
Glossary of Some Terms in Dynamical Systems
Theory

A brief and simple description of basic terms in dynamical systems theory with
illustrations is given in the alphabetic order. Only those terms are described which
are used actively in the book. Rigorous results and their proofs can be found in
many textbooks and monographs on dynamical systems theory and Hamiltonian
chaos (see, e.g., [1, 6, 15]).

Bifurcations
Bifurcation means a qualitative change in the topology in the phase space under
varying control parameters of a dynamical system under consideration. The number
of stationary points and/or their stability may change when varying the parameters.
Those values of the parameters, under which bifurcations occur, are called critical
or bifurcation values. There are also bifurcations without changing the number of
stationary points but with topology change in the phase space. One of the examples
is a separatrix reconnection when a heteroclinic connection changes to a homoclinic
one or vice versa.

Cantori
Some invariant tori in typical unperturbed Hamiltonian systems break down under
a perturbation. Suppose that an invariant torus with the frequency f breaks down at
a critical value of the perturbation frequency !. If f =! is a rational number, then a
chain of resonances or islands of stability appears at its place. If f =! is an irrational
number, then a cantorus appears at the place of the corresponding invariant torus.
Cantorus is a Cantor-like invariant set [7, 12] the motion on which is unstable and
quasiperiodic. Cantorus resembles a closed curve with an infinite number of gaps.
Therefore, cantori are fractal. Since the motion on a cantorus is unstable, it has
stable and unstable manifolds. All the points on a cantorus belong to the same
quasiperiodic trajectory if its initial point belongs to it.

Cantori are singular objects that do not occupy a volume of a finite measure
in the phase space. However, they form an infinite hierarchy around islands of
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stability. The closer a cantorus is to the island’s boundary, the narrower are its gaps.
Cantori influence essentially the transport in the phase space because it may take a
long time for particles and their trajectories to percolate through cantori gaps. Since
the smallest gaps appear in the cantori which are close to the very boundaries of
the islands, one observes at those places an increased density of phase points on
Poincaré sections. The island’s boundaries are called dynamical traps, and the
long stay of trajectories there is called a stickiness.

Cantori are not a single reason for stickiness and dynamical traps. Hyperbolic tra-
jectories along with their stable and unstable manifolds produce such a complicated
tangle where particles and their trajectories may be trapped for a long time.

Dynamical traps
Dynamical trap is a domain in the phase space where particles (and their tra-
jectories) may spend an arbitrary long but finite time [14, 15], in spite of the
fact that the corresponding trajectory is chaotic in any relevant sense. Strictly
speaking, it is the definition of a quasitrap. Absolute traps, where particles could
spend an infinite time, are not possible in Hamiltonian systems which have no
attractors. However, there may exist separatrix-like trajectories with infinite time,
but with zero measure of initial conditions. The dynamical traps are caused by a
stickiness of trajectories, mainly, to the boundaries of islands of stability where
cantori are situated. There are also traps of unstable periodic orbits, including
saddle traps associated with unstable periodic trajectories. Up to now, there is no
full classification and description of dynamical traps. Dynamical traps influence
significantly transport in Hamiltonian systems specifying its anomalous statistical
properties.

Fractals
The name “fractal” was coined by B. Mandelbrot [9] in order to describe
irregular and self-similar structures, i.e., objects small parts of which are similar
in a sense to big parts and those in turn are similar to the whole object. Such
objects in mathematics as Cantor sets, Weierstrass functions, which are everywhere
continuous but not differentiable anywhere, Julia sets, etc. [9] have been known for
many years. However, they have been considered as exotic objects not existing in the
real world. One of the definitions of fractality is the following: fractal is a set whose
Hausdorff–Besikovich dimension is larger than its topological dimension [9].

Hamiltonian chaos produces different kinds of fractals. Stochastic layers,
hierarchies of islands of stability and of cantori are fractal. Typical chaotic
trajectories are fractal in a sense [15]. Chaotic scattering, exit-time functions
[3, 10], and Poincaré recurrences [15] are fractal as well. Chaotic invariant sets
in Hamiltonian systems are fractal and have a Cantor-like structure.

Fractal sets appear in dynamical systems in a natural way if there exists a
mechanism removing phase points out off a given region in the phase space. In
dissipative systems it is a dissipation which shrinks in the course of time an initial
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phase volume to a set called an attractor. In chaotic dissipative systems such
attractors may be fractal sets (strange attractors). In Hamiltonian systems the phase
volume is conserved (the Liouville theorem), and fractal sets may appear when a
scattering problem is formulated [2, 3, 8].

The famous Cantor fractal is formed as follows [9]. Take the closed interval Œ0; 1�

and remove the open middle third interval .1=2; 2=3/, leaving the two intervals
Œ0; 1=3� and Œ2=3; 1�. Then remove the middle open thirds of each of these two
intervals, leaving four closed intervals of length 1=9 each, etc. The total length of
remaining segments is lim

n!1 2nr D lim
n!1 .2=3/n � lim

n!1 e�n ln.3=2/ (one gets N D 2n

segments with the length r D .1=3/n each after n iterations). Though the set of
remaining segments is infinite, its total length or the Lebesque measure is zero.
Topological dimension of the classical Cantor fractal dt is zero. Other measures
have been introduced to characterize such dust-like objects called Cantor sets. The
Hausdorff–Besikovich dimension is a common used one

dHB D lim
r!0

ln N

ln.1=r/
:

One gets in the case of the classical Cantor fractal: dHB D ln 2= ln 3 D 0:63 : : :, i.e.,
the fractal dimension is not an integer. It is larger than the topological dimension of
a point (dt D 0), but smaller than the topological dimension of an interval (dt D 1).

Typical chaotic Hamiltonian systems, having the mixed phase space with islands
of stability and dynamical traps, produce, as a rule, fractals with PDFs having
power-law “tails.” Hyperbolic chaotic Hamiltonian systems, that do not have KAM
tori and cantori, produce Cantor-like fractals with exponential PDFs.

Hamiltonian chaos
Hamiltonian chaos is a dynamical chaos in Hamiltonian systems. A deterministic
dynamical system is called chaotic if it has at least one positive Lyapunov exponent
and generates mixing. The mixing is defined as follows. Let B is a region with dye
in a waterpool A with a circulation. The volume of B at t D 0 is V.B0/. Let C
is another region in A. The amount of dye in C is V.Bt \ C/ at the moment of
time t and its concentration in C is V.Bt \ C/=V.C/. The definition of mixing is:
V.Bt \ C/=V.C/ � V.Bt/=V.A/ ! 0 at t ! 1, i.e., the concentration of dye in
any region C in the waterpool A is the same as in the entire waterpool. Recall that
in Hamiltonian systems the phase fluid is incompressible, i.e., V.Bt/ D V.B0/.

Instability produces an exponential sensitivity of trajectories to small variations
in initial conditions and/or control parameters. It is difficult to prove analytically
existence of chaos, especially in nonhyperbolic systems. Dynamical chaos becomes
evident after computing Poincaré sections, Melnikov integrals, intersections of
stable and unstable manifolds, and maximal Lyapunov exponents.

Theory of Hamiltonian chaos is presented in a number of monographs and
textbooks [1, 6, 15]. The phase space in a typical Hamiltonian system is mixed,
i.e., the regions with regular motion coexist with chaotic ones. In Fig. G1 we show
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Fig. G1 Left panel—Poincaré section of a Hamiltonian system with islands of stability (closed
curves) and a stochastic layer between confining invariant tori. Right panel—zoom of the small
region in the stochastic layer indicated in the right panel

Poincaré section of a Hamiltonian system, simulating propagation of sound rays
in the underwater sound channel in the ocean [8], with the mixed phase space
with chains of islands of stability separated by stochastic layers (where motion is
chaotic) and confined between invariant KAM tori. KAM tori are stable invariant
manifolds with boundaries that are impenetrable to particle’s transport. There are
an infinite number of cantori around the nested islands of stability (not shown in
the figure). They are Cantor-like unstable invariant sets with gaps, transport throw
which is possible but difficult. Hamiltonian chaos is a special type of motion with
properties both of regular motion (due to determinism of equations of motion) and
stochastic motion (due to a local instability of trajectories).

Hamiltonian dynamics
Hamiltonian dynamics is a geometry in the phase space [1]. State of a Hamiltonian
system with N degrees of freedom in the phase space is described by N generalized
positions .q1; : : : ; qN/ and momenta .p1; : : : ; pN/ which are pairwise canonically
conjugated variables. The equations of motion are specified with the help of a
Hamiltonian function of the generalized positions and momenta

Pqi D @H

@pi
; Ppi D �@H

@qi
: (G.1)

If the Hamiltonian H.p; q; t/ depends on time, then the corresponding system can be
studied in the enlarged .2N C1/-dimensional phase space .q1; : : : ; qN I p1; : : : ; pN I t/
where it has N C 1=2 degrees of freedom.
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Equation (G.1) satisfy to the incompressibility condition

NX

iD1

�
@Pqi

@qi
C @Ppi

@pi

�
D 0: (G.2)

If one specifies a volume of initial conditions, then this expression means that the
phase fluid conserves its volume in the course of time (the Liouville theorem). A
drop of phase fluid can be transformed during the evolution in a very complicated
way.

The Hamilton equations (G.1) are not, in general, integrable. The Liouville–
Arnold theorem states that a Hamiltonian system with N degrees of freedom is
fully integrable if there exist N linearly independent first integrals of motion Ci

in involution, i.e., with zero Poisson brackets fCi; Cjg � 0, i; j D 1; 2; : : : ; N.
Equations of motion (G.1) for a fully integrable system can be always transformed
to the following form:

PIi D �@H

@�i
D 0; P�i D @H

@Ii
� !i .I1; : : : ; IN/; (G.3)

where Ii and �i are pairwise canonically conjugated variables known as action and
angle, respectively. They are functions of positions and momenta.

Trajectories in a Hamiltonian system with N integrals of motion lie on N-
dimensional invariant manifolds in the 2N-dimensional phase space. These man-
ifolds have torus topology and are called invariant tori. Any trajectory, starting on
a given torus, stays on it all the time. If a Hamiltonian system is fully integrable, then
the representation in terms of Ii and �i is global, i.e., the phase space is partitioned
to invariant tori, and any trajectory is located on some torus. If a system is not
integrable, then some trajectories do not lie on invariant tori. Up to now, there is no
complete theory of behavior of nonintegrable Hamiltonian systems. However, there
exists very important Kolmogorov–Arnold–Moser theorem about the behavior of
Hamiltonian systems under weak perturbations.

Heteroclinic and homoclinic structures
Separatrices in an integrable 1D Hamiltonian system connect either two hyperbolic
stationary points in such a way that a stable separatrix of one point W.0/

s .h1/

coincides with an unstable separatrix of the other point W.0/
u .h2/ and vice versa (see

Fig. G2a), or W.0/
s and W.0/

u of the same hyperbolic point coincide (see Fig. G2b).
In the former case, one gets a heteroclinic connection, whereas in the latter one—a
homoclinic connection.

In Fig. G2 those connections are shown in the phase plane .x; y/ of a Hamiltonian
system with one degree of freedom, and in Fig. G3a, b they are shown in the enlarged
phase space .x; y; t/. Under a perturbation with a period T0, hyperbolic (saddle)
points of the unperturbed system become unstable periodic trajectories �.t/ with
stable and unstable separatrix branches which are called stable Ws.�/ and unstable
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h2h1 h

Fig. G2 (a) A heteroclinic connection of unperturbed separatrices of two hyperbolic points h1 and
h2 and (b) a homoclinic connection with one hyperbolic point h

Fig. G3 Schematic representation of (a) heteroclinic and (b) homoclinic connections of a
unperturbed one-degree-of-freedom system in the extended phase space .x; y; t/. (c) Under a
perturbation with the period T0, a saddle point h becomes a periodic hyperbolic trajectory �.t/
whose stable, Ws.�/, and unstable, Wu.�/, manifolds are surfaces intersecting in the extended
phase space. The lines with arrows on those manifolds represent typical trajectories

Wu.�/ manifolds of the corresponding hyperbolic trajectory �.t/. In the enlarged
phase space the manifolds Ws.�/ and Wu.�/ are two-dimensional surfaces which
do not coincide but intersect (see Fig. G3c). The corresponding curves Ws.�/ and
Wu.�/ intersect each other on a Poincaré section surface in homoclinic points.
H. Poincaré proved that there are an infinite number of homoclinic points of
intersections of stable and unstable manifolds of a hyperbolic trajectory [13].

Any point belonging to an invariant manifold maps, by definition, on the Poincaré
section surface to another point on the same manifold. When moving away from a
hyperbolic point, the amplitude of oscillations of the curve Wu increases. When
approaching the same or another hyperbolic point, the “period” of oscillations
decreases (the successive distances between the points of intersections of Ws and
Wu decrease when approaching to h) because of slowing down of the motion nearly
h. It results in a complicated heteroclinic or homoclinic structure.

Invariant tori
We described briefly Hamiltonian systems in the article “Hamiltonian dynamics”.
The Liouville–Arnold theorem specifies that: (1) all the trajectories of a fully inte-
grable Hamiltonian system with N degrees of freedom and N first integrals in invo-
lution Ci lie on N-dimensional invariant manifolds in the 2N-dimensional phase
space which are invariant tori; (2) the corresponding trajectories are quasiperiodic
and specified by N incommensurate frequencies !i D !i.C1; : : : ; CN/, and (3)
satisfy to the equations of motion (G.3). In fully integrable Hamiltonian systems,
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the action Ii is a constant on the corresponding invariant torus, and the angle variable
has a simple solution �i D !it C const [1].

Invariant torus is a resonant one if its eigenfrequencies are commensurate, i.e.,
if k1!1 C k2!2 C � � � C kN!N D 0 for nonzero integer ki. If it is not the case, the
torus is called a nonresonant one. In the former case, a trajectory is closed on the
torus, and the motion is (multi)periodic. In the latter one, trajectories are not closed,
and the corresponding motion is quasiperiodic. In a nondegenerate fully integrable
system, i.e., if

det

ˇ̌
ˇ̌@!i.I/

@Ij

ˇ̌
ˇ̌ D det

ˇ̌
ˇ̌@2H.I/

@Ii@Ij

ˇ̌
ˇ̌ ¤ 0; (G.4)

each invariant torus has its own frequencies. The set of nonresonant tori in a
nondegenerate system is more powerful than that of resonant tori (however, the latter
one is dense) because rational numbers constitute in the set of real numbers a subset
of zero measure.

Islands of stability
Island of stability is a domain on a Poincaré section surface filled with regular
trajectories. The islands of stability appear as a result of nonlinear resonances
between natural frequencies of a nonlinear dynamical system under consideration
and perturbation frequencies. Rotational islands correspond to finite regular motion
in a bounded region in the phase space. Ballistic islands correspond to infinite
regular motion, i.e., they all filled with ballistic regular trajectories.

Kolmogorov–Arnold–Moser theorem and KAM tori
The Kolmogorov–Arnold–Moser theorem (KAM theorem) states that under a
sufficiently small conservative Hamiltonian perturbation a majority of nonresonant
invariant tori of an integrable Hamiltonian system do not disappear, but they are
slightly deformed in such a way that there appear invariant tori (called KAM tori) in
the phase space filled up everywhere densely with (quasi)periodic trajectories [1].
The KAM theorem says nothing about the fate of resonant tori. It has been shown in
numerous studies that they may break down with the onset of Hamiltonian chaos.
Since resonant tori is a set of zero measure (the probability to find such a torus
under a random choice of initial conditions is equal to zero), the KAM theorem
can be reformulated more simply as follows: under a sufficiently small perturbation,
almost all invariant tori of the integrable system under consideration are conserved.
When proving the theorem, it is stated what is it “sufficiently small” and “almost
all” [1].

Lyapunov exponents
Chaotic motion is characterized by an exponential sensitivity to small variations in
initial conditions. It means that initially close trajectories may diverge exponentially
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fastly in time (not linearly as in the case with regular trajectories). Lyapunov
exponent is a measure of mean velocity of exponential divergence (convergence)
of initially close trajectories.

Equations of motion for a dynamical system are

Pxi D Fi.x1; : : : xn/; i D 1; : : : n: (G.5)

Linearizing Eq. (G.5) nearby a given trajectory x.t/ D .x1; x2; : : : xn/ with the initial
condition X.0/, we get equations of motion for small deviations

ıPxi D
nX

jD1

ıxj

�
@Fi

@xj

�

XDX.t/

; (G.6)

where .@Fi=@xj/XDX.t/ are elements of the Jacobian matrix. The norm

j�.t/j D
vuut

nX

iD1

ıx2
i .t/ (G.7)

is a measure of divergence between the chosen trajectory X and a neighbor trajectory
with close initial condition x.0/ C ıx.0/. Let us introduce the mean velocity of
exponential divergence of trajectories

�.X.0// D lim
t!1

1

t
ln

j�.t/j
j�.0/j ; (G.8)

where j�.0/j D
s

nP
iD1

ıx2
i .0/.

A small initial phase volume stretches in the course of time mostly in the
direction corresponding to a largest Lyapunov exponent. Computation with the
expression (G.8) gives namely that value which is known as a maximal Lyapunov
exponent. Generally speaking, values of Lyapunov exponents depend on the choice
of a trajectory x.t/. It is not the case in hyperbolic chaotic systems, but the choice
of a test trajectory, say, inside an island of stability gives obviously � D 0. The
limit (G.8) can be achieved in chaotic systems with the bounded phase space for a
reasonable computation time. In open systems � ! 0 at t ! 1, and chaos in such
systems is transient. The so-called finite-time and finite-size Lyapunov exponents
may serve measures of transient chaos.

Manifolds
Manifold is a fundamental notion in topology. Its rigorous definition can be
found in any textbook on this subject. It is sufficient here to define a manifold
as a smooth subspace in the phase space. An infinite line and a circle are
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examples of one-dimensional manifolds, surfaces of a sphere and a torus are two-
dimensional manifolds, the three-dimensional linear space R3 is an example of a
three-dimensional manifold. A segment with its limit points and the surface of a
cone are not manifolds, because the limit points and the top of the cone do not
satisfy to the smoothness criterion.

Nondegenerated hyperbolic invariant tori in Hamiltonian systems have stable,
Ws, and unstable, Wu, invariant manifolds filled up with trajectories asymptotic to
quasiperiodic trajectories on a hyperbolic torus at t ! 1 (Ws) and t ! �1 (Wu).
In integrable Hamiltonian systems, the manifolds Ws and Wu coincide, as a rule,
pairwisely. In nonintegrable systems, they may intersect each other transversally
forming a complicated homoclinic or heteroclinic structure.

To give a visual picture of these abstract objects, let us consider stable and
unstable manifolds of a periodic saddle trajectory �.t/ appearing in a plane flow
of incompressible fluid under a periodic perturbation from a stationary saddle point
of the corresponding integrable system. The manifolds Ws.�.t// and Wu.�.t// are
collections of points through which pass at the moment of time t those trajectories
of fluid particles which are asymptotic to the saddle trajectory �.t/ at t ! 1 and
t ! �1, respectively. These manifolds evolve in time. In Fig. G4 geometry of
stable and unstable manifolds nearby a periodic saddle trajectory �.t/ is shown
schematically at different time moments. Both Ws;u.�.t// and the corresponding
linear invariant sets Es;u.t/, which are specified with the help of a linearization of
the velocity field nearby the corresponding saddle point, evolve in space and time.
Under a periodic perturbation, stable and unstable manifolds are periodic functions
of time. What happens with Ws and Wu far away from �.t/ is discussed in the article
“Heteroclinic (homoclinic) structure”.

The existence of these manifolds and their structural stability follow from the
corresponding theorems which can be found, for example, in the textbook [4].
Unstable manifolds can be seen with a naked eye in laboratory experiments on
chaotic advection in fluids with a dye [5, 11]. Theoretically, they are curves of

Es Eu

Wu Ws

Eu Es

Wu Ws

Fig. G4 Stable, Ws.�.t//, and unstable, Wu.�.t//, manifolds of a saddle trajectory �.t/ are shown
on the phase plane at t1 (left) and t2 > t1 (right) along with the corresponding linear invariant
submanifolds Es.t/ and Eu.t/
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an infinite length and complicated form. In real experiments with dyes, they are,
of course, diffusive-like objects owing to molecular diffusion and a technical noise.
Since the stable and unstable manifolds are material lines in two-dimensional flows,
trajectories of fluid particles cannot cross them, i.e., Ws and Wu are transport barri-
ers. Any material line in a fluid flow is, of course, a transport barrier. Exclusiveness
of stable and unstable manifolds is in its partition a flow in topologically and
dynamically distinct regions.

Nonlinear resonance
A resonance occurs in linear systems at the perturbation frequency close to a
natural frequency of the system under consideration. In a nonlinear system with
sufficiently strong nonlinearity, resonances may occur practically at any frequency
of the excitation ˝ D 2�T0. Since nonlinear systems possess, in general, infinitely
many natural frequencies !i, the resonance condition m!i D n˝ is satisfied with
an infinite number of positive integers m and n. The corresponding resonance is
denoted as m W n.

An isolated nonlinear resonance is represented on the Poincaré section surface
by nested invariant curves, forming an island of stability or a resonant island, with
an elliptic point in its center. Elliptic points on the Poincaré section surface are
images of periodic trajectories in the phase space.

There are nonlinear resonances of different orders. A primary nonlinear reso-
nance, !1 D ˝, in a system with one-and-half degrees of freedom is illustrated in
Fig. G5 as it looks in the extended phase space (x; y; t), on the phase plane (x; y), and
on the Poincaré section surface (x; y). In the extended phase space (Fig. G5a), a tube
with quasiperiodic trajectories winds around the cylindrical surface that contains
the periodic trajectory S1 of that resonance. The quasiperiodic trajectories lie on the
surfaces of the nested cylinders which are densely filled with those trajectories. The
periodic, S1, and one of the quasiperiodic trajectories, R1, are shown in Fig. G5b
by the dashed closed and solid open curves, respectively. The periodic trajectory
is represented on the Poincaré section surface (Fig. G5c) by the point S1, whereas
a family of the quasiperiodic trajectories is mapped onto the corresponding nested
resonant invariant curves.

The periodic trajectory of a secondary nonlinear resonance, S2, winds the
surface of the tube filled with quasiperiodic trajectories, R1, of the corresponding
primary resonance (see Fig. G6a). The tubes with the quasiperiodic trajectories
of the secondary resonance R2 (not shown in the figure) wind around S2. This
complicated motion is simplified on the Poincaré section surface (x; y) in Fig. G6b
demonstrating schematically an island of the primary resonance with the elliptic
point, S1, surrounded by three islands of the secondary resonance with the elliptic
points and invariant curves of the corresponding quasiperiodic trajectories R2.
The phase point on the periodic trajectory of the secondary resonance, S2, turns
around the elliptic point of the primary resonance S1 and returns to its initial position
for three perturbation periods.
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Fig. G5 Schematic illustration of a primary nonlinear resonance. (a) In the extended phase space
(x; y; t) a tube, filled with quasiperiodic trajectories, R1, of the primary resonance, winds the surface
that contains the periodic trajectory S1 of that resonance. (b) The periodic trajectory (dashed closed
curve S1) and one of the quasiperiodic trajectories of the primary resonance R1 (solid open curve)
are shown on the phase plane (x; y). (c) Stationary elliptic point S1 and the invariant resonant curves
of the quasiperiodic trajectories R1 are shown on the Poincaré section surface (x; y)

There are infinitely many nonlinear resonances of different orders in typical
chaotic Hamiltonian systems. They are represented on Poincaré section surfaces
(see Fig. G1) by chains of islands of a different size. Islands of primary resonances
are surrounded by chains of smaller islands of secondary resonances which, in turn,
are surrounded by islands of higher-order resonances of smaller sizes, etc.

Phase space
The phase space is an n-dimensional abstract space with the coordinates being
components, xi.i D 1; 2; : : : ; n/, of a state vector of the dynamical system under
consideration Pxi D Fi.x1; x2; : : : ; xn; t/. In mechanical systems generalized positions
and momenta are coordinates in the phase space. A state of a dynamical system at
each time moment is a phase point in the phase space. A phase point moves in
the course of time along a curve which is called a phase trajectory beginning at an
initial point Œx1.t D 0/; x2.t D 0/; : : : ; xn.t D 0/�. A set of phase trajectories with
all possible initial conditions constitutes a phase portrait. The extended phase space
is a phase space with time as an additional coordinate.

Poincaré map
The Poincaré’s idea [13] was to fix coordinates of a phase point at specified time
moments or when it crosses a given surface in the phase space. If the dynamical
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Fig. G6 Schematic illustration of a secondary nonlinear resonance. (a) In the extended phase
space (x; y; t) the periodic trajectory of the secondary resonance, S2, winds the surface of a tube
filled with quasiperiodic trajectories of the primary resonance R1. (b) On the Poincaré section
surface, (x; y), an island of a primary resonance with the elliptic point S1 is surrounded by three
islands of a secondary resonance filled with invariant curves of the secondary resonance R2

system under consideration is autonomous, then one chooses a surface in the phase
space with the dimension which is smaller by one than the phase-space dimension
and fixes the moments when the corresponding trajectory intersects it transversally.
That surface is called a Poincaré section surface.

In difference from autonomous systems, nonautonomous ones are described
by the additional variable, time, and their evolution should be considered in the
extended phase space. The Hamiltonian systems with 3=2 degrees of freedom,
which are studied in this book as simplified oceanographic models, have a three-
dimensional phase space. If it is periodic with the period T0, we can rid of time
variable using a Poincaré map. An ordinary differential equation is replaced by a
discrete mapping which associates coordinates of a trajectory X.t0/ at the moment
of time t0 with its coordinates X.t0 CT0/ over the period T0: X.t0 CT0/ D GT0X.t0/,
where GT0 � G.t0; t0 C T0/ is an evolution operator. Thus, one considers a discrete
orbit consisting of the points Xi D Gi

T0
X0, i D 0; ˙1; ˙2; : : : on the plane instead

of the corresponding continuous trajectory in extended phase space. Geometrically,
those points are intersections of a trajectory in the extended phase space by the
planes t D t0 C iT0. At the moments of time corresponding to any section, own
trajectory passes through each point of the corresponding orbit.

If a trajectory is periodic with the period kT0, k D 1; 2; : : :, then the cor-
responding orbit consists of k points. The periodic orbits can bifurcate under
changing control parameters of the system under consideration as its stationary
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points. Aperiodic trajectories are associated with orbits with an infinite number of
points. The method of Poincaré sections is very convenient for systems with an
inhomogeneous phase space because both the specific objects and inherent effects,
such as stability islands, periodic trajectories, and sticking, are clearly manifested
on the Poincaré sections. For example, invariant nonresonant tori (quasiperiodic
trajectories) are associated with one or more closed curves with elliptic points at
their centers. Chaotic orbits look like sets of points on the Poincaré sections filling
some area with increased density at the borders of stability islands due to stickiness.

Separatrix
In the systems with one degree of freedom, a separatrix is a special, singular
trajectory connecting hyperbolic stationary points and separating topologically
different regions of motion. The period of the phase point motion along a separatrix
is infinite because the velocity at stationary points is zero by definition. One gets
a homoclinic connection if a separatrix connects the same hyperbolic point (see
Fig. G3b). If a separatrix connects different saddle points, one gets a heteroclinic
connection (Fig. G3a). Perturbed separatrices may arise in dynamical systems
under a perturbation. They are stable and unstable manifolds of the corresponding
hyperbolic points (trajectories).

Stable and unstable motion
Stability and instability are fundamental properties of motion which are manifested
not only nearby stationary points. A trajectory X.t/ with the initial condition X0

is called stable by Lyapunov if for any number " there exists a number ı."/ such
that for all QX.t/ the inequality kX.t/ � QX.t/k < " is satisfied for any trajectory QX.t/
such that kX0 � QX0k < ı. It means that the diameter of a phase drop with the center
at X0 at t D 0 does not exceed in the course of time a given value ", if it was
smaller than ı at t D 0 (see Fig. G7). If a trajectory is stable by Lyapunov, then the
corresponding phase drop is forever compact in a stream tube. An initially compact
drop in a stream tube with an orbitally stable trajectory stays forever in that tube but
spreads along that trajectory. In other words, two initially close points in the drop
may diverge from each other in the course of time.

Fig. G7 Lyapunov (a) stable and (b) unstable motion
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Stationary points
Analysis of the dynamical system under consideration begins with finding the phase
portrait of an autonomous version of the system, finding its stationary points, and
studying motion in a small neighborhood of each of them. Let us represent the
equations of motion in the form of a set of the first-order differential equations

PX D F.X/;

where X is a vector with components being state variables of the system. Stationary
points (the other names: equilibrium, rest, special, singular or fixed points) are
specified as PX D 0 or F.Xs/ D 0. To study a character of motion nearby a
stationary point, let us expand the function F.X/ in a Taylor series and analyze
the corresponding linearized equations of motion. As an illustrative example, we
consider a set with two equations

Px Df .x; y/;

Py Dg.x; y/;

with the coordinates of their stationary points satisfying to the equations:
f .xs; ys/ D 0 and g.xs; ys/ D 0. Let us introduce small deviations ıx and ıy nearby
one of the points x D xs C ıx and y D ys C ıy and expand f and g in a series in
powers of ıx and ıy:

ıPx Dfx.xs; ys/ıx C fy.xs; ys/ıy C fxy.xs; ys/ıxıy C � � � ;

ıPy Dgx.xs; ys/ıx C gy.xs; ys/ıy C gxy.xs; ys/ıxıy C � � � :

Neglecting terms above the first order, one can represent the equations for small
deviations as a set

d

dt

�
ıx
ıy

�
D

�
fx.xs; ys/ fy.xs; ys/

gx.xs; ys/ gy.xs; ys/

� �
ıx
ıy

�
;

which is a set of linearized equations of motion. Denoting the column vector
.ıx; ıy/T by ıX, 2 � 2 matrix by OF, two its eigenvectors by d1 and d2, and
the corresponding eigenvalues by �1 and �2, a general solution of the linearized
equations of motion can be represented in the form

ıX D c1d1e�1t C c2d2e�2t;

where c1;2 are integration constants. The eigenvalues �1;2 are roots of the equation

detŒ OF � �OI� D 0;

where OI is a unit matrix.
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The full classification of stationary points can be found in any textbook on
dynamical systems. Here, we reproduce general statements about Hamiltonian
systems and area-preserving maps. There are the following three possibilities:

1. �1 and �2 is a complex-conjugated pair �1 D ei˛ and �2 D e�i˛ on a unit circle.
Then small deviations ıx and ıy rotate around the corresponding point and the
corresponding phase trajectories are ellipses. Such a stationary point is called
stable or elliptic.

2. �1 and �2 are real numbers with the condition �2 D ��1
1 . The motion nearby

such a point is unstable, and it is called a hyperbolic or a saddle point.
3. There is a special case when �1 D 1 and �2 D �1. Such a stationary point is

called parabolic.

Trajectories
We give below definitions of the types of trajectories in dynamical systems. The
phase point, specifying a state of the dynamical system at a given time moment,
changes its position in the phase space in the course of time. The corresponding
curve is called a phase trajectory. Because of uniqueness of solutions of differential
equations, phase trajectories cannot cross each other. If the motion is periodic, then
the corresponding trajectory is called a periodic one. Circle is the simplest image of
a periodic trajectory. Trajectories with a long period usually have more complicated
forms. Multi-frequency motion can be periodic if the frequencies are commensurate,
i.e., if there exists a set of nonzero integers (positive or negative) k1; k2; : : : such that
k1!1Ck2!2C� � � D 0. If such a set does not exist, the motion is called quasiperiodic.
In the case with the two frequencies, a quasiperiodic trajectory winds the surface of
a torus without self-intersections and is not closed. The motions along and across the
torus have different frequencies, and their ratio is an irrational number. Aperiodic or
chaotic trajectories do not lie on the surfaces of tori in the phase space.

Periodic and quasiperiodic trajectories can be stable and unstable. The latter
ones are called hyperbolic trajectories. Chaotic trajectories are, generally speaking,
unstable, however, their fragments of an arbitrary but finite length may demonstrate
a kind of stability. There are special types of chaotic trajectories. Let X.t/ be an
unstable (hyperbolic) trajectory. A trajectory which asymptotically approaches a
hyperbolic trajectory at t ! �1 and t ! 1 is called homoclinic. Let X.t/ and
QX.t/ be two hyperbolic trajectories. A trajectory which asymptotically approaches
X.t/ at t ! �1 and QX.t/ at t ! 1 is called heteroclinic.

A periodic trajectory in the extended phase-space winds a surface of a (deformed)
cylinder or torus, and its projection onto a phase plane is a smooth closed curve
(perhaps, with self-intersections). The phase point along a periodic trajectory returns
to its initial position for the time T , where T is a period of the trajectory. Figure G8a
demonstrates a periodic trajectory on the surface of a straight cylinder. Projection of
the quasiperiodic trajectory onto a phase plane is a smooth open curve winding in
a comparatively narrow strip (Fig. G8b). Projection of an aperiodic trajectory onto
the phase plane is a smooth open curve (Fig. G8c).
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Fig. G8 (a) Periodic, (b) quasiperiodic, and (c) aperiodic trajectories in the extended phase space
.x; y; t/ and their projections onto the phase plane .x; y/
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Fig. G9 (a) Trajectory in the extended phase space with the four first crossings at the time instants
nT0 .n D 0; 1; 2; : : : /. The Poincaré section surfaces (b) for a trajectory with the period T0, (c) for
a periodic trajectory with the period nT0, (d) for a quasiperiodic trajectory, and (e) for aperiodic
trajectory

Figure G9 illustrates Poincaré section surfaces of different kinds of trajectories
in the phase space. A trajectory with the period equal to T0 is represented by a point
on the Poincaré section surface with the same period (Fig. G9b). A periodic trajec-
tory with another value of the period is represented by a finite set of points on the
Poincaré section surface with the period T0 (Fig. G9c). A quasiperiodic trajectory
never returns to its starting point. If we wait long enough, the quasiperiodic orbit
will be as close as we want to returning at some point in time. Therefore, it covers
a continuous invariant curve on the Poincaré section surface (Fig. G9d), whereas
an aperiodic trajectory is represented by a cloud of points (Fig. G9e). It should be
stressed that the pattern of motion in a multi-dimensional system can be different
for different surfaces of sections.
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