
Journal of Computational Science 7 (2015) 26–36

Contents lists available at ScienceDirect

Journal of Computational Science

journa l homepage: www.e lsev ier .com/ locate / jocs

LCS Tool: A computational platform for Lagrangian coherent
structures

K. Onu, F. Huhn, G. Haller ∗

Institute of Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Switzerland

a r t i c l e i n f o

Article history:
Received 13 June 2014
Received in revised form
17 December 2014
Accepted 29 December 2014
Available online 7 January 2015

PACS:
47.10.Fg
47.27.De
47.11.−j
05.45.−a
47.51.+a
47.54.−r
92.10.hf
93.30.Qn
92.10.ab
92.10.Ty
92.10.ak
92.10.A−

MSC:
37N10
37B25
97N80
37C60
37B55
70H33
76F25

Keywords:
Lagrangian coherent structures
Mathematical software
Non-autonomous dynamical systems
Invariant manifolds
Mixing
Transport barriers
Fluid dynamics
Ocean surface flows

a b s t r a c t

We give an algorithmic introduction to Lagrangian coherent structures (LCSs) using a newly developed
computational engine, LCS Tool. LCSs are most repelling, attracting and shearing material lines that form
the centrepieces of observed tracer patterns in two-dimensional unsteady dynamical systems. LCS Tool
implements the latest geodesic theory of LCSs for two-dimensional flows, uncovering key transport barri-
ers in unsteady flow velocity data as explicit solutions of differential equations. LCS Tool makes theoretical
results accessible to the fluid mechanics community since implementing these results directly could be
time consuming. After a review of the underlying theory, we explain the steps and numerical methods
used by LCS Tool, and illustrate its capabilities on three unsteady fluid flow examples.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Lagrangian coherent structures (LCSs) are evolving organizing
centres of trajectory patterns in non-autonomous dynamical sys-
tems [1–3]. Applications of LCSs include oceanic and atmospheric
flows [4,5], biological transport problems [6–8], aeronautics [9],
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celestial mechanics [10], crowd dynamics [11], and aperiodically
forced mechanical oscillators [12].

Haller [13] proposed that ridges of the finite-time Lyapunov
exponent (FTLE) are heuristic indicators of hyperbolic (i.e., repelling
and attracting type) LCSs. A number of examples support this prin-
ciple [2]. Equating FTLE ridges with LCSs, however, would create
theoretical inconsistencies, as well as false positives and negatives
in hyperbolic LCS detection [14,15]. In addition, the role of the FTLE
field in the accurate detection of elliptic (vortex-type) and parabolic
(jet-core type) LCSs has remained an open question (but see [16]).

More recent work has focused on an exact mathematical
formulation of the properties defining LCSs [14,17–22]. In two-
dimensional flows, hyperbolic and parabolic LCSs turn out to be
stationary curves of the averaged material shear [23], whereas
elliptic LCSs are stationary curves of the averaged strain [19,20].
These variational formulations lead to explicit solutions for LCSs as
null geodesics of appropriate Lorentzian metrics.

We present an algorithmic introduction to geodesic LCS detec-
tion. We then review the implementation of this approach in a
computational engine called LCS Tool.1 This engine is a library
of MATLAB functions that extract LCSs from two-dimensional
unsteady flows. The examples we present form demonstration
scripts distributed with LCS Tool.

Other software for LCS detection exists. ManGen [24] calculates
the FTLE and advects material curves in two-dimensional velocity
fields. It includes a graphical user interface and uses the Message
Passing Interface standard for parallel calculations. Newman [25]
calculates the FTLE using dimension independent code. It assists
ridge extraction of FTLE fields and supports analytic and dataset
velocity definitions. FlowTK [26] calculates the FTLE in two and
three-dimensions on Cartesian and unstructured grids. The NVIDIA
CUDA parallel computing platform is used for fast computations
and Kitware’s ParaView data analysis and visualization application
is used for a user interface.

These packages generate FTLE plots to aid the visual assess-
ment of hyperbolic LCSs. LCS Tool also has functions to generate
FTLE plots, but its emphasis is to provide geodesic extraction of
LCSs as parametrized material curves, and extend the scope of such
extraction to elliptic LCSs.

2. Theory

We consider two-dimensional, finite-time, unsteady velocity
fields of the form

dx
dt

= v(x, t), x ∈ U ⊂ R2, t ∈ [t−, t+]. (1)

Trajectories of Eq. (1) are denoted x(t ; t0, x0), with x0 ∈ U denot-
ing their initial position in the open set U at an initial time t0 ∈ [t−,
t+]. The flow map is then defined as

Ftt0 (x0) ≡ x(t; t, x0),

mapping initial positions to current positions at time t. The time
interval [t−, t+] is part of the definition of the finite-time dynamical
system in Eq. (1). This interval may be a time scale of interest or
the maximum interval over which velocity data is available from
simulations or observations.

The right Cauchy-Green strain tensor associated with the flow
map is defined as

Ctt0 (x0) =
[
∇Ftt0 (x0)

]T∇Ftt0 (x0), (2)

1 LCS Tool is available at: http://www.runmycode.org/companion/view/908.

measuring Lagrangian strain in the velocity field. This tensor is
symmetric and positive definite [27]. We label the eigenvalues and
eigenvectors of Ctt0 (x0) as follows:

Ctt0!i = "i!i, 0< "1 ≤ "2, i = 1,2;

∣∣!i
∣∣ = 1, !2 =#!1, # =

(
0 −1
1 0

)
. (3)

2.1. Elliptic LCSs

We seek positions of closed material lines at time t0 that prevail
as coherent Lagrangian vortex boundaries (or elliptic LCSs) over a
time interval [t0, t] ⊂ [t−, t+]. Haller and Beron-Vera [19,20] argue
that such initial material line positions are closed stationary curves
of the averaged strain functional

Q ($) = 1
%

∫ %

0

√
⟨r′(s), Ctt0 (r(s))r′(s)⟩
√

⟨r′(s), r′(s)⟩
ds,

obtained by averaging the tangential strain arising over [t0, t] along
closed material lines parametrized as r(s) with s ∈ [0, %] . Solutions
to this variational problem turn out to be closed orbits of one of
two parametrized vector-field families

&"± =

√
"2 − "2

"2 − "1
!1 ±

√
"2 − "1

"2 − "1
!2, (4)

with "> 0 playing the role of a parameter. Such closed orbits satisfy
the differential equation

r′ = &"±(r), (5)

which coincide with null geodesics of the Lorentzian metric family

e"(u, v) = ⟨u,
[
Dtt0 (r) − "2I

]
v⟩.

For this reason, we refer to the computation of elliptic LCSs as
limit cycles of Eq. (5) as geodesic detection of elliptic LCSs.

Any orbit of Eq. (5) turns out to stretch uniformly under the flow
map Ftt0 . Specifically, any subset of an orbit of Eq. (5) increases its
arc length precisely by a factor of ". For this reason, we refer to
trajectories of Eq. (5) as "-lines. Following Haller and Beron-Vera
[19,20], we call the outermost member of a closed family of "-lines
a coherent Lagrangian vortex boundary.

2.2. Hyperbolic LCSs

Next we consider positions of material lines at time t0 that
prevail as most repelling or attracting material lines (or hyperbolic
LCSs) over a time interval [t0, t] ⊂ [t−, t+]. Farazmand et al. [23] argue
that hyperbolic LCSs are stationary curves of the averaged shear
functional

Q ($) = 1
%

∫ %

0

⟨r′(s),Dtt0 (r(s))r′(s)⟩
√

⟨r′(s), Ctt0 (r(s))r′(s)⟩⟨r′(s), r′(s)⟩
ds,

Dtt0 = 1
2

[Ctt0#−#Ctt0 ],

obtained by averaging the Lagrangian shear arising over [t0, t] along
material lines parametrized as r(s) with s ∈ [0, %]. More precisely,
hyperbolic LCSs are stationary curves of Q($) with respect to fixed-
endpoint perturbations. We note that parabolic LCSs (Lagrangian
jet cores) are also stationary curves of Q($), but under variable
endpoint perturbations (cf. Farazmand et al. [23]).

http://www.runmycode.org/companion/view/908
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Solutions to this variational problem turn out to be curves of the
!1 or !2 eigenvector field. Repelling LCSs (shrink lines) are obtained
as trajectories of the differential equation

r′ = !1(r), (6)

and attracting LCSs (stretch lines) are obtained as trajectories of the
differential equation

r′ = !2(r). (7)

Shrink lines and stretch lines coincide with the null geodesics
of the Lorentzian metric h(u, v) = ⟨u,Dtt0 (r)v⟩. For this reason, we
refer to the computation of hyperbolic LCSs as strongest normally-
repelling or normally-attracting curves of Eq. (5) as geodesic
detection of hyperbolic LCSs.

To compute the normal repulsion of shrink lines, we note that
an infinitesimal normal perturbation to a shrink line $ at its point
r grows under the flow map Ftt0 by a factor of "2(r) in the direction
normal to Ftt0 ($). Similarly, small normal perturbations to a stretch
line decay by a factor "1(r) in the direction normal to the evolving
stretch line.

3. Numerical methods

This section describes stepwise the numerical implementation
of geodesic detection of elliptic and hyperbolic LCSs based on Eqs.
5, 6, 7. Table 1 gives an overview of the steps, functions and variable
names used in LCS Tool to analyse a flow.

3.1. Computing the invariants of the Cauchy-Green strain tensor

The first step in calculating elliptic and hyperbolic LCSs is the
computation of the Cauchy-Green strain tensor field Ctt0 (x0), as
defined in Eq. (2). The function performing this calculation in LCS
Tool is eig cgStrain. The main steps executed by this function

are enumerated in Table 2, while Table 3 summarizes the syntax of
eig cgStrain.

The Cartesian grid of initial conditions mentioned in Table 2 is
rectangular, with user-defined vertical and horizontal ranges and
resolutions. The optimal resolution may be determined by a suc-
cessive doubling of the initial resolution until convergence of the
extracted LCSs is observed visually. If the domain of interest com-
prises only a few expected LCSs, e.g., one vortex, then a resolution
of about 500 grid points along the longest axis usually gives good
results. Otherwise, a higher resolution must be chosen.

The auxiliary grid (cf. Table 2) comprises four points placed
symmetrically around each point of the Cartesian grid (Fig. 1).
These points are used to achieve increased accuracy in the finite-
difference approximation

∇Ftt0 (x0) ≈

(
˛11 ˛12

˛21 ˛22

)

˛ij ≡
xi(t; t0, x0 + ıxj) − xi(t; t0, x0 − ıxj)

2|ıxj|

of ∇Ftt0 at a point x0 of the Cartesian grid. Here ıxj is a vector of
length |ıxj| > 0 that points from the Cartesian grid-point x0 in the jth
coordinate direction (Fig. 1). Computational improvements arising
from the use of the auxiliary grid over simply using the nearest
points of the main grid were reported in Farazmand and Haller [17].
Experience suggests setting the auxiliary grid spacing to 1–10% of
the main grid spacing.

The function eig cgStrain of LCS Tool provides the option to
calculate Cauchy-Green eigenvectors from the auxiliary grid using
eigenvalues calculated from the main grid. We have found that for
analytic flows, the eigenvalues can be calculated from the main
grid. For dataset flows, using the auxiliary grid for eigenvalue cal-
culations gives better results.

As stated above, a typical main grid for the Cauchy-Green strain
tensor has 500 × 500 points. This means that after the addition of 4

Table 1
Overview of sequence of computations to detect LCSs with LCS Tool functions.

1. Define a velocity field, dx = derivative(t,x,p)
2. Compute Cauchy-Green strain tensor invariants, [v,d]= eig cgStrain(derivative)
3. Define a range of " values, lambda
4. Define Poincare sections, ps
5. Detect elliptic LCSs, closedLambdaLine = poincare closed orbit range(v,d,lambda,ps) and ellipticLcs = elliptic lcs(closedLambdaLine)
6. Define a local maximization/minimization distance for hyperbolic LCSs, lmd
7. Detect hyperbolic LCSs, hyperbolicLine = seed curves from lambda max(v,d,ellipticLcs,lmd) and

hyperbolicLcs = remove strain in elliptic(hyperbolicLine,ellipticLcs)

Table 2
Algorithm to calculate the invariants of the Cauchy-Green strain tensor field.

1. Define a Cartesian grid for initial conditions of trajectories. Define an auxiliary grid for differentiating with respect to initial conditions.
2. Solve Eq. (1) starting from each grid point and auxiliary grid point over the time interval [t0, t]. This gives a discrete approximation to the flow map Ftt0 (x0).
3. Use finite differencing over the auxiliary grid to compute numerically the derivative of the flow map DFtt0 (x0).

4. Compute the Cauchy-Green strain tensor field Ctt0 (x0) =
(
DFtt0 (x0)

)T
DFtt0 (x0), its eigenvalue field "1,2(x0), and eigenvector fields !1,2(x0) over the initial

condition grid.

Table 3
Syntax of the function eig cgStrain.

[cgEigenvector,cgEigenvalue] = eig cgStrain(derivative,domain,timespan,resolution)
derivative function handle for flow velocity equations
domain 2 × 2 array to define flow domain
timespan 1 × 2 array to define flow timespan
resolution 1 × 2 array to define Cauchy-Green strain main grid resolution
auxGridRelDelta optional scalar between 0 and 0.5 to specify auxiliary grid spacing. Default: 10−2.
eigenvalueFromMainGrid optional logical to control whether eigenvalues of Cauchy-Green strain are calculated from main or auxiliary grid. Default: true.
incompressible optional logical to specify if incompressibility is imposed. Default: false.
odeSolverOptions optional odeset structure to specify flow map integration parameters
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Fig. 1. Illustration of the main grid (filled circles) and the auxiliary grid (empty
circles) used in the computation of the derivative of the flow map in Eq. (2) of
the Cauchy-Green strain tensor. The variable auxGridRelDelta specifies the grid
spacing of the auxiliary grid relative to the main grid spacing.

Table 4
Runtime and memory use associated with vector integration at different resolutions.
Results are from the function eig cgStrain applied to the double gyre presented
in Section 4.1. Results obtained with an Intel Core i3-4130 3.4 GHz processor.

Resolution Runtime (s) Memory (MB)

500 × 251 29 55
750 × 376 63 123

1000 × 501 112 223

auxiliary grid points around each main grid point, Eq. (1) must be
integrated over 1.25 million initial conditions.

To avoid excessive computational times in MATLAB, we vec-
torize Eq. (1), i.e., combine its right hand side evaluated over
each initial point into a single system of equations. The result-
ing system is composed of independent blocks of two-dimensional
first-order ordinary differential equations. We then use MATLAB’s
ode45 function to perform trajectory integration from all grid
points simultaneously. This calculation typically takes 5–10 min.
A potential drawback of vector form integration is that memory
requirements may become excessive at high resolutions. Table 4
lists runtime and memory use to integrate a flow map at different
resolutions. Furthermore, writing the velocity function in vector
form is more error-prone than the simpler two-dimensional form.

The Cauchy-Green strain tensor can have point singularities,
i.e., points where Ctt0 (x0) has repeated eigenvalues. At these points
the eigenvectors !1(x0) and !2(x0) are no longer well-defined. This
generically arises at a finite set of isolated points within the compu-
tational domain[28], and hence lie off the computational grid with
probability one.

Table 5
Algorithm to calculate elliptic LCSs and coherent Lagrangian vortex boundaries.

1. Position Poincare sections in flow domain to specify initial positions of
lambda-lines

2. Integrate "-lines tangent to &"± (see Eq. (5))
3. Calculate Poincare map
4. Find closed orbits for fixed points of the Poincare map
5. Identify outermost closed orbit on each Poincare section

3.1.1. Special case: incompressible velocity fields
Incompressible flows (i.e. those satisfying ∇ · v = 0) satisfy the

relation "1(x0)"2(x0) = 1 at all points of the computational domain
[29]. Incompressibility can be computationally imposed by first cal-
culating "2(x0), then setting "1(x0) = 1/"2(x0) and calculating the
strain eigenvectors !2 from "2, then !1 from the relationship in Eq.
(3). Experience shows that computing "i in this order gives higher
accuracy than in the reverse order [17].

At some grid points, "2 < 1 may occur due to numerical integra-
tion errors. By setting the integration tolerances to smaller values,
the number of such grid points is reduced. Enforcing "2 ≥ 1 every-
where, however, can incur excessive computational cost. To this
end, the function eig cgStrain records the number of points with
"2 < 1, providing a measure for setting feasible integration toler-
ances.

3.1.2. Special case: dataset velocity fields
Velocity fields defined by datasets require preprocessing before

they are used in the numerical integration of Eq. (1). This requires
spatial and temporal interpolation that enables the evaluation of
the velocity function at arbitrary points in U and at arbitrary times
between t− and t+. In Section 4.3, we present an ocean dataset
example with details of possible interpolation functions.

3.2. Computing elliptic LCSs

As discussed in Section 2.1, positions of elliptic LCSs at time t0
are found as closed orbits of the &"± vector fields defined in Eq. (4).
We find such orbits by integrating (5) from points of an appro-
priately chosen section (Poincare section), and evaluating the first
return map (Poincare map) onto this section. A "-line returning to
its starting point is then an elliptic LCS. The outermost member
of a family of closed "-lines (obtained by varying ") is a coherent
Lagrangian vortex boundary [19,20].

The main steps in calculating elliptic LCSs are enumerated in
Table 5 and described in further detail below. The syntax of elliptic
LCS functions in LCS Tool is shown in Table 6.

The first step is to define the position of Poincare sections in
regions where closed"-lines are expected based on a visual analysis
of the orbit structure of the&"± vector field. The Poincare section is to
be oriented such that the first endpoint is close to the centre of the

Table 6
Syntax for LCS Tool elliptic LCS functions. Both functions are called by the function poincare closed orbit range.

[shearline.etaPos,shearline.etaNeg] = lambda line(cgEigenvector,cgEigenvalue,lambda)
cgEigenvector array of Cauchy-Green strain eigenvectors
cgEigenvalue array of Cauchy-Green strain eigenvalues
lambda scalar lambda value in Eq. 4

[closedOrbits,orbits] = poincare closed orbit multi(domain,resolution,shearline,PSList)
domain array to define flow domain
resolution 1 × 2 array to define main grid resolution for Cauchy-Green strain tensor
shearline structure of arrays of &+ and &− values on main grid
PSList user-defined structure for Poincare section end-points, number of "-lines launched from Poincare section, and maximum closed "-line

length
nBisection optional number of bisection steps to refine zero crossings of Poincare map. Default: 5.
dThresh optional threshold to discard discontinuous zero crossings of Poincare map. Default: 10−2.
odeSolverOptions optional odeset structure to specify "-line integration parameters
periodicBc optional 1 × 2 logical array to specify periodic boundary conditions. Default: [false,false].
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Table 7
Algorithm used for variable time step integration of "-lines.

1. Linearly interpolate vector field orientation at initial position.
2. At next position, check whether vector field has rotated by over 90◦ , if

yes, flip the vector field orientation by 180◦ .
3. Stop integration when "-line returns to Poincare section, "-line

reaches the domain boundary, or maximum integration length has
been reached.

expected Lagrangian vortex, and the second endpoint is outside this
vortex. Additionally, the number of lambda-lines launched from the
Poincare section, poincareSection.numPoints, must be defined.
A reasonable default value is 100.

The second step is to integrate the "-lines starting from the
Poincare section to obtain the corresponding Poincare map. Inte-
gration of "-lines is performed using the &"± vector fields defined in
Eq. (4) over the main grid. The underlying eigenvector fields, !i(x0),
have generic but removable orientation discontinuities, which
require monitoring and local reorientation. This process is sketched
in Table 7 and illustrated in Fig. 2. Linear interpolation is used in
the interpolation of &"± within a grid element, since using higher-
order interpolation would necessitate verifying that there are no
orientation discontinuities beyond the four nearest grid points. We
identify orientation discontinuities by checking the inner product
of the &"± vectors at adjacent grid points. Rotations exceeding 90◦,
between two such neighbouring vectors are classified as orienta-
tion discontinuities and are corrected before linear interpolation.
When setting the Cauchy-Green strain tensor main grid resolution,
one may find it helpful to calculate a histogram of eigenvector field
rotations to ensure that all rotations are well below 90◦ or almost
180◦.

An example of a Poincare map produced from integration of the
&"± field is shown in Fig. 3. Most orbits will return to the Poincare
section and their integration will then be stopped using the ordi-
nary differential equation event detection function of MATLAB.
Some orbits may, however, deviate far from the Poincare section
and do not return for any reasonable integration time. To control
this behaviour, we specify a maximum orbit length, poincareSec-
tion.orbitMaxLength. In practice, viewing the Poincare section
as the radius of a circle and setting the maximum"-line integration
length to twice the circumference gives good results.

In Fig. 3, circle markers indicate fixed points of the Poincare
map, i.e., points where the distance between the final and
the initial point of the orbit P(s) − s, is zero. The function
poincare closed orbit multi performs the computations.
As seen in Fig. 3, not all zero crossings have circles. This is because
LCS Tool uses a filtering parameter, dThresh, to discard sign
changes of P(s) − s that are likely due to numerical sensitivity or a

Fig. 2. Schematic illustration of the variable-time-step "-line integration. At the
initial point, there is an orientation discontinuity at the lower-right grid point that
must be corrected prior to linear interpolation. At point #1, no orientation discon-
tinuity is present. At point #2, &"± vectors must be rotated by 180◦ to match the
orientation of the trajectory.

Fig. 3. Example of a Poincare map obtained for an elliptic LCS. The abscissa, s, rep-
resents distance along Poincare section. The ordinate, p(s) − s, represents distance
of Poincare orbit return point from initial position. Circle markers indicate closed
orbit positions. The filled circle indicates the outermost fixed point of the Poincare
map, marking the intersection of a coherent Lagrangian vortex boundary with the
Poincare section.

jump discontinuity of the Poincare map. Specifically, the location of
each detected zero crossing is first refined by the bisection method.
If after a predetermined number of iterations, nBisection, the
two points around the zero crossing still have absolute values
above dThresh, the zero crossing is discarded. Once all valid closed
"-lines have been located, the outermost closed "-orbit associated
with every Poincare section is identified as a coherent Lagrangian
vortex boundary.

3.3. Computing hyperbolic LCSs

As discussed in Section 2.2, hyperbolic LCS positions at time t0
are found as the strongest repelling curves of the vector field Eq.
(6) (repelling LCSs), and strongest attracting curves of the vector
field Eq. (7) (attracting LCSs). By repulsion and attraction we mean
a property of the LCS (as an evolving material line) under the flow
map Ftt0 . We identify the strongest repelling shrink lines as those
crossing a local maximum of the "2(x0) field. Similarly, we iden-
tify the strongest attracting stretch lines as those crossing a local
minimum of the "1(x0) field. These local maxima and minima of
the appropriate "i(x0) eigenvalue field can be thought of as the
extensions of the concept of saddle points to the present finite-time,
temporally aperiodic flow setting.

The main steps of hyperbolic LCS detection are enumerated
in Table 8. The core function to compute hyperbolic LCSs is
seed curves from lambda max and its syntax is given in Table 9.

4. Examples

This section presents the use of LCS Tool in three examples: a
double gyre, a jet, and an oceanic geostrophic flow. The examples
are available as scripts in the demo folder of LCS Tool. Executing
these scripts demonstrates how to call LCS Tool functions. These
functions are written to achieve balance between ease of use and
performance. Examples of demo runtimes are given in Table 10.

4.1. Double gyre

The double gyre is a model for a time-dependent two gyre
system observed in geophysical flows [30]. The model consists
of two counter rotating sinusoidal vortices with a harmonically
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Table 8
Algorithm to calculate initial positions of repelling LCSs at time t0. The algorithm for attracting LCSs is similar.

1. Define a local maximization distance.
2. Find all points of the main grid that are local maxima of "2 within a circle whose radius is the local

maximization distance.
3. Define a maximum shrink line length.
4. Integrate a shrink line forward and backward according to Eq. (6) and using the largest "2 local

maximum as the initial position. Integrate until the shrink line has attained the maximum shrink
line length, or until it has reached the domain boundary.

5. Flag any remaining local maxima of "2 within the maximization distance of the shrink line as
ineligible initial positions for subsequent shrink lines.

6. Continue integrating shrink lines using local maxima of "2 as initial positions until no eligible local
maxima of "2 remain.

7. Remove all shrink line segments within elliptic LCSs.

Table 9
Syntax of the function seed curves from lambda max.

[curvePosition,curveInitialPosition] = seed curves from lambda max(distance,cgEigenvalue,cgEigenvector,flowDomain, flowResolution)
distance threshold distance for placement of "2(x0) maxima
cgEigenvalue array of Cauchy-Green strain eigenvalues
cgEigenvector array of Cauchy-Green strain eigenvectors
flowDomain 2 × 2 array to define flow domain
flowResolution 1 × 2 array to define Cauchy-Green strain main grid resolution
periodicBc optional 1 × 2 logical array to specify periodic boundary conditions. Default: [false,false].
nMaxCurves optional maximum number of curves (i.e. shrink lines or stretch lines) to generate. Default:

numel(cgEigenvalue).
odeSolverOptions optional odeset structure to specify flow map integration parameters

Table 10
Runtime of some demo scripts. Results obtained with an Intel Core i3-4130 3.4 GHz
processor with 8 GB of memory.

Demo Runtime (min)

Double gyre 50
Bickley jet 25
Ocean dataset 127

Listing 1
Double gyre derivative function corresponding to Eq. (8).

oscillating line in-between. Lagrangian particle motions satisfy the
non-autonomous dynamical system

dx
dt

= −'A sin['f (x, t)] cos('y),

dy
dt

= 'A cos['f (x, t)] sin('y)
∂f (x, t)
∂x

,

f (x, t) = ) sin(ωt)x2 + [1 − 2) sin(ωt)]x.

(8)

The MATLAB function describing this velocity field is given in
Listing 1, specifying the right hand side of the particle ordinary
differential equation in a way that supports vectorized integration.

In what follows, the parameter values are: A = 0.1,)= 0.1,ω ='/5.
The flow timespan is t ∈ [0, 10] and the domain is x ∈ [0, 2], y ∈ [0, 1].
By examining the FTLE field (which LCS Tool can provide), we posi-
tion Poincare sections to capture elliptic LCSs. A script to perform
this operation is given in Listing 2 where two Poincare sections are

Listing 2
LCS Tool commands for double gyre elliptic LCSs. Abridged subset of the LCS Tool
script demo/double gyre/elliptic hyperbolic lcs.m.

defined (lines 15 and 16). The free stretching parameter " (Eq. (5))
is varied over the range [0.93, 1.07] with increments of 0.01 (line
18). Closed orbits for all predefined " values are computed and the
outermost closed orbit is kept as the Lagrangian vortex boundary
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Fig. 4. Convergence of closed "-lines for increasing main-grid resolution in the
double-gyre. The outermost closed "-line (bold green line) is the vortex boundary.
Top: 500 × 250, middle: 750 × 375, bottom: 1000 × 500. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

(lines 25–27). We have chosen small values for the error tolerances
of the integration of the Cauchy-Green strain tensor (line 11) and
"-lines (line 19) to ensure convergence.

In Fig. 4, the resolution of the Cauchy-Green strain tensor is var-
ied from 500 × 250 to 1000 × 500. The location of the outermost
closed "-line changes insignificantly, demonstrating convergence.
For all tested resolutions, the " values of the outermost closed
orbits match. This also suggests that the lowest tested resolution,
500 × 250, is sufficient to identify elliptic LCSs.

Fig. 5 shows elliptic and hyperbolic LCSs for the double gyre at
this resolution. Listing 3 gives the LCS Tool commands to compute
hyperbolic LCSs. The maximum length of shrink lines and stretch
lines, shrinkLineMaxLength and stretchLineMaxLength, is set
to 20, a multiple of the domain size since the hyperbolic LCSs may
wind around vortices several times.

As usual, the local maximization distance is set larger for stretch
lines than for shrink lines (cf. line 3 and line 7). The purpose of
the maximization distance is to obtain spatially separated LCSs and
to avoid a dense tangle of lines that basically indicates the same
hyperbolic LCS (cf. Table 8, item 5). Setting the local maximization
distance for stretch lines larger than for shrink lines allows obtain-
ing a comparable number of stretch lines and shrink lines overall
in the flow domain (recall that hyperbolic LCS seed points are dis-
carded if they are within the local maximization distance of an
existing hyperbolic LCS). Shrink lines are locally tangent to ridges of

Fig. 5. LCSs in the double gyre. Resolution is 500 × 250. Elliptic LCSs are green, shrink
line LCSs are red and stretch line LCSs are blue. White dots indicate "2 maxima for
shrink lines and"1 minima stretch lines. FTLE shown in the background."= 1.00 and
1.04 for the left and the right gyre. "∈ [0.93, 1.07],+"= 0.01. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Listing 3
LCS Tool commands for double gyre hyperbolic LCSs. Abridged subset of the LCS Tool
script demo/double gyre/elliptic hyperbolic lcs.m.

"2 maxima, whereas stretch lines are locally normal to these ridges.
Setting the local maximization distance of stretch lines and shrink
lines equal would therefore produce a greater number of stretch
lines than shrink lines.

4.2. Bickley jet

The Bickley jet models a meandering zonal jet flanked above
and below by counter rotating vortices. This is an idealized model
of geophysical flows such as the Gulf Stream and the polar night jet
perturbed by a Rossby wave [31,16].
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Fig. 6. LCSs in the Bickley jet. Resolution is 500 × 200. Elliptic LCSs are green, shrink
line LCSs are red and stretch line LCSs are blue. White dots indicate "2 maxima
for shrink lines and "1 minima stretch lines. FTLE shown in the background. " val-
ues of elliptic LCSs from left to right are [0.95, 0.80, 0.94, 0.80, 0.94], "∈ [0.80, 1.20],
+"= 0.01.

The velocity is given by v(x, y, t) = (−∂y ,∂x ) where

 (x, y, t) =  0(x, y) + 1(x, y, t),

 0(x, y) = c3y− ULy tanh
y
Ly

+ )3ULy sech2 y
Ly

cos k3x,

 1(x, y, t) = ULy sech2 y
Ly
R

[
2∑

n=1

)nfn(t)eiknx

]
.

As a forcing function, we choose a solution running on the
chaotic attractor of the damped and forced Duffing oscillator,
specifically

d,1

dt
= ,2,

d,2

t
= −0.1,2 − ,3

1 + 11 cos(t),

f1,2(t) = 2.625 × 10−2,1(t/6.238 × 105)

The parameter values we use are: U = 62.66, c2 = 0.205U,
c3 = 0.461U, Ly = 1.77 × 106, )1 = 0.0075, )2 = 0.04, )3 = 0.3,
Lx = 6.371 × 106', kn = 2n'/Lx, %1 = 0.5k2(c2 − c3), %2 = 2%1.

The integration time is T = 4Lx/U, an integer multiple of the eddy
turnover time. Listing 4 shows the LCS Tool commands in which
the chaotically perturbed velocity is defined (line 9), periodic
boundary conditions are imposed in the x-direction (line 10),
and five Poincare sections are defined where we expect coherent
vortices (lines 26–30). "-values for closed orbit detection are
varied over the range [0.80, 1.20] with a step of 0.01.

Fig. 6 shows elliptic and hyperbolic LCSs of the Bickley jet with
the FTLE in the background.

4.3. Ocean velocity data from satellite altimetry

The final example demonstrates the use of LCS Tool on velocity
data derived from satellite-observed sea-surface heights under
the geostrophic approximation. In contrast to the previous two
analytic examples, the velocity field is available only with dis-
crete temporal and spatial resolution. Our region of interest is a
small domain in the South Atlantic Ocean, where exceptionally
coherent eddies, Agulhas rings, were recently found by Haller and
Beron-Vera [19,20] using the theory we surveyed in Section 2.1.

Listing 4
LCS Tool commands for Bickley jet elliptic and hyperbolic LCSs. Abridged version of
the LCS Tool script demo/bickley jet/elliptic hyperbolic lcs.m.

In the geostrophic approximation, sea surface height (&) serves
as a stream-function for surface velocities. In a longitude-latitude
(ϕ, .) coordinate system, the evolution of a fluid particle is given by

∂ϕ(ϕ, ., t)
∂t

= − g
R2f (.) cos .

∂&(ϕ, ., t)
∂.

(9)

∂.(ϕ, ., t)
∂t

= g
R2f (.) cos .

∂&(ϕ, ., t)
∂ϕ

(10)

where g is the constant of gravity, R is the mean radius of the Earth,
and f(.) ≡ 2# sin . is the Coriolis parameter, with # denoting the
Earth’s mean angular velocity.
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Listing 5
LCS Tool commands for ocean data elliptic and hyperbolic LCSs. Abridged version of
the LCS Tool script demo/ocean dataset/elliptic hyperbolic lcs.m.

The data is given at a spatial resolution of 1/4◦ and a temporal
resolution of 7 days. Due to the discrete data, defining the right
hand side of Eqs. (9) and (10) involves spline interpolation in
space and time. An interpolant is generated first, then the function
flowdata derivative evaluates the interpolants for the zonal
and meridional velocity at the needed coordinates. Listing 5
shows the relevant part of the code in LCS Tool’s ocean demo
file demo/ocean dataset/elliptic hyperbolic lcs.m. The

Fig. 7. LCSs in the ocean velocity data from satellite altimetry. Resolution is
400 × 400. Elliptic LCSs are green, shrink line LCSs are red and stretch line LCSs are
blue. White dots indicate "2 maxima for shrink lines and "1 minima stretch lines.
FTLE shown in the background. "= 1.00, 1.08, 0.94, 0.90, 1.06.

commands for the interpolation of the velocity data are given in
lines 9–12.

We choose the integration time as T = 30 days (listing 5, line 4),
which is larger than the eddy turnover time in this region. The res-
olution of the main computational grid for initial conditions is set
to 400 × 400 (line 3). This corresponds to a resolution of roughly
0.015◦. With this choice, the resolution of the tracer grid is 15
times higher than the resolution of the velocity field. The flow
is integrated and the Cauchy-Green strain tensor is computed by
the function eig cgStrain (line 35). The auxiliary grid distance is
set to 1% of the main grid distance (line 17), and eigenvalues are
computed from the auxiliary grid (line 16). Elliptic LCSs are com-
puted in line 37, after the Poincare sections have been set (line
21). "-values are varied over a range of [0.90, 1.10] with a step
of 0.02 (line 23). Hyperbolic LCSs are computed in lines 40 and
43.

Fig. 7 shows elliptic and hyperbolic LCSs on 22 November
2006, the same time as analysed in Haller and Beron-Vera [19,20],
Beron-Vera et al. [4]. In those references, the integration time is 90
days. We use a shorter time to avoid tangling hyperbolic LCSs. Our
analysis via LCS Tool reveals five coherent eddies. The largest, at
(3, − 32), has a non-stretching boundary, i.e., "= 1. It corresponds
to eddy #2 in figure 3 of Beron-Vera et al. [4]. Four additional
smaller coherent eddies are found. They do not stay coherent over
90 days. The hyperbolic LCSs determine the deformation of the
fluid between coherent eddies.

5. Conclusions

We have described a computational toolbox, LCS Tool, that
implements recent variational results for Lagrangian coherent
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structures (LCSs) in two-dimensional unsteady flows. We have also
demonstrated the performance of LCS Tool on two analytic flow
models and a geophysical velocity dataset. The publicly available
software library producing these results enables the exploration of
variational LCS methods without assuming a detailed knowledge
of geodesic LCS theory.

LCS Tool leverages the capabilities of MATLAB. For FTLE based
extraction of LCSs, computational performance has received con-
siderable attention [32,33]. We think LCS Tool can facilitate similar
computational advances for variational LCS methods. Optimizing
computational performance will aid applications to large-scale
forecasting applications, such as the tracking of environmental con-
taminants [34].

We think LCS Tool can serve as a foundation for the numerical
implementation of recent theoretical advances. These include the
geodesic theory of parabolic LCSs (jet cores) [23] and the variational
theory of hyperbolic and elliptic LCSs for three-dimensional flows
[22].
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like Lagrangian coherent structures in geophysical flows, Chaos 20 (1) (2010),
http://dx.doi.org/10.1063/1.3271342, 17514:1–13.

[17] M.M. Farazmand, G. Haller, Computing Lagrangian coherent structures from
their variational theory, Chaos 22 (1) (2012), http://dx.doi.org/10.1063/
1.3690153, 13128:1–12.

[18] G. Haller, F.J. Beron-Vera, Geodesic theory of transport barriers in two-
dimensional flows, Phys. D 241 (20) (2012) 1680–1702, http://dx.doi.org/10.
1016/j.physd.2012.06.012.

[19] G. Haller, F.J. Beron-Vera, Coherent Lagrangian vortices: the black holes of
turbulence, J. Fluid Mech. 731 (2013), http://dx.doi.org/10.1017/jfm.2013.391,
R4:1–10.

[20] G. Haller, F.J. Beron-Vera, Addendum to ‘Coherent Lagrangian vor-
tices: the black holes of turbulence’, J. Fluid Mech. 755 (2014),
http://dx.doi.org/10.1017/jfm.2014.441, R3:1–4.

[21] M.M. Farazmand, G. Haller, Attracting and repelling Lagrangian coherent
structures from a single computation, Chaos 23 (2) (2013), http://dx.doi.org/
10.1063/1.4800210, 23101:1–11.

[22] D. Blazevski, G. Haller, Hyperbolic and elliptic transport barriers in three-
dimensional unsteady flows, Phys. D 273–274 (2014) 46–62, http://dx.doi.
org/10.1016/j.physd.2014.01.007.

[23] M.M. Farazmand, D. Blazevski, G. Haller, Shearless transport barriers in
unsteady two-dimensional flows and maps, Phys. D 278–279 (2014) 44–57,
http://dx.doi.org/10.1016/j.physd.2014.03.008.

[24] F. Lekien, Time-Dependent Dynamical Systems and Geophysical Flows
(Ph.D. thesis), California Institute of Technology, 2003 http://resolver.caltech.
edu/CaltechETD:etd-04082003-180353

[25] P.C. du Toit, Transport and Separatrices in Time-Dependent Flows (Ph.D.
thesis), California Institute of Technology, 2010 http://resolver.caltech.edu/
CaltechTHESIS:10072009-165901284

[26] S. Ameli, Y. Desai, S.C. Shadden, Development of an efficient and flexible
pipeline for Lagrangian coherent structure computation, in: P.-T. Bremer, I.
Hotz, V. Pascucci, R. Peikert (Eds.), Topological Methods in Data Analysis
and Visualization: Theory, Algorithms, and Applications, Mathematics and
Visualization, vol. 3, Springer, 2014, pp. 201–215, http://dx.doi.org/10.1007/
978-3-319-04099-8 13.

[27] C.A. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics, 3rd ed.,
Springer, 2004, http://dx.doi.org/10.1007/978-3-662-13183-1.

[28] T. Delmarcelle, L. Hesselink, The topology of symmetric, second-order tensor
fields, in: Proceedings of the IEEE Conference on Visualization ’94, 1994, pp.
140–147, http://dx.doi.org/10.1109/VISUAL.1994.346326.

[29] V.I. Arnold, Mathematical Methods of Classical Mechanics Graduate
Texts in Mathematics, vol. 60, Springer, 1989, http://dx.doi.org/10.1007/
978-1-4757-2063-1.

[30] S.C. Shadden, F. Lekien, J.E. Marsden, Definition and properties of Lagrangian
coherent structures from finite-time Lyapunov exponents in two-dimensional
aperiodic flows, Phys. D 212 (3–4) (2005) 271–304, http://dx.doi.org/10.1016/
j.physd.2005.10.007.

[31] D. del Castillo-Negrete, P.J. Morrison, Chaotic transport by Rossby waves
in shear flow, Phys. Fluids A 5 (4) (1993) 948–965, http://dx.doi.org/10.
1063/1.858639.

[32] C. Conti, D. Rossinelli, P. Koumoutsakos, GPU and APU computations of finite
time Lyapunov exponent fields, J. Comput. Phys. 231 (5) (2012) 2229–2244,
http://dx.doi.org/10.1016/j.jcp.2011.10.032.

[33] P. Miron, J. Vétel, A. Garon, M. Delfour, M. El Hassan, Anisotropic mesh adap-
tation on Lagrangian coherent structures, J. Comput. Phys. 231 (19) (2012)
6419–6437, http://dx.doi.org/10.1016/jjcp.2012.06.015.

[34] M.J. Olascoaga, G. Haller, Forecasting sudden changes in environmental pol-
lution patterns, Proc. Natl. Acad. Sci. U. S. A. 109 (13) (2012) 4738–4743,
http://dx.doi.org/10.1073/pnas.1118574109.

Kristjan Onu was a postdoc researcher at McGill Univer-
sity, Canada. His research interests are fluid mechanics,
numerical methods and stochastic dynamical systems.

http://www.aviso.oceanobs.com/duacs
dx.doi.org/10.1016/S0167-2789(00)00142-1
dx.doi.org/10.1016/S0167-2789(00)00142-1
dx.doi.org/10.1063/PT.3.1886
dx.doi.org/10.1063/PT.3.1886
dx.doi.org/10.1146/annurev-fluid-010313-141322
dx.doi.org/10.1175/JPO-D-12-0171.1
dx.doi.org/10.1063/1.1480442
dx.doi.org/10.1088/0953-8984/21/20/204105
dx.doi.org/10.1063/1.3624930
dx.doi.org/10.1029/2012GL051246
dx.doi.org/10.1063/1.3276061
dx.doi.org/10.1063/1.3276061
dx.doi.org/10.1007/s10569-008-9180-3
dx.doi.org/10.1007/s10569-008-9180-3
dx.doi.org/10.1109/CVPR.2007.382977
dx.doi.org/10.1007/s11071-013-0823-x
dx.doi.org/10.1007/s11071-013-0823-x
dx.doi.org/10.1016/S0167-2789(00)00199-8
dx.doi.org/10.1016/S0167-2789(00)00199-8
dx.doi.org/10.1016/j.physd.2010.11.010
dx.doi.org/10.1016/j.physd.2010.11.010
dx.doi.org/10.1016/j.physd.2012.05.006
dx.doi.org/10.1063/1.3271342
dx.doi.org/10.1063/1.3690153
dx.doi.org/10.1063/1.3690153
dx.doi.org/10.1016/j.physd.2012.06.012
dx.doi.org/10.1016/j.physd.2012.06.012
dx.doi.org/10.1017/jfm.2013.391
dx.doi.org/10.1017/jfm.2014.441
dx.doi.org/10.1063/1.4800210
dx.doi.org/10.1063/1.4800210
dx.doi.org/10.1016/j.physd.2014.01.007
dx.doi.org/10.1016/j.physd.2014.01.007
dx.doi.org/10.1016/j.physd.2014.03.008
http://resolver.caltech.edu/CaltechETD:etd-04082003-180353
http://resolver.caltech.edu/CaltechETD:etd-04082003-180353
http://resolver.caltech.edu/CaltechTHESIS:10072009-165901284
http://resolver.caltech.edu/CaltechTHESIS:10072009-165901284
dx.doi.org/10.1007/978-3-319-04099-8_13
dx.doi.org/10.1007/978-3-319-04099-8_13
dx.doi.org/10.1007/978-3-662-13183-1
dx.doi.org/10.1109/VISUAL.1994.346326
dx.doi.org/10.1007/978-1-4757-2063-1
dx.doi.org/10.1007/978-1-4757-2063-1
dx.doi.org/10.1016/j.physd.2005.10.007
dx.doi.org/10.1016/j.physd.2005.10.007
dx.doi.org/10.1063/1.858639
dx.doi.org/10.1063/1.858639
dx.doi.org/10.1016/j.jcp.2011.10.032
dx.doi.org/10.1016/jjcp.2012.06.015
dx.doi.org/10.1073/pnas.1118574109


36 K. Onu et al. / Journal of Computational Science 7 (2015) 26–36

Florian Huhn was a postdoc researcher at the Insti-
tute of Mechanical Systems at ETH Zurich, Switzerland.
He is now at the Department of Experimental Methods,
Institute of Aerodynamics and Flow Technology, Ger-
man Aerospace Center (DLR), Göttingen, Germany. His
main research interests are experimental fluid dynam-
ics, reaction-diffusion advection systems, and transport in
geophysical flows.

George Haller is Professor of Nonlinear Dynamics at ETH
Zürich. He develops dynamical systems methods to han-
dle complex problems in mechanics and fluid dynamics.


