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Abstract—In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists
must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a
vector field, traditional techniques for analyzing the field’s topology cannot be used because of its Hamiltonian nature. In this paper
we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of
a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled
fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique
has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of
magnetically confined burning plasmas.
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1 INTRODUCTION

The development of magnetic confinement fusion which will poten-
tially be a future source for low cost power is an important research
area. Physicists are particularly interested in using magnetic fields to
confine the burning plasma in a toroidal shaped device known as a
tokamak (Figure 1a). To achieve stable plasma equilibrium, the field-
lines of these magnetic fields need to travel around the torus in a he-
lical fashion (Figure 1a). This helical behavior can be accomplished
by summing up a toroidal field traveling in the torus around the cen-
ter of the torus with a poloidal field moving in circles orthogonal to
the toroidal field. In order to design such efficient reactors, physicists
must be able to analyze the magnetic fields from numerical simulations
and characterize their orbits. Note that the magnetic fields confined
in a tokamak theoretically are in the form of divergence free vector
fields and as described below whose fieldlines have a periodic, quasi-
periodic, or chaotic behavior (Section 3.3). Whether the magnetic field
remains divergence free numerically depends on the choice of the rep-
resentation in a particular code and the error introduced through nu-
merical simulation.

The symplectic, and in particular area preserving nature of the cor-
responding flow mapping makes existing analysis techniques difficult
to apply because rather involved numerical schemes are required for
their accurate study [22]. Indeed, typical techniques are applied to
non-symplectic vector fields, such as fluid flows, or in scenarios where
ensuring the divergence-free nature of the flow is not of paramount
importance. In those cases, the main features of interest can be identi-
fied with standard numerical techniques in simple data representations.
Nonetheless, recent work [25, 26] has started to investigate the specific
benefits of enforcing the divergence-free nature of the data interpola-
tion to achieve the long term numerical stability of streamline-based
visualizations in fluid dynamics applications.

To tackle the visualization and analysis of a magnetic field, a
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Poincaré map is used. The Poincaré map’s main feature is that it of-
fers a principled dimensionality reduction to study Hamiltonian sys-
tems [23]. The map is formed by the intersection of fieldlines with
a plane perpendicular to the axis of the torus (Figure 1b), whereby a
sufficient number of intersections (“puncture points”) are collected in
order to reveal salient patterns in the Poincaré section [20]. These pat-
terns can then be used to characterize the orbits and refine the analysis.

Among all the fieldlines in a toroidal magnetic field, physicists are
most interested in the fieldlines that are periodic or quasi-periodic.
This interest is because these fieldlines help one understand plasma
transport in magnetic fusion research. We briefly describe these field-
lines with more detail in Section 3.3. A periodic fieldline is closed
in a finite length and resides on a rational surface. Whereas a quasi-
periodic fieldline travels over an irrational surface given an infinite
amount of time. When viewed in the Poincaré section a quasi-periodic
fieldline will form one of two distinct structures: a single closed
curved (flux surface) and multiple closed curves (island chains). In be-
tween them is the separatrix that separates the two structures. Among
them, an island chain is the result of the break-up of a rational surface
subject to the magnetic perturbation which indicates the reduction in
magnetic confinement and hence the plasma burning is less effective.
The computation of the Poincaré map of the sampled fieldlines should
provide sufficient information on the behavior of the magnetic field
and help extract the topological structure of the field by identifying
the patterns in the Poincaré plot.

In this paper, we exploit the physical and geometric properties of the
toroidal magnetic fieldlines to derive efficient algorithms for construct-
ing Poincaré plots as well as characterizing the topological structures
of magnetic fieldlines using a near minimal number of puncture points.
The methods presented in this work are purely geometric, local in na-
ture, and geared for parallel computations. Emphasis is on robustness
and computational efficiency while ensuring reliable results for visual
analysis. The algorithms have been implemented as a library which
can be directly integrated into existing visualization software, such as
VisIt [2] and SCIRun [1] or be directly used in simulation codes. More
specifically, this work has made the following contributions.

• We present efficient algorithms to compute the Poincaré map of
the sampled fieldlines in a toroidal magnetic field with a near
minimal number of puncture points. This near minimization is
achieved by properly computing the toroidal and poloidal wind-
ing numbers (i.e. rational periods). This analysis greatly reduces
the number of integration steps for each fieldline and leads to
a fast computation. In addition, we show that these points are
sufficient to recover the important patterns in a Poincaré plot,
including flux surfaces and island chains.

• Rather than rely on a dense set of discrete points to represent the



(a) (b)
Fig. 1. (a) Profile of the DIII-D Tokamak and a single quasi-periodic
magnetic fieldline (the red curves). (b) The corresponding Poincaré plot
for the magnetic fieldline in (a) using 200 puncture points.

pattern formed in Poincaré plot we present a contiguous repre-
sentation by properly connecting a near minimal set of puncture
points. This contiguous representation has helped the physicists
identify various magnetic surfaces in an efficient manner. Other
smaller features, such as islands within islands which were pre-
viously difficult to detect, can be identified as well.

• Besides characterizing different magnetic fieldlines, we present
the algorithm for extracting the critical points in the Poincaré
map. They correspond to the fieldlines whose sum of the poloidal
magnetic field vanishes (zero magnetic flux). Together with the
detected surfaces, they provide the topological information of the
given magnetic fields.

• We have applied the present techniques to a number of simula-
tions of the toroidal magnetic fields. The results demonstrate the
efficacy of the proposed techniques.

2 RELATED WORK

As noted in the previous section, magnetic fields are described in terms
of vector fields. While a rich body of visualization research has fo-
cused on the extraction of features of interest in vector fields [28], the
relevance of vortices [14, 30, 15, 32], flow separation [16], or shock
waves [21] is limited in the context of magnetic fields.

Because of the dynamical nature of toroidal magnetic fields, fea-
ture extraction techniques for dynamical systems are relevant to this
work [11]. These techniques extract the topological features from the
flow, then construct the representative topological graph for visualiza-
tion [12, 37, 13, 41, 38, 18, 4, 5]. This process involves the extraction
of singularities (or critical points) [40, 27, 33, 34] and periodic orbits
[42, 43, 44, 39, 4]. However, because the magnetic fields inside a toka-
mak are typically singularity-free we focus on the work of periodic
orbit extraction. A more detailed survey of the analysis techniques for
general vector fields can be found in [28, 19].

Within the fusion community researchers have located periodic
fieldlines using numerical approaches such as those by [8]. How-
ever, these methods are computationally expensive and lack robust-
ness, especially in the complicated geometries of modern experiments.
Wischgoll and Scheuermann were the first in the visualization com-
munity to present an algorithm for detecting periodic orbits in planar
flows [42]. Their method examines how a fieldline re-enters a cell
and re-connects. They have also extended their technique to 3D vector
fields [43] and time-dependent flows [44]. In the meantime, Theisel
et al. [39] presented a mesh independent approach to compute peri-
odic orbits. Recently, Chen et al. [4] proposed a novel and efficient
algorithm to extract periodic orbits from surface flows using Morse
decompositions. However, all of this work requires that the closed or-
bits attract or repel neighboring streamlines (i.e., hyperbolicity) which
is typically not the case in toroidal magnetic fields which are diver-
gence free. Therefore, the existing work can not be directly applied.

It is also worth noting the work of Löffelmann et al. [20] who in-
tegrated 2D Poincaré plots with the original 3D flow for visualiza-
tion purposes. However, their data contained synthetic periodic vector

fields where the period was known. Recently, an analysis technique
for divergence free flow fields has also been proposed by Peikert and
Saldo [25, 26] who introduced a divergence cleaning scheme to study
vortex breakdown flow patterns through their long-term Poincaré plot.
Impressive results were achieved by this method. Note that we did
not incorporate it in our implementation because its application would
have required a resampling of the computational mesh along with a
computational overhead during the integration. Others have used a
graph-based approach and machine learning techniques to classify the
fieldlines [3]. However, in order to obtain a reasonable accuracy a
large number, e.g. 2000− 2500 of puncture points per fieldline were
necessary. Obtaining this many points requires a large number of inte-
gration steps which is not only expensive but also prone to numerical
inaccuracies that may lead a fieldline to follow an erroneous path. In-
stead, the present work aims to detect the magnetic features using a
near minimal set of puncture points.

3 BACKGROUND

In this section, we briefly review some important concepts of vector
fields, the Poincaré map, and toroidal magnetic fields which will be
used in the later discussion.

3.1 Vector Fields

Consider a vector field V on a manifold M , which can be expressed
as an ordinary differential equation dx

dt = V (x). The set of solu-
tions to it gives rise to a flow on M ; that is a continuous func-
tion (or map) ϕ : R×M →M satisfying ϕ(0,x) = x, ∀x ∈M and
dϕ

dt

∣∣∣
t,x

=V (ϕ(t,x)),∀t ∈ R. A fieldline (or trajectory) through a point

x0 ∈M is a curve on M corresponding to x(·)≡ ϕ(·,x0). Particularly,
a fieldline through x0 ∈M is a periodic orbit if x(T ) = x0 for some
T ∈ R and T 6= 0. A periodic orbit is an invariant set. A set S ⊂M
is called invariant if it is transported onto itself by the flow, in other
words if ϕ(t,S) ⊆ S, ∀t ∈ R. In the following, we resort to the con-
ventional Poincaré map to analyze the invariant sets of magnetic fields
in plasma confinement and propose a number of novel techniques to
assist this analysis.

3.2 Poincaré Map

Let Γ be an orbit (integral curve) of ϕ in a n dimensional manifold
M (e.g. in our case n = 3). Let S be a cross section of dimension
n− 1 (e.g. in our case a plane that is perpendicular to the major axis
of the torus) such that ϕ is everywhere transverse to S . S is known
as a Poincaré section. An intersection of Γ with S is referred to as a
puncture point, denoted by pi ∈S ∩Γ (i ∈N indicates the ordering of
the intersections). The Poincaré map, or the first return is defined as a
mapping in S P : R×S →S that leads a puncture point pi to the
next position pi+1 following an orbit Γ where pi, pi+1 ∈S ∩Γ. That
is, pi+1 = P(pi) = ϕ(τ, pi) where τ ∈ R and τ > 0 is the time that
has passed when Γ travels from pi to pi+1. Figure 2 illustrates this
concept. All of the puncture points, pi give rise to the Poincaré plot
of Γ. A Poincaré map is a well defined method for studying recurrent
flows near periodic solutions in a dynamical system.

3.3 Toroidal Magnetic Fields

As introduced previously, the magnetic fieldlines contained in a
toroidal device exhibit helical behavior. That is, the fieldline will wind
around both the major (toroidal) and minor (poloidal) circles of the
torus (Figure 2). A key property characterizing the behavior of a field-
line in a magnetic field is its safety factor, q which is the number
of times a fieldline goes around the toroidal circle for each rotation
around the poloidal circle. The safety-factor is known as such because
the value gives an indication of the stability of the plasma confined
by the magnetic field. Specifically, a low safety factor indicates better
stability. The safety factor of a fieldline can be defined as:

q = lim
nT→∞

nT

#θ (nT )
(1)



where nT is the toroidal winding number, i.e. the number of the cross-
ings of a fieldline Γ through a poloidal cross section S and #θ (nT ) is
the poloidal winding number, i.e. the number of crossing of Γ through
the toroidal cross section at z = 0. In particular, we denote the poloidal
winding number as #θ (nT ) when Γ passes through the poloidal cross
section nT times (Figure 2) . Excluding the case of chaotic fieldlines,
such a limit exists for a given fieldline.

Fig. 2. A magnetic fieldline (blue) that intersects the poloidal plane
(gray) and the toroidal plane (gold).

An irrational q implies that the fieldline is quasi-periodic. Such a
fieldline lies on an irrational surface and spreads out over it. Such
surfaces have two types of topology when viewed in a Poincaré sec-
tion, a single closed curve (Figure3a) or multiple closed curves (Figure
3b). See also Figure 4b. A single closed curve typically represents a
magnetic flux surface which when sufficiently perturbed tends to break
up into stochastic, space-filling fieldlines. Multiple closed curves rep-
resent a magnetic island chain that is the result of the break up of a
rational surface and are usually associated with a reduction in mag-
netic confinement (Figure 4b). The number of islands within a chain
is equal to the toroidal winding number.

A rational q implies that the fieldline is periodic (or closed in fi-
nite distance). Such a fieldline lies on a rational surface but does not
spread out over it (Figure 3c). Such surfaces are important because a
low-order rational q, where the poloidal winding number is small, are
the first surfaces to break up into island chains in response to magnetic
perturbations.

(a) (b) (c)
Fig. 3. The quasi-periodic fieldlines that spreads out over an irrational
surface: (a) a flux surface, (b) an island chain. (c) A periodic fieldline
that traverses a rational surface.

Island chains are of interest because they are locations of instabil-
ity within the magnetic field. Of particular interest within the island
chains are the locations were there is no magnetic flux (aka critical
points) [9]. At these locations the poloidal magnetic field vanishes
(zero magnetic flux) and a fieldline Γ becomes periodic or closed such
that a puncture point at pi on the Poincaré section is equal to a puncture
point at pi+nT . Where nT is the fieldline’s toroidal winding number.
Puncture points {pi, pi+1, ..., pi+nT } are critical points (Figure 4a). For
a rigorous mathematical definition the reader is referred to the work of
Greene [9, 10].

There are two types of critical points for a magnetic island chain,
commonly referred to as X (saddle) and O (center) points. In the case
of an O Point, it is located at the magnetic center of an island. While
for an X point, it is located where two flux surfaces appear to cross
and form a separatrix around the magnetic islands (Figure 4b). The O
points represent stable orbits: start a fieldline at a point infinitesimally
removed from an O point and a closed surface is formed that surrounds

the point and remains close to it. While the X points represent unstable
orbits; a fieldline started at a point infinitesimally removed from an X
point will converge exponentially to the point along two of the axes
leading in and diverge exponentially along the other two. There are nT
X and O points respectively for each magnetic island chain.

(a) (b)
Fig. 4. (a) Two periodic fieldlines originating from an island chain’s O
point (red) and X Point (blue). (b) A Poincaré plot showing a flux surface
(red), an island chain with two islands (blue) and their associated O
points (black), and the separatrix (black).

4 OVERVIEW

The basic idea of this work is to make use of the Poincaré map to ana-
lyze the toroidal magnetic fields. The Poincaré plot is computed from
a number of fieldlines seeded at different locations. For each fieldline,
we compute its first N puncture points on the Poincaré section. Sec-
ond, we compute the toroidal and poloidal winding numbers of this
fieldline according to the information associated with each puncture
point (Section 5). A second approach based on a ridgeline plot is used
to calculate and verify the poloidal winding number (Section 7). Once
computed and verified, the winding numbers are then used to extract
the topology of the magnetic field. This includes the characterization
of fieldlines (Section 6) and the extraction of critical points (Section 8).
Finally, the puncture points are properly connected based on the previ-
ous analysis to provide a contiguous representation for the physicists
to interpret (Section 9).

5 PUNCTURE POINTS AND WINDING NUMBERS

The first step is to collect a set of puncture points from the Poincaré
section while counting the number of associated toroidal and poloidal
windings of the fieldline. Let Pi be a tuple describing the state of each
puncture point of a fieldline Γ with the Poincaré section S . Further,
let Pi = (pi,ni,mi) where pi represents the position of Pi in S , ni is
the number of crossing of Γ through S when reaching pi (includ-
ing the seed point), and mi the number of crossing of Γ through the
toroidal cross section when d(Γ)z > 0 (increasing z coordinates) and
when reaching pi. We start from P0 = (p0,1,0). Each time, Γ inter-
sects with S , ni = ni + 1. Similarly, mi = mi + 1 when Γ intersects
the toroidal cross section. This crossing can be easily identified by ex-
amining the sign changes of the z coordinates of the integration points
of Γ. Because we record this crossing information only at Pi, there
could be multiple crossings of Γ through the toroidal cross section be-
tween Pi and Pi+1. This iteration continues until the end of fieldline Γ

is reached.
The toroidal winding number is then found for a value of T such

that:

min
T∈N

(d) = ∑
i=T
‖(Pi+T (mi+T )−Pi(mi))−(Pi(mi)−Pi−T (mi−T ))‖ (2)

is minimized, where Pi(mi) returns the number of crossings of Γ

through the toroidal cross section plane when reaching the puncture
point Pi. When d is minimized, the toroidal winding number nT = T
and the poloidal winding number #θ (nT ) = PnT (mnT ).



The minimization is based on an important observation: for a given
toroidal winding number nT , the poloidal winding number should be
consistent between every nT puncture points. For example, if the
toroidal winding number is 5 and the poloidal winding number is 2.
Then the poloidal winding counts, mi could be:

0,1,1,1,2, 2,3,3,3,4, 4,5,5,5,6

In this case the difference between every 5th value (the toroidal wind-
ing number) is 2 (the poloidal winding number).

Once the toroidal and poloidal winding numbers have been deter-
mined the safety factor for a magnetic surface or its fieldline is typi-
cally referred as a ratio of the two winding numbers, e.g. a 5,2 surface.

6 FIELDLINE CLASSIFICATION

After determining the toroidal winding number nT , it is possible to
classify the fieldline as being periodic, quasi-periodic, or chaotic. The
first step of classifying a fieldline is to group its associated punc-
ture points into nT “winding groups” where winding group j contains
puncture points (p j, p j+nT , p j+2∗nT , p j+3∗nT , ...)

When a fieldline is periodic, the puncture points within a winding
group will be coincident. That is p j = p j+nT = p j+2∗nT = p j+3∗nT =
.... However, to account for numerical inaccuracies a user defined
factor, typically based on the fieldline integration step size, δ is intro-
duced such that two points are coincident when ‖p j− p j+nT ‖< δ .

When a fieldline is quasi-periodic, the puncture points, when con-
nected (as described below) will form one of two topologies: a sin-
gle closed curve (a flux surface) or multiple closed curves (an island
chain), as shown in Figure 4b. For a flux surface the single closed
surface will be composed of exactly nT sections, one section for each
winding group. While for an island chain there will be exactly nT
islands, again one for each winding group.

Island chains can be distinguished from flux surfaces using three
simple tests. First, for an island chain, the centroid, C of the puncture
point set will lie on the outside of the boundary of each individual
winding group (i.e. an island). Whereas for a flux surface, the centroid,
C will lie inside of its boundary. This observation holds when the
magnetic field is not under large perturbations. However, it has not
been extensively tested under highly stochastic conditions.

Second, in an island chain, with each island composed of k con-
nected points, a change in direction of the point connections of an
island can be observed relative to the centroid, C from above. This sit-
uation can be detected by examining the cross-product of the vectors
formed by the points C, p0, and p1 which would be in the opposite
direction to the cross-product of the vector formed by points C, pk/2,
and pk/2+1 whereas for a flux surface the cross products would be in
the same direction. This difference is demonstrated in Figure 5.

(a) (b)
Fig. 5. (a) Poincaré section of a 11,5 flux surface showing two pairs
of vectors whose cross products are both in the same direction relative
to the centroid. (b) Poincaré section of a 2,1 island chain showing two
pairs of vectors whose cross products are in opposite directions relative
to the centroid.

The final component comes from the observation that for a flux sur-
face puncture points when connected from one winding group will
overlap the connected puncture points in a neighboring winding group.

Whereas for an island chain the puncture points when connected will
overlap themselves. This observation is fully discussed in Section 9.

The puncture points of fieldlines are tested against these observa-
tions for consistency. Those fieldlines that are found consistent are
classified as being on either a flux surface or an island chain; other-
wise they are classified as being chaotic.

7 RIDGELINE PLOT

While the method in Section 5 for determining the poloidal winding
number provides accurate results, it is not the only measure that is
available to ascertain it. As a verification of the previous computation,
we observed that the fundamental period of a ridgeline plot of a local
maximum for each fieldline is proportional to the poloidal winding
number. If this proportionality is consistent then we are able to verify
that the correct poloidal winding number was obtained. Otherwise,
we return the inconsistency to the user for further investigation. We
also note that in the case of an island chain the fundamental period is
proportional to the number of points along the boundary, Section 9.

7.1 Ridgeline Formation
For each poloidal winding in the fieldline there is a local maximum, r
with respect to the toroidal cross section (i.e the Z = 0 plane), which
is defined as:

Γz(r)> 0;
∂Γ(r)

∂ z
= 0. (3)

The ridgeline plot is defined as the collection of these local maxima.
To visually construct the ridgeline plot, the cylindrical coordinate

system is used to transform the torus into a cylinder (Figure 6). The
periodic nature of the fieldline is then apparent. However, it is not the
periodicity of the fieldline itself that is of interest but the periodicity
of the maximal points as defined in Equation (3). Utilizing multiple
integration steps to extend the fieldline, maximal points were extracted
and used to construct a ridgeline plot (Figure 7). The oscillation of the
ridgeline can be attributed to an area preserving deformation of the
magnetic surface as the field line precesses around it. For an island
chain the oscillation is further influenced by the rotation of the islands
between each poloidal section.

Fig. 6. The original toroidal geometry containing a single fieldline
for multiple toroidal windings in Cartesian coordinates superimposed
with the same geometry in Cylindrical coordinates. This transformation
changes the torus (gray) into a cylinder (blue) and removes the toroidal
component of the fieldline.

7.2 Fundamental period
The most basic approach to determine the fundamental period of the
ridgeline plot is to use Time-Domain methods such as zero-crossing
rate (ZCR), autocorrelation, and Yin estimators [7]. While ZCR
techniques are simple to implement they succumb to the problem of
multiple events per cycle which occurs with magnetic island chains.



Fig. 7. The same fieldline in Figure 6 in cylindrical coordinates viewed
perpendicular to the longitudinal axis of the cylinder. The ridgeline plot
of maximal points is shown in black and has a period of 10.

Another option is to use autocorrelation to measure the similarity in
the ridgeline waves but it too can suffer when higher harmonics are
present. Instead a Yin Estimator was used and is similar to autocorre-
lation except that it attempts to minimize the following difference:

min
f∈N

(σ) = ∑
i=0

(ri− ri+ f )
2 (4)

where ri are the local maxima as in Eq. 3, and f is the fundamental
period (or fundamental frequency). When analyzing a flux surface f ∝

#θ (nT ) (Figures 8a and 9a). While for an island chain f ∝ #θ (nT )∗M
where M is the number of points along the boundary of one island in
the chain (Figures 8b and 9b). Figure 9a shows that the fundamental
period could be an integer multiple of the poloidal winding number
and occurs when the number of ridgeline points is greater than four
times the poloidal winding. However, there are special cases such as
islands within islands (Section 12) where integer multiples truly exist.
These cases are currently under further investigation.

(a) (b)
Fig. 8. (a) Poincaré section of a 19,10 flux surface. The number of
curved sections, 19 corresponds to the toroidal winding number. (b)
Poincaré section of a 2,1 island chain. The number of islands, 2 corre-
sponds to the toroidal winding number. Each island contains 53 punc-
ture points which corresponds to the fundamental period of the ridgeline
plot.

(a)

(b)
Fig. 9. (a) Ridgeline plot for the 19,10 flux surface with a fundamental
period of 40. This plot illustrates that the fundamental period can be an
integer multiple of the poloidal winding number. (b) Ridgeline plot for the
2,1 island chain with a fundamental period of 53 matching the number
of puncture points that define one island. For both plots two sections of
the ridgeline have been overlapped. For the flux surface ridgeline had
a variance of 3.63e-03 while the island chain the ridgelines are almost
exact having a variance of 1.24e-06.

8 EXTRACTING O POINTS AND X POINTS

When a magnetic surface has been identified topologically as an island
chain, we wish to find the critical points (O and X points) associated

with it. Finding the X and O points is important to physicists be-
cause in contrast to Computational Fluid Dynamics (CFD), Magneto-
hydrodynamics (MHD) has even greater sensitivity to the locations of
critical points due to the description of the magnetic fields. By find-
ing these critical points and the resultant change in topology, a better
understanding of the underlying dynamics can be achieved.

Numerically searching for the O points is done by performing an
iterative search until a fieldline becomes periodic using the following
criteria:

Given the toroidal winding number nT , and for each i ∈ {0, ..,nT −
1} a fieldline is periodic when: pi = pi+nT ± δ , where δ is a user
defined factor to account for numerical inaccuracies. This definition is
the same one used to define a rational fieldline. However, a fieldline
crossing a critical point does not lie on a surface.

We note that an O point is located near the geometric center of an
island. As the cross-sectional area of an island goes to zero (i.e. as
the poloidal magnetic field vanishes) the geometric center converges
to the O point. To compute the geometric center of an island, we find
the straight line skeleton [36]. For an object such as an island the
skeleton is but a cord. The mid point of the cord is the approximate
geometric center (aka the maximal interior point). If the fieldline be-
comes periodic at the geometric center then the O point is known. If
not, the geometric center defines another, albeit smaller nested mag-
netic island whose geometric center is then iteratively tested (Figure
10).

Determining the X points is much simpler as we can take advantage
of the symmetry. For some of the toroidal magnetic fields we are cur-
rently investigating, each X point is the reflection of an O point of the
same island chain with respect to the Z−axis of the Poincaré plane.
As such, the locations of the X points are the mirror opposite of the O
points. However, when this symmetry is not present a general solution
will be required and is on going research.

(a) (b)
Fig. 10. (a) A 1,1 Island chain along with its straight line skeleton
and mid cord point approximating the geometric center. (b) The same
island using the geometric center to define another island (blue) with its
geometric center defining the O Point as shown by the magnetic fieldline
that is periodic.

9 CONNECTING THE PUNCTURE POINTS

Determining both the toroidal and poloidal winding numbers is impor-
tant not just for determining a fieldline’s safety factor and whether it is
rational or irrational but it also allows the puncture points to be used to
visualize a linear approximation of the cross-section of the magnetic
surface. As previously discussed, the existing simulation and visual-
ization tools simply generate a dense set of puncture points and relies
on the user’s eyes to form a contiguous representation.

Instead, it is possible to connect the puncture points to form a con-
tiguous representation. As previously noted, for each surface with a
toroidal winding number of nT , the puncture points are placed into nT
winding groups. The points in each group can be connected into a
contiguous curve. While the points within a winding group are con-
tiguous, the groups are not. That is, winding group j is not adjacent
to winding group j+1. Knowing the neighboring group is necessary
for terminating connections within a group so that overlaps do not oc-
cur. The neighboring group is determined by the toroidal and poloidal
winding numbers and the Blankinship algorithm:



s∗#θ (nT ) = 1 (mod nT ) (5)

such that winding groups j and j + s are neighbors. To connect the
puncture points the following steps are taken:

1) Number the successive puncture points pi of the fieldline.
2) For a given toroidal winding number nT , and for each i ∈

{0, ..,nT −1}, connect the points {pi, pi+nT , pi+2nT , ...} to produce nT
piecewise linear segments.

3) Connect points until a segment of one winding group overlaps
either a segment from a neighboring winding group, or itself.

This algorithm is illustrated in Figure 11 for a 2,1 flux surface.

(a) (b)
Fig. 11. (a) The puncture points of a 2,1 flux surface with the points
numbered based on their puncture order. (b) The same surface in (a)
after trimming the overlapping segments.

Traditionally a Poincaré plot consists of the intersections of approx-
imately, 50 to 100 fieldlines with 1000 to 3000 puncture points per
fieldline. Besides the heavy computation, the resulting clutter makes
the task of identifying the resulting structures very difficult.

For instance, in Figure 12, a fieldline with a safety factor of 8,3
that intersects the Poincaré section 32 times is shown. In isolation
the structure is clear. A second example is shown in Figure 13 for a
fieldline with a safety factor of 5,2 that intersects the Poincaré section
105 times. In this case, it is difficult to discern that the points form five
distinct structures (an island chain) until they are connected. In Figure
14a we combine the Poincaré plots from Figures 12a and 13a. It is not
until the segments are connected that the structure becomes clear.

For Figures 12b and 13b each curve is numbered based on its wind-
ing group ordering which is determined based on the ordering of the
puncture points. This numbering gives another visual representation
of the relationship of the toroidal and poloidal windings. For instance,
for a toroidal winding number of nT there are nT winding groups. Fur-
ther, if one traverses the winding groups in order, one will trace around
the poloidal plane #θ (nT ) (the poloidal number) times.

10 NEAR MINIMAL SET OF PUNCTURE POINTS

One of the difficulties in constructing a Poincaré Plot is determin-
ing the number of puncture points needed. Too few points will lead
to insufficient information for fieldline classification, while too many
points will waste computational resources. For example, a fieldline on
the outboard side of the torus will require more integration steps to
generate the same number of puncture points as will a fieldline on the
inboard side of the torus. Further, the closer a fieldline is to a rational
surface (i.e. being periodic) the less it will spread out over the surface
and thus require more puncture points to fully define the cross-section
of the surface.

To find a near optimal set of puncture points, it is necessary to gen-
erate enough points so that when connecting puncture points, a single
overlap can be achieved between segments from one winding group
to another. Or, in the case of an island chain, the segments within a
winding group overlap. This process is described as Step 3 of the al-
gorithm in Section 9. If no overlap is found more puncture points are
generated until one is found. The following provides the algorithm:

(a) (b)
Fig. 12. The Poincaré plots of a 8,3 flux surface using (a) the original
32 points (b) the contiguous representation based on a toroidal winding
number of 8. Tracing around the poloidal plane from winding group to
winding group reveals the poloidal winding number of 3.

(a) (b)
Fig. 13. The Poincaré plots of a 5,2 island chain using (a) the original
105 points (b) the points connected based on the toroidal winding num-
ber 5. Tracing around the poloidal plane from island to island reveals the
poloidal winding number of 2

(a) (b)
Fig. 14. The Poincaré plots showing the surface and island chain
from Figures 12 and 13 using (a) point-based representation (b) our
contiguous representation. The structure of the two fields is not obvious
until the points are connected in a contiguous manner.

1) Test for an overlapping section, if one is found, stop.
2) For the current winding group, determine the length, l of the last

segment.
3) Determine the length, L between the segment in 2) and the first

point in the neighboring winding group,
4) The approximate number of the required additional puncture

points is L/l.
Because the length, L is a cord length rather than the arc length which



is unknown, the number of additional points will be under-estimated.
This under-estimation is the reason for the iterative process.

While theoretically this approach should produce a minimal number
of puncture points, in practice it does not. This is because the segment
lengths, l are not a constant but a function of their location in the cross-
section. Therefore, the approach actually produces a near minimal
number of puncture points.

It should be noted that while the above is sufficient for completing
the cross-section, additional puncture points may be required for per-
forming the ridgeline plot analysis. For a flux surface the analysis will
require 2× #θ (nT ) puncture points while an island chain will require
2×M×#θ (nT ) puncture points where M is the number of points along
the boundary, (Section 7).

11 DEPLOYMENT

One of the goals of the project was to create an analysis tool that could
be used for interactively creating visualizations. In order to create a
complete view of the magnetic field, it may be necessary to compute
up to a thousand fieldlines. Integral methods for computing these field-
lines can be very expensive, especially because we wish to maintain
the divergence-free nature of the field. For details on the integration
methods used the reader is referred to [35, 6].

Because the computation of each individual streamline is an inde-
pendent calculation, parallelization is an effective method for reducing
the overall amount of work. The resources required for fieldline com-
putation are a function of four basic parameters: 1) size of the data set,
2) the number of initial seed points, 3) the spatial distribution of the
seed points and 4) the complexity of the magnetic field.

In cases where the entire data set can fit into main memory, par-
allelization becomes trivial. The fieldlines are divided among the set
of processors, each processor loads the data set into memory, and the
integrations are performed in parallel. When the data set is too large
to fit into main memory, several parallelization strategies may be used,
depending on the nature of the data sets and the initial seed points. The
first is to parallelize across fieldlines. The fieldlines are divided among
the set of processors, and each processor will perform the required I/O
to integrate through the data set to completion. A second technique is
to parallelize across the data set. Each processor is assigned a subset of
the data set, and individual fieldlines are passed from processor to pro-
cessor as it traverses through the data set. These first two techniques
can be subject to significant imbalance, depending on the four basic
parameters mentioned above. Parallelization across fieldlines can be-
come the I/O bottleneck if the fieldlines traverse through large portions
of the dataset, particularly if the vector field is cyclical, as is the case
here. Parallelization across the data set can lead to processor load im-
balance if the fieldlines are spatially concentrated in certain regions of
the data set. To alleviate this imbalance, a third parallelization strategy
is made available to the user, a hybrid parallelization technique that
dynamically adapts the strategies based on processor utilization. With
this hybrid strategy, a balance between redundant I/O and streamline
communication is sought that maximizes processor utilization. Com-
plete details of this implementation can be found in [29].

12 RESULTS AND DISCUSSION

Before presenting the results we summarize the complete analysis
steps:

1) Generate a field line requesting N poloidal puncture points per
fieldline (for our cases N is typically 50), Section 11. 2) Determine the
winding numbers using the puncture points, Section 5. 3) Determine
the poloidal period using the ridgeline points, Section 7. 4) Classify
the field line as either an island chain, flux surface, rational surface,
or chaotic, Section 6. 5) Based on the current analysis determine if
more puncture points are needed. If not, connect the points into a
contiguous curve, Section 9; otherwise, request more points and repeat
the analysis, Section 10. 6) For an island chain iteratively search for
the critical points, Section 8.

We now present results obtained in conjunction with our collabora-
tors who are working on the development of magneto-hydrodynamic

(MHD) solvers. Each example shown here is based on the user man-
ually selecting seed points for the fieldlines. Typically 50 seed points
along the z=0 axis (a line segment across the Poincaré section) are
selected. Manual selection of the seeds may result in features such as
thin higher order island chains being missed. However, they are of less
interest than lower order island chains that grow during the simulation.
That said, our technique would benefit from a numerical search being
performed between the initial seeds to ensure that the majority of the
features are found.

The first example is from SIESTA which is an ideal MHD 3D-
equilibrium solver, capable of dealing with magnetic islands and
stochastic regions [31]. This MHD solver is an ideal candidate be-
cause of the specific interest of the physicists in looking at island for-
mation. In Figure 15a, we show a typical Poincaré plot that has been
used for analysis. The magnetic field contains three island chains: A
1,1 island chain (green) that is obvious, an outer 2,1 island chain (blue)
that is visible but hard to fully disambiguate, and 17,10 island chain
that can not be seen due to its small size. In Figure 15b, we show
the same Poincaré plot using a near minimal set of puncture points
that have been connected in a contiguous manner. This connectivity
makes the topology of the magnetic field immediately obvious. Fur-
ther, the island identification technique has been used to detect the
smallest 17,10 island chain. This chain is so small that the dots cover
each island. Previously, such islands would not be seen until they are
more fully developed later in the simulation. As such, our collabora-
tors can follow island formation and development much easier, which
is an important part of their research.

M3D (Multi-level 3D) is another MHD solver that has been used
for nonlinear studies of plasmas in tokamaks, stellarators, and other
devices [24]. Figure 16 shows a puncture plot of the magnetic field
in an early stage of a nonlinear simulation of a sawtooth crash in the
CDX-U tokamak. The magnetic field has become unstable resulting
in the exponential growth of a 1,1 island. In Figure 16b the island
can be seen clearly as a thin blue crescent. This set represents the hot
core of the plasma, and has begun magnetically reconnecting with the
outer set at the X-point (not shown) which is poloidally opposite to the
O-point of the island. Figure 18 shows a step in the later time in the
sequence during which the sawtooth crash is well underway. A sig-
nificant portion of the original inner region has reconnected across the
X-point (which is now on the mid-plane on the right), resulting both in
substantial growth of the 1,1 island, which will soon replace the orig-
inal central region as the new magnetic axis; and, correspondingly, in
substantial mixing of the hot core plasma with cooler plasma from the
outer region, flattening the plasma temperature profile. This flattening
greatly reduces the fusion rate, so our collaborators would like to learn
how to avoid these modes.

In the next example, our collaborators have used NIMROD [35]
which is a non-ideal magneto-hydrodynamics with rotation simulation
code. Figure 17 shows a Poincaré plot of the magnetic field mid way
through the time sequence of a simulation of a major disruption of
an experimental run of the DIII-D tokamak [17]. At this point of
time, two 2,1 island chains have formed. In Figure 17b both island
chains can be clearly seen and marks the beginning of energy loss
within the core. Figure 19 shows a time later in the sequence during
which the disruption is well underway. The islands continue to grow
and the core region becomes largely stochastic as due to the lack of
any structure (the puncture points from fieldlines that are chaotic are
currently not displayed).

One of the most unique topological cases is when islands form
within islands which is a result of the island surface breaking up. In
this case, the puncture points for a single island do not form a con-
tiguous boundary but instead form islands. Figure 20 shows an is-
land chain that is composed of three islands. Each island contains six
smaller islands (zoom-in view of Figure 20). The detection of such
self-similarity is done by recursively using the technique described in
Section 6. What would normally be classified as a flux surface be-
comes an island, and what would normally be classified as an island
chain becomes islands within islands. These small scale topological
features are an example of stochastic behavior within the magnetic



(a) (b)
Fig. 15. (a) A Poincaré plot of a Siesta MHD simulation with 75 fieldlines. Each fieldline computes 200 puncture points. (b) The same plot using a
near minimal number of puncture points that have been connected. There is a small 17,10 island chain (17 grey dots) that has been identified and
can not be recognized in (a). In both images, the points and lines are color based on their safety factors.

(a) (b)
Fig. 16. The Poincaré plots of a magnetic field from M3D. There are
two thin island chains, one green and one blue, that are difficult to see
(a) until the points are connected and the islands identified (b).

(a) (b)
Fig. 17. The Poincaré plots of a magnetic field from NIMROD. While
the inner island chain can be seen on the point based plot (a) the outer
island chain is not clearly visible until the points are connected in a con-
tiguous fashion (b).

(a) (b)
Fig. 18. A Poincaré plot of the same magnetic field in Figure 16 but
later in the simulation where the growth of the island chains is much
more pronounced.

(a) (b)
Fig. 19. A Poincaré plot of same magnetic field in Figure 17 but later
in the simulation where the growth of the island chains is much more
pronounced. It is difficult to discern the structure on the point based plot
(a) compared to contiguous plot (b).



field. Traditional techniques for discovering such topological features
are rarely used because of the computational expense.

Fig. 20. (left) Poincaré Plot showing a 3,1 island chain that is composed
of six islands within itself - aka islands within islands. (right) a closeup
of one set of islands within islands. For reference, a sibling island chain
is shown (blue) nested within the six islands within islands.

In the final example (Figure 21) we show the power of our tool in
that not only can they be used to construct the 2D Poincaré plot but
they can also be used to visualize the complexities of the 3D struc-
ture of the magnetic surface. While such visualizations are not typ-
ically used by physicists as part of their daily analysis, they are ex-
tremely useful for educational purposes and for creating presentation
quality visualizations. Figure 22 provides another example where the
Poincaré plot has been combined with a 3D magnetic surface (green)
along with multiple iso-temperature surfaces to create a complete vi-
sualization.

Fig. 21. Two surfaces from two 2,1 magnetic island chains shown in
3D overlay with the corresponding Poincaré Plot. Each surface can be
considered as a Möbius strip that has been folded on top of itself. The
surfaces shows the complexity of the magnetic field in 3D.

13 CONCLUSIONS AND FUTURE WORK

We have presented the application of a geometric technique to the
analysis of toroidal magnetic fields which allows for the creation of
Poincaré plots using a near minimal set of puncture points. This
greatly reduces the computational costs when compared to traditional
Poincaré plot generation. We have also proposed efficient algorithms
to compute the toroidal and poloidal winding numbers of a fieldline.
These two numbers are then used to compute the safety factor of the
fieldline, which can be applied to characterize the fieldline into differ-
ent topological categories. This permits the identification of different

Fig. 22. A complete visualization of a magnetic confinement fusion
simulation that highlights a magnetic surface (green) which forms an
“island chain”, along with a Poincaré plot overlayed on top of a series of
transparent iso-temperature surfaces.

magnetic surfaces including the flux surfaces and island chains from
the Poincaré plot. Further, the critical points in the plot corresponding
to the periodic fieldlines in the magnetic fields are extracted. Combin-
ing the extracted flux surfaces, island chains and the critical points, we
are able to analyze the topology of the magnetic fields in the form of
Poincaré map of the fieldlines. In addition, the discrete puncture points
are connected to provide a contiguous representation of the Poincaré
map which can more effectively convey the topological information
than traditional discrete point-based representations. Finally, we have
applied our technique to a number of simulations of a toroidal mag-
netic field. The results demonstrate the efficacy of our approach.

From the application physicists viewpoint the value added by in-
corporating the technique into their work flow is that it makes it much
quicker, easier, and more efficient to read off the major topological
features of the magnetic field by glancing at the enhanced Poincaré
plot. At the same time they are able to interactive explore not only the
magnetic field but also put the results into context with other scalar
and vector data sets such as shown in Figure 22.

However, there are still a number of limitations of the present work.
First, our results based on the near minimal set of puncture points have
lost the smooth representation of the patterns in the Poincaré plot in
some cases. This has led to some artifacts, especially when the field-
lines are sampled close to the wall of the tokamak (i.e., the boundary
of the torus). The thin island chains appearing there exhibit the arti-
fact of self-intersection due to the lack of puncture points. Second, the
present framework does not handle the chaotic fieldlines which could
deliver important information about the magnetic field. Third, the cur-
rent detection of X points depends on the extraction of O points. It is
important to identify them directly and compute the separatices from
them, which helps promote this technique to the analysis of more gen-
eral magnetic fields. Finally, it is interesting to study the behavior of
the islands within islands and develop efficient technique to character-
ize them. We plan to investigate these problems in our future work.

14 ACKNOWLEDGMENTS

This work was supported in part by the DOE SciDAC Visualization
and Analytics Center for Emerging Technology and the DOE SciDAC
Fusion Scientific Application Partnership. The authors wish to thank
Raul Sanchez and Steve Hirshman of Oak Ridge National Laboratory
for the SIESTA fusion data.

REFERENCES

[1] Scirun, http://software.sci.utah.edu/scirun.html.
[2] Visit visualization tool, http://www.llnl.gov/visit/.
[3] A. Bagherjeiran and C. Kamath. Graph-based methods for orbit classi-

fication. In In SIAM International Conference on Data Mining. SIAM,
2005.



[4] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang.
Vector Field Editing and Periodic Orbit Extraction Using Morse Decom-
position. IEEE Transactions on Visualization and Computer Graphics,
13(4):769–785, Jul./Aug. 2007.

[5] G. Chen, K. Mischaikow, R. S. Laramee, and E. Zhang. Efficient Morse
Decompositions of Vector Fields. IEEE Transactions on Visualization
and Computer Graphics, 14(4):848–862, Jul./Aug. 2008.

[6] J. M. Finn and L. Chacón. Volume preserving integrators for solenoidal
fields on a grid. Phys. Plasmas, 12(5):054503, 2005.

[7] D. Gerhard. Pitch extraction and fundamental frequency: History and
current techniques. Technical report, TR 2003-06.

[8] J. M. Green. Locating three-dimensional roots by a bisection method.
Journal of Computational Physics, 98:194–198, 1992.

[9] J. M. Greene. Vortex nulls and magnetic nulls. Topological Fluid Dy-
namics, pages 478–484, 1990.

[10] J. M. Greene. Locating three-dimensional roots by a bisection method. J.
Comput. Phys., 98(2):194–198, 1992.

[11] J. Hale and H. Kocak. Dynamics and Bifurcations. New York: Springer-
Verlag, 1991.

[12] J. L. Helman and L. Hesselink. Representation and Display of Vector
Field Topology in Fluid Flow Data Sets. IEEE Computer, 22(8):27–36,
August 1989.

[13] K. M. Janine, J. Bennett, G. Scheuermann, B. Hamann, and K. I. Joy.
Topological segmentation in three-dimensional vector fields. IEEE Trans-
actions on Visualization and Computer Graphics, 10:198–205, 2004.

[14] J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid Me-
chanics, 285:69–94, 1995.

[15] M. Jiang, R. Machiraju, and D. Thompson. A novel approach to vortex
core region detection. In In Data Visualization 2002. Proc. VisSym’02,
pages 217–225, 202.

[16] D. Kenwright, C. Henze, and C. Levit. Feature extraction of separation
and attachment lines. IEEE Transactions on Visualization and Computer
Graphics, 5(2):135–144, 1999.

[17] S. Kruger, D. Schnack, and C. R. Sovinec. Dynamics of the major dis-
ruption of a diii-d plasma. Phys. Plasmas, 12:56113, 2005.

[18] R. Laramee, H. Hauser, L. Zhao, and F. H. Post. Topology Based Flow
Visualization: The State of the Art. In Topology-Based Methods in Visu-
alization (Proceedings of Topo-in-Vis 2005), Mathematics and Visualiza-
tion, pages 1–19. Springer, 2007.

[19] R. Laramee, H. Hauser, L. Zhao, and F. H. Post. Topology Based Flow
Visualization: The State of the Art. In Topology-Based Methods in Visu-
alization (Proceedings of Topo-in-Vis 2005), Mathematics and Visualiza-
tion, pages 1–19. Springer, 2007.
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