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Abstract In the study of a magnetic confinement fusion device such as a tokamak,
physicists need to understand the topology of the flux (or magnetic) surfaces that
form within the magnetic field. Among the two distinct topological structures, we
are particularly interested in the magnetic island chains which correspond to the
break up of the ideal rational surfaces. Different from our previous method [12], in
this work we resort to the periodicity analysis of two distinct functions to identify
and characterize flux surfaces and island chains. These two functions are derived
from the computation of the fieldlines and puncture points on a Poincaré section,
respectively. They are the distance measure plot and the ridgeline plot. We show
that the periods of these two functions are directly related to the topology of the
surface via a resonance detection (i.e. period estimation and the common denomi-
nators computation). In addition, we show that for an island chain the two functions
possess resonance components which do not occur for a flux surface. Furthermore,
by combining the periodicity analysis of these two functions, we are able to devise a
heuristic yet robust and reliable approach for classifying and characterizing different
magnetic surfaces in the toroidal magnetic fields.

1 Introduction

In magnetic confinement fusion devices such as a tokamak, magnetic fields are used
to confine a burning plasma (Figure 1a). In the study of such devices, physicists need
to understand the topology of the flux surfaces that form within the magnetic fields.
Flux surfaces come in a rational and irrational form and are defined by periodic
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and quasi-periodic fieldlines, respectively. Our focus is the break up of the rational
surfaces into the irrational ones, specifically those that form magnetic island chains
because they are where the plasma escapes and will damage the wall of the fusion
reactor.

To distinguish the magnetic island chains from other flux surfaces, we study their
behavior in a Poincaré map computed by intersecting fieldlines with a plane perpen-
dicular to the axis of the torus. A naive geometric test was proposed to identify
different magnetic surfaces from the Poincaré section in our previous work [12].
Unfortunately, it does not make use of the periodicity properties of the flux sur-
faces as we will show later and hence it is computationally expensive and not re-
liable. In this work we describe a more robust approach that analyzes the distinct
periodic behaviors of flux surfaces and island chains, which helps us achieve more
efficient characterization of these two structures. More specifically, we estimate the
fundamental periods of two functions stemming from the fieldline tracing and the
puncture point computation, respectively. These two functions are formed via the
distance measure plot and the ridgeline plot. We show that the periods of these two
functions, when coupled are directly related to the topology of a surface. We should
note that in our previous work we have described the ridgeline plot but only used it
to complement the geometric test. With the addition of the distance measure plot we
are now able to couple them together to form a magnetic surface characterization
framework which has a more rigorous foundation.

One of the key components in the classification of rational and irrational surfaces,
is the safety factor. The safety factor is the limit of the ratio of the winding pair, i.e.
the number of times a fieldline traverses around the major axis of the torus (toroidal
winding) for each traversal around the minor axis of the torus (poloidal winding)
(Figure 1b). Although based on the above description the poloidal winding may
not be integer (Section 4), in the later discussion we consider only integer pairs
for the winding pairs. Choosing a good winding pair is of paramount importance
because it will determine how we connect the discrete puncture points to get the
contiguous representation of the surfaces [12]. In what follows, we will describe in
detail how we combine the results of the period estimation of the two functions and
other metrics to form a heuristic framework and obtain the desired winding pairs for
both geometry construction and topological characterization of a fieldline. We will
also explain how the detection of resonance components in the period analysis of an
island chain can help us identify this structure in an early stage.

2 Related Work

Magnetic fields are described in terms of vector fields. While a rich body of vi-
sualization research has focused on the extraction of features of interest in vector
fields [11, 7] starting from [6], the identification of the invariant structures such as
periodic orbits from the flow is most relevant to our work.

Within the fusion community researchers have located periodic fieldlines using
numerical approaches such as those by [4]. Wischgoll and Scheuermann were the
first in the visualization community to present an algorithm for detecting periodic
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(a) (b)

Fig. 1: (a) Profile of the DIII-D Tokamak and a single quasi-periodic magnetic fieldline (the red
curves). (b) A magnetic fieldline (blue) that intersects the poloidal plane (gray) and the toroidal
plane (gold).

orbits in planar flows [15]. Their method examines how a fieldline re-enters a cell
and re-connects. They have also extended their technique to 3D vector fields [16]. In
the meantime, Theisel et al. [13] presented a mesh independent approach to compute
periodic orbits. Recently, Chen et al. [2] proposed an efficient algorithm to extract
periodic orbits from surface flows using Morse decompositions.

We also note the work of Löffelmann et al. [8] who integrated 2D Poincaré plots
with the original 3D flow for visualization purposes. Recently, an analysis technique
for divergence free flow fields has also been proposed by Peikert and Sadlo [9, 10]
who introduced a divergence cleaning scheme to study vortex breakdown flow pat-
terns through their long-term Poincaré plot. Others have used a graph-based ap-
proach combined with the machine learning technique to classify the fieldlines [1].

3 Background

In this section, we briefly review some important concepts of Poincaré map and
toroidal magnetic fields. More details can be found in [12].

3.1 Poincaré Map

Consider a vector field V on a manifold M (e.g. a triangulation) with dimension
n (n = 3 in this work), which can be expressed as an ordinary differential equation
dx
dt =V (x). The set of solutions to it gives rise to a flow ϕ on M . Let Γ be a trajectory
(integral curve) of a vector field V . Let S be a cross section of dimension n− 1
(e.g. a plane perpendicular to the major axis of the torus) such that ϕ is everywhere
transverse to S . S is referred to as a Poincaré section. An intersection of Γ with
S is called a puncture point, denoted by li ∈S ∩Γ (i ∈ N shows the intersection
order). The Poincaré map is defined as a mapping in S P : R×S →S that leads
a puncture point li to the next position li+1 ∈S ∩Γ following Γ .
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3.2 Toroidal Magnetic Fields

A toroidal magnetic field is a 3D vector field where the magnetic fieldlines exhibit
helical behavior and wind around the major (toroidal) circle and minor (poloidal)
circle of the torus (Figure 1b).

The safety factor of a fieldline, q, is defined as the number of times a fieldline
goes around the toroidal circle for each rotation around the poloidal circle, and is
computed as:

q = lim
#T→∞

#T
#P

(1)

where #T is the toroidal winding count (rotations about the toroidal circle) and #P
is the poloidal winding count (rotations about the poloidal circle). We define the
two winding counts when expressed as rational numbers as a winding pair. Because
we cannot integrate to infinity, in practice we estimate the safety factor of a surface
based on a finite number of integrations (Section 4.1).

By definition, the safety factor q can be either rational or irrational. A rational
q implies that the fieldline is periodic (or closed in finite distance). Such a fieldline
lies on a rational surface. Such surfaces are found in a fusion device. However, they
are unstable and sensitive to the magnetic perturbation. Among them, the ones with
lower-order q are the first to break down into island chains [14]. Figure 2 provides an
example of such a topology change of a magnetic surface due to the magnetic pertur-
bations. An irrational q implies that the fieldline is quasi-periodic. Such a fieldline
lies on an irrational surface and spreads out over it. This type of flux surfaces is
our focus in this work. They have two distinct topology shown in a Poincaré sec-
tion, a single closed curve or multiple closed curves. A single closed curve typically
represents a magnetic flux surface when it encloses the center of the magnetic field.
Multiple closed curves represent a magnetic island chain which is usually associated
with a reduction in magnetic confinement [12].

(a) (b) (c)
Fig. 2: The evolution of a magnetic surface at different times of the fusion simulation: (a) an
irrational flux surface at time step 22; (b) a 5,2 island chain at time 23; (c) the growing 5,2 island
chain at time 24.

There are two types of critical points for a magnetic island chain, commonly
referred to as X (unstable or saddle) and O (stable or center) points. They correspond
to the locations where there is no poloidal magnetic flux [5]. In the case of an O
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point, it is located at the magnetic center of an island. While for an X point, it is
located where two flux surfaces appear to cross and form a separatrix around the
magnetic islands. In this work, we focus on only the characterization of fieldlines.
The detection of critical points can be found in [12].

According to [12], an irrational surface consists of #T winding groups in the
Poincaré section. The geometrically neighboring groups need not be neighbors in
the puncture point ordering. In order to construct a valid geometry representation
without self-intersections for the surface, a proper winding pair is greatly desired.
In the following, we describe how we achieve so.

4 Fieldline Puncture Points And Winding Pairs

In [12] we collected a set of puncture points at the Poincaré section while counting
the numbers of the associated toroidal and poloidal windings of the fieldline. We
briefly review this collection: Let Ai be a tuple describing the state of each puncture
point of a fieldline Γ at the Poincaré section S . Further, let Ai = (li,#T,#P) where
li represents the location of Ai in S , #T is the number of crossing of Γ through
S when reaching li, and #P the number of crossing of Γ through the toroidal cross
section (the horizontal brown plane in Figure 1b) when d(Γ )z > 0 (increasing z
coordinates) and when reaching li (see Figure 1b for an illustration).

The above gives a good estimation of the poloidal winding when the magnetic
axis (the central axis of the magnetic field) is nearly planar. However, as the mag-
netic field is perturbed, the axis no longer lies in a plane and the above estimation
fails. As such, we do a more computationally expensive continuous sampling of the
poloidal winding through a rotational transform [14]:

#P≈ 1
2π

∫ S

o
ds

dθ

ds
ds (2)

where S is the total length that the fieldline is integrated over and dθ is the change
in poloidal angle for the distance ds traveled along the fieldline. Further dθ

ds can be
defined as:

dθ

ds
=

d
ds

[arctan(
Z
R
)] = (

1
R2 +Z2 )(R

dZ
ds
−Z

dR
ds

), (3)

while in a cylindrical coordinate system. That is, we are summing up the poloidal
changes along the fieldline and then dividing by the total toroidal distance traveled.

When reaching li in the Poincaré section S we record #T like before (as an
integer) and #P from equation 2 as a rational number (i.e. rounded to an integer). #P
is stored as a rational number because we are interested in two rational values (aka
a winding pair) to utilize with the fundamental periods (integers) of the distance
measure plot and ridgeline plots that will be described in Section 5.
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4.1 Safety Factor Approximation

By definition the safety factor is the limit of the ratio of the winding numbers when
the fieldline is traced infinitely long (equation 1). As noted, only a limited number of
integration steps can be computed before numerical inaccuracies lead the field line
to an erroneous path. As such, to approximate the safety factor we simply divide #T
by #P (as a floating point value) from equation 2 for the last puncture point in A.

4.2 Ranking Winding Pairs

In [12], we identified a single poloidal-toroidal winding pair for a value of T such
that

min
T∈N

(d) = ∑
i=T
‖(Pi+T −Pi)− (Pi−Pi−T )‖ (4)

is minimized, where Pi is the number of crossings of Γ through the toroidal cross
section plane when reaching the puncture point li. When d is minimized, the toroidal
winding number #T = T and the poloidal winding number #P = PT .

The minimization is based on an important observation: for a given toroidal
winding number #T , the poloidal winding number should be consistent between
every #T puncture points. For example, if the toroidal winding number is 5 and the
poloidal winding number is 2. Then the poloidal winding counts, #P could be:

0,1,1,1,2, 2,3,3,3,4, 4,5,5,5,6
In this case the difference between every 5th value (the toroidal winding number) is
2 (the poloidal winding number).

While the minimization results in one “best” winding pair there are multiple pos-
sible winding pairs, each of which is a rational approximation to the irrational safety
factor. In our previous work [12] we were only interested in the “best” winding pair
while in the present work we are interested in multiple pairs. In Table 1 we show the
possible pairs for an irrational surface ranked based on the minimization criteria in
equation 4. For this criterion, a 29,11 surface would be the best candidate.

It is also possible to rank the winding pairs based on other criteria. For example,
the 29,11 pair results in a safety factor of 2.63636 which is not the best approxima-
tion given the safety factor of 2.6537 as calculated using the rotational sum. As such,
selecting the winding pair that is closest to the approximated safety factor is another
option. In Table 2, we rank the winding pairs based on this criterion. In this case,
the 61,23 surface would be the closest match while the 29,11 surface would now be
ranked sixth. However, the winding pair we seek should provide us information for
the geometry reconstruction. The winding pairs obtained using the above two crite-
ria could not be proven to contain such information. Therefore, in the following we
turn to the analysis of two functions, the distance measure plot and ridgeline plot.
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Table 1: Winding pairs using 125 puncture
points, 48 ridgeline points with a base safety
factor of 2.6537 ranked based on the best
matching pair consistency.

Toroidal/Poloidal Safety Equation 4
Winding Pair Factor (Normalized)

29, 11 2.63636 98.9583
37, 14 2.64286 98.8636
8, 3 2.66667 97.4359

45, 17 2.64706 96.25
21, 8 2.625 95.1923
50, 19 2.63158 93.3333
53, 20 2.65 93.0556
13, 5 2.6 91.9643
61, 23 2.65217 90.625

Table 2: Winding pairs using 125 puncture
points and 47 ridgeline points with a base safety
factor of 2.6537 ranked based on the best ratio-
nal approximation.

Toroidal/Poloidal Safety Best Rational
Winding Pair Factor Approximation

61, 23 2.65217 0.00152259
45, 17 2.64706 0.00663767
53, 20 2.65 0.0036965
37, 14 2.64286 0.0108394

8, 3 2.66667 0.0129702
29, 11 2.63636 0.0173329
50, 19 2.63158 0.0221176
21, 8 2.625 0.0286965
13, 5 2.6 0.0536965

5 Distance Measure Plot and Ridgeline Plot

In this section, we describe the distance measure and ridgeline plots whose periods
are dependent on the toroidal and the poloidal periods, respectively. To obtain their
periods and subsequently the classification of the fieldlines, we perform a period
analysis. Unlike the safety factor and winding pair analysis which required both the
toroidal and poloidal windings, the period analysis of each plot is independent.

5.1 Distance Measure Plot

Fig. 3: An 8,3 flux
surface with the
puncture points, li
and the distances, di
between each eighth
puncture point.

We introduce a distance measure that is defined as the dis-
tance between two puncture points:

di = ‖li+T − li‖ (5)

where T is the interval between two puncture points.
When the fieldline is periodic (i.e. lies on a rational sur-

face) and has a toroidal period of T , di between every T
points will be zero. When the fieldline is quasi-periodic (i.e.
lies on an irrational surface) di will be non zero for all points
in A (Figure 3). But the sum of distances is minimal when T
is the toroidal winding period. This is equivalent to finding
the period T that minimizes the following:

min
T∈N

(d) = ∑
i=T
‖li+T − li‖ (6)

One can interpret equation 6 as the solution to a minimum
spanning tree where the points are the nodes and the weights
of the edges are the distances between the points, di.
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While perhaps not obvious one can look at each interval T as the basis for a
1D plot where the sample values are the distances from equation 5 (thus the term
distance measure plot). Figure 5 (b) and (d) show two distance measure plots with
T equal the fundamental periods where the sum of the distances are minimized.

5.2 Ridgeline Plot

Previously [12], we noted that for each poloidal winding in the fieldline there is a
local maximum, r with respect to the toroidal cross section (i.e the Z = 0 plane),
which is defined as:

Γz(r)> 0;
∂Γ (r)

∂ z
= 0. (7)

The ridgeline plot is defined as the collection of these local maxima.
It is easy to understand the construction of a ridgeline plot when we view the

field lines in cylindrical coordinates (Figure 4a). The periodic nature of the fieldline
is then apparent (Figure 4b). The oscillation of the ridgeline can be attributed to
an area preserving deformation of the magnetic surface as the fieldline precesses
around it and its fundamental period is the poloidal period of the fieldline.

(a) (b)

Fig. 4: (a) The original toroidal geometry containing a single fieldline for multiple toroidal wind-
ings in Cartesian coordinates superimposed with the same geometry in Cylindrical coordinates. (b)
The ridgeline plot of maximal points is shown in black and has a period of 10.

To extract the fundamental period of a ridgeline plot, which is essentially a 1D
function we make use of a Yin Estimator [3] which minimizes the following differ-
ence:

min
f∈N

(σ) = ∑
i=0

(ri− ri+ f )
2 (8)

where ri is the local maxima from equation 7, and f is the fundamental period.
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(a) (b) (c) (d)

Fig. 5: (a) A Poincaré section of a 29,11 flux surface. The number of curved sections, 29 corre-
sponds to the toroidal winding number. (b) Top, the ridgeline plot with a period of 11. (b) Bottom,
the distance plot with a period of 29. (c) A Poincaré section of a 5,2 island chain. The number
of islands, 5 corresponds to the toroidal winding number. (d) Top, the ridgeline plot with a period
of 42. (d) Bottom, the distance plot with a period of 105. Each island contains 21 points in its
cross-section.

Table 3: Toroidal winding
periods via 125 poloidal
punctures ranked based on
the best period.

Toroidal Normalized
Period Variance

37 0.00255453
58 0.0071927
29 0.00790372
45 0.0177908
50 0.0346803
53 0.0352651
61 0.0433945
63 0.0760976
42 0.0865597

Table 4: Poloidal wind-
ing period via 46 ridge-
line points ranked based
on the best period.

Poloidal Normalized
Period Variance

14 1.07227e-05
22 2.48072e-05
11 2.83332e-05
17 6.16752e-05
20 0.000101897
19 0.000105744
23 0.000129318
16 0.000209808
24 0.000210209

Table 5: Possible winding pairs found in Table
1 using the periods from Tables 3 and 4 ranking
based on an Euclidean distance. [1] reduced to
29,11, [2] discarded

Winding Euclidean
Pair Distance

37,14 0
58,22[1] 1.41421
29,11[2] 2.23607
45,17 4.24264
53,20 6.40312
50,19 6.40312
61,23 8.48528
21,8 10.6301
8,3 13.6015

5.3 Combining Measures

When analyzing distance measure and ridgeline plots we are able to obtain multiple
solutions with different rankings using equations 6 and 8, respectively. For example,
in Tables 3 and 4 we show the candidate periods for the distance (toroidal) and
ridgeline (poloidal) plots with the descending ranking respectively. Similar periods
are seen in Tables 1 and 2 but with different rankings.

While each of the plots yields independent toroidal and poloidal winding periods
we now combine them to form the same winding pairs found in Table 1. Further,
we rank each pair based on their individual rankings using an Euclidean distance
measure (sum of the squares of their individual rankings) (e.g. Table 5).

This ranking results in winding pair 37,14 being the “best” overall approximation
having a Euclidean distance of 3.16228 (in Tables 1, 2, and 5 the 37,14 winding pair
was ranked second, fourth, and first respectively thus

√
12 +32 +02). The resulting
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surface is shown in Figure 6. We can use this metric regardless of topology albeit
not for chaotic fieldlines.

It is worth noting that the 29,11 winding pair also shows up as 58,22 winding pair
(see Table 5). The latter can be reduced to a 29,11 pair as the integers 58,22 have a
common denominator of 2. Further, the original 29,11 pair is discarded because its
Euclidean ranking distance was greater than the 58,22 pair (Table 5).

Winding pairs that share a common denominator are not unexpected. However,
as will be discussed in Section 6, common denominators are a key to differentiating
between the topology of flux surfaces and magnetic islands.

Table 6: Winding pairs ranked based on an Eu-
clidean distance.

Winding Euclidean
Pair Distance

37,14 3.16228
45,17 4.12311
29,11 5.09902
53,20 6.78233
8,3 8.30662

50,19 8.77496
61,23 9.43398
21,8 10.0499
13,5 13.3041

Fig. 6: The best winding pair from Table 6 a
37,14 flux surface with 37 line segments repre-
senting the 37 toroidal windings.

6 Identifying Island Chains Using Period Estimation

Up to this point we have focused solely on identifying a winding pair that approxi-
mates an irrational surface. However, we note that in the case of an island chain an
interesting phenomenon occurs.

When analyzing a flux surface, the fundamental periods of the distance and ridge-
line plots are equal to the toroidal and poloidal winding pair values (Figure 5(b)).
While for an island chain, the fundamental periods of the distance and ridgeline
plots are proportional to the toroidal and poloidal winding pair values (Figure 5(d)).
In [12] we showed that the proportionality constant for the ridgeline plot was equal
to the number of points in the cross-sectional profile of the island. We have since
observed the same for the distance measure plot. This proportionality is due to the
periodic nature of the puncture points as well as the periodic nature of the points
defining the cross section of the island.

While we have not yet fully investigated, we believe the difference in the pro-
portionality between a flux surface and an island chain is due to the fact that the
puncture points in an island chain are topologically separate from each other (i.e.
multiple closed curves), while for a flux surface the puncture points will overlap
with each other (i.e. one closed curve).
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Further, we observed that the number of candidate winding pairs is typically
limited as the irrational fieldlines of the island chains continue to reflect the rational
fieldlines from which they originated (or broke down) from. For instance, for a 5,2
island chain that utilizes 271 poloidal puncture points and 107 ridgeline points using
equation 4 (Section 4.2) results in only one winding pair 5,2 being found.

Constructing the distance measure and ridgeline plots and obtaining the funda-
mental periods, as shown in Tables 7 and 8, we obtain a “best” winding pair of 105,
42. We can reduce the winding pair to 5,2 by dividing by 21. In the meantime, in Fig-
ure 5c, the cross sectional profile of each island is composed of 21 points. In other
words, the greatest common denominator of the two periods in the best winding pair
obtained using the combined measures of the distance measure and ridgeline plots
is larger than 1 for an island chain (typically larger than 3 in order to form a closed
shape). On the other hand, this greatest common denominator is usually 1 for a flux
surface (see the 37,14 surface in Table 5). This characteristic provides a simple test
for determining whether a surface is a flux surface or an island chain. If the “best”
fundamental periods of the distance and ridgeline plots are some integer multiples
of the toroidal and poloidal periods found by equation 4, then not only is the surface
an island chain but the common multiplier (e.g. 21 in the previous example) of these
multiples is the number of points in the cross sectional profile of each island.

Table 7: Toroidal winding periods for an island
chain via 271 poloidal punctures ranked based
on the best period.

Toroidal Normalized
Period Variance

105 0.0001533
110 0.00197257
100 0.00428337
115 0.00836247
95 0.0143386
120 0.0164212

Table 8: Poloidal winding period for an island
chain via 108 ridgeline points ranked based on
the best period.

Poloidal Normalized
Period Variance

42 4.29724e-07
44 4.95931e-06
40 1.14382e-05
46 2.00078e-05
38 3.63677e-05
48 3.85742e-05

An alternative way for determining whether a surface is a flux surface or an island
chain is by looking at the common denominator for the lists of toroidal periods and
poloidal periods, separately. For instance, the common denominators for the candi-
date toroidal and poloidal periods in Tables 7 and 8 are 5 and 2 respectively, which
is exactly the winding pair found from equation 4. The common denominator is due
to the resonance nature of the fieldline and is an indication of the island topology.
For a flux surface, such as for Tables 3 and 4 no such common denominator other
than 1 will be found. As will be shown below, this common denominator property
gives us an indication of the type of the resonance of the two functions (and literally
the fieldline).
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7 Results and Discussion

The combined metrics described in Section 5.3 have produced accurate results for
our tests so far, failing only when encountering chaotic fieldlines. In addition to
identifying flux surfaces and magnetic island chains, the metrics are also used to
identify rational surfaces whose fieldlines are truly periodic, A0(l0) = A#T (l#T ).
However, we have found that our technique is not always able to give a definitive
result because as one approaches a rational surface the distance between adjacent
points goes to zero, which in turn requires an infinite number of points for the anal-
ysis. As the future work, we plan to investigate the analysis of rational surfaces
using a limited number of points.

Fig. 7: A 2,1 mag-
netic island chain
(red) surrounded
by its separatrices,
(blue and black).

We have also examined the periodicity of separatrices
near island chains. In Figure 7, the best rational approxi-
mations for the three surfaces are all 2,1. It is purely coin-
cident that all three surfaces had the same approximation as
selecting a slightly different starting seed point near separa-
trix could have resulted in a higher order approximation (i.e
a winding pair with larger integers).

In Section 6 two characteristics, i.e. integer multiples and
common denominators were discussed which could be used
to identify magnetic islands and their unique topology. How-
ever, we observed cases where the common denominator did
not equal the winding pair found from equation 4. For in-
stance, for a 3,1 island chain that utilizes 278 poloidal punc-
ture points and 91 ridgeline points has a safety factor of
2.99932 while the only winding pair found using equation
4 is 3,1. Constructing distance measure and ridgeline plots
and computing the fundamental periods (Tables 9 and 10)
we obtain a “best” winding pair of 108, 36. We can reduce
the winding pair to 3, 1 by dividing by 36 which is the num-
ber of points in the cross sectional profile.

However, unlike our previous island chain example the common denominators
for the toroidal and poloidal periods, 18 and 6 respectively, do not equal 3,1. Though
they do reduce down to it. This secondary reduction or more precisely secondary
resonance, gives further topological information about the island chain. Specifically,
the island chain itself contains islands (aka islands within islands). To reduce the
common denominators 18,6 to 3,1 an integer multiple of 6 is required. Which is
the number of small islands surrounding each island (Figure 8) with each island
containing 6 points (i.e. 6 islands with 6 points equaling 36, the number of points in
the cross sectional profile).

Finally, we note that we do not compare the present results to our previous geo-
metric tests because they were not a general solution, to the point of being ad-hoc
in nature. More importantly they required overlapping puncture points in order to
obtain a definitive result. Our new technique gives a definitive result as long as there
is a sufficient number of puncture points to perform the period analysis (i.e. at least
twice of the fundamental period).
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Table 9: Toroidal winding periods for an island
chain via 278 poloidal punctures ranked based
on the best period.

Toroidal Normalized
Period Variance

108 6.79968e-05
90 0.00092499
126 0.00098725
144 0.00178431
72 0.00195148
54 0.00199423
36 0.00200031
18 0.00201468

Table 10: Poloidal winding period for an island
chain via 91 ridgeline points ranked based on
the best period.

Poloidal Normalized
Period Variance

36 variance 3.70173e-07
30 variance 4.4525e-06
42 variance 4.71553e-06
48 variance 9.01227e-06
18 variance 1.01154e-05
24 variance 1.01895e-05
12 variance 1.03454e-05
6 variance 1.03557e-05

(a) (b)

Fig. 8: (a) Poincaré plot from a NIMROD simulation of the D3D tokamak. (b) A closeup from the
lower left showing the island within islands topology. In this case there are six islands surrounding
each of the islands that are part of a 3,1 island chain.

8 Summary

In this paper, we discuss the period analysis of the quasi-periodic fieldlines in a
toroidal magnetic field. We show that the topology of these fieldlines has direct
relationship to the fundamental periods of the distance measure plots and ridge-
line plots that are obtained through the computation of fieldlines and Poincaré plot,
respectively. We have described how the period analysis of these two plots charac-
terize the behavior of the fieldline. The present framework while having its basis in
resonance detection relies on a heuristic solution. Therefore, the future work will fo-
cus on the further evaluation of the present combined analysis, and the development
of more robust technique for characterizing fieldlines including identifying different
topological structures and extracting winding pairs.
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