4 Operators
» & Saving and Printing
» & Visualization Windows
» & Subsetting
> 4 Quantitative Analysis
» & Making it Pretty
» @ Animation and Keyframing
» & Interactive Tools
» & Multiple Databases and Wi
» & Remote Visualization
» @ Setting Preferences
> @ Help






_images/tube.png





_images/MRI_Slice_Op.png
eoe Slice operator attributes

Normal
Orthogonal ()X Axis @ Y Axis () Z Ax
Arbitrary

Theta-Phi

origin

© Intercept () Percent () Zone

Intercept 0

Up Axis

" IProject to 2D

Interactive

Make default Load Save

Apply Post

Node

Reset

Dismiss






_images/coordsystems.png
ap
0





_images/MRI_Slice.png
L] ‘Window 1
BOBEO-Bs sk JNGEB @S0 48 )b B 323
FEEE TR Y L X X

DB: sO1_anatomy

Pseudocolor
Var: Variable
—426.0

—319.5

—213.0

-7 106.5
—0.000

Max: 426.0

Min: 0.000

user: root
Thu May 28 16:02:16 2020






_images/contourwindow.png
eoe Contour plot attributes

Contour Levels
Scale (@ Linear Log

Minimum 0 Maximum 1

Selectby N levels. 4

Contour colors

Color table Default Invert

Single
© Mutiple

Level  Color
1

©

Unestyie
Line style — solid Line width —1
wisc
Legend Wireframe
Make default Load Save Reset
Apply Post Dismiss





_images/MRI_Sphere_Clip_Op.png
eoe Clip operator attributes

Quality: O Fast ) Accurate
Slice type: ) Plane © Sphere
Clip param

Center 01000

Radius 150|

linverse

Make default Load Save Reset

Apply Post Dismiss






_images/MRI_Sphere_Clip.png
eoe Window 1

OB o-s==s#dk ORGadHad o > D E 3 22
BAE A AN\ FBQ Il

DB: sO1_anatomy_stripped.img

Pseudocolor
Var: Variable -200
—426.0

—106.5

—0.000
Max: 426.0
Min: 0.000

user: root
X Thu May 28 16:20:20 2020






_images/Aneurysm-DeferExpression.png
4 Deferbrpression operatorattri..  —

o x

varbles -|fpormad

=

) e =
=

sopy |

oismss_|






_images/Aneurysm-Expressions.png
B4 Expressions

[Expressionlist

Name [romat

Type.[Vecor mesh v
¥ Show variable in plot menus
Standardedior | Python expression et

cell_surface_normal(Mesh)






_images/Aneurysm-ApplyOperatorsToAllPlots.png
I Apply operators to all plots:
¥ Apply subset selections to alplots





_images/Aneurysm-CreateStreamlinePlot.png
5 Boundary

&
=]
[ 4
&
]

Contour
Curve

Filled Boundary
Histogram
Label

Mesh
Molecule
MultiCurve

Parallel Coordinates

e |m &

Scatter
P Spreadsheet
Subset

' Tensor
B Truecolor
S Vector
® Volume

mesh_quality >

pressure

fime_derivative >

ConnectedComponents

DataBinning »
Flux 3
Lcs 3
LimitCycle »
ModelFit »
Poincare »

StatisticalTrends »





_images/Aneurysm-FluxAttributes.png
Flux operator attributes - o X

Flow field velodty -

T~ Mutiply dot product by a scalar variable?

weghe e = =

e e e
=

sopy |

Dismiss






_images/ActiveSources.png
window (3] | [F] Auto apply






_images/transform_linear.png
Criginal Plot Linear Transform Applied

<\






_images/transform2.png





_images/cone.png





_images/transformwindow2.png
Transform operator attributes

Arbitary | Coordate

Linear

Input coordinates:

Cartesian (x,y,2)
) Cylindrical (rphi2)
) spherical (r theta,phi)

Output coordinates

Cartesian (x,y,2)

yindical (rphi,2)
‘Spherical , theta,ph)

Vector transform method:

] phi on  semi-infinite domain

(ines only)






_images/commandwindow.png
666 X Commands

Commands

® Fecod [ i@ Pavce | /W sp
Sworecommandsin [Macos 5]

I~ Append commands o existing text

o |7 | | |

Vo deu

Post Dismiss






_images/transformwindow.png
Transform operator attributes

‘evary | coodie | e
Rotate
ongn 000
s 001
Ameurt 8 © R
Sce
I ongn 000
I X1 Y1 z1
I | @ Transate
xo  vo 2
Tronsform vectors
ke deit oo (o) (et
(st ) [Coames ]






_images/MRI_Plane_Tool.png
Window 1

s0f
+
=t [o]

Do Bes=B &k IR GEGG#ad e > D E S22

AN X Rl

DB: sO1_anatomy_stripped.im

Pseudocolor

Var: Variable
126.0

150
100
0,

—3195 -50

-100

~213950

—106.5

—0.000
Max: 426.0-200

Min: 0.000

xis (m)

Kz X-AXi
-

-100

100

200

T T

UL BN R

user: root
Fri May 29 13:52:26 2020






_images/config.png
I opts — mb-3.1.4-darwin-10.14-x86_64-release json (~/Documents/WCI/ASQ/Vislt/masonry/opts) - VIM — vi mb-31.4-darwin-10.14-x86_64-release json — 112x44
I“bootstrapi\/wswt“
{"version": "3.1.4",
"build_types": ["release"],
"branch": "3.1RC",
"arch" "darwin-x86_64",
"cert" "Developer ID Application: Kevin Griffin (K2QL7A77SW)",
"entitlements": "/Users/griffin28/Documents/WCI/ASQ/VisIt/masonry/opts/visit.entitlements",
"notarize": {"username":"kevin.s. griffin@gmail.com",
"password":"@keychain:VisIt",
"asc_provider":"K2QL7A77SW",
"bundle_id":"gov.1llnl.visit"},
"make_nthreads": 8,
"skip_checkout": "yes",
"boost_dir": "/Users/griffin28/Documents/WCI/ASQ/VisIt/third_party_pydv/boost/1 60_0/1386-apple-
darwinl5_clang",
"git": {"mode":"ssh",6 "git_uname":"griffin28"},
"build_visit" { "cmake_ver": "3.9.3",
"args":"--no-thirdparty",
"libs": ["cmake",
"openssl”,
"vtkh",
"vitkm",
"ispc",
"embree",
"thb",
"ospray",
"python",
"vitk",
tgth,
"gqwt",
"boost",
"mxml",
"mpich",
"adios",
"adios2",
"advio",
"boxlib",
"cfitsio",
"conduit",
"gdal",
"hdf4",
"hSpart!,
86_64-release

CEUD LA WL @






_images/transparent.png





_images/MRI_Pink_Brain.png
Window 1

iz
L

L~ I §

°
OB 08 ==8 &k O@SG6EHSad e )
Ahh kN &8Qll

DB: sO1_anatomy_stripped.img

Pseudocolor

Var: Vcrzbéeoos; M S (m)o 100 Ox 'AX1&$ ( m2)0

B L AEnaaasEEns R EER LAAARE A i
. —2130 L
— 1065 -20Q
0.000
Max: 426.0
Min: 0,000
z X 204

Y

user: root
Thu May 28 15:53:32 2020






_images/conewindow.png
Cone operator attributes. ] (=] &

angee 2
orign 05005

Direction 010

Representation @nd O Projectedto D O Cylndrical ||
Up Avis 100

[ cut cone off? Length |1

(Paecerout) oo (o) (et






_images/transformwindow3.png
Transform operator attributes

Arary | Comdiate | e

Jre—

o o . .

. ' . .

os os ' .

. . . '

[ tnvertlinear transform [ Transform vectors

ke defit g ) (s ) (et )
(post ] [Comes ]






_images/MRI_Point_Tool.png
Window 1
OB 0 -8 ==8FdKk ORGEGHd s PP E S22
Ahh kN \&8Qll

DB: sO1_anatomy_stripped.img

Pseudocolor
Var: Variable 150
426.0

Y user: root
Fri May 29 16:26:35 2020





_images/conncompwindow.png
T3 ConnectedComponents operator attrib... .- =1 [P

[¥] Use Ghosts Zone Neighbors for connectivity between Domains

[t etout] [ tosg | [ sove ][ Reset |

(= [ pest [ oemes |






_images/truecolorwindow.png
eoe Truecolor plot attributes

Color

Opacity e —— 100,






_images/MRI_Plane_Tool_Button.png
...
PO ®
+,

H# &

ol 0 o @ =8 = 8 # ik O
AhEAN N AW QI

Plane tool

DB: sO1_anatomy_st






_images/conn_comp_op.png
DB: sid97 silo
Cycle: 0 Time:0

Pseudocolor
Var. operators/ConnectedComponents/mesh1

0

8 16 23 3

Max: 31
Min: 0






_images/truecolor.png
Virginia

North Caroling

South Caroling






_images/closebutton.png
[w...dm =88] = W






_images/toroidal_poloidal.jpg
central solenoid

poloidal magnetic field
outer poloidal field coils

helical magnetic field toroidal field coil

plasma electrical current toroidal magnetic field





_images/clipwindow.png
Qualty:

Sice type:

Cip parameters.
[]Plane 1
oign 000
Normal 100
[CIPlane 2
onign 000
Normal [0.10
[Plane 3
onign 000

Normal [001

Radis 1
[l toverse

[ete afot] ] [ =
(= ( ] [Cosmes ]






_images/tooltoolbar.png
N\ E@Q Il





_images/cmake_gui_02.png
A CMake 3.12.2 - C/A Visit/Build

o x
File Tools Options Help

Wihere s the source code: | CH/A_Visithitire. Browse Source.
Vihere to buld the binaries: [CH/AVistBuldl ] _Browse buid.

sewci [ W Gowed ¥ advenced b addenty | 3¢ Remove e

try
Name.

Value

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

Configure | Generate | 0pen project | current Generator: None.






_images/cmake_gui_01.png
A CMake3122-
File Tools Options Help

Where s the s cod: |

Press Configure to update and display new values nred, then press Generate to generate selected buid fies.

Configure | Generate | 0pen project | current Generator: None.






_images/transform.png
voaxis

Hlixis Hlixis





_images/colortablebutton.png
= Greys
= OrRd
= Oranges

amino_rasmol
amino_shapely
bluehot

1 caleblack

s calewhite

w1 contoured
cpk_jmol

== cpk_rasmol
difference

ua hot_desaturated
= inferno
levels
magma
= orangehot
= plasma
w1 rainbow
= viridis
= viridis_light
= xray






_images/cylinder.png
DB: noise silo DB: noise silo
Cycle: 0 Cycle: 0






_images/MakingItPretty-AnnotationObjectImage.png
Lower left. 00

Image source
width 100%
Height 100%

Transparent Color
[¥] visible

[2] ] Lock aspect

[E)em)





_images/cylinderwindow.png
Cylinder operator atiributes g

endpoint 1 000]

Endpoint2 100 |
Radus 1 l
[ tnverse

[Mteetout] [ toag | [ sove ][ Reset |
(= [ pest [ oemes |






_images/cylinder_inverse.png
I

H\—H\E

T

T

[m
‘H\\H

i

Ly

T
I

noise.siio

Cycle

DB

0

Var. hardyglobal
Units: Joules

|
oo

Pseudocolor

a0
229

L

Ma 5

Min: 1.0

Mesh

Var, Mesh






_images/MakingItPretty-AnnotationObjectPosition.png
Text

Lower left 0.680.65
Height 3% 2
Text 20 text annotation

[¥] use foreground color

Text color

Font family Arial

[¥] visible





_images/decimate2.png
N
v

’;\“"" -






_images/MakingItPretty-AnnotationObjectImageExample.png





_images/decimate1.png
ViYavsgyavavzg)
RO
NATAVAY AL
NSRS

VANWEAN
A ANV AN,
o
SO0

Z
e

A





_images/MakingItPretty-AnnotationObjectTextExample.png
Curylinzcr rn=sn Wi donsity






_images/default_rendering.png
[ JON ] Volume plot attributes

Renderer Options Transfer function

Rendering Method

[ Default Rendering

Default Rendering Options

Sample data onto regular grid Number of samples 1000000 o

Methods

Gradient method °

Lighting and Material Properties

4 Lighting
Ambient: 0.40 Diffuse: 0.75 C Specular: 0.00 Shininess: 15.0 C
Misc
[ Show Legend
Make default Load Save Reset

Apply Post Dismiss






_images/MakingItPretty-AnnotationObjectText.png
Text

Lower left 0505 E
Height = [
Text 2D text annotation

[¥] se foreground color

Text color e Y

Font family [arial

] visible





_images/decimatewindow.png
Cylinder operator atiributes g

endpoint 1 000]

Endpoint2 100 |
Radus 1 l
[ tnverse

[Mteetout] [ toag | [ sove ][ Reset |
(= [ pest [ oemes |






_images/MakingItPretty-AnnotationObjectTimeSliderExample.png
Time=17





_images/displace.png
DB: rectiinear.vik

e PR

\

)

DB: rectiinear.vik






_images/MakingItPretty-AnnotationObjectTimeSlider.png
Time slider

Lower left 001001 v
width 0% ] Height % E
Text abel Time=stime

Time format %g

Start color - “‘““=“‘”Hmwumulm

nd clor B ——

Use foreground color

Text color

Time source

Visible






_images/defer.png





_images/MakingItPretty-AnnotationObject3DLine.png
30 Line
Start 000
End 110
wnepe

o [ ] e

Tube Qualty Tube Radius

] use foreground color

N Y L LT,
Begin Arrow Resolution

End Arrow Resolution






_images/cyclecorrelation.png
‘ D) sicte=0

»

( A‘ State =0
a8

‘ D) sicte=0

»

( A‘ State =5
a8

‘ D) sicte=0

»

( A‘ State =9
a8

‘ ) siote=5

»

( A‘ State =9
a8

‘ D) siore=10

»

(A‘ State =9
a8

‘ D) siore-15

»

(A‘ State =9
a8

‘ D) siore-10

»

(A‘ State =9
a8





_images/MakingItPretty-AnnotationObject2DLineExample.png
Output






_images/customizemenu.png
Plots
Clear
Lock
W Resctview
)| Reconter view
Mode ,
Tools ,
Tool Updates
€ Choose center
G O e 7]
Hide toolbars v
Hide toolbars (all windows) | v/ |
Show toolbars v
]

Show toolbars (all windows)
Use large icons (all windows)

(<<

E?Sggigﬁ






_images/MakingItPretty-AnnotationObject3DTextExample.png





_images/MakingItPretty-AnnotationObject3DText.png
3D Text

Text: 3D text annotation

Fostion 050503
e
Omes o]

Rotate Y. Rotate X Rotate Z
0deg [¢] odeg 2] odeg E
V] use foreground color

Text color A N oo

[] visible





_images/curve_filled_with_points.png





_images/crinkle_clip.png
Clip operator attributes (onpascal?) — 8 X ZEE s
Quainy fast o Accurate

Sice type: © Plane

¥ crinkle cip

Sphere
Ciip parameters

V/Plane 1

origin 000

Normal 100

e 0

Plane 3

Inverse
Plane tool controls:

Nothing ® Planel (Plane2 () Plane3

Make default| | Load save Reset

apply Post Dismiss.





_images/MakingItPretty-Annotation3DAxes.png
Gereral [ 20 | 3 | Ay | coos | objess |

[¥] Show axes [¥] Show triad [¥] Show bounding box

General 3D | X-Axis | Y-Axs | z-Axs

V] Title
ustom title [ x-Axis
‘Custom units |

Font name Font scale 1 Bold [] Talic

2] s regroun clor T

[¥] Labels

Scaling (x10~7) [0

Font name Font scale 1 Bold [] Talic

[¥] use foreground color

[¥] Tick marks

Wajor minimum [0

Vajor masimum |1

Vinor spacng [0.02

Wajor spacing (0.2

‘Show grid






_images/curve_time_cues3.png





_images/MakingItPretty-Annotation2DGeneral.png
General | 20 [-30.[ Aay |1 Golors | objecs |

[¥] Show axes

General 20 | x-axis | y-axis

[¥] Auto scale label values

[¥] Auto set ticks

Tick mark locations [Outside.
‘Show tick marks ~ [Bottom-left.

Line width =






_images/curve_polar.png
0.5

1o

s






_images/MakingItPretty-Annotation3DGeneral.png
[¥] Show triad [¥] Show bounding box

X | YAxs | zaxs

[¥] Auto scale label values
[7] Auto set ticks
Tick mark locations (Inside.

Y-Minimum

Y-Maximum

Z-Minimum

Z-Maximum






_images/curvewindow.png





_images/MakingItPretty-Annotation3DExample.png





_images/curveplot.png
Value
(parsec)

5 1o 15 20
Distance (parsec)





_images/MakingItPretty-AnnotationObject2DLine.png
20 Line

Start 0250.25

End 075075

v =

[E3E)

Style — solid
Use foreground color

Line color 1

Begin arrow [none

End arrow [None

Visible






_images/curvewindow3.png
Curve plot atributes

Data | Geomery | Extras
‘Create Cue For Current Location

s

Coordinate System
[ Polar to Cartesian

Order [RTheta  ~ Units [Radans -

(ot ] [Csmve ] [Chesst )
(post ] [Comes ]






_images/MakingItPretty-AnnotationColors.png
General |20 |30 [ Awmay | Colors | objecs |
Background color
Foreground color -

Background style @) Solid (©) Gradient () Image  (©) Image sphere

Gradient style [Radial

Gradient color 1

Gradient color 2

Sackground image |

Repetitionsin X~ [1

Repetitions inY 1






_images/curvewindow2.png
B3 Cunve plot attributes A el

Data | Geomewry | Extas

[ showlnes.

e P

Point
[ Show points.

P %) ponte
© sutc rontade
e rontdersty

(ot ] [Csmve ] [Chesst )
(post ] [Cosmes ]






_images/MakingItPretty-ActiveLightMenu.png
Active light [ 1 ~|

Properties |

2
3
Light type [Comery
Directon  00-1| 5
6
Color 7
sk
Brightness 100%

100%

kg

Enabled





_images/createcorrelation2.png
Create database correlation: Correlation01

Name Correlaton1

Correlaton method [Padded index

— —
a0
o0
5
e






_images/MakeDefault.png





_images/createcorrelation1.png
Create database correlation: Correlation01

Name. Correlation01|

Carelton metod [Paded e

Sources

Correlated sources:

‘dbA00.pdb
dbB00.pdb.

[create database correlation






_images/volume_gauss_controls.png
B v < || <>






_images/MakingItPretty-Annotation2DAxes.png
Font name Font scale 1 [¥] Bold  [¥7] malic

17 s rerns ol L .

[¥] Labels

Scaling (x10~7) [0

Font name Font scale 1 [¥] Bold  [¥7] malic

[¥] use foreground color

Tick marks.

Vajor minimum [0

Wajor masimum |1

Minor sacing  [0.02
Wejor spacng [02

Show grid






_images/MakingItPretty-Annotation.png
Path Expansion [File

Font name Fotsctle 1

Use foreground color

100%

Use foreground color

100%






_images/createcorrelation3.png
Create database corrlation: Correlation01

(=15
Neme Conlatonot.
Corelatonmethod
sources s_nw ndex
Time
Cice
e
i
[Ceate database corrlation]






_images/MakingItPretty-Annotation2DExample.png
DB: rect2dsi

Cycle: 48

-
foe

Ui ems
mee

~o7176
- oass

02510

Mo 09450
WMin; 002357

¥ axis (em)

o

Time:4.8

0.4 0.6
X Axis (cm)

user: bruggerl
Thu Oct 19 12:34:48 201;





_images/splashscreen.png
Vislt2.13

(c) 2000-2017 LLNS. Al Rights Reserved.
Vislt 213.0, svn version 31897
October 2017

Copyright...

Contributors...

Dismiss





_images/box.png





_images/subset1.png
3

[ Collection

Domains 2 Materials

‘Whole mesh

N\
S
SO
I

Domains

Categories
V) v R
//////71/5”// ] \\ . ] \\\\\\‘\}}\\ N
(i - N i PR ]
DM, DM, DM, D;M,






_images/stretchedindex.png
‘ D) sicte=0

»

( A‘ State =0
a8

‘ ) siote=5

»

( A‘ State =2
a8

‘ D) siore=10

»

(A‘ State =4
a8

‘ D) siore-15

»

(A‘ State =7
a8

‘ D) siore-10

»

(A‘ State =9
a8





_images/boxtool2.png





_images/subsetplot.png
DB: summary.samrai
Cycle: 0 Time0

Subset
Var. levels

o

|

Subset
Var. patches

level0 patcho

levell patch0
levell patchl
levell patch2

levell patch3

—levell patchd
—levell patchs
Hlevell patchs

—levell patch7
Hlevell patchs

[ Hlevell patcho

Mesh
Var. amr_mesh






_images/boxtool1.png
DB: noise.silo
Cycle: 0

e roagaa

e
491
3453

220 .






_images/subset2.png





_images/architecture.png
Scripts

{

Python
interpreter

Vislt module  fgg— g

Local computer
W EN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B - LI

Remote computer

Database server VCL

ﬁ Parallel Compute Engine






_images/speciesplot.png
£8:specmir qubdlo
BT EET

£8:specmir qubdlo

£8:specmir qubdlo

EET






_images/annotation4.png





_images/sources_mainguipanel.png
(] Vislit 2.9.0 -ox
File Controls Options Windows PlotAtts OpAtts Help

Global
Active window W) AT Ey
Sources
T e O & ©
Open Close Reopen overl
Actve source [curvzd.sio <)
Time
@ )
< = BN
Plots

% oo L% 4 8,

Add" Operators | Delete Hide/Show Draw Variables






_images/astro-streamlines.png





_images/sphere.png
DB noisesio DB noisesio

DB noisesio
Cycle:0 Cycle:0

Cycle:0

===






_images/array_compose_with_bins.png
10.7





_images/speciesvar.png
Contour »
E Curve >
. Filled Boundary »
[l Histogram >
ﬁ Label »
Mesh >

t Molecule »
MultiCurve »
$ Parallel Coordinates p

Pseudocolor

oy

"' Scatter »
et
 Spreadsheet >

. Subset >

» ,
e ' Tensor

. Truecolor »

\\:\‘: Vector »
- Volume »

1
Apply to

Apply operators to all plots
Apply subset selections to all plots

o active window

Unpost

Auto apply

&

Overlay

B

|4

Lnvar
Lzvar
Species
cnvar
czvar

d

dnvar
dzvar
fnvar
fzvar
invar
izvar
Invar
lzvar
mesh_quality »
operators >
p

snvar

szvar

u

v

~ all windows

Dismiss





_images/bookmarktab.png
Visit home page
Subsetting






_images/spheretool.png
dius = 12.9

i





_images/axisrestricttool.png





_images/sphereslicewindow.png
T Spherical Sice operator attributes (acoul =1 b

Orign 000|
Radus 1

(o) (o] [ ) (i)

(= [ pest [ oemes |






_images/boundarystuff.png
LX) Boundary plot attributes

Boundary colors

Color table Default Invert

vutiple [ P ' o— 1000,
e
2
-
i
-5
]
-7
Boundaries ™= 8
Opacity — e,
Options.
Wireframe
Point / Line Style
Point type | Point [ Point size (pixels) 2
Scale point size by variable default
Line style | — sold B ine width B
Geometry
‘Smoothing None Fast High
wis
Legend
Make default Load Save Reset

Apply Post Dismiss






_images/boundary_interior_sampling.png





_images/slicewindow_origins.png
Intercept
Pant 000

Intercept

Intercept © Percent

Percent 50






_images/slicewindow.png
Bf Siceoperatorattiowtes  (ecliEh i)

© percent ©

[¥] Project to 0

Directon [00 1

Interactive

[ptesemit] (iosd ) (smve ) [nwer

ooy ] —r—






_images/annotation3.png





_images/smoothwindow.png
‘Smooth operator atiributes

Maxinum Nmber o terations 20

Relaxaton Factor 001

Convergence o

[¥] Maintain Features I
Feature Angle s

Vax Edge Angle 15

[T smooth Along Boundaries

[Mteetout] [ toag | [ sove ][ Reset |
Camn ) Tt (o)






_images/annotation2.png
Unclassified

user: whitocs
W May 171641242008

V Avie





_images/smooth.png
AN
_ A





_images/scatterplotwindow.png
eoe Scatter plot attributes

WM Appearance
WZZEEM ireut2 input3 input4 |

e Xooorirte

Variable hardyglobal v |

|| Minimum 0 | Maximum 1

Color:
Misc
Legend
Make default Load Save Reset
Apply. Post Dismiss






_images/scatterplot_appearance.png
eoe Scatter plot attributes

[Tl Appearance

Scaling
2 Normalize the axes to a cube

Color

(© Foreground Color
) Single color

P Default

Point Style

PointType | Poit [ Pointsize (pixels) 1

Color:

Make default Load Save

Aoply Post

~Jinvert

Dismiss






_images/selected_databases.png
A Add Cache Entry

Nome: VST _SHECTED DATABAGE LTS

o [nG

vie: [

Descipten: |






_images/scatterplotwizard.png
Scatter Plot Setup

Select variables for a new Scatter Plot.

X Variable

Y Variable

Z Variable

Color Variable

hardygiobal

<Select>

Cancel






_images/simulationwindow.png
e0e Simulations

Simulation | mandelbrot on naples

Valuo

Name ‘mandelbrot

Date ‘Thu Oct 26 16:14:46 2017
Num Pro... 1
path Jpathhtolwhere/sim/was/started

comment  Demonstrates creating the Mandelbrot set on an AMR m...
uiFile mandelbrot.ui

Simulation status  Stopped

Vit status
Interrupt Clear cache Disconnect
(G Messages  Strip charts
Commands

halt step n

update toggleupdates

| Enable time cycle ranging

Post Dismiss






_images/sidebyside.png
& (em

Reflected plot

103

203

YR

& (em

Translated plot

10






_images/slice.png
DB: ?\Obe.silo DB: ?\Obe.silo DB: ?\Obe.silo
Cycle: 0 Cycle: 0 Cycle: 0






_images/threshold_custom.png
eoe Threshold operator attributes

For individual threshold variables.

Variabio Rango ‘Show zone f

default max Part in range
Add variable v | | Delete selected variable

Bounds Input: Default € Custom

For al threshold variables

Output Mesh Is: (© Zones fromiinput () Point mesh

Make default Load Save Reset

Apply Post Dismiss





_images/choose_generator_popup.png
A

Specify the generator for this project

Optonal tooset to use (argument to T)

& Use default native compilers:

" Spedfy native compiers.

© Specty tookchan fie for ross-compiing
" Spedfy options for cross-compiing






_images/tiledafter.png
DB: curv3d.silo
cle: 48 m

Time:4

a0

user: griffin2s
Tue Jan 10 16:5;

DB:jet.cgns
Cyclei0  Time0

>

o ety o

widtn (par

e






_images/thresholdwindow.png
eoe Threshold operator attributes

For individual threshold variables.

Variable Lowerbound  Upperbound  Show zone i

default m max Partin range

Add variable v Delete selected variable
Bounds Input: (© Default ) Custom

For al threshold variables

Output Mesh Is: (© Zones fromiinput () Point mesh

Make default Load Save Reset

Apply Post Dismiss





_images/clearmenu.png
e
> Clear all windows
[C—
e






_images/timecorrelation.png
‘ D) sicte=0

»

( A‘ State =0
a8

‘ D) siote=1

»

( A‘ State =5
a8

‘ ) siote=3

»

( A‘ State =9
a8

‘ ) sicte =8

»

( A‘ State =9
a8

‘ D) site-13

»

(A‘ State =9
a8

‘ D) site-1s

»

(A‘ State =9
a8

‘ D) siore-10

»

(A‘ State =9
a8





_images/cinemaviewer.png
Cinema Desktop.

4.7400000+03

Layar Descripon
v plott
v image_Arrays

thou
plot2.

v image_Arays
thou

Value Color Lut

AchromaticVision1 B

Import

Geometry Color

Use color Set Color

Use lighting

Change Background






_images/tiledbefore.png
o .
[/ d 3 3> OOGR0 =M@ = 9 d B3
Global FEAR L 4 I
i 4 Auto appl; DB: curvadsio DB: noke sio
Active window pply Cyclei 48 Time:d8 Cycle:0 ®
Sources B
% % et FUS 2 Axis (em)
Open  Close  Reopen Replace  Overlay - 3

Active source  noise.silo

Time
Y Axis (cm)
«l | — > 1»
Plots
B op@ e O
g 1= L V| = o
Add, Operators, Delete  Hide/Show Draw  Variables, z user: griffin28
Tue Jan 10 16:38:3
| w | |noise.siozairvt
Dsies
% Pseudocolor
"
o Y-Axis
Apply to active window all windows
Apply operators to all plots
Apply subset selections to all plots
Unpost ]

B a

i e






_images/clipcircle.png





_images/toolmenu1.png





_images/clip.png
DB globe2pdb DB globe2pdb DB globe2pdb
Cycle:0 Cycle:0 Cycle:0






_images/toolmenu.png





_images/ccl_win_1_active.png
Global

Active windowVZIIIE)

2





_images/threeslice.png





_images/ccl_thresh_render.png
Pseudocolor

Var: pressure

Units: Pa
577

9
.»“"0

3442

2273

1104
Max: 5779
Min: 1,104






_images/tessellatewindow.png
Tessellate operator attributes ~ @ x

Chord error l0.01 |
Field criterion  [0.01 |

| Merge points

|Make default | Load || Save || Reset |

Ay | | post || Dismiss |






_images/certs.png
Accounts
/ @

2 Qi
EBe ¢ @ T
General Behaviors Navigation Fonts & Colors Text Editing Key Bindings Source Control Components Locations Server & Bots
Apple IDs Signing certificates for "Kevin Griffin":

@ &

i0S Development Certificates

iOS Distribution Certificates
[Zlios pistribution

macOS Development Certificates
[:l echopark

macOS Distribution Certificates
[“IMac App Distribution
BMac Installer Distribution
[_IDeveloper ID Application
DDeveIoper ID Application
[:l Developer ID Installer

&S Development
iOS Distribution

Mac Development
Mac App Distribution

Mac Installer Distribution
; Developer ID Application
Developer ID Installer

Creator

Kevin Griffin

Kevin Griffin

Kevin Griffin
Kevin Griffin
Kevin Griffin
Kevin Griffin
Kevin Griffin

Date Created Status

1118

1/118

1118
1118
1/6/18
1118
1118

Not in Keychain

Not in Keychain

Not in Keychain
Not in Keychain

Not in Keychain
Not in Keychain

Done

ole

Download Manual Profiles

Manage Certificates...






_images/threshold.png
DB: noise.silo
Cycle: 0

DB: noise.silo
Cycle: 0

DB: noise.silo
Cycle: 0






_images/ccl_win_2_active.png





_images/threeslicewindow.png
B ThreeSlice operatorattibutes lacoul = b

X o
SR
[Mteetout] [ toag | [ sove ][ Reset |
(= [ pest [ oemes |






_images/changeusername.png
] Choose new usemame.

New userame for surface. Il






_images/changeactivesource.png
= E s | g it 2130 bl wes| %3 vist 2130 (=] &

3 Vst 2130
|| |[Fite Controls Options Windows Plotatts Opas >

File Controls Options Windows PlotAtts OpAtts  »| File Controls Options Windows PlotAtts OpAts
Global
Actve window
Sources.

(&:&'D

(Rctve source [aurvadsio

] Auto apply ] Auto apply.

s O
Resce vty

i rectad.sio
[ucdd.sio

DT < u > » DT < 0 > »





_images/teaser.png
hchilds@vis: /var/www/html/staff/hrchilds — engine_ser — 81x31

>>> AddPlot("Pseudocolor", "hardyglobal")

L

>>> AddOperator("ThreeSlice")
L

>>> ts = ThreeSliceAttributes()
>>> ts

x=0

y=0

z=0

interactive = 1

ts.x = 10
ts.y = 10
ts.z = 10
SetOperatorOptions(ts)

>>>
>>>
>>>
>>>
1L

>>>
1L

>>>
1L

>>>
1L

>>>
>>>
>>>
>>>
>>>
>>>
>>>
1L

>>>

DrawPlots()
DefineVectorExpression("g", "gradientChardyglobal)")
AddPlot("Streamline", "g")

= StreamlineAttributes()

.sourceType = s.SpecifiedBox
.sampleDensity® = 8

.sampleDensityl = 8

.sampleDensity2 = 8

.coloringMethod = s.ColorBySeedPointID
SetPlotOptions(s)

s
s
s
s
s
s

DrawPlots()

(7, & & o ok el

I o] 100l d s
&R

== ERER
}z° wirm

DB: noise.silo
Cycle: 0
Preudocolor

Jar acngobal

Unifs: Joules
5890

4691

3493

Max: 5110
Min 0,000

user: hehiids
Wed Jul 13 14:23:46 2011






_images/suppress_cmake_warnings.png
A Warning Messages
~Suppress Warrings

¥ Developer Warrings

[ Deprecated Warnings

[ Warnings as Errors.

™ Developer Warrings as Errors:

T Deprecated Warnings as Errors.






_images/ccl_of_thresh.png
Pseudocolor
Var: cel
1600

l 1200
| |
8000
4000

0,000
Max: 1600
Min: 0,000






_images/tensorplot.png
Tensor
Var: grad_fensor
2.290

0ga12"

—0.04190
Max: 2,29
Min:-0.041






_images/ccl_of_isov.png
Pseudocolor
var cel

00
lmm

—~9.000

4500

0,000
Max: 1800
Min: 0,000





_images/tensor_max_shear_eqns.png
- Solution of Stress Cubic S*3-11*5%2 + 12 *S - 13 = 0 for roots S1, S2, and S3.

J.E. Akin, 2007

:Refer: A.C. Ugural & S.K. Fenster, Advanced Strength and Applied Elasticity , Prentice Hall, 4th Ed

11 = Sxx + Syy + Szz . invariants

12 = Sxx*Syy + Sxx*Szz + Syy*Szz - Txy"2 - Tyz*2 -Txz"2

13 = Sxx*Syy*Szz + 2*Txy* Tyz*Txz - Sxx*Tyz*2 - Syy*Txz"2 - Szz*Txy"2

Hydro=11/3 . hydrostatic component

Q=11"2/3-13-2"11*3 /27 ; work variable

R=1"2/3-12 . work variable

S=sqt(R/3) . work variable

T = sqrt (R*3 /27) . work variable

a = acosd (-Q/T/2) . work variable

Sa = 2*S*cosd(a/3) +11/3 . recover roots
Sb = 2*S*(cosd(a/3 + 120)) + 11/ 3

Sc = 2*S*(cosd(a/3 + 240)) +11/3

S1=MAX (Sa, Sb, Sc) . rank the roots

S3 = MIN (Sa, Sb, Sc)

S2=5a+Sb+Sc-51-53

SD1 = S1 - Hydro . principal deviatoric stress
SD2 = S2 - Hydro . principal deviatoric stress
SD3 = S3 - Hydro . principal deviatoric stress

T21=(S1-52)/2

. define maximum shear stresses

T32=(S2-53)/2

T13=(S1-53)/2






_images/ccl_thresh_atts.png
LK ] Threshold operator attributes

For individual threshold variables.

Variable | Lower bound | Upperbound  Show zone if

39 max Part in range

Add variable Delete selected variable

Bounds Input: © Default () Custom
For al threshold variables

Output Meshls: ) Zones from input ) Point mesh

Make default Load Save Reset

Apply Post Dismiss






_images/tessellate.png





_images/ccl_sel_ccl_expr.png
Plots.

vl ML ’ﬁ ‘!I

df=
Add, Oporstors,  Delete  Hide/Show  Draw  Variables
@ airvt
~ (O pressurs airViGradie

DeferExpression 4| x| chromeVf
grad_magn

[ Pseudocolor
operators.

PointVar





_images/tensorwindow.png
Tensor plot attributes.

(EZEW Disply |
Scale
&
9 Scale by magnitude
9 Auto scale
Reduce by
(© Ntensors 400
suide 1
Make default Load Save Reset
Aoply Post Dismiss






_images/ccl_defer_expr.png
® O @  DeferExpression operator attributes

| Variables | ccl

| Makedefault | load






_images/subsetwindow.png
LR ] Subset

Whoio Matorials Gomains
v | tire v [ 1 Rubber I domaint, 1 Rubber
domains ] domain2, 1 Rubber
> [ 2 Steal ] domaind, 1 Rubber
» [3Cord I domaind, 1 Rubber

Al Sets: Reverse Al Sets: Reverse Al Sets: Reverse

Selected Sets: | Reverse Selected Sets: | Reverse. Selected Sets: | Reverse

Applied selection  None

Apply Post Dismiss

o





_images/boxwindow.png
Box operator attributes

Amountof celin the range. ©) Some.

Xrimum

XMaximum

VAdrimum

Vaximum

Z8drimum

ZMaximum

(Harederoat] [

Load

s J[ et ]

[T






_images/subsetplotwindow.png
eoe Subset plot attributes
Subset colors

100%
Options
Wireframe Draw internal surfaces
Paint /Line Style
Point type  Point Point size (pixels) 2
Scale point size by variable default
Line style  — solid Linewidth 1
Geometry
Smoothing ) None Fast High
wisc
Legend
Make default Load Save Reset
Apply Post Dismiss





_images/ccl_isov_atts.png
o060 Isovolume operator attributes

Lower bound (3.9

Upper bound

Variable pressure B

Make default

Apply






_images/subsetwindow3.png
000 Subset

Whole domains Materials

v_[7] tire > [ domaini
ICEETE > [ domain2 [l domain4, 2 Steel

Materials » [ domain3 [ domain4, 3 Cord

v [A] domain4

All Sets: Reverse All Sets: Reverse = All Sets: Reverse

v

Selected Sets:  Reverse = | Selected Sets: Reverse | _ | Selected Sets: | Reverse

Applied selection None

Apply Post Dismiss

<>





_images/ccl_expr_def.png
e0e Expressions

Expression st Definition
cel Name ccl
Type  Scalar mesh variable

‘Show variable in plot menus.

Standard editor [} tor

on expression

Definition
‘conn_components(Mesh)
| New | Delete |
e [ Insert function... | | Insert variable... |
[ Display expressions from database
| load | | save |
_Aeply | | Post J






_images/subsetwindow2.png
Subset

Whole
v [A tire

Materials

All Sets: Reverse

v

Selected Sets: | Reverse

v

Applied selection None

Apply

domains

» [ domain2

» [ domain3
» [ domain4
All Sets: Reverse | , | All Sets: Reverse
Selected Sets: | Reverse | | | Selected Sets:  Reverse
~
<
Post Dismiss






_images/ccl_launch_cli.png
Options ~ Windows
& Animation . ..
1 Annotation . ..
> Color table ...

&

Plot A
®A
=N
®T





_images/ccl_isov_render.png





_images/subsetwindow_species2.png
000 Subset

Whole Species
[A Mesh [ Mat 1 Top, Spec 1
domains [ Mat 1 Top, Spec 2
Material O Mat 2 Lower right, Spec 1

BT [ Mat2 Lower right Spec2
[0 Mat 2 Lower right, Spec 3

[0 Mat 2 Lower right, Spec 4

[ Mat 3 Bottom, Spec 1

[ Mat 3 Bottom, Spec 2

] Mat 3 Bottom, Spec 3

[ Mat 3 Bottom, Spec 4

[ Mat 3 Bottom, Spec 5

[0 Mat 4 Left, Spec 1
All Sets: Reverse = All Sets: Reverse = All Sets: Reverse
Selected Sets: | Reverse Selected Sets: Reverse Selected Sets: Reverse

v v

Applied selection None

Apply Post Dismiss





_images/ccl_new_window.png





_images/rect2d_d2_nonsampled.png
¥ axis (em)

NTE

308070

T

000 g 77

EN

163

WPE

9019 3,

123

.10

value (9/en"2)

RTE

154 0650647064

527-0-655802.

063

03]

9750-64

X axis (om)

20 0.22 0.24

bistanca (e






_images/queryparams_point.png
Query parameters

Query point[0 00

Variables [default

Time Curve
Query





_images/queryparams_line.png
Query parameters
Start point [0 0 0
End point [100

Samples  [50

Variables [default

Query





_images/raycasting_compositing.png
[ JON ] Volume plot attributes

Renderer Options Transfer function

Rendering Method

[ Ray casting: compositing

Ray Casting Options

Sampling method @) Rasterization () Kernel Based ) Trilinear
Samples per ray 500 ° Sampling rate 3.00
Methods
Gradient method © Centered differences ) Sobel

Lighting and Material Properties

Lighting
Ambient: 0.40 C Diffuse: 0.75 T Specular: 0.00 ¢ Shininess: 15.0 C
Misc
~ Smooth Data Show Legend
Make default Load Save Reset

Apply Post Dismiss






_images/querywindow.png
[=]ml[x]

Max

Min

MinMax
Node Coords
<

play Query parameters
All | | startpoint o0 0
Queries Endpoint [lo0 |
L2Norm ] | Samples [s0

L2Norm Between Curv | variables

|

" _},;I Query

[default

Query results

Clear results

Post

Dismiss






_images/raycasting_ospray.png
[ JON ] Volume plot attributes

Renderer Options Transfer function

Rendering Method

[ Ray casting: OSPRay
OSPRay Options
Shadow Grid Accelerator
Single Shade One-Sided Lighting
Samples Per Pixel 1 z
AO Samples 0 i

Ray Casting Options

Sampling method (e

Samples per ray 500 -

Lighting and Material Properties

Lighting

Ambient: 0.40 Diffuse: 0.75

Misc

Smooth Data

Make default

Apply

Transfer Function Pre-Integration
Ambient Occlusion (AO) Transparency

Minimum Contribution 0.001 -

AO Distance 100000.0 C

Sampling rate 3.00

Specular: 0.00 T Shininess: 15.0 | C

Show Legend

Load Save Reset

Post Dismiss






_images/raycasting_integration.png
[ JON ] Volume plot attributes

Renderer Options Transfer function

Rendering Method

[ Ray casting: integration (grey scale)

Ray Casting Options

Sampling method (e

Samples per ray 500 ° Sampling rate 3.00

Methods

Gradient method °

Lighting and Material Properties

v
Ambient: 0.40 C Diffuse: 0.75 T Specular: 0.00 ¢ Shininess: 15.0 C
Misc
~ | Smooth Data Show Legend
Make default Load Save Reset

Apply Post Dismiss






_images/reallyclose.png
Really close
1956 the computs engine on host

ok | Cancel |






_images/raycasting_slivr.png
[ JON ] Volume plot attributes

Renderer Options Transfer function

Rendering Method

[ Ray casting: SLIVR

Ray Casting Options

Sampling method (e

-~

Samples per ray 500 i Sampling rate 3.00

Methods

Gradient method © Centered differences

Lighting and Material Properties

Lighting
Ambient: 0.40 Diffuse: 0.75 C Specular: 0.00 Shininess: 15.0 C
Misc
Smooth Data Show Legend
Make default Load Save Reset

Apply Post Dismiss






_images/rect2d_d2_60_sampled.png
¥ axis (em)

.20

NTE

163

WPE

123

.10

RTE

063

03]

308-0-790394-0-775493 4 4595
D00 0 777430 4707182150
07492500 9019 3860
3 527665
50.0.60: o)
) 5875-0-64
T T
0.08 0.10 0.1z 0.1 0.16 0.18 0.20 0.22 0.24

X axis (om)

value (9/en"2)

R7E

764

RPE

724

703

K

E

E






_images/rect2d_d2_12_sampled.png
¥ axis (em)

X axis (om)

20 806398-0-790394-0-775493 4 4525
RTE
D00 § 777630 0:741030-745542.0.73 07182159
.16
RVE g
§.740250.0.73200 15801 0-700991 66873869 5
i 3
123 2
[
10 393 365 097-0-656802
L0 ]
59.0.60: 0-675154-0-657647-0-64
0]
L0s ]
D86 -0-66b3750-64743 1
T T
08 0.0 0.2 0.4 026 0.8 020 0.22 0.24

R7E

764

RPE

724

703

K

E

E

.02

o.

0s

o.

T
06

T T
0.08  0.10
bistanca (em.

o.

12

13

.16





_images/savemoviewizard6.png
o0 e Save movie wizard |
Choose method

Choose when and how you would like Visit to create your movies.

(© Now, use currently allocated processors
() Now, use a new instance of Visit
() Later, tell me the command to run






_images/scatterplot.png
DB: RedshiffOUTpUI004.

Scatter
Var: Dark matter den
Gas_Energy

Gas_Energy

oundary

T
0.4
Dark matter

T
0.6
density

0.8






_images/savewindow.png
eoe Set save options

Filename

Fioname "

Output iles to current directory

Output directory.

Format options

File type <]

Quality Progressive

Compression type  PackBits g8
Binary ~Stereo Force parallel merge

Aspect ratio and resolution

Aspect ratio | screen ratio B

Width 1024 Height 1024

| Screen capture

Pixel data

RGB " Depth | Luminance
Alpha. | Value

| Multi-window save

<) Tied Advanced
Window 1 ¢ Omit window.
Width 128 Height 128
Position (X) 0 Position (¥) 0
I i [
Save Save and Dismiss
Apply. Post Dismiss






_images/savecinemawizard1.png
ece Save Cinema wizard

Cinema settings
‘Set Cinema export options.

Database settings

Filename Visitcdd
Specification @) A c o
Image settings

' File format png

| 4 Create composite images

- Use screen capture
Width 600 2| Height 600 :
Camera
Camera type phi-theta
Phi 12 2 Theta 7 :

www cinemascience.org

<Back Next> Cancel






_images/revolvewindow.png
Revolve operator attributes

TypeofMesh?  © Auo O XY O RZ
[¥] Choose axis based on mesh type?

A of revolution [100

startangle o

Stop angle %0

Number of steps 30

[Mteetout] [ toag | [ sove ][ Reset |

(= [ pest [ oemes |






_images/savemoviewizard1.png
ece Save movie wizard
Movie type

Would you like to create a new simple movie or use your
previous settings?

) Use my previous movie settings

(© New simple movie

) New template movie






_images/savecinemawizard2.png
ece Save Cinema wizard

Choose length
‘Choose startiend frame and stride.

Frame start [0 :
Frame end 70 :
Frame stride |1 8

www cinemascience.org

<Back | [ Finish | | Cancel






_images/savemoviewizard3.png
Choose length

Choose movie start/end time and frames per second.

Frames per second

First frame.

Last frame

Frame stride

Initial frame value






_images/savemoviewizard2.png
LXK ]

‘Save movie wizard

Choose format

Choose movie formats and resolutions.
Format and resolution

Format | JPEG images B

() Use current window size
Scale 1 8

© Specify movie size
Width

Height 789

[ stereo movie
Stereo type | Left/Right

[ Use Screen Capture

Output

Format Resolution
MPEG mo... Current 1x
JPEGima.. 853x789

Stereo
off
off

Go Back

Continue

| Cancel |






_images/savemoviewizard5.png
ece ‘Save movie wizard
E-mail notification

Do you want to be notified by E-mail when your movie completes?

() Yes O No






_images/savemoviewizard4.png
Choose the output directory and base filename for your moviefs).

Output directory,

Base filename | movie






_images/revolve.png
% ginenenpas

oz

08 lingned
g

v

ooz






_images/resamplewindow.png
Resample operator attributes

Resample Entre Extents.
Startx o
EndX 1
Samplesin X 10
| sty o
EndY 1
10
Startz o
Endz 1
SamplesinZ 10
Resalve ties: largest ) smallest
Variable to resolve ties default -

Value for uncovered regions 0

Distrbute resampled data set across al processors (paralel only)?
[T Make output cel centered

[Mekedefout] [ toad ][ save | [ Reset ]

(= [ pest [ oemes |






_images/rect2d_d_60_sampled.png
¥ axis (em)

1.10.3.800347(0.783511(0.767753(0.753142(0.739745(0.727
1163
772082(0.754615 0.7230340.709068(0.696

1,14 F
]
)

+123.744237(0.726101 .693221(0.678642/0.665 E

100 0.71686 (0.698013(0.680278 10.648503

1.063

.690008(0.670406| 0.65192 0.634648

1.043

T T T T T T T
0.02 0.0 0.06 0.08 0.10 0.1z 0.15 0.1§
bistanca (cm)

0.08 0.10 0.1z 0.1 0.16 0.18 0.20 0.22 0.24
X axis (om)





_images/rect2d_d_12_sampled.png
¥ axis (em)

1153

.800347|

D‘M\SH

0.767753(0.753142(0.739745(0.727.

1163

1123

772082

|

0.754615

wﬂﬂ 0.723034|0.709068(0.696:

1123

744237

0.726101

0 709&0‘693221 0.678642(0.665:

1.08 3

71686

0.698013

0.680278(0.663744(0.648503(0.634

1.063

1.043

.690008

0.670406

0.65192 (0.634648

0.14  0.16 o0.18 0.20 0.22 0.24
X axis (om)

value (9/en"2)

0.78 7

0.763

0743

0.723

0.703

0.683

0.663

0.623

0.623

o.

T
02

o.

T
0s

o.

T
06

T T
0.08  0.10
bistanca (cm)

o.

T
12

o.

T
1

o.

T
16





_images/reflect.png





_images/rect2d_d_nonsampled.png
¥ axis (em)

1153

.800347|

0.767753(0.753142(0.739745(0.727.

1163

1123

772082

0.754615

0.723034|0.709068(0.696:

1123

744237

0.726101

.693221(0.678642(0.665.

1.08 3

71686

0.698013

0.680278 0.648503

1.063

1.043

.690008

0.670406

0.65192 (0.634648

0.14  0.16 o0.18 0.20 0.22 0.24
X axis (om)

value (9/en"2)

0.78 7

0.763

0743

0.723

0.703

0.683

0.663

0.623

0.623

o.

T
02

o.

T
0s

T T
0.06  o0.08
Distanca (cm)

o.

T
10

o.

T
12

o.

T
1






_images/replicatewindow.png
T Use provided unit cell vectors

Vector for X 100
Vector for Y o10
Vector for 2 001

Replcations in X [
Replcations in Y [
Replcations inZ [
¥ Merge into one block when possible

[~ For molecuar data, periodicaly replicate:
atoms at unit cel boundaries.

T shift atoms to new periodic origin

New periodic atom origin ooo

) | ==

oy | Post | Dsmss |






_images/reflectwindow.png
rator atributes (=] 5 ator attributes. (| |
[ Reflect operator attribute G [ Reflect operator attribute G
Input mode 